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AN EXPONENTIAL BOUND ON THE NUMBER OF
NON-ISOTOPIC COMMUTATIVE SEMIFIELDS

FARUK GOLOGLU AND LUKAS KOLSCH

Abstract. We show that the number of non-isotopic commutative semifields of
odd order p" is exponential in n when n = 4t and t is not a power of 2.
We introduce a new family of commutative semifields and a method for
proving isotopy results on commutative semifields that we use to deduce the
aforementioned bound. The previous best bound on the number of non-isotopic
commutative semifields of odd order was quadratic in n and given by Zhou and
Pott [Adv. Math. 234 (2013), pp. 43-60]. Similar bounds in the case of even
order were given in Kantor [J. Algebra 270 (2003), pp. 96-114] and Kantor
and Williams [Trans. Amer. Math. Soc. 356 (2004), pp. 895-938].

1. Introduction

In this paper, we show that the number N . of non-isotopic commutative semi-
fields of odd order p” is exponential in n when n = 4t. To be precise, we prove for
every odd prime p,

- n/4 _
v, s @@= DE -1
2n
when v,(n) 2 2, where we denote by o(n) the odd part of an integer n (i.e., o(n) =
n/2v2(M) and by v,(n) the 2-adic valuation of n (i.e., 22" [n and 2v2(M*1 . p),
For odd p, the previous best bound on N, was quadratic in n and was proved in [35,
Corollary 1]:

Npn 2 7n(a(n8)— D + cn,
when v,(n) 2 1 and c a constant. When p and n are odd, the known number for
Npn s linear in n. The problem of determining whether the number N,. can be
bounded by a polynomial in n has been described [29, p. 180] as “the main
problem in connection with commutative semifields of [odd] order p”.” Note that it
is impossible to find families with exponentially many non-isotopic commutative
semifields of order p” for arbitrary p, n. Indeed, by a result of Menichetti [27,
Corollary 33], all commutative semifields of order p” with n prime and p large
enough are isotopic to the finite field or a twisted field (see Section 3.2). It isthus
impossible to give an exponential count for all p,n. The problem in the
characteristic 2 case was solved almost two decades ago. Kantor [19, Theorem 1.1]
showed that the number of non-isotopic commutative semifields of order 2¥™ is at
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when m > 1 is odd and m is not a power of 3 (where we denote by p(m) the
nmumber of prime factors of m counting multiplicities), using a construction by
Kantor and Williams [20, Theorem 1.7]. In these papers, finding a large number of
(commutative) semifields in odd characteristic and finding a general approach to
proving non-isotopy were posed as important open problems [20, p. 936], [19, p.
112].

To prove the bound we introduce a new family of commutative semifields. These
semifields satisfy a property that we call biprojectivity, which also applies to many
known semifields of square order. The biprojective structure allows us to develop a
technique of determining isotopy between semifields. This technique is key to
proving the exponential bound on non-isotopic commutative semifields.

In Section 2, we give the preliminaries. In Section 3, we define biprojective semi-
fields and give a quick survey on known commutative semifields and their counts.
Section 4 is devoted to proving the semifield property of our family (Theorem 4.4).
Section 5 introduces our technique of proving isotopy between semifields (Theo-
rem 5.10). In Section 6, we give the number of non-isotopic semifields arising from
our family (Theorem 6.2). Section 6 contains our main result that the number of
non-isotopic commutative semifields of odd order p” is exponential in n (Corollar-ies
6.4 and 6.5). In Section 7, we compute the nuclei associated to our semifields
(Theorem 7.2). Finally, in Section 8, we show that our semifields are indeed new
and not isotopic to most known semifields (Theorem 8.1).

2. Preliminaries

A finite semifield S = (S, +, °) is a set S equipped with two operations (+, °)
satisfying the following axioms.
(S1) (S, +) is a group.
(S2) Forall x,y,z®2S,
e xo(ytz)y=xoy+xoz,
e (x+ty)oz=xoz+yo°z.
(S3) Forallx,y @S, x°y= 0 impliesx = 0 or y = 0.
(S4) There exists 2@ S such that x e 2= x = 20 x,

In this paper, we will be interested only in finite semifields. Henceforth, when we
say a semifield we will mean a finite semifield. An algebraic object satisfying the
first three of the above axioms is called a pre-semifield. If P = (P, +, °) is a pre-
semifield, then (P, +) is an elementary abelian p-group [22, p. 185], and (P, +) can
be viewed as an n-dimensional F,-vector space F". If N is associative then S is the
finite field F,» by Wedderburn’s theorem which states that a finite division ring is
a field. By a result of Menichetti (known as Kaplansky’s conjecture [26]) when n
> 2, there exist proper semifields of odd order p” where ° is non-associative. There are
no proper semifields of order 23. For n > 3, there exist proper semifields of order 2"
[22]. A pre-semifield P = (F”, +, °) can bg converted to a semifield S = (F", +, B)
using Ig)ap/ansky’s trick by defining the new multiplication as

(xce)d(ecy)= (x°y),
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1685

for any nonzero element e @ F”_ making (e ° e) the multiplicative identity of S. A
pre-semifield is an Fp-algebra, thus the multiplication is bilinear. Therefore we have
Fp-bilinear B : F, x F§ - P, satisfying

B(x,y)=x°y,

and Fp-linear left and right multiplications L, R, : FJ' = F', with

Ly(y) := B(x, y) =: Ry(x).

The mapping L, (resp. R,) is a bijection whenever x = 0 (resp. y = 0) by (S3).
Thus,

Re(X) Ble(y) = x-y.

Two pre-semifields Py = (F7, +, °1) and P, = (F7, +, °2) are said to be isotopic if
there exist Fp-linear bijections L, M and N of F satisfying

N(xe°1y)= L(x)°2 M(y).

Such a triple y = (N, L, M) is called an isotopism between P; and P,. If addition-
ally L = M holds, we call y a strong isotopism and P; and P> strongly isotopic.
Isotopisms between a pre-semifield P and itself are called autotopisms. Thus the
pre-semifield P and the corresponding semifield S constructed by Kaplansky’s trick
are isotopic and even strongly isotopic if P is commutative. Isotopy of pre-semifields is
an equivalence relation and the isotopism class of a pre-semifield P is denoted by
[P]. Semifields coordinatize projective planes and different semifields coordina-tize
isomorphic planes if and only if they are isotopic ([1], see [22, Section 3] for a
detailed treatment). Semifields are further equivalent to maximum rank distance
codes with certain parameters (see e.g. [31]) and can be used to construct relative
difference sets (see [30]). Associative substructures of a semifield S = (FS, +, @),
namely the left, middle and right nuclei, are defined as follows:

N(S):={xBF, : (xBy)Bz=xB(yBz), y,zRAF;},
Nn(S) := {yF[:’ s (xBy)Bz=xB(yR2), X,ZFZ},
N.(S):={zBF) : (xBy)Bz=xBA(yB2z), x,y BF,7}.

It is easy to check that N(S), N, (S), N.(S) B Fp» are finite fields and if S is
commutative then N/(S) = N,(S). Nuclei are isotopy invariants for semifields.
Since every pre-semifield P B [S] for some semifield S, the nuclei can be thought to
extend to pre-semifields. Thus, when we speak of the nuclei of a pre-semifield P we
mean the nuclei of the isotopic semifield S.

Let End(Fp ) denote the F,-linear endomorphisms of the vector space Fp . Every
Fp-linear mapping L @ End(Fj) can be written uniquely as a linearized polyno-
mial

Xt
L(x) = bixP,i-0
in the polynomial ring F,» [x]. We will not make distinction between mappings and
the polynomials. Let p be an odd prime and consider the polynomials from Fp» [x] of
the form X
F(x)= aiixP P

0<i,j<n
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1686 FARUK GOLOGLU AND LUKAS KOLSCH

These polynomials are called Dembowski-Ostrom (DO) polynomials. The po-
larization of a DO polynomial F is defined as

Ar(xy)=F(x+y)- F(x) - F(y).

The mapping Ar : Fj xFJ - FJ is symmetric and F,-bilinear, thus if Ar (x, @) = 0
implies x = 0 for alla B F,.*= F,n \ {0}, then Af (x, y) describes a commutative pre-
semifield multiplication [10]. Conversely, by a counting argument, every com-
mutative pre-semifield multiplication can be written as A¢ (x, y) for some DO poly-
nomial F [9]. In that case we will call F a planar DO polynomial/mapping.
Strong isotopy between pre-semifields can be recognized also in the corresponding
planar DO polynomials:

Theorem 2.1 ([8, Theorem 3.5.]). Let F, G & Fn [x] be planar DO polynomials and
P, P> be the corresponding pre-semifields. Then P; and P, are strongly isotopic
via an isotopism y = (N, L, L) if and only if F = NGL™!.

Consequently, we say that two planar DO polynomials F, G are equivalent if
bijective linear mappings L, L, exist such that F = L;GL,. Note that this type of
equivalence is the most general equivalence known to preserve the planarity of a DO
polynomial, see [23].

3. Biprojective planar mappings and commutative semifields

In this paper we are interested in planar DO polynomials of a specific form. Let
F = Fpn be a finite field of square odd order and M = F,n with n= 2m. Let

F(x,y) = lf(x,¥), 9(x, ¥,

where

FO,y) = aox? + boxTy + coxy? + doy'!,

g y)=ax + bix'y+ cixy” + diy™,
with g= pX,r=p, 1< kI < m. We will call f(x,y) a g-biprojective polyno-
mial and (x, y) > F(x, y) a (q, r)-biprojective mapping (of M x M). Note that
F(x,y) is a (q, r)-biprojective polynomial pair. We will not make any distinction
between the polynomials and the mappings defined by them. We also letg = p™ ¥
and7 = p™~' sothatqg= rF = 1 (mod p™-1). We are going to use the shorthand
notation

.f(X/ y) = (aO/ bO/ co, dO)q,
g(x, y) = (ai, by, c1, d1)r.

We are going to refer to f and g as (left and right) components of F. We refer
the reader to [5] for projective polynomials over finite fields.

The polarization of a planar (g, r)-biprojective mapping defines a (g, r)-
biprojective (commutative) pre-semifield P = (M x M, +, ). It is easy to see
that both components correspond to homogeneous operations due to biprojec-tivity:

G.) xxy)By,v)
= ((aou + bov)x? + (aou? + cov¥)x + (cou + dov)y? + (bou? + dov?)y,
(aiu=+ byv)x" + (aiu" + civ)x+ (ciu+ div)y" + (biu” + divhy).
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1687

Define

DY (x, ¥) = box? + cox + doy? + doy, D (X, y)= aox? + aox + coy? + boy,

Dg(x,y) = bix" + cix+ diy" + dyy, DS (x, y)=a1x"+ aix+ cry' + by,
and for u @ P(M) \ {0, o=},

Df(x, ¥) = (aou+ bo)x? + (apu? + co)x + (cou + do)y? + (bou? + do)y,
Dy(x, y) = (aru+ b)x"+ (aru" + c)x + (cru+ dyy" + (bru" + dp)y.

Lemma 3.1 is straightforward.

Lemma 3.1. Let (x,¥y) - F(x,y) = [f(x,¥), 9(x, y)] be a (g, r)-biprojective map-
ping of M x M. Then F is planar if and only if the pair of equations

Df(x, y) = 0= Dg(x, y)
has exactly one solution for each u@ P'(M).
Proof. We need to show that the polarization Ar ((x, ¥), (u,v))= (x, y)B(u,v) =0
has a unique zero for each (u,v) @ M x M\ (0, 0) if and only if D)‘;"(x, y)= 0=
D;’(x, y) has a unique solution for each w @ P!(M). Inspecting Eq. (3.1), one
immediately sees that the case v = 0 corresponds to D~ (x,y) = 0= D;°(x, y) after

applying x = xu and y = yu. For vBIM*, apply x = xv, y = yv and u = uv to get
the remaining cases DW(x,fy) = 0= D"(xy) for w B M. X

In the following we will show that many known semifields fall into the (g, r)-
biprojective setting.

3.1. Dickson semifields D. Dickson introduced the commutative semifields S =
(M x M, +, °) with

% y)° (uv)= (xut ay?vi, xv+ yu),
where ¢ = p* with 0 < k < [/ and a @ M* | (M*)2. Note that the isotopic
multiplication
x, y)B(u,v)= (xu+ ayv, xv?+ yiu)
is (1, g)-biprojective and isotopic to the polarization of the (1, g)-biprojective planar
mapping
Fo =1[(1,0,0,a)1, (0, 1,0,0)].

Different choices for a @ M* | (M*)? produce isotopic semifields and there are a
total of b5 c non-isotopic Dickson semifields [19, p.107].

3.2. Albert’s generalized twisted fields A. Albert introduced [2] a family of
commutative and non-commutative semifields. The commutative ones may be given
as S = (F, +, °) with

XoU=XTU+ U9,
where g = p* with 0 < k < n satisfying n/gcd(k, n) odd. When F = M(&) with
[F: M]= 2, one can write X = x& + y with x, y @ M. One can choose E@F \ M
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1688 FARUK GOLOGLU AND LUKAS KOLSCH

satisfying £&2 = a B M* | (M*)2.
(x§+ y)e (UE+ v)
= (x§+ y)IuE+ v)+ (UE+ v)I(x§+ y)
= M (xTu+ uix) + E1(xAv + uly) + Eylu+ vix) + (Yiv+ viy)
= a(q+1)/2(xqu+ uix) + a(q-l)/2§(xqv+ uly) + EGu+ vix)+ (yIv+ viy).

Identifying éM + M with M x M, and

¥y (U, v) .
= a2y + uly)+ (YIu+ vix), a2 (xTu+ uix) + (Yiv+ viy)

is (g, g)-biprojective and isotopic to the polarization of the (g, q)-biprojective planar

mapping
Fa = [(0,a9V2,1,0), (a72,0,0,1),].

Different choices for a @ M* | (M*)2 produce isotopic semifields and there are a
total of % non-isotopic generalized twisted fields [2,19].

3.3. Zhou-Pott semifields ZP. Zhou and Pott [35] gave a family of pre-semifields
S=(Mx M, +,°) given by

o y)e (uv)= (XTu+ uix+aly'v+ yv?), xv + yu),
where a M |\ (M*)2, g = p* and r = p/ with 0 < j, k £ m where m/gcd(k, m) is
odd. The isotopic multiplication

oY) B v)= (Tut uix+ alyv+ yv), xv+ yu'),
is (g, r)-biprojective and isotopic to the polarization of the (g, r)-biprojective planar
mapping

FZ P = [(1/ 0/ 0/ a)Q/ (O/ 1/ 0/ O)I‘]

Differen} choiges for a @ M~ \ (M*)? produce isotopic semifields and there are a

total of 02") - % mon-isotopic Z P semifields [35].

3.4. Budaghyan-Helleseth semifields (BH, ZW, LMPT B). These semifields
were found in [6] and independently in [34]. The commutative semifields given
later in [24] and [4] were shown to be isotopic to the previous ones [25]. We note
that Bierbrauer’s construction in [4] gives also non-commutative semifields. We will
use the definition from [4]. Let S = (M x M, +, ) be the pre-semifield given by

xy) °((U; v)
(xv+ yu, x%u+ xu? + a(yiv+ yv?)) if m/gcd(k, m) is odd,
(xu+ ayv, x9v + yu? + a9 D2 (xv9 + yu)) if m/gcd(k, m) is even,

where a @ M |\ (M*)? and g = p* with 0 < k < m. The pre-semifield multipli-
cation is (1, g)-biprojective. Similarly, the corresponding (1, g)-biprojective planar
mapping whose polarization is isotopic to S is given by

[(0,0,1,0)1,(1,0,0,a)g] if m/gcd(k, m) is odd,
(1,0,0,a)1,(0,1,a@V2,0),] if m/gcd(k, m) is even.

FaH
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The number of non-isotopic semifields in this family is b“%¢ which is proved in

[14].

W) \W@ g 1@p

¥’y w109y L EJEJ‘ I & 2 (od “7/2d) ‘ppo a/w ‘2 = (wN)pd8 Y = w | ,d [“(0% 170) “*(g00 D] S
1>y >0 ‘yd=4 ‘d=>b
W) \Wwao
‘uoAd p/w ‘p = (w y)pas [*(o z,p1°0) (20 D]
‘w >y >0°‘d=> -
W) \wee
[¥€p1°9] _%» (pd pd) ‘ppo p/w ‘p = (w y)pa3 wed [*(® 00 1) ""(00 1 0)] Hg
! ‘w o>y >0 yd =b
W) \w@o ‘ppo p/w
[s¢l e Tt (pd * pd) ‘P = (wyNpa8 ‘p = (wypds | ,.d [“(00 1 0) “*(0 0 ‘0 "D] dz
K o ‘w >y >0 d =a'yd = b
G \weop
[c1] _«» (wd “pd) ‘P = (w y)pI8 wzd [°(00“10) “"(® 00 1] a
! ‘w >y >0 yd =b
. . - b N b iy .,
wg =u’' (LN \WEp ﬁ:oo$3 ::_[mmuo:
. ‘ppo p/up = (uy)p28
[l yTT (pd “pd) “w sy >0 yd b ud 1bX v
wg =u’'7(W)\NEp ['(®0°0 ‘1) “'(0‘0 ‘1 ‘0)]
I (yd “yd) ud X 4
ul poAold juno) (Y“N#ITN#) SOJ0N S# Surddejy Jeue[qd Alrwe

40 IOPIO JO SPIOYIWS dAT)BINWIO0O 9A1}0d[01dIq Jo sorjiuue) 9jiuyul umous] [ 9[qe[

The known infinite families of biprojective and other commutative semifields and
their planar representations are summarized in Tables 1 and 2. Families A, D, BH
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1690 FARUK GOLOGLU AND LUKAS KOLSCH

reduce to F when k B {0, m}. Family ZP reduces to D when k= 0, to BH whenj =
0, and to F whenj = k= 0. Family S reduces to ZP when a = 0, and to D when k
{0, I}. We excluded those cases in the Notes and also in the Counts columns of
Table 1.

3.5. The Family S. The main result of this paper is to prove that

e Family S gives new commutative semifields, and
e Family S contains an exponential number of non-isotopic commutative
semifields (in n).

An informal way to explain why Family § gives such a large number of commu-
tative semifields is that their polarizations admit only a few M-linear isotopisms
(within the family) due to their complexity —they contain two non-zero entries in
either component of their planar representations (1, 0, 0, a)q and (0, 1, b, 0),; and the
underlying field automorphisms g and r are nontrivial and are not simply related to
each other. Indeed, our method in Section 5 will show that M-linear isotopisms are
essentially the only ones for biprojective semifields whose autotopism groups satisfy
a simply defined condition. The polarization of (0, 1, 0, 0)4, which is a com-ponent
polynomial of many other biprojective semifields (except A and BHcven), admits
more such isotopisms and that is the main reason why all a @ M allowed in these
constructions lead to isotopic semifields. For F, D, BHcven and A the reasons for
admitting only a small number of non-isotopic semifields include the simplicity of the
defining field automorphisms, e.g., g @ {1, p™?}; or having the same (g, q) or
conjugate (g, q) automorphisms. We will explain these in detail in Section 5 (see
Theorem 5.10). We start by proving that Family S indeed gives commutative
semifields.

4. The commutative semifield family S

The following diagram and its annotations describe our setting.

Notation 4.1.

F=Fpn e pis an odd prime.
e n=2m, mis even.
2 e Q= pm/Z Q2: pm.
e g=pk, r=pktm/2=0qq withls k=<
M = Fpm m? m - 1.
~ e e= gcd(k, m) with m/e odd.
2 E = Fpe e d= ged(k+ m/2, m).
e ¢= 2d by Lemma 4.3.
L= Fpnr b e (M*)? — the subgroup of non-zero squares
~~ in M*.
D= Fpa o LX = (MM < (M9)? < M*~.
e (M2l < (M*)?2 £ M* — the subgroup
id of (Q+ 1) roots of unity in M*.
*E=F;nM=F;2nM= F» nM by Lemma
Fp 4.3.
e D=F, nM.

We need the following well known result on the greatest common divisor of p’ # 1
and p™ - 1. A proof can be found in [28].
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1691

Lemma 4.2. Let i, mBN and p be a prime. Then
e ged(p' = 1,p™ - 1) = gEedtim - 1.
@l if m/gcd(i, m) odd, and p = 2,
e gad(p'+ 1,p" - )= 2 if m/gcd(i, m) odd, and p > 2,
8 p&dl:m) + 1 jf m/ged(i, m) even.

First, we will prove a lemma.

Lemma 4.3. We have,
@ (DB
(ii) Any x B (M*)? can be written (twice) as x = cg where c B L* and g
(M)t
(iii) ged(k + m/2, m) = gcd(k, m)/2.
(V) E=FgnM=Fp2nM=F..nM.

Proof. (i) Recall that v,(x) denotes the index of 2 in x, that is, va(x) = h if
2" [x and 27! - x. We have vo(p-1) = v2(Q*-1) since Q>*-1 = pm-1 =
®e-1) P Ifi/oe_l p’ and the fact that an odd number of odd integers add
up to an odd integer. Thus vo((p™ - 1)/2) = va(p¢ - 1) - 1. The result
follows from Lemma 4.2 which shows ged(g- 1, Q%> - 1)= p- 1.

(ii) It is easy to see that (M*)2! nL* = {#1} since gcd(Q- 1,Q+ 1) = 2
and xg = yh if and only if (x,g) = (y, h) or (x, g) = (-y, -h).

(iii) Let k = 2dk° and m = 2dm° with gcd(k?, m°) = 1 and m° odd. Then
ged(2dk® + dmb, 2dm°) = d - gcd(2k® + m% 2m°) = d - gcd(2k® + m°, m°) =
d - gcd(2k®, m®) = d, since m°+ 2k° is odd.

(iv) Obvious since m/e is odd and (gQ)> = ¢> (mod Q* - 1).

Now we present the family of planar mappings.
Theorem 4.4. Let aBL* and B @M* \ (M*)? and let
F:Mx M->Mx M
be defined as
F:(xy)=>F(xy)=1(1,00B8)q(0,1,a/, 0)l.
Then F is planar.
Proof. We are going to use Lemma 3.1. First,
D{(x,y)=B(y?+y)=0, and
Dg(x,y): x"+ C;l: 0
imply (x, y) = (0, 0), since otherwise either of

1= _1, and x"" ! = - a
y B

leads to a contradiction, since ~1B8(M*)9~! by Lemma 4.3, and 2/gcd(r- 1, Q> - 1)
and -a/B B (M*)?. Similarly,
Df(x,y) = x?+ x =10, and
ay’

Dy (x,y)=y+ o 0
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1692 FARUK GOLOGLU AND LUKAS KOLSCH

have the unique common solution (x,y) = (0,0) with the same argument after
changing variables. Now for u Bl M*,

Df(x y) = ux?+ ux+ B(y9+y)=10, and

Dy(x, y) = x" + ng + Bguyr + u'y = 0.

Di(ux, y) = u?"'(x?+ x)+ B(y’+ y)= 0, and
Dy(ux, y) = u'(x" + y) + —ulx+ y) = 0.

We will proceed to show that (x, y) = (0,0) is the only common solution of these
equations for x, y @ M. Now we can assume x, y @ M*, since x = 0 implies y = 0 and
vice versa for D”(ux,fy) = (0. Furthermore, x = -y implies y - y’2 = 0andx, y
FoAnM=FpnM=F;,nM=E by Lemma 4.3. Thus x? + x = 2x = -2y"and y
+ y =92y, in turn

2(-u?"ly"+ By) = 0,

or
r-1 _ B
y = garre
This is impossible since B B (M*)2. The same argument shows x” = -y and we
can concentrate on
B(y9 +
(4.1 yrt = BTV g
x9+ x
(42) ur—l — _ a(X+yr)
' B(x" +y)

for x, y @ M* with x" = -y and x = -y". Now assume (4.1) and (4.2) hold for
such x, y BEM*, and let

_ Yty _ vy

4.3) Pa(6 V) = o o and
_Xxty g

4.4 eroy) = y Y dh,

for some ¢, dAL*, g, hB(M*)2 ! and a fixed y @ M* \ (M*)?, since cg and dh both
run through (M*)? independently by Lemma 4.3. Note that (4.1) and (4.2)
guarantee that ¢,(x, y) and ¢,(x, y) are non-squares. Multiplying (4.3) and (4.4)
(and also (4.1) and (4.2)) we get

uitr grarn

dh
L2 = @q(% v)or(x, y) = = Lx,

Q+
v cg a a

and therefore 2g = h with 2@ {#1} since y@*! B L*. Now let z= y - x2 and
consider

cg(z?+ z+ (x7+ x)?) = y(x9 + x), and
X7+ x)+ 2" = Ug((x+ x1) + 2),
for x @ M*, which is a rewriting of (4.3) and (4.4). Or, equivalently,
(4.5) cg(x?+ x)2 - y(x7 + x) = -cg(z? + z), and
(4.6) =2y g(xT+ )+ (X9 + x) = -z" + %%gz.
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1693

The two new equations generated by

¢ Eq. (4.5) plus y times Eq. (4.6), and
e d?y? times Eq. (4.5) plus c times Eq. (4.6),

are as follows:
4.7) (c- ¥l (x7+ x)q = -yz" - cgz? - (c- y¥'d)gz, and
(4.8) (c- yUTla)(x7 + x) = -c(z" - d?y%z9).

We will show that the common solutions of these equations for x B M* lead to a
contradiction to our assumption that (4.1) and (4.2) hold. Note that x9 + x = 0
since x AM* and -1 B (M*)9"!. Now if z= y - x2 = 0, then (4.3) becomes

X7+ x)2 ! = L,

cg
which is a contradiction since the left hand side is a square and the right hand side
is not. If c = 2y@"1d then z = 0 by Eq. (4.8), which we have just handled, or z"~9
= z9(@1) = ¢2Qg by Eq. (4.8), which is again a contradiction since the right hand
side is not a square. Then ¢ = 2y@"!d. Observe that c - ?y@*"1d B L. Comparing
g times Eq. (4.8) to the power Q with Eq. (4.7) yields

(-c(z" - d%z9))% = -yz" - cgz? - (c- ¥ 'd)gz,
-cgz? + cd?yg? 'z = —-yz" - cgz7 - (c- Y 'd)gz,
cdyz" = -yz" - (c- % d)gz,
y(cd?+ 1)z" = -(c - 2y d)gz.

Now cd?+ 1= 0 implies z= 0 or ¢ = 2@+l g which were handled before. Thus,
we have " q
s 9 e vid
% cd?+ 1 ’
and noting again that y2@*! @ L*, we reach another contradiction since the right
hand side is not a square. K

5. A method to determine isotopy of biprojective pre-semifields

There are two usual ways to determine whether two semifields are isotopic. The
first one is to use isotopy invariants like the nuclei. Since there are less than n?
possible configurations for the left/right and central nucleus for a commutative
pre-semifield on F’,, this method is not enough to determine whether the number of
non-isotopic pre-semifields grows exponentially in n or not. The second method
works by directly considering all possible isotopisms (N, L, M). This is, however, in
many cases not feasible unless the pre-semifield has a very simple structure. Note
that, for commutative semifields, some general results were obtained in [8] that
make this approach slightly easier and allowed for instance to settle the isotopy
question inside the family of Zhou-Pott semifields [35]. However, the semifields in
our Family S are more delicate and such a direct approach does not seem possible. In
this section, we develop a new general technique to determine whether two
biprojective pre-semifields are isotopic or not.
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5.1. Group theoretic preliminaries. We denote the set of all autotopisms of
a pre-semifield P by Aut(P). It is easy to check that Aut(P) is a group under
component-wise composition, i.e., (N1, L1, M1)(N2, L2, M2)=(N1N2, LiLz, M1 M>).
We view Aut(P) as a subgroup of GL(F)* 8 GL(M x M)? € GL(n, F,)>. Our ap-
proach is based on the following simple and well-known result.

Lemma 5.1. Let Py = (Fg, +, @), P2 = (Fj, + B2) be isotopic pre-semifields via
the isotopism y B GL(F)3. Then y~! Aut(P,)y = Aut(P;).

Proof. Let y = (Ny, L, M;) B GL(F)? be an isotopism between P; and P, and
6= (N2, L2, M) @ Aut(P2). Then y~'6y B Aut(P1). Indeed

(NT'NaN D (X By y) = (NTIN2) (L (%) By Mi(y))

N7 ((L2L1 (%)) By (MaMi(y)))
(L' L2l (X)) By (MMM (y)),

so y~! Aut(P2)y @ Aut(P;). The other inclusion follows by symmetry. H

The central idea of the technique we are going to develop is to identify large
abelian subgroups (in particular certain Sylow subgroups), in the autotopism group of
biprojective semifields. We then use tools from group theory to obtain strong
constraints on when the autotopism groups of two pre-semifields are conjugate. This
approach is inspired by a similar technique for inequivalences of power functions on
finite fields developed by Dempwolff [11] and Yoshiara [32].

First we recall the well-known Sylow Theorems (see for instance [17, Chapter

4)).

Theorem 5.2 (Sylow Theorems). Let G be a group with order p™s, with p prime,
m> 0and p-s. Then,

(i) G has a subgroup of order p™, called a Sylow p-subgroup of G.
(ii) Every p-subgroup of G is contained in a Sylow p-subgroup of G.
(iii) The Sylow p-subgroups of G are conjugate in G.

We will identify Sylow p®-subgroups of Aut(P) when P is a biprojective pre-
semifield. In order to do that, we need to find a suitable prime p° for which we will
employ Zsigmondy’s Theorem (see for instance [18, Chapter IX., Theorem 8.3]).

Theorem 5.3 (Zsigmondy’s Theorem). For every prime p and m > 2 except when
(p, m) = (2, 6), there exists a p-primitive divisor p° of p™ - 1, that is, p° prime,
°lp™ - 1land p°-p' - 1 forall 1s i< m- 1.

We write Fp-linear mappings L B End(F) from F to itself as 2 x 2 matrices of
F ,-linear mappings in End(l\ﬂ). That ’115,

L=t b2 for it @Endv).
Ly Ly !
Set
Va = (Na, La, Ma) B GL(F)
with
[ q q
m gq+1 0 L uma 0
Na: ‘O ma,+1 ’ a a 0 ma 7
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1695

where m, denotes multiplication with the finite field element a @ M*. For simplic-
ity, we write these diagonal matrices also in the form diag(mg, mq), so

Vo = (diag(mge1, mgr), diag(mg, mg), diag(mg, mg)).

An important fact which follows immediately from biprojectivity is that y,

Aut(P) for all @ @ M* when P is a (g, r)-biprojective pre-semifield, which can be
readily verified using Eq. (3.1). We fix some further notation that we will use

from now on:

Notation 5.4.

e Setg=p~kandr=p.

e Setg=p™ kK and F= p™!, thatis,qg= rF= 1 (mod p™ - 1).

¢ Define the cyclic group

z@0 = {y, :aBM™},

of order p™ - 1.

e Let p? be a p-primitive divisor of p™ - 1. Such a prime p° always exists if m
> 2 and (p, m) = (2, 6) by Zsigmondy’s Theorem. In our case, we have p >
2. We will also stipulate m > 2. Note that p°= 2 since p° - p - 1.

e Let R be the unique Sylow p°-subgroup of M*.
¢ Define

Zﬁf’r) = {ys: a @R},
which is the unique Sylow p®-subgroup of Z(9'") with [R| elements.
e For a (g, r)-biprojective pre-semifield P, denote by
Cp = CAut(P)(Z%q’r))

the centralizer of Z (Rq'r) in Aut(P).
¢ Define
S = {diag(mg, mg): aBM™},
and
Sr = {diag(mg, mgy): a B R}.

We start by identifying a subgroup of the autotopism group of any (g, r)-
biprojective pre-semifield. Lemma 5.5 is straightforward, but very important for
our paper.

Lemma 5.5. Let P be any (g, r)-biprojective pre-semifield. Then
290 < 7D < Aut(P).
Proof. Follows directly from Eq. (3.1). X
We continue with a simple observation on R.
Lemma 5.6. Let a® R, a= 1. Then a is not contained in a proper subfield of M.

Proof. Clearly, a is contained in the subfield F,; if and only if aP'-1 = 1, i.e. the
multiplicative order of a is a divisor of p/ = 1. The order of a is a power of p° and p°

does not divide p’ - 1 for any i < m, so a is not contained in a proper subfield of F pm
ot

Now we observe that the normalizer and the centralizer of certain subgroups of
GL(F) must have certain shape.
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1696 FARUK GOLOGLU AND LUKAS KOLSCH

Lemma 5.7. Let NGL(F)(SR); NGL(F)(S) and CGL(F)(SR)/ CGL(F)(S) be the nor-
malizers and the centralizers of Sg and S in GL(F). Then

@

Ngr(r)(Sg) = £>/GHL(F)(5) T y
2 q
_ meT meT |
Mt mot 1, €2, €3, ¢4 BM, T B Gal(M/F,) n GL(F),

%u q %

me, m
c 2 ey, 6,03,c4BM 0 GL(F).

(®) CorLrH(Sr) = CoL(p(S) =
me;

c4

Proof. We present the proof only for the more delicate case Sg. The proof for S is
identic?ll with M§ substituting R throughout.

Let ﬁ ] 22 NGL(r)(Sr), where Ay, Az, Az, A4 B End(M). Then
3 Ay
W 1 H |
Al Ay . . Al Az
Ay A, diag(mg,, my) = diag(my, my) Ay Ay’

for all 0 @ R and some b = m(a) where m: R = R is a bijection. Simple matrix
multiplication implies A;(ax) = bA;(x) for i B {1, 2,3, 4}.

We now write the mappings as linearized polynomials, i.e. A; =
for i @ {1, 2, 3, 4}. The equations above then immediately yield

p

m

-1 j
j=0 Cj,,‘Xp

Kt Kt
J ) J
cjia? xP = b cj,ixP

j=0 j=0

for i @ {1,2,3,4} and all a @ R. We now compare the coefficients of these polyno-
mials. If a = 1, it is not contained in any proper subfields of M by Lemma 5.6, so we
have b= a? only for at most onej B{0,1,...,m~ 1}. So Ay, A, A3, A4 are zero or
monomials of the same degree p/, which proves the statement for the normalizer. In
the case of the centralizer, we have b = a, so we get the same possible mappings
except with j = 0 forced. X

We have shown in Lemma 5.5 that Z 'E?q,r) is a subgroup of Aut(P). Now we show
that, under a certain condition which is key to our proofs, it is not just a Sylow p°-
subgroup of Z(%"), but even a Sylow p’-subgroup of Aut(P).

Lemma 5.8. Let P be a (q, r)-biprojective pre-semifield. Assume that Cp contains

Z%9:") gs an index | subgroup such that p° does not divide I. Then Z;q’r) is a Sylow
p°-subgroup of Aut(P).

Licensed to Univ of South Florida. Prepared on Wed Apr 19 12:15:30 EDT 2023 for download from IP 131.247.244.156.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1697

Proof. First define
U = {(dlag(mal mb)l diag(mo md)/
diag(me, mg)): a, b, c, d, e, f BR}.

Clearly, /U] = [R[®. We will now show that U is a Sylow

p°-subgroup of GL(F)3. We have
group (F) GL(F)?

\?m
IGL(F)/ = | GLCm, Fp)[ = pm"2m1) (i - 1),

i=1
Clearly, p™*" - 1= p' - 1 (mod p™ - 1). As p°is a p-
primitive divisor of p™ - 1, all integers p/ - 1 with j in 0 Aut (P)
[1,2m)] are coprime to p° except for j B {m, 2m}. Fur-
thermore, the pP-part of p>™ - 1 = (p™ - 1)(p™ + 1) is
[R] since p° = 2. Thus the pP-part of | GL(F)/ is /R/?> and
U is a Sylow p°-subgroup of GL(F)? as claimed. All Sy-
low p%-subgroups of GL(F)? are abelian since U is abelian, Ce
by Sylow Theorem (iii). Note that any p°-subgroup of a
group G is contained in a Sylow p°-subgroup of G by Sy- |
low Theorem (ii). Let T be a Sylow p®-subgroup of Aut(P)
that contains the p°-group Z%q’r). Then T itself is (again

by Sylow Theorem (ii)) contained in a Sylow p°-subgroup T ze:n
of GL(F)3, say U In particular, T is abelian. This im- .

plies that T is a subgroup of the centralizer Cp of Z,(?q'r) in 2™ h
Aut(P). By assumption, Z(9'") is an index / subgroup of .

Cp and p° does not divide /. Moreover Z (Rq") is a Sylow p’- z ,(gq'r)

subgroup of Z(9-") and therefore p° - [Z2(¢7) : Z;q”)] = 1.
Let [T : Z(Rq’r)] = [, = p% for h > 0, since both are p’-
groups. Since /> [/;/, and p°- 1,1, we must have p°- I, and I,
= 1. Thus, Z(q"R) = T and Z(q';) is a Sylow p%-subgroup of
Aut(P). ot

5.2. A theorem on isotopisms between biprojective semifields. Now we
are going to show that if two biprojective pre-semifields are isotopic, an isotopism
(N, L, M) that satisfies strong requirements on the shape of the linearized polyno-
mials N, L and M has to exist, whenever the condition appearing in the assumption of
Lemma 5.8 is satisfied. We will name it Condition (C). First we need a simple
lemma.

Lemma 5.9. Let

(% y) > F(x,¥) = [f(x, ¥), 9(x, )] = [(ao, bo, co, do)q, (a1, b1, c1, d1)/]
be a (g, r)-biprojective mapping for arbitrary values of q,r. If F is planar, then
(ap, a1) = (0,0) and (do,d1) = (0,0). That is to say, all biprojective pre-semifield
polarizations Ar ((x, y), (u, v)) have a component that contains both monomials x° u
and xu® and a component (not necessarily different) that contains both y*v and yv*
for o, t B {q, r} depending on the component.

Proof. If ayp = a; = 0, then Df""(x, y) = 0= D (x,y) for y = 0 and arbitrary
x, contradicting Lemma 3.1 for v = eo. The contradiction for dy, d; is obtained
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1698 FARUK GOLOGLU AND LUKAS KOLSCH

similarly by considering Lemma 3.1 for u = 0. The statement on the corresponding
pre-semifield follows immediately by Eq. (3.1) and the fact that (ao, a1) = (0,0). X

We are now ready to prove the main result of this section: If two biprojective
semifields are isotopic, then there exists an isotopism between them of a very specific
form.

Theorem 5.10. Let Py = (MxM,+,8;) and P, = (MxM, +,F,) be (q1, r1)- and
(g2, r2)-biprojective pre-semifields, respectively, such that q; B {r1,71}, 1 @ {q1, r1}
and QB {q,, ri1}, where g; = p* and r; = p'i for i B {1, 2}. Assume that

(C) Cp, contains 2411 gs an index | subgroup such that p° does not divide 1.

If Py, P> are isotopic, then there exists an isotopism y = (N, L, M) GL(F)3, with
the following properties:

e All non-zero subfunctions of N, L and M are monomials.
e All non-zero subfunctions of L and M have the same degree p.
e We have,
— either ky = tk, (mod m) and I} = #/, (mod m),
— or ky = £/, (mod m) and I} = tk, (mod m).
More precisely, we have either,
L4 N2: N3: Oanle,N4: O,
e ki = tky (mod m) and |} = £/, (mod m),
e if ki = ky (mod m) (resp. I I, (mod m)) then N| (resp. N4) is a
monomial of degree pt,
e if ki = -k, (mod m) (resp. Iy = -1, (mod m)) then N| (resp. N4) is a
monomial of degree pt™*2 (resp. pt*'2),

or,
L4 N] = N4= Oansz,N3= O,
e k1 = #l, (mod m)and l; = +k, (mod m),
e if ky = I, (mod m) (resp. |1 = k, (mod m)) then N3 (resp. N,) is a
monomial of degree pt,
e if ki = -1, (mod m) (resp. |1 = -k, (mod m)) then N3 (resp. N;) is a
monomial of degree pt*'> (resp. pttk2).
Proof. Set

Coy) B (uv)= (it y, u,v), g1(x y, u,v)), and
(Xl y) 2 (ul V) = (fZ(X/ y; U, V), g2(X/ y; U, V))

By Lemma 5.5, we have Z,(?q"") < Aut(P;) and Z;qz'”) < Aut(Py). Assume P,
and P, are isotopic via the isotopism § B GL(F)> that maps P; to P,. Thené™!
Aut(P2)6 = Aut(P;) by Lemma 5.1. Observe that [67'2'% ™6 = |R| =
1287, s0 24 and 671247"2)§ are Sylow pP-subgroups of Aut(P;) by Lemma

5.8 as long as Condition (C) holds. In particular, these two subgroups are conjugate in
Aut(P,) by Sylow Theorem (iii), i.c., there exists a A B Aut(P;) such that

G- AT 28N = (60 25 61y = 2.
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Set y = (N, L, M) = 6A. Note that y is an isotopism between P; and P, since
A B Aut(P1). Eq. (5.1) then immediately implies that

diag(mgan1, Mg« )N = N diag(mpyq+1, Mpn+1),
diag(ma, mg)L = Ldiag(ms,, my),
diag(mga, mq)M = M diag(mp, my),
foralla@R and b= n(a) where m: R - R is a permutation. In particular, L and M
are in the normalizer of Sy = {diag(mg,, mgy): a @ R}. By Lemma 5.7, all of the four

subfunctions of L and M are zero or monomials of the same degree, say p2and p®,
respectively. Then, for all (x, y), (u, v) B M?,

L(x, y) B, M(u,v)
= (a2xP” + boyP?, coxP? + dayP? ) By (a3uP” + byvP”, c3uP” + divP”),
= (i y, u,v), ha(xy, u,v))

for some a», by, >, db, a3, b3, c3, d3 B M. We also have

N((x y) B (u,v))= (Ni(fi(x ¥, U, v)) + Na(g1(x, y, u, v)),
N3(fi(x, y, u, v)) + Na(g1(x, y, u, v))).

Let us now assume that N((x, y)8;(u, v)) = L(x, y)B, M (u, v). We consider the first
component, i.e. hi(x,y,u,v) = Ni(fi(x,y,u,v))+ Na(g1(x, y,u,v)). Lemma 5.9
implies both monomials x7u and xu? occur in one of the two components of P.
Since switching the components clearly preserves isotopy, we can assume without
loss of generality that they occur in the first component f1. Let us for now assume N
= 0. We know that N;(fi(x, y, u, v)) has then terms of the form

kp+t kp+t

(5.2) xP"uP and xP'uP

for at least one 0 £ t < m - 1. Observe that the differences of p-adic valuations of
exponents in the x- and u-degrees of the monomials are k; + t - t = kj and t - k;
- t= -k, respectively. In particular, if g, = ry, g, = r;, then these terms cannot be
canceled out by N>(g1(x, ¥, u, v)). Since P, is a (g, r2)-biprojective pre-semifield, all
possible terms in h; are of the form

(5.3)

where w B {x, y}, zB {u, vliand 0 < t,, t3 < m-1. Comparing Egs. (5.2) and (5.3)
gives either

ko +t3

ko +ty ty
P or wP~” zP ,

t3
zP

kit t= ky+ t; (modm), ki+ t=t, (modm),
= t3 (mod m), t= ky+ tz (mod m),
= t, (mod m), t= ko +t, (modm),

ki+ t= ky+ t3 (mod m), or, ki+ t=t3 (mod m).

The first possibility is equivalent to t = t> = t3, k1 = k2 (mod m) and the second

implies t; = t3, t = t, + kp and k; = -k, (mod m). Note in particular that
in any case t, = t3. Moreover, both cases cannot occur simultaneously since, by
assumption, k; = m/2 (mod m). We conclude that N; is a monomial with the

same degree p'? as the L;, M; if k; = ko (mod m), and a monomial with the degree
pt2tk2 if ky = —k2 (mod m).
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Now assume N, = 0 and observe that the terms of N>(g;(x, y, u, v)) are of the
form

1 I+t

54 wP' 2P or wP P!,
where w B {x, y}, zB {u, v} and some 0 £ t < m-1. In particular, the difference of p-
adic valuations of exponents of the two monomials is /1 or /1. This however yields a
contradiction since the difference of p-adic valuations of exponents in Eq. (5.3) is k»
or —k,, that is by the considerations above, -k or k;, which leads to k; = #/; (mod
m) which is not possible since q; = ry, g; = r;. Weconclude that N, = 0.

Let us now consider the second component. Since N> = 0, we must have N4 = 0
since N is bijective. The terms of N4(g1(X, y, u, v)) are then again of the same form as
in Eq. (5.4). Similar to Eq. (5.3), the terms in h; are of the form (using t> = t3)

/2+t2 tz tz Iz*tz
(5.5 wP® “zPT orwPzP " 7,

where w B {x, y}, z B {u, v}. A comparison between Eqs. (5.4) and (5.5) yields
eithert= t, and /y = I, (modm)ort= I, + t, and /; = -/, (mod m). Again, this
means that N4 is a monomial of degree p> or p>™'2 as both cases cannot occur
simultaneously since /1 = m/2 (mod m).

Since q; = ry, q; = 77, we can again deduce N3 = 0 with the same argument we
used to prove N, = 0 before. This concludes the case N; = 0.

Now assume N; = 0. Since N is bijective, this implies N3 = 0. We can then em-
ploy the entire argument, just starting with the second component and exchanging k;
and /;, N; and N3, and N, and N4 throughout. We conclude that in this case
N3, N, = 0and Ny = N4 = 0. o

Remark 5.11.

(i) We exclude the cases g = ry, g1 = r1, 1 B {qy, r1}, and QB {qy, ri1}. Itis
possible to give (slightly weaker) versions of Theorem 5.10 also in the
excluded cases. We avoided these cases to simplify the exposition. For

instance, when we allow Q B {q;, ri}, then the subfunctions of N may be
binomials of the form N; = ax? +bxP """ We will showcase an isotopy of

this kind in Remark 8.3 in Section 8. Observe that in the version we have
given, all non-zero subfunctions of N, L, M are monomials. We chose this
presentation of the theorem to avoid listing unnecessary special cases that
we do not need in this paper.

(i1) We will mainly use Theorem 5.10 to determine the number of isotopy classes in
Family S. Of course, it can also be used to give alternative (in most cases
simpler) proofs of the number of isotopy classes of the known commutative
biprojective pre-semifields.

Theorem 5.10 enables us to settle the isotopy question of biprojective pre-
semifields with relative ease as long as Condition (C) is satisfied. In the next
section we will first show that Condition (C) is satisfied for our family and then use
Theorem 5.10 to determine the number of non-isotopic semifields in the family. Note
that the condition m > 2 we stipulate in this section is not restrictive when
considering S since it does not yield semifields when m is a power of 2.
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1701

6. Isotopisms within the Family S

In this section we will show that the number of non-isotopic semifields within the
Family S is exponential in n (when n = 4t, where t is not a power of 2). We first
need to check Condition (C) in Theorem 5.10 for the pre-semifields in the Family S.
Lemma 6.1 does that in a straightforward manner.

Lemma 6.1. Let n = 2m and P = (M x M, +,B) be a (q, r)-biprojective pre-
semifield in the Family S. Then

[Col = (p™ - 1)(pBd®™ - 1), or
ICol = 25" = 1)(pEAEm - 1)

In particular, Condition (C) is always satisfied.

Proof. If (N, L, M) B Cp then, by Lemma 5.7, the subfunctions L; and M; for
iB{1,2,3,4} are zero or monomials of degree 1, we write

Li(x) = axx, La(x)=bax, L3(x)= c2x, La(x)= dax,
M](X) = asX, MZ(X) = b3X, M3(X) = C3X, M4(X) = d3X.

We then have

L(x, y) BM(u, v) =(azx + bay, cox + day) B (asu + bzv, csu + d3v)
=((a2x + bay)¥(asu + b3v) + (a2x + bay)(azu + bzv)°
+ B((c2x + day)(c3u+ d3v) + (cox + day)(cs3u + d3v)?),
(a2x+ bay)?csu + dsv) + (cox + day)(azu+ b3v)7@

(6.1) + 2((axx+ bay)(csu+ dsv)®@+ (cox + day)™(asu+ bv))).
Similarly, we have

N((x, y) B(u,v))

= (N1 (xX9u + xu? + B(y9v+ yv?)) + No(x9 + yud?+ Bg(xvqQ + y7)),

N3(x%u + xu? + B(y9v+ yv?)) + Ns(x7 + yud?+ Bg(xvqa + y9,))).

By comparing the degrees, it is then easy to see that N((x, y) B (u,v)) = L(x, y)
M (u,v) implies N, = N3 = 0 and N; = a1x, Ny = d;x for some a;,d; @ M*.
Then
(6.2)

N((x, y)B(u, v)) = (a1 (xTu+xu?+B(y9v+yv?)), d, (x"Qv+yu‘7Q+B£(xv‘7Q+y‘70u))).
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1702 FARUK GOLOGLU AND LUKAS KOLSCH

We compare the coefficients of x9u, xu?, xv, xv?, y9u, yu9, y9v, yv? in the first
component of Egs. (6.1) and (6.2) to get the following 8 equations:

(6.3) a1 = aaz + Bcjes,
(6.4) a1 = a2a3 + Beacd,
(6.5) 0= alb; + Bclds,
(6.6) 0= azbi + Bcadi,
6.7) 0= bias + Bdics,
(6.8) 0= byai + Bdxci,
6.9 Ba = bbs + Bd%ds,
(6.10) Bay = babd+ Bdady.

And similarly the 8 equations that come from comparing the coefficients in the
second component:

(6.11) 0= al%; + (a/B)c%ars,
(6.12) 0= (a/B)aci?+ c2a{%,
(6.13) di = af%ds + (a/B)cis;,
(6.14) dia/B = (a/B)ardi?+ c;b7%,
(6.15) dia/B = b{%; + (a/B)di%as,
(6.16) di = (a/B)bacf? + dra'?,
(6.17) 0= bI%; + (a/B)dI%;,
(6.18) 0= (a/B)byd?? + dpb3?.
Let us first assume that ay, ¢, a3, ¢c3 = 0. Then by Egs. (6.11) and (6.12), we
have
_a_ adc; _ c2ai?
B %5 axc?
Setting a3 = w02, €3 = wWyCy gives
Ho Tga-1 B Mga-1 1 Taa
_a_ @ w2 _ a2 w1
B (%) w1 Cy wo
qQ+1

This implies wfaﬂ = wj~ ", that is w, = {w; where { is a (gQ+1)*" root of unity.
Substituting this into the previous equation yields

a M a Tga-1
(6.19) "B o Z.
By Lemmas 4.2 and 4.3(iii), we have gcd(qQ+ 1, p™ - 1) = p8dtkm/2 4 | 50 7is a
(p8edtem)/2 + 1)st root of unity. In particular, { B E since p8<dkm/2 + 1 divides
pecdtkm) — 1 The (p&dkm/2 + 1)t roots of unity in E are precisely the (p&cdk-m/2
- 1)8! powers in E. In particular, { is a square. This is however a contradiction to
Eq. (6.19) since the left hand side is a non-square (recall that -1 and o are
squares), and the right hand side is a square. We conclude that a,c a3¢3 = 0.
We can proceed identically with by, do, b3, d3 and Egs. (6.17) and (6.18) which
yields b2d>b3ds = 0. The conditions in Egs. (6.11), (6.12), (6.17),
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1703

(6.18) and the bijectivity of L, M then only leave two possibilities: Either a; = a3
= dy = d3 = 0 and by, b3, ¢, c3 = 0 or, the other way round, a,, a3, d», d3 = 0 and b,
= b3 = ¢, = ¢3 = 0. We will deal with these two cases separately. Note that in both
cases, Eqgs. (6.5), (6.6), (6.7), (6.8), (6.11), (6.12), (6.17), (6.18) are always satisfied.
Case b2, b3, Cp, C3 = 0. We set as = widz, d3 = wzdz. Then EqS. (63), (64), (69),
(6.10) become
a1=ad"w = afwl = diMwy = di7wY,

which is satisfied if and only if w;, w, B E and
(6.20) (a2/d2)"™" = wy/wy.

Similarly, from Egs. (6.13), (6.14), (6.15), (6.16), we get immediately (using
wy, w2 BE),

di = a3%drws = a,d9%E = a,d5%, = a§%rwl.
This is equivalent to w; = wg, (a2/d>)9% 1 = wg_l . Multiplying this with
Eq. (6.20) gives
(a2/d2)9 @D =1,

i.e., ar/dr B(M*)Q ! say -1 = g,/d,. Rewriting Eq. (6.20) gives

(az/dZ)q+l _ (Zq-%—l)Q—l _ (U?_l.

The equation cannot be satisfied if w; is a non-square. If w; is a square, then d, is
uniquely determined up to the sign from wi and a>. Thus we have in total p™ - 1
choices for a,, (p&4™ — 1)/2 choices for w; and 2 choices for do, making in total
(p™ - 1)(p&dm™ — 1) choices in this case.

Case ay, a3, d», d3 = 0. Similarly to the previous case, we set b3 = wby, €3 = wsCs.
We get from the first set of equations:

a1 = Bc% M wy = B wd = (1/8)b9  wy = (1/B)b% " wY,
which is equivalent to w;, w, B E and
(6.21) (b2/c2)*"" = B*w>/wy.
The second set of equations gives
di = (a/B)c%brw; = (B/a)cabI%w = (B/a)c2b3%wr = (a/B)ci%hrwi.
This again implies w? = w, and (b2/c2)2"" = (1/w?")(a/B)?. Multiplying this
with Eq. (6.21) gives
(ba/c2)?@D = iéaz = g*>= g%,
w1
Thus, by/c, is determined up to multiplication with a (Q+ 1) root of unity, that
is, a (Q - 1) power, say (by/c3)? = {2 'a . Eq. (6.21) can be rewritten as
(bz/cz)q+1 — aTt’+l ({7]+1 )Q—] — Bzw?—l .

This equation has a solution if and only if (a?"!)/B? is a (Q - 1)' power, say
(a7"1)/B% = p@ 1. In this case, there are (p8<d%™ — 1)/2 possible choices for w;,
either all squares or all non-squares, depending on if p is a square or not. Then { is
determined up to the sign, so there are p™ — 1 possible choices for b, 2 possible
choices for ¢z and (p8<¢(k™ -1)/2 possible choices for wi. This case thus contributes
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1704 FARUK GOLOGLU AND LUKAS KOLSCH

either 0 or (p™ - 1)(p8°4™ - 1) elements. Both cases together show that [Cp/ is
either (p™ - 1)(p8<dkm — 1) or 2(p™ - 1)(p8dkm - 1),

Now it is clear that p? - [Cp : Z(3:7)] @ {p8°dtkm) — 1 2(p8cdkm) _ 1)1 by our
assumption that p? is p-primitive (recall p° = 2). X

We can now apply Theorem 5.10 to the pre-semifields in the Family S.

Theorem 6.2. Let Pygq = (Mx M,+,8;) and Pgogogo = (M x M, +,8,) be
pre-semifields from the Family S. Then

(1) Pg,8,a and Pqogo g0 are isotopic if and only if they are strongly isotopic.
(ii) Pg 5,4 is isotopic to Py g g0 for a®= B2 /a and arbitrary q.
(iil) Pq,p,q is isotopic to Pg o q0 for arbitrary q, B, B, a and a suitable choice
for d°.
(iv) If Pg, 8,4 is isotopic to Pg g qo, then it is also isotopic to Pq 5,-qgo.
(V) There are at most 2m = n different a° such that Pg, 5,4 is isotopic to Pg,5,qo.
(vi) No other isotopisms exist.

Proof. Let (N, L, M) be an isotopism between Py 5,4 and Pgo,80,q0 = (MxM, +, B2).
All subfunctions of N, L, M are zero or monomials by Theorem 5.10. Moreover,
Pg,8,a and Pgo go g0 can only be isotopic if ¢° = g, ¢° = 7, ¢° = ¢gQ, or ¢° = gQ. Note
that if m/gcd(k, m) is odd, then m/gcd(k + m/2, m) is even by Lemma 4.3(iii), so
the cases ¢°= ¢gQ, ¢°= qQ do not satisfy the conditions of Theorem 4.4 and need not
be considered.

We first show the isotopy in the case ¢° = . We have

(6 Y) B (U v) = (XTu+ xu? + B(yv+ yv?), x9% + yu?@+ (a/B)(xv?? + y%u)).
A transformation with

Ny =x,Ns=(BYa)x4, Ny = N3 =0
and raising x, y, u, v to the g-th power yields

N((x, yT) By (u7, vT))
= (xu7 + xTu + B(yv7 + y9v), (BYa)(xvi2+ y7) + x7% + yud9).
Observe that one can write B2/a = a%/B for some ¢’ @ L (indeed this is equivalent to
B2*1 = gqg” which has always a solution since B2"! @ L). We conclude that there
is always a strong isotopism between Pg,5,¢ and P4, 5,52+ ,4. Thus we have proved
Part (ii) of the theorem.

It thus only remains to deal with the case ¢° = g. By Theorem 5.10, we only
need to consider isotopisms (N, L, M) with subfunctions

t t
lealxp, N4:d1Xp,

t t t t
L] = Gsz, L2 = bsz, L3 = C2Xp, L4 = dep,

t t t t
M, = G3Xp , M, = b3Xp , M3 = C3Xp , My = d3Xp ,
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1705

for some t@{0,..., m- 1}. Then
L(x, y) B M(u, v)
= (((@% + B3y)1(dBu+ Bv) + (aBx + By)(Su + BBv)T)F
+ BO((chx + ) (SGu+ )+ (Ex + By)SGu+ B,
((@%x + B3y)7(SGu+ dv) + (x + dy)(adu+ Hv)I)P
+ (a%/B%) (0% + By)(SGu+ )1+ (Sx + By) U aSu+ Bv)P),
where a¢ = afm " and similarly for the other coefficients b;, ¢;, d;. We also obtain
N((x, y) B (u,v))
= (a1(Xu+ xu® + B(yov + yv), di (x%% + yuT® + (a/B)(xv% + yT%u))P).

We compare the coefficients (x"u)"r, (xuq)”t, (xqv)pr, (xvq)pt, (yqu)pt, (yuq)”t,
(y"v)pt, (yv")”t in the first component to get the following 8 equations.

(6.22) a; = das + B%Ccs,
(6.23) a1 = a2a3 + B4,
(6.24) 0= afbs + B ds,
(6.25) 0= a:b + B%df,
(6.26) 0= blas + B%dics,
(6.27) 0= bya% + B%,cl,
(6.28) 8P a; = Kbs + B°dids,
(6.29) B” a; = byb] + B%d-ds.

And similarly the 8 equations that come from comparing the coefficients in the
second component:

(6.30) 0= ad%; + (a°/B%)ci%s,
(6.31) 0= (a°/Ba>cf?+ c2q{%,
(6.32) di = a?; + (a°/B%)cf%;,
(6.33) di(a/B)?" = (a°/B%)ard?® + c,b7C,
(6.34) di(a/B)"" = b%%; + (a°/B%)d"%as,
(6.35) di = (a°/B%)b2cf? + daf?,
(6.36) 0= b3%s + (a°/B)d?%bs,
(6.37) 0= (a%/B%)b2d?? + dyb3%.

Note that Egs. (6.30), (6.31), (6.36), (6.37) are identical to Egs. (6.11), (6.12),
(6.17), (6.18) in the proof of Lemma 6.1, just with a/B substituted by (a’/B%). We
can thus conclude with the same reasoning as in the proof of Lemma 6.1 that either b,
= b3: Cry = C3 = 001‘02: as = C/2: d3: 0.

Case by = b3 = ¢ = ¢3 = 0. Here, we also proceed similarly to the proof of
Lemma 6.1. We set a3 = wiaz2, d3 = w2d2 and get from Egs. (6.22), (6.23),
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1706 FARUK GOLOGLU AND LUKAS KOLSCH

(6.28), (6.29)
a1 = 03w, = a9 'wl = (B/BP )dI w, = (BY/BP )dI w,

which is satisfied if and only if w;, w, B E and

. a Tgs w2 B 0
2 7))
(6.38) & 0 B
Similarly, from Egs. (6.32), (6.33), (6.34), (6.35), we get immediately (using
w1, Wy E)
a%B” a%B P

This is equivalent to w? = w, and (a2/d2)7%! = w$ ' (a®BP")/(a? B®). Multiply-
ing the second condition with Eq. (6.38) gives

TR | 0
(6.39) a Y wfa a
d wiaPt  aft
Using w? = w,, we rewrite Eq. (6.38):

M, Ta+1 W31 go
6.40 Z2 ="~ |

(6.40) 5 5P
Observe that B, B%, t, w; uniquely determine (a»/d») up to the sign from Eq.
(6.40). Since (a2/d>)9@ D @ L, there is thus for each B, BY, t, w;, a precisely one ¢’
that satisfies all conditions. For all w; that are squares (i.e., all (g +1)3' powers), this
d’ is the same since w(a_l)(laﬂ) = 1.
(@-1)(a+1)/2 _

Similarly, for all w, that are non-squares,

we have w . -1, so they also all yield the same a°, and in fact precisely
the same @’ as when w; is a square, just with different sign. In particular, we conclude
that a pre-semifield Py 5, is always isotopic to Py poqe for arbitrary B and a
suitable choice of a°. Since we can choose w; = wy = 1, we can even choose ¢’ such

that the pre-semifields are strongly isotopic. Thus, we have proved Part (iii) of our
theorem.

Consequently, it is enough to consider isotopisms in the case B = BY for an
arbitrary non-square B. When B = BY, every possible choice of t yields an a° such
that a pre-semifield P, 5 is strongly isotopic to Pg 540 and isotopic to Pg g,-qo0.
Assume the choice of t in the previously described procedure leads to a strong
isotopy between P, p o and Pgp 0. We now show that choosing t° defined by t°
-t = m/2 (mod m) in the same procedure gives a strong isotopy to P g g0, i.C.
Pg,8,0 and P, g _g0 are not just isotopic but also strongly isotopic.

Let (a»2/d>)9"! be determined by w; = 1 and fixed B = B?, t via Eq. (6.40), i.e.

ll 0721] g+l _ 1
d> Bpi-1°
Similarly, let (¢%/d%)?"! be determined by w; = 1, the same B = B? and t°:
B ooTg+1 1
2
2 - Bpto—] :
‘We then have woo | PRPERNTII JO
ap - o L1
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Since BP' P = (B )P @ (M) we have (& /d2)7*! = ({a,/d>)9"" where
791 = 1/(BP"P )y B (M*)2 . Note that { @ (M*)2"! since B is a non-square, s
B(@-1(@+1)/2 — | In particular, we have {@"! = -1. Then by Eq. (6.39), (d°
/d2)e8a+ D) = £a(@ D (g, /d,)9Q D) = —(a,/d,)?@*D) = —g0/aP’. We conclude that
Pg,8,c and Pg g g0 are strongly isotopic if and only if Py 5 4 and Pg 5,40 are strongly
isotopic.

Case ay, a3, d», d3 = 0. Similarly to the previous case, we set by = wby, €3 = wWyCs.
Since we know from the previous case that different B, B® always lead to strongly
isotopic pre-semifields (for suitable choices of a, a°), we only consider the case B = B?
without loss of generality. We get from the first set of equations:

a1 = Bc% ' wy = BeS w9 = (1/BP )b wy = (1/8° )69 wl,

which is equivalent to w;, w, B E and
U b ﬂqul
(6.41) 2 —gpitl .92
Cc2 w1

The second set of equations gives
di = (a°/B)ci%,w, = (B/a)P c,b9% 2 = (B/a)P c,b3%, = (a°/B)ci%brw.

This again implies w® = w; and (b2/c2)2" = (1/w? ") (a/B)? (a’/B). Multiply-
ing this with Eq. (6.41) gives
Hoov 1
by q(Q+1)

w2 t t
= = —Qapa": af o’
c WS

Eq. (6.41) can be rewritten as
u ﬂq+l
b = wla_prt”.
16))

These two equations are structurally identical to Egs. (6.39) and (6.40) from the
previous case. With the same argumentation, we conclude that every possible
choice of t yields an ¢” such that a pre-semifield Py 4 is strongly isotopic to Py g q0
and isotopic to P4 5,-40. Again, choosing t° such that - t = m/2 (mod m) gives
also strong isotopy between Py 5, and Py g, _q0. This proves Parts (iv) and (i) of
our theorem. Now we can simply prove Parts (v) and (vi). Considering both cases
together, there are thus at most 2m = n different a® such that P4 5,4 is strongly
isotopic to P4 g,40. We have considered all cases thus there are no more isotopisms.
ot

Remark 6.3 (Planar equivalence and strong isotopy). Instead of the exposition we
chose based on isotopy, we could have developed an approach based on (in)equiva-
lences of planar (g, r)-biprojective mappings. Recall that Theorem 2.1 states that
strong isotopy of pre-semifields corresponds to equivalence of the corresponding
planar mappings. We give a very brief sketch of such an approach: One can define
the automorphism group Aut(F) of a planar mapping F of F = B1x M from a DO
polynomial as the set of all (N, L) B GL(F)? such that NFL~!' = F. Note that, by
Theorem 2.1, Aut(F) = Auts(P), where Auts(P) is the group of all strong
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autotopisms of the pre-semifield P belonging to F. It is then clear (identically to
Lemma 5.5) that the set

2490 = {(diag(Mae+1, Mar1), diag(ma, mgy)): a@M*} B z(@0

is a subgroup of Aut(F). The same group theoretic machinery can then be ap-

plied, with Z(g'r) and Aut(F) taking the role of Z(9-") and Aut(P) in the approach we
presented, proving an analogue of Theorem 5.10, with the conclusion that all
subfunctions of N and L are zeros or monomials.

Then, the planar mappings from Family S can be tested for equivalence similar
to Theorem 6.2 by comparing the coefficients of the polynomial equation N F = F L.
One obtains the same set of equations as Eqs. (6.22)-(6.37), just with the simpli-
fication that M = L. Then the same argumentation of the proof of Theorem 6.2
can be followed, with the result that the only possible equivalences that need to be
considered are equivalences via N, L where the subfunctions are

N, = CIlXpt, Ny = N3 = 0, Ny = d]Xpt
and either

Ly = Gszt, L,=L3=0, L4q= dept
or

L1 = 0, L2 = bszt, L3 = C2Xpt, L4 = 0.

The conditions on the coefficients are then identical to the ones in the proof of
Theorem 6.2 (e.g. Egs. (6.39) and (6.40)), just with w1 = w2 = 1. This way, one
obtains the same result as Theorem 6.2, except that one only gets information on
strong isotopy and not regular isotopy.

Since an isotopy class of a commutative semifields contains at most 2 strong-
isotopy classes [8, Theorem 2.6.], this approach would suffice to prove the exponen-
tial count. With some more effort, the planar mapping approach can also be used to
find all isotopisms between commutative semifields (not just strong isotopisms).
Indeed, by [8, Theorem 2.6.], if two commutative semifields with corresponding
planar mapping F : x > x B} x and G : x > x B, x are isotopic, then either F and
G are equivalent (the semifields are then strongly isotopic) or F is equivalentto G° :
X = x B (a @, x) where a is an arbitrary non-square element in the mid-dle nucleus
of the semifield. So in order to settle the isotopy question one could check
equivalence between F and both G and G?, yielding an alternative proof of Theorem
5.10. The two approaches are essentially equivalent and require similar effort.

The isotopy approach we chose has the advantage that it can be extended natu-
rally to non-commutative semifields where the connection to planar mappings does
not exist.

The number of distinct isotopy classes can now be counted.
Corollary 6.4. Let Ns(p, n) be the number of non-isotopic pre-semifields in Family
S onFJ. Then
n/4 3 ’
on-1 p"* -1 < Ne(p, n) < a(n)-1 p/ o1
2 n 2

Proof. This follows directly from Theorem 6.2(i), (ii), (iv) and (v): There are
o(n) - 1 admissible values for q, and only g,q yield isotopic pre-semifieclds. Then
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1709

there are p"/* - 1 admissible values for a, with at most n of them yielding isotopic

pre-semifields. H

In particular, S is the first known family of commutative (pre-)semifields that
yields exponentially many non-isotopic (pre-)semifields. Since non-isotopic pre-
semifields lead to inequivalent planar mappings (see Theorem 2.1), this also shows
that the number of inequivalent planar mappings grows exponentially in n.

Corollary 6.5. The number of non-isotopic commutative semifields of order p"
and the number of inequivalent planar DO mappings of F,» are exponential in n for
a fixed odd prime p and n divisible by 4.

7. The nuclei

In this section we will compute the nuclear parameters of Family S. As ex-
plained in Section 2, the nuclei are defined for semifields and not for pre-semifields.
However, the nuclei of the isotopic semifield can be computed using the following
theorem of Marino and Polverino [25, Theorem 2.2] (we give the commutative ver-
sion of their general theorem) that allows computing the nuclei directly from the
pre-semifield.

Let P = (Fg,+, B) be a commutative pre-semifield with right multiplication
defined as

Ry :X »> X BU, forURBF,.
Then the spread set associated to P is defined as
L={Ry:UBF,Y}

In the following N;(P) denotes the corresponding nucleus of the semifield isotopic
to P, forj B {l, m, r}.

Theorem 7.1 (|25, Theorem 2.2]). Let No, N1 B End(F,") be the largest sets (and
then necessarily fields) such that

LNo BIL and N, L BL.

Then
N,(P) 2 Ny and N(P) = N.(P) & N,.

Now, let P = (M x M, +, @) be a pre-semifield in Family S. Then L = {R, , :
(u,v) BM x M}, where

Ruv (6 ¥) = (RN, ), RN, ),
with
1 _ 2 _
R(u'?,(x, y)= x%u+xu?+B(yv+yv?) and R(u’?,(x, y)=x"v+Axv' +Ay"u+yu".

We write again L BEnd(M x M) as L : (x,y) = (a(x) + 8(y), y(x) + 6(y)), where
a, 8,y, 6 @ End(M).

Theorem 7.2. The left, middle and right nuclei N;(P), N, (P), N.(P) satisfy N,(P)
= N,(P)B D and N, (P) B E.
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1710 FARUK GOLOGLU AND LUKAS KOLSCH

Proof. We have nonzero L B Ny, if and only if, for every (u,v) @ M x M there
exists (w, t) @ M x M such that

aRf,,l?, + BRE??, = R,,(,,lli, and
2
VRUD + SR = RUL
that is
a(xqu+ xu?+ B(y9v+ ywi))+ 8(x'v+ Axv' + Ay'u + yu")
= xIw+ xw? + B(yt + yt7),
and
y(x%u+ xu?+ B(y%v+ ywi))+ §(x'v+ Axv" + Ay'u + yu")
= x"t+ Axt" + Ay'w + yw'.

This implies (after a routine comparison of degrees of x, y, u, v as in previous
sections) that 8 = y = 0 and a(x) = z1x and 8(x) = zsx for some z1, z4 B M*.
Now, the above equations become

z1(xXTu+ xu? + B(y9v+ yw?)) = xIw + xw? + B(y9t+ yt?), and
za(X'v+ Axv' + Ay'u+ yu')= x"t+ Axt" + Ay'w + yw',
or (the case uv = 0 is ecasy to see)
z1 = w/u= (w/uw)?=t/v= (t/v)?, and
z4= w/u= (w/u) = t/v= (t/v).

Thus for every (u, v) @M x M there exists (w, t) BEMx M ifandonlyifz4=z1=2z =
zjifand only if z; @Fg nF, n M = D. That is to say L @ N, if and only if L(x, y) =
(zx, zy) for z @ D. Now Theorem 7.1 implies N/(P) = N,(P) = D.

Similarly for the middle nucleus, non-zero L B Ny, if and only if],

R{V(a(x) + B(y), y() + 8(y)) = R\ (x, v), and
RN (a(x) + B(y), v() + 8(y)) = RA(x y),
that is
(a(x) + 8(»))7u+ (a(x) + BT + B(y(x) + §(y)Tv+ B(y(x) + 6(y)V
= x7w+ xw? + B(yt + yt9),
and
(@(x) + B(y))'v+ A(a(x) + BV + A(Y(x) + () u+ (v(x)+ 6(y)u"
=x"t+ Axt" + Ay'w + yw'.

This implies (after a routine comparison of degrees of x, y, u, v) that a(x) = z;x,
6(y) = z2y, y(x) = z3x and 6(y) = zay for zy, z5, z3, z4 @ M. Now, the x-part of the
first of the above equation implies

z{x9u+ zixu? + B(zix%v + zzxv?) = xIw + xw?,

in other words,
zju+ Bzjv = wand zju? + Bzzv7 = wi,
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS 1711

which implies

(zi’2 - zDu + (qug2 - Bz3)v? =0,
for all u, v @ M. That is to say z; B F;2 nM = E. The x-part of the second equation
yields (after simple calculations)

Z3
ATzl - = =0.
3 A
That is to say, if z3 = 0 then

1 1
L 21
zi 7 = FaT and z§ = = A

By definition of S, B is a non-square in M = Fq: and A = a/B where a @ F*,
Recalling that q> = r> (mod Q?), we reach
B l) = gatr = gl

Note that since B is a non-square in Fq2 we have B(Q”)(Q'l)/2 =-1and B! is
a non-square in Fo. But a"*! is a square in Fq and we get z; = 0. By the y-parts of
the equations we similarly reach z> = 0 and z4 B E. Thus,
29x9u+ zixu? + B(zlyv + z4yv?)) = xTw + xw? + B(y9t + yt?), and
zix"v+ Az xv'+ Azly'u+ zuyu") = x"t + Axt" + Ay'w + yw',
implying (the case uv = 0 is easy to see)
Z = w/u and z; = (w/u)f,
z{ = t/v and z4, = (t/v)9,
z{ = t/v and z; = (t/v)',

r

z{ = w/u and z4 = (W/u)".

Thus for every (u, v) BM x M there exists (w, t) B M x M if and only if z, £ z; = 27

= z" ifjand only if z BF;2 nM = E. Thatisto say L BNy if and only ifL(x, y) =
(zx zy) for z @ E. Now Theorem 7.1 implies Ny(P) = E. ot

8. Comparison to other commutative semifields and concluding
remarks

Table 2 lists known commutative semifields that are not biprojective. We should
say here that these commutative semifields are not obviously represented as bipro-
jective semifields. When the order is square, there might be isotopic semifields that
can be biprojective, but we are not aware of such isotopisms.

We now consider isotopisms between the new Family S and other commutative
pre-semifields.

Theorem 8.1. Let Py 5, = (MxM, +, @) be a pre-semifield in the Family S. Pg g qis
not isotopic to any other known commutative semifield, except possibly semifields
from Family B4. Family S yields new examples of commutative semifields.

Proof. The non-isotopy with the biprojective pre-semifields follows directly from
Theorem 5.10, except for possible isotopisms between the families S and Z P when
the coefficients g, r coincide. We exclude this case by again applying Theorem 5.10:
Consider the Zhou-Pott pre-semifield P, = (M x M, +, ?) with multiplication

(6 y) ?(Uv)= (Fu+ uix+ ayiv+ yv?), x1% + yu'?)
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for some (arbitrary) non-square a. Note that it is not possible to use the parameter
gQ in the first component and g in the second component since ged(k + m/2, m) =
ged(k, m)/2 by Lemma 4.3 (iii), contradicting the necessary conditions of a Zhou-
Pott pre-semifield. If P4 is isotopic to Pg,8,4, then (using Theorem 5.10), there is
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AN EXPONENTIAL BOUND FOR COMMUTATIVE SEMIFIELDS

an isotopism (N, L, M), where

N1 = alxpt, N4 = d]Xpt, Nz = N3 = 0,

Ly = a’z’txpt, L, = b‘z’txpt, Ly = cgtxpt, Ly = dgtxpt,

M, = aé’txpt, M, = bgfxp', Ms = cgrxpt, My = dgrxpt,
where a;, d; = 0. Then (only considering the second components), we have

L((x, ¥)) ? M((y, v))

1713

= (. (@ax+ bay) P (c3u+ dsv)P + (cax + day)” (asu+ b3v)I%*")

and

N((x y)B(u,v) = (_, di(x7%+ yusQ+ (a/B)(xvI2+ yI2u))P").

Comparing the coefficients of (x72v)P", (xv92)P', (x92u)P" and (xu9?)?" yields the

following four equations:
3

p
G%Qd3
3

P t
c2b§% = di(a/B)",

di,

ach3 =0,
czaga = 0.

The bijectivity of L and M induces the conditions (a3, ¢2) = (0,0) and (a3, ¢c3) =
(0,0). Thus, the last two equations only allow a> = a3 = 0 or ¢ = ¢3 = 0. Both
cases contradict the first two equations. We conclude that Pg g , is not isotopic to a

Zhou-Pott pre-semifield.

The pre-semifields from S are also not isotopic to the ones from CG, G, CM/DY,
ZKW , B3 by considering the order of the semifields and their nuclei (see Table 2).
Furthermore, the Family S is not contained in B4 since we can choose p, m, g in a

way that the conditions for B4 in Table 2 are violated.

ot

Although the parameters p, m, g for the pre-semifields from Family S are more
general than that of Family B4, for suitable choices of p, m, g the parameters may
coincide. Proposition 8.2 shows that even in that case Family S contains new
semifields thanks to its exponential count. More precisely, we show that the number of
non-isotopic semifields from Families B3 and Bs of order p>* and p*, respectively, is

linear in s.

Proposition 8.2. The number of non-isotopic pre-semifields in Family Bz (and

B4 resp.) of order p3s (and p** resp.) is at most 90(s) (and 8o(s) resp.).
Proof. The B4 planar mappings are of the form

FOX) = X1 = g@-1xae e,

where a generates F;45 . We count the number of different a’s which give inequivalent
planar mappings. Consider the change of variable X - B X, and rescaling of f to get

xa+l _ BQB+qQ—q—laQ—quQ+QB'
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1714 FARUK GOLOGLU AND LUKAS KOLSCH
Note that Q>+ qQ- q- 1= (Q- 1)(Q*>+ Q+ g+ 1). We have by [3, Lemma 6]
ged(@®+ Q+ g+ 1,@+ @+ Q+ 1)=ged(Q’ - ¢, Q@+ @+ Q+ D)= 4,

when the semifield conditions on g, Q appearing on Table 2 are satisfied. Thus the
number of inequivalent planar mappings in the Family B4 for a given g is at most 4.
This means that (using Theorem 2.1) for a given g, the number of pre-semifields,
that are not strongly isotopic, is also at most 4. Any isotopy class of a commutative
semifield contains at most 2 strong-isotopy classes [8, Theorem 2.6.], so for a given g
there are at most 8 non-isotopic pre-semifields. Thus the total number of non-
isotopic pre-semifields in the Family B4 of order p** is bounded by 8a(s). The B3
case is essentially the same using [3, Lemma 5]. In this case (again with [8, Theorem
2.6.]) strong isotopy and isotopy coincide. X

For the Family ZKW we are not aware of any result on the exact value or a
bound on the number of non-isotopic pre-semifields.

Remark 8.3. We remark that we could also allow g = 1 in S. However, in that case
the resulting pre-semifields are strongly isotopic to Dickson semifields. Indeed,
consider the planar mapping F = [(1,0, 0, B)1, (0, 1, A, 0)q] with A = a/B where B
is a non-square and a @ L*. Note that A @ (M*)2"! since it is a non-square. Define
N via its subfunctions N1 = x, N2 = N3 = 0, Ngs = dix + &®x? with d; =
1/(1-A% 1y and o® = -A/(1 - A%*1), Note that x > ax - 8x2is bijectlive if and
only if a/8 (MX)Q'II. Therefore, N4 is bijective since ((A2! -1)/(A(l -
AT = (-1/A)2"1 = 1 since A A (M*)2 !, We conclude that N is bijective.
The subfunction N4 is chosen such that d; + AQdO1 = 1 and Ad; + a"1 = 0. Then

NF =1[(1,0,0,B)1,d1(0,1,A 0)q+ d5(0, A 1, 0)q]
=[(1,0,0,B)1,(0,d, + A%, d A+ &, 0)q] = [(1,0,0,B)1,(0, 1,0,0)q],

so F is equivalent to a planar mapping belonging to a Dickson pre-semifield and the
corresponding semifields are strongly isotopic by Theorem 2.1. It makes thus sense to
exclude the case g = 1 so that the different families do not intersect (as proven in
Theorem 8.1). Note that the same choice of N also yields equivalence between the
Budaghyan-Helleseth planar mapping and the planar mappings associated with
Dickson semifields for the parameter g = Q.

Remark 8.4. Recall that Kantor [19] gave a family that contains an exponential
number of non-isotopic commutative semifields in characteristic two using a con-
struction of Kantor and Williams [20]. We remark that Family S (and in general, a
planar mapping) does not exist in characteristic two. However, a conceptual ana-
logue of planar functions in characteristic two is possible. These are the so-called
almost perfect non-linear (APN) functions (whose polarizations are 2-to-1) that
parallel planar mappings (whose polarizations are 1-to-1) without the connection to
semifields. In a follow-up work to this one, we give an analogous method for de-
termining equivalence of biprojective APN functions and an analogous family that
contains an exponential number of inequivalent APN functions in [16]. The first
result to show that an APN family contains an exponential number of inequivalent
functions was given recently by Kaspers and Zhou [21] using a different method.
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