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AN EXPONENTIAL BOU N D  ON T H E  N U M B E R  OF

NON-ISOTOPIC COMMUTATIVE SEMIFIELDS

FARUK GOLOGLU AND LUKAS KOLSCH

Abs t r ac t .  We show that the number of non-isotopic commutative semifields of
odd order pn  is exponential in n  when n  =  4t and t is not a power of 2.
We introduce a new family of commutative semifields and a method for
proving isotopy results on commutative semifields that we use to deduce the
aforementioned bound. The previous best bound on the number of non-isotopic
commutative semifields of odd order was quadratic in n  and given by Zhou and
Pot t  [Adv. Math. 234 (2013), pp. 43–60]. Similar bounds in the case of even
order were given in Kantor [J. Algebra 270 (2003), pp. 96–114] and Kantor
and Williams [Trans. Amer. Math. Soc. 356 (2004), pp. 895–938].

1. I n t r o d u c t i o n

In this paper, we show that the number N p n  of non-isotopic commutative semi-
fields of odd order pn is exponential in n when n =  4t. To be precise, we prove for
every odd prime p,

(σ(n) −  1)(pn/4 −  1)
p n

2n
when ν2(n) ≥  2, where we denote by σ(n) the odd part of an integer n (i.e., σ(n) =
n/2ν2 (n) ), and by ν2(n) the 2-adic valuation of n (i.e., 2ν2 (n)|n and 2ν 2 ( n )+1  - n).
For odd p, the previous best bound on N p n  was quadratic in n and was proved in [35,
Corollary 1]:

N p n  ≥  
n(σ(n) −  1) 

+  cn,

when ν2(n) ≥  1 and c a constant. When p and n are odd, the known number for
N p n      is linear in n. The problem of determining whether the number N p n      can be
bounded by a polynomial in n has been described [29, p. 180] as “the main
problem in connection with commutative semifields of [odd] order pn .” Note that it
is impossible to find families with exponentially many non-isotopic commutative
semifields of order pn for arbitrary p, n. Indeed, by a result of Menichetti [27,
Corollary 33], all commutative semifields of order pn with n prime and p large
enough are isotopic to the finite field or a twisted field (see Section 3.2). It is thus
impossible to give an exponential count for all p, n. The problem in the
characteristic 2 case was solved almost two decades ago. Kantor [19, Theorem 1.1]
showed that the number of non-isotopic commutative semifields of order 2k m  is at
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least
k m (ρ ( m )−1 )

N 2 k m  ≥
k2m4 ,

when m >  1 is odd and m is not a power of 3 (where we denote by ρ(m) the
number of prime factors of m counting multiplicities), using a construction by
Kantor and Williams [20, Theorem 1.7]. In these papers, finding a large number of
(commutative) semifields in odd characteristic and finding a general approach to
proving non-isotopy were posed as important open problems [20, p. 936], [19, p.
112].

To prove the bound we introduce a new family of commutative semifields. These
semifields satisfy a property that we call biprojectivity, which also applies to many
known semifields of square order. The biprojective structure allows us to develop a
technique of determining isotopy between semifields. This technique is key to
proving the exponential bound on non-isotopic commutative semifields.

In Section 2, we give the preliminaries. In Section 3, we define biprojective semi-
fields and give a quick survey on known commutative semifields and their counts.
Section 4 is devoted to proving the semifield property of our family (Theorem 4.4).
Section 5 introduces our technique of proving isotopy between semifields (Theo-
rem 5.10). In Section 6, we give the number of non-isotopic semifields arising from
our family (Theorem 6.2). Section 6 contains our main result that the number of
non-isotopic commutative semifields of odd order pn is exponential in n (Corollar-ies
6.4 and 6.5). In Section 7, we compute the nuclei associated to our semifields
(Theorem 7.2). Finally, in Section 8, we show that our semifields are indeed new
and not isotopic to most known semifields (Theorem 8.1).

2. Pre l iminar ies

A finite semifield S =  (S, +, ◦) is a set S  equipped with two operations (+, ◦)
satisfying the following axioms.

(S1) (S, +) is a group.
(S2) For all x, y, z � S ,

• x  ◦  (y +  z) =  x  ◦  y +  x  ◦  z,
• (x +  y) ◦  z =  x  ◦  z +  y ◦  z.

(S3) For all x, y � S ,  x  ◦  y =  0 implies x  =  0 or y =  0.
(S4) There exists ² � S  such that x  ◦  ² =  x  =  ² ◦  x.

In this paper, we will be interested only in finite semifields. Henceforth, when we
say a semifield we will mean a finite semifield. An algebraic object satisfying the
first three of the above axioms is called a pre-semifield. If P =  (P, +, ◦) is a pre-
semifield, then (P, +) is an elementary abelian p-group [22, p. 185], and (P, +) can
be viewed as an n-dimensional Fp-vector space Fn .  If ◦  is associative then S is the
finite field F p n      by Wedderburn’s theorem which states that a finite division ring is
a field. By a result of Menichetti (known as Kaplansky’s conjecture [26]) when n
>  2, there exist proper semifields of odd order pn where ◦  is non-associative. There are
no proper semifields of order 23. For n >  3, there exist proper semifields of order 2n

[22]. A pre-semifield P =  (Fn , +, ◦) can be converted to a semifield S =  (Fn , +, �)
using Kaplansky’s trick by defining the new multiplication as

(x ◦  e) � (e ◦  y) =  (x ◦  y),
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for any nonzero element e � Fn ,  making (e ◦  e) the multiplicative identity of S. A
pre-semifield is an Fp-algebra, thus the multiplication is bilinear. Therefore we have
Fp-bilinear B  : Fp ×  Fp → Fp , satisfying

B(x, y) =  x  ◦  y,

and Fp-linear left and right multiplications L x , R y  : Fp → Fp , with

Lx (y) :=  B(x, y) =:  Ry (x).

The mapping L x  (resp. R y )  is a bijection whenever x  =  0 (resp. y =  0) by (S3).
Thus,

Re (x) � Le(y) =  x  ◦  y.

Two pre-semifields P1 =  (Fn , +, ◦1 ) and P2 =  (Fn , +, ◦2) are said to be isotopic if
there exist Fp-linear bijections L, M and N  of Fp satisfying

N (x  ◦1 y) =  L(x) ◦2 M(y).

Such a triple γ =  (N, L, M ) is called an isotopism between P1 and P2. If addition-
ally L  =  M holds, we call γ a strong isotopism and P1 and P2 strongly isotopic.
Isotopisms between a pre-semifield P and itself are called autotopisms. Thus the
pre-semifield P and the corresponding semifield S constructed by Kaplansky’s trick
are isotopic and even strongly isotopic if P is commutative. Isotopy of pre-semifields is
an equivalence relation and the isotopism class of a pre-semifield P is denoted by
[P]. Semifields coordinatize projective planes and different semifields coordina-tize
isomorphic planes if and only if they are isotopic ([1], see [22, Section 3] for a
detailed treatment). Semifields are further equivalent to maximum rank distance
codes with certain parameters (see e.g. [31]) and can be used to construct relative
difference sets (see [30]). Associative substructures of a semifield S =  (Fn , +, �),
namely the left, middle a n d  right nuclei, are defined as follows:

Nl(S) :=  { x  � Fp     : (x � y) � z =  x  � (y � z), y, z � Fp } ,
Nm(S) :=  {y  � F n      : (x � y) � z =  x  � (y � z), x, z � F n } ,

Nr(S) :=  {z  � Fp     : (x � y) � z =  x  � (y � z), x, y � Fp } .

It is easy to check that Nl(S), Nm(S), Nr(S) � F p n       are finite fields and if S is
commutative then Nl(S) =  Nr(S). Nuclei are isotopy invariants for semifields.
Since every pre-semifield P � [S] for some semifield S, the nuclei can be thought to
extend to pre-semifields. Thus, when we speak of the nuclei of a pre-semifield P we
mean the nuclei of the isotopic semifield S.

Let End(Fp ) denote the Fp-linear endomorphisms of the vector space Fp . Every
Fp-linear mapping L  � End(Fp ) can be written uniquely as a linearized polyno-
mial

n − 1

L(x) = bi xp i  
, i = 0

in the polynomial ring F p n  [x]. We will not make distinction between mappings and
the polynomials. Let p be an odd prime and consider the polynomials from F p n  [x] of
the form

F (x) = a i j x p i + p j  
.

0 ≤ i , j < n
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These polynomials are called Dembowski-Ostrom (DO) polynomials. The po-
larization of a DO polynomial F  is defined as

Δ F  (x, y) =  F (x  +  y) −  F (x) −  F (y).

The mapping Δ F  : Fp × F p  → Fp is symmetric and Fp-bilinear, thus if Δ F  (x, a) =  0
implies x  =  0 for all a � F p n  =  F p n  \  {0} ,  then Δ F  (x, y) describes a commutative pre-
semifield multiplication [10]. Conversely, by a counting argument, every com-
mutative pre-semifield multiplication can be written as Δ F  (x, y) for some DO poly-
nomial F  [9]. In that case we will call F  a planar  DO polynomial/mapping.
Strong isotopy between pre-semifields can be recognized also in the corresponding
planar DO polynomials:

Theorem 2.1 ([8, Theorem 3.5.]). Let F , G  � F p n  [x] be planar DO polynomials and
P1, P2 be the corresponding pre-semifields. Then P1 and P2 are strongly isotopic
via an isotopism γ =  (N , L, L)  if and only if F  =  N G L − 1 .

Consequently, we say that two planar DO polynomials F , G  are equivalent if
bijective linear mappings L1 , L2  exist such that F  =  L 1 G L 2 .  Note that this type of
equivalence is the most general equivalence known to preserve the planarity of a DO
polynomial, see [23].

3. Bipro jec t ive  p l a n a r  mappings a n d  c o m m utat i ve  semifields

In this paper we are interested in planar DO polynomials of a specific form. Let
F  =  F p n  be a finite field of square odd order and M =  F p m  with n =  2m. Let

F (x, y) =  [f (x, y), g(x, y)] ,

where

f (x, y) =  a0xq +1 +  b0xqy +  c0xyq +  d0yq+1 ,

g(x, y) =  a1 xr +1 +  b1xr y +  c1xyr +  d1yr+1 ,

with q =  pk , r =  pl, 1 ≤  k, l ≤  m. We will call f (x, y) a q-bipro jective polyno-
mial and (x, y) → F (x, y) a (q, r)-bipro jective mapping (of M ×  M). Note that
F (x, y) is a (q, r)-biprojective polynomial pair. We will not make any distinction
between the polynomials and the mappings defined by them. We also let q =  p m − k

and r  =  p m − l ,  so that qq ≡  r r  ≡  1 (mod pm −1). We are going to use the shorthand
notation

f (x, y) =  (a0, b0, c0, d0)q,

g(x, y) =  (a1, b1, c1, d1)r.

We are going to refer to f  and g as (left and right) components of F .  We refer
the reader to [5] for projective polynomials over finite fields.

The polarization of a planar (q, r)-biprojective mapping defines a (q, r)-
biprojective (commutative)  pre-semifield P =  (M ×  M, +, �). It is easy to see
that both components correspond to homogeneous operations due to biprojec-tivity:

(3.1) (x, y) � (y, v)

=  ((a0u +  b0v)xq +  (a0uq +  c0vq)x +  (c0u +  d0v)yq +  (b0uq +  d0vq)y,
(a1u +  b1v)xr +  (a1ur +  c1vr )x +  (c1u +  d1v)yr +  (b1ur +  d1vr)y).
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Define

D0 (x, y) =  b0xq +  c0x +  d0yq +  d0y,

D0(x, y) =  b1 xr +  c1x +  d1yr +  d1y,

and for u � P 1(M) \  {0, ∞},

D∞(x, y)= a0xq +  a0x +  c0yq +  b0y,

D∞(x, y)= a1 xr +  a1x +  c1yr +  b1y,

Du(x, y) =  (a0u +  b0)xq +  (a0uq +  c0)x +  (c0u +  d0)yq +  (b0uq +  d0)y,

Du(x, y) =  (a1u +  b1)xr +  (a1ur +  c1)x +  (c1u +  d1)yr +  (b1ur +  d1)y.

Lemma 3.1 is straightforward.

Lemma 3.1. Let (x, y) → F (x, y) =  [f (x, y), g(x, y)] be a (q, r)-biprojective map-
ping of M ×  M. Then F  is planar if and only if the pair of equations

D f  (x, y) =  0 =  Dg (x, y)

has exactly one solution for each u � P 1(M).

Proof. We need to show that the polarization Δ F  ((x, y), (u, v)) =  (x, y)�(u, v) =  0
has a unique zero for each (u, v) � M ×  M \  (0, 0) if and only if Dw(x, y) =  0 =

Dw(x, y) has a unique solution for each w � P 1(M). Inspecting Eq. (3.1), one
immediately sees that the case v =  0 corresponds to D∞(x, y) =  0 =  D∞(x, y) after
applying x  → xu and y → yu. For v � M× ,  apply x  → xv, y → yv and u → uv to get
the remaining cases Dw(x, y) =  0 =  Dw(x, y) for w � M. ¤

In the following we will show that many known semifields fall into the (q, r)-
biprojective setting.

3.1. Dickson semifields D .  Dickson introduced the commutative semifields S =
(M ×  M, +, ◦) with

(x, y) ◦  (u, v) =  (xu +  ayqvq, xv +  yu),

where q =  pk with 0 <  k <  l and a � M ×  \  (M×)2. Note that the isotopic
multiplication

(x, y) � (u, v) =  (xu +  ayv, xvq +  yqu)

is (1, q)-biprojective and isotopic to the polarization of the (1, q)-biprojective planar
mapping

F D  =  [(1, 0, 0, a)1, (0, 1, 0, 0)q] .

Different choices for a � M ×  \  (M×)2 produce isotopic semifields and there are a
total of b 4 c non-isotopic Dickson semifields [19, p.107].

3.2. Albert’s generalized twisted fields A .  Albert introduced [2] a family of
commutative and non-commutative semifields. The commutative ones may be given
as S =  (F, +, ◦) with

X  ◦  U =  X q U +  U q X,

where q =  pk with 0 <  k <  n satisfying n/gcd(k, n) odd. When F  =  M(ξ) with
[F : M] =  2, one can write X  =  xξ  +  y with x, y � M. One can choose ξ � F  \  M
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satisfying ξ2 =  a � M ×  \  (M×)2 .

(xξ +  y) ◦  (uξ +  v)

=  (xξ +  y)q(uξ +  v) +  (uξ +  v)q(xξ +  y)

=  ξq+1(xq u +  uq x) +  ξq(xqv +  uqy) +  ξ(yqu +  vq x) +  (yqv +  vqy)

=  a(q+1)/2(xq u +  uq x) +  a(q−1)/2ξ(xq v +  uqy) +  ξ(yqu +  vq x) +  (yqv +  vqy).

Identifying ξM +  M with M ×  M, and

(x, y) ◦  (u, v)
´

=  a(q−1)/2(xq v +  uqy) +  (yqu +  vq x), a(q+1)/2(xq u +  uq x) +  (yqv +  vqy)

is (q, q)-biprojective and isotopic to the polarization of the (q, q)-biprojective planar
mapping

F A  =  [(0, a(q−1)/2, 1, 0)q , (a(q+1)/2, 0, 0, 1)q ].
Different choices for a � M ×  \  (M×)2 produce isotopic semifields and there are a
total of σ ( n ) −1  non-isotopic generalized twisted fields [2, 19].

3.3. Zhou-Pott  semifields Z P .  Zhou and Pott [35] gave a family of pre-semifields
S  =  (M ×  M, +, ◦) given by

(x, y) ◦  (u, v) =  (xq u +  uq x +  a(yqv +  yvq )r , xv +  yu),

where a � M \  (M×)2, q =  pk and r  =  pj  with 0 ≤  j, k ≤  m where m/gcd(k, m) is
odd. The isotopic multiplication

(x, y) � (u, v) =  (xqu +  uq x +  a(yqv +  yvq ), xrv +  yur),

is (q, r)-biprojective and isotopic to the polarization of the (q, r)-biprojective planar
mapping

F Z P  =  [(1, 0, 0, a)q, (0, 1, 0, 0)r].

Different choices for a � M ×  \  (M×)2 produce isotopic semifields and there are a

total of σ ( n )      · 4      non-isotopic Z P  semifields [35].

3.4. Budaghyan-Helleseth semifields ( B H , Z W , L M P T  B ) .  These semifields
were found in [6] and independently in [34]. The commutative semifields given
later in [24] and [4] were shown to be isotopic to the previous ones [25]. We note
that Bierbrauer’s construction in [4] gives also non-commutative semifields. We will
use the definition from [4]. Let S  =  (M ×  M, +, ◦) be the pre-semifield given by

(x, y) ◦  (u, v)

(xv +  yu, xqu +  xuq +  a(yqv +  yvq))

(xu +  ayv, xqv +  yuq +  a(q−1)/2(xvq +  yqu))

if m/gcd(k, m) is odd,
if m/gcd(k, m) is even,

where a � M \  (M×)2 and q =  pk with 0 <  k <  m. The pre-semifield multipli-
cation is (1, q)-biprojective. Similarly, the corresponding (1, q)-biprojective planar
mapping whose polarization is isotopic to S is given by

[(0, 0, 1, 0)1, (1, 0, 0, a)q] if m/gcd(k, m) is odd,
B H

(1, 0, 0, a)1, (0, 1, a(q−1)/2, 0)q ] if m/gcd(k, m) is even.
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The number of non-isotopic semifields in this family is b n c which is proved in
[14].

The known infinite families of biprojective and other commutative semifields and
their planar representations are summarized in Tables 1 and 2. Families A, D , B H
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reduce to F  when k � {0, m}. Family Z P  reduces to D  when k =  0, to B H  when j  =
0, and to F  when j  =  k =  0. Family S  reduces to Z P  when a =  0, and to D  when k
� {0, l }. We excluded those cases in the Notes and also in the Counts columns of
Table 1.

3.5. The Family S .  The main result of this paper is to prove that

• Family S  gives new commutative semifields, and
• Family S  contains an exponential number of non-isotopic commutative

semifields (in n).

An informal way to explain why Family S  gives such a large number of commu-
tative semifields is that their polarizations admit only a few M-linear isotopisms
(within the family) due to their complexity —they contain two non-zero entries in
either component of their planar representations (1, 0, 0, a)q and (0, 1, b, 0)r; and the
underlying field automorphisms q and r  are nontrivial and are not simply related to
each other. Indeed, our method in Section 5 will show that M-linear isotopisms are
essentially the only ones for biprojective semifields whose autotopism groups satisfy
a simply defined condition. The polarization of (0, 1, 0, 0)q, which is a com-ponent
polynomial of many other biprojective semifields (except A  and BHeven), admits
more such isotopisms and that is the main reason why all a � M allowed in these
constructions lead to isotopic semifields. For F, D, BHeven and A  the reasons for
admitting only a small number of non-isotopic semifields include the simplicity of the
defining field automorphisms, e.g., q � {1, pm/2 }; or having the same (q, q) or
conjugate (q, q) automorphisms. We will explain these in detail in Section 5 (see
Theorem 5.10). We start by proving that Family S  indeed gives commutative
semifields.

4. T h e  co m m u tat i ve  semifield fami ly  S

The following diagram and its annotations describe our setting.

F  =  F p n

2

M =  F p m      m

2 E  =  Fp e

L  =  F p m / 2 2

D =  Fp d

d

Fp

Notation 4.1.
• p is an odd prime.
• n =  2m, m is even.
• Q =  pm/2 , Q2 =  pm .
• q =  pk , r  =  p k + m / 2  =  Qq with 1 ≤  k ≤

m −  1.
• e =  gcd(k, m) with m/e odd.
• d =  gcd(k +  m/2, m).
• e =  2d by Lemma 4.3.
• (M×)2 — the subgroup of non-zero squares

in M× .
• L ×  =  (M× )Q + 1  ≤  (M×)2 ≤  M× .
• (M× )Q −1  ≤  (M×)2 ≤  M ×  — the subgroup

of (Q +  1)st roots of unity in M× .
• E  =  Fq ∩M =  Fq 2  ∩M =  F r 2  ∩M by Lemma

4.3.
• D =  F r  ∩ M.

We need the following well known result on the greatest common divisor of pi ± 1
and pm  −  1. A proof can be found in [28].
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Lemma 4.2. Let i, m � N and p be a prime. Then
• gcd(pi −  1, pm −  1) =  pgcd( i ,m) −  1.

�1

• gcd(pi +  1, pm −  1) = 2

pgcd( i ,m) +  1

First, we will prove a lemma.

Lemma 4.3. We have,

if m/gcd(i, m) odd, and p =  2,
if m/gcd(i, m) odd, and p >  2,
if m/gcd(i, m) even.

(i) (−1) � (M× )q−1 .
(ii) Any x  � (M×)2 can be written (twice) as x  =  cg where c � L ×  and g �

(M× )Q−1 .
(iii) gcd(k +  m/2, m) =  gcd(k, m)/2.
(iv) E  =  Fq ∩ M =  Fq 2  ∩ M =  F r 2  ∩ M.

Proof. (i) Recall that ν2(x) denotes the index of 2 in x, that is, ν2(x) =  h if
2h|x and 2h+1 - x. We have ν2(pe − 1) =  ν2(Q2 − 1) since Q2 − 1  =  pm  − 1  =
(pe −  1) m / e −1  pi and the fact that an odd number of odd integers add
up to an odd integer. Thus ν2((pm −  1)/2) =  ν2(pe −  1) −  1. The result
follows from Lemma 4.2 which shows gcd(q −  1, Q2 −  1) =  pe −  1.

(ii) It is easy to see that (M × )Q−1  ∩ L ×  =  { ± 1 }  since gcd(Q −  1, Q +  1) =  2
and xg =  yh if and only if (x, g) =  (y, h) or (x, g) =  (−y, −h).

(iii) Let k =  2dk0 and m =  2dm0 with gcd(k0, m0) =  1 and m0 odd. Then
gcd(2dk0 +  dm0, 2dm0) =  d · gcd(2k0 +  m0, 2m0) =  d · gcd(2k0 +  m0,m0) =
d · gcd(2k0, m0) =  d, since m0 +  2k0 is odd.

(iv) Obvious since m/e is odd and (qQ)2 =  q2 (mod Q2 −  1).
¤

Now we present the family of planar mappings.

Theorem 4.4. Let a � L ×  and B  � M ×  \  (M×)2 and let

F  : M ×  M → M ×  M

be defined as

F  : (x, y) → F (x, y) =  [(1, 0, 0, B)q , (0, 1, a/B, 0)r ].

Then F  is planar.

Proof. We are going to use Lemma 3.1. First,

D0 (x, y) =  B(yq +  y) =  0, and

D0(x, y) =  x r  +  
ax 

=  0

imply (x, y) =  (0, 0), since otherwise either of

yq−1 =  −1 ,  and x r − 1  =  −  
a

leads to a contradiction, since −1 �(M× )q −1 by Lemma 4.3, and 2|gcd(r −  1, Q2 −  1)
and −a / B  � (M×)2. Similarly,

D∞(x, y) =  xq +  x  =  0, and

Dg (x, y) =  y +  
ayr 

=  0
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have the unique common solution (x, y) =  (0, 0) with the same argument after
changing variables. Now for u � M× ,

Du(x, y) =  uxq +  uq x +  B(yq +  y) =  0, and

Du(x, y) =  x r  +  
B

x  +  
B

uy r  +  ur y =  0.

Or,

Du(ux, y) =  uq+1(xq +  x) +  B(yq +  y) =  0, and

Du(ux, y) =  ur (xr  +  y) +  
a 

u(x +  yr ) =  0.

We will proceed to show that (x, y) =  (0, 0) is the only common solution of these
equations for x, y � M. Now we can assume x, y � M× ,  since x  =  0 implies y =  0 and
vice versa for Du(ux, y) =  0. Furthermore, x  =  −y r  implies y −  y r 2  

=  0 and x, y �
F r 2  ∩ M =  Fq 2  ∩ M =  Fq ∩ M =  E  by Lemma 4.3. Thus xq +  x  =  2x =  −2y r  and y
+  y =  2y, in turn

2(−uq +1 yr +  By) =  0,
or

r − 1

uq+1

This is impossible since B  � (M×)2. The same argument shows x r  =  −y  and we
can concentrate on

(4.1) uq+1 =  −
B (y q  +  y)

, and

(4.2) ur −1  =
 
−

B ( x r  +  y)
,

for x, y � M ×  with x r  =  −y  and x  =  −y r .  Now assume (4.1) and (4.2) hold for
such x, y � M× ,  and let

q
(4.3) φq(x, y) =  

xq +  x  
=  

cg
, and

(4.4) φr(x, y) =  
x r  +  y 

=  γQdh,

for some c, d � L × ,  g, h � (M× )Q −1  and a fixed γ � M ×  \  (M×)2 , since cg and dh both
run through (M×)2 independently by Lemma 4.3. Note that (4.1) and (4.2)
guarantee that φq(x, y) and φr(x, y) are non-squares. Multiplying (4.3) and (4.4)
(and also (4.1) and (4.2)) we get

q + r q ( Q +1)

γ
cg 

=  φq(x, y)φr(x, y) =
a

=
a

� L  ,

and therefore ²g =  h with ² � { ± 1 }  since γ Q + 1  � L × .  Now let z =  y −  x Q  and
consider

cg(zq +  z +  (xq +  x)Q ) =  γ(xq +  x), and

(xq +  x) +  zr =  ²γQ dg((x +  xq )Q +  z),

for x  � M× ,  which is a rewriting of (4.3) and (4.4). Or, equivalently,

(4.5) cg(xq +  x)Q  −  γ(xq +  x) =  −cg(zq +  z), and

(4.6)                     −²γQ dg(xq +  x)Q  +  (xq +  x) =  −z r  +  ²γQdgz.
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The two new equations generated by

• Eq. (4.5) plus γ times Eq. (4.6), and
• d²γQ times Eq. (4.5) plus c times Eq. (4.6),

are as follows:

(4.7) (c −  ²γQ+1 d)(xq +  x)Q g =  −γ z r  −  cgzq −  (c −  ²γQ+1d)gz, and

(4.8)              (c −  ²γQ+1d)(xq +  x) =  −c(z r  −  d²γQgzq).

We will show that the common solutions of these equations for x  � M ×  lead to a
contradiction to our assumption that (4.1) and (4.2) hold. Note that xq +  x  =  0
since x  � M ×  and −1  � (M× )q−1 . Now if z =  y −  x Q  =  0, then (4.3) becomes

(xq +  x) Q − 1  =  
cg

,

which is a contradiction since the left hand side is a square and the right hand side
is not. If c =  ²γQ+1 d then z =  0 by Eq. (4.8), which we have just handled, or z r −q

=  z q ( Q−1)  =  d²γQ g by Eq. (4.8), which is again a contradiction since the right hand
side is not a square. Then c =  ²γQ+1 d. Observe that c −  ²γQ+1 d � L .  Comparing
g times Eq. (4.8) to the power Q with Eq. (4.7) yields

(−c(z r −  d²γQgzq ))Qg =  −γ z r  −  cgzq −  (c −  ²γQ+1d)gz,

−cgzq +  cd²γgQ+1zr =  −γ z r  −  cgzq −  (c −  ²γQ+1d)gz,

cd²γzr =  −γ z r  −  (c −  ²γQ+1d)gz,

γ(cd² +  1)zr =  −(c −  ²γQ+1d)gz.

Now cd² +  1 =  0 implies z =  0 or c =  ²γQ+1 d, which were handled before. Thus,
we have

r − 1  g c −  ²γQ+1 d
γ          cd² +  1

and noting again that γ Q + 1  � L × ,  we reach another contradiction since the right
hand side is not a square.                                                                                                ¤

5. A m e t h o d  t o  de t e r m in e  isotopy o f  bipro jec t ive  pre-semifields

There are two usual ways to determine whether two semifields are isotopic. The
first one is to use isotopy invariants like the nuclei. Since there are less than n2

possible configurations for the left/right and central nucleus for a commutative
pre-semifield on Fn ,  this method is not enough to determine whether the number of
non-isotopic pre-semifields grows exponentially in n or not. The second method
works by directly considering all possible isotopisms (N, L, M ). This is, however, in
many cases not feasible unless the pre-semifield has a very simple structure. Note
that, for commutative semifields, some general results were obtained in [8] that
make this approach slightly easier and allowed for instance to settle the isotopy
question inside the family of Zhou-Pott semifields [35]. However, the semifields in
our Family S  are more delicate and such a direct approach does not seem possible. In
this section, we develop a new general technique to determine whether two
biprojective pre-semifields are isotopic or not.
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5.1. Group  theoretic preliminaries. We denote the set of all autotopisms of
a pre-semifield P by Aut(P). It is easy to check that Aut(P) is a group under
component-wise composition, i.e., (N1 , L1 , M1)(N2 , L2 , M2) = (N1N2 , L1L2 , M1M2).
We view Aut(P) as a subgroup of GL(F)3 =  GL(M ×  M)3 =  GL(n, Fp)3. Our ap-
proach is based on the following simple and well-known result.

Lemma 5.1. Let P1 =  (Fp , +, �1), P2 =  (Fp , +, �2) be isotopic pre-semifields via
the isotopism γ � GL(F)3 . Then γ −1  Aut(P2)γ =  Aut(P1).

Proof. Let γ =  (N1 , L1 , M1) � GL(F)3 be an isotopism between P1 and P2 and
δ =  (N2 , L2 , M2) � Aut(P2). Then γ−1δγ � Aut(P1). Indeed

(N −1 N2 N1 )(x �1 y) =  (N −1 N2 )(L1 (x) �2 M1(y))

=  N −1 ((L2 L1 (x)) �2 (M2M1(y)))

=  (L−1 L2 L1 (x))  �1 (M −1M2M1(y)),

so γ −1  Aut(P2)γ � Aut(P1). The other inclusion follows by symmetry. ¤

The central idea of the technique we are going to develop is to identify large
abelian subgroups (in particular certain Sylow subgroups), in the autotopism group of
biprojective semifields. We then use tools from group theory to obtain strong
constraints on when the autotopism groups of two pre-semifields are conjugate. This
approach is inspired by a similar technique for inequivalences of power functions on
finite fields developed by Dempwolff [11] and Yoshiara [32].

First we recall the well-known Sylow Theorems (see for instance [17, Chapter
4]).

Theorem 5.2 (Sylow Theorems). Let G  be a group with order pms, with p prime,
m >  0 and p - s. Then,

(i) G  has a subgroup of order pm , called a Sylow p-subgroup of G.
(ii) Every p-subgroup of G  is contained in a Sylow p-subgroup of G.
(iii) The Sylow p-subgroups of G  are conjugate in G.

We will identify Sylow p0-subgroups of Aut(P) when P is a biprojective pre-
semifield. In order to do that, we need to find a suitable prime p0, for which we will
employ Zsigmondy’s Theorem (see for instance [18, Chapter IX., Theorem 8.3]).

Theorem 5.3 (Zsigmondy’s Theorem). For every prime p and m >  2 except when
(p, m) =  (2, 6), there exists a p-primitive divisor p0 of pm  −  1, that is, p0 prime,
p0|pm −  1 and p0 - pi −  1 for all 1 ≤  i  ≤  m −  1.

We write Fp-linear mappings L  � End(F) from F  to itself as 2 ×  2 matrices of
F  -linear mappings in End(M). That is,

L  =  

µ
L 1 L2

¶
,  for L  � End(M).

3 4

Set
γa =  (Na, La, Ma) � GL(F)3

with µ
m q + 1

a                     0

¶ µ ¶

ma r + 1         
,      L a  =  Ma =       0

a       
ma      

,
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where ma denotes multiplication with the finite field element a � M× .  For simplic-
ity, we write these diagonal matrices also in the form diag(ma, ma), so

γa =  (diag(maq +1 , mar +1 ), diag(ma, ma), diag(ma, ma)).
An important fact which follows immediately from biprojectivity is that γa �
Aut(P) for all a � M ×  when P is a (q, r)-biprojective pre-semifield, which can be
readily verified using Eq. (3.1). We fix some further notation that we will use
from now on:

Notation 5.4.
• Set q =  pk and r  =  pl.
• Set q =  p m − k  and r  =  p m − l ,  that is, qq ≡  r r  ≡  1 (mod pm  −  1).
• Define the cyclic group

Z ( q , r )  =  {γa : a � M × } ,

of order pm  −  1.
• Let p0 be a p-primitive divisor of pm  −  1. Such a prime p0 always exists if m

>  2 and (p, m) =  (2, 6) by Zsigmondy’s Theorem. In our case, we have p >
2. We will also stipulate m >  2. Note that p0 =  2 since p0 - p −  1.

• Let R  be the unique Sylow p0-subgroup of M× .
• Define

Z ( q , r )  =  {γa : a � R } ,
which is the unique Sylow p0-subgroup of Z ( q , r )  with |R| elements.

• For a (q, r)-biprojective pre-semifield P, denote by

CP  =  CAut(P ) (Z (q ,r ) )

the centralizer of Z ( q , r )  in Aut(P).
• Define

S  =  {diag(ma, ma) : a � M × } ,
and

S R  =  {diag(ma, ma) : a � R } .

We start by identifying a subgroup of the autotopism group of any (q, r)-
biprojective pre-semifield. Lemma 5.5 is straightforward, but very important for
our paper.

Lemma 5.5. Let P be any (q, r)-biprojective pre-semifield. Then

Z ( q , r )  ≤  Z ( q , r )  ≤  Aut(P).

Proof. Follows directly from Eq. (3.1). ¤

We continue with a simple observation on R .

Lemma 5.6. Let a � R ,  a =  1. Then a is not contained in a proper subfield of M.

Proof. Clearly, a is contained in the subfield Fp i      if and only if ap i −1 =  1, i.e. the
multiplicative order of a is a divisor of pi −  1. The order of a is a power of p0 and p0

does not divide pi −  1 for any i  <  m, so a is not contained in a proper subfield of F p m

. ¤

Now we observe that the normalizer and the centralizer of certain subgroups of
GL(F) must have certain shape.
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Lemma 5.7. Let NGL( F ) (SR ) ,  NGL(F ) (S ) and CGL( F ) (SR ) ,  CGL(F ) (S ) be the nor-
malizers and the centralizers of S R

 and S  in GL(F). Then

(a)

NGL( F ) (SR ) =  NGL(F ) (S )

=
mc1 

τ m
c2 

τ : c1, c2, c3, c4 � M, τ � Gal(M/Fp) ∩ GL(F),

½µ
(b) CG L ( F ) (SR ) =  CGL(F ) (S ) =            c 1

3

mc2 

¶  
: c1, c2, c3, c4 � M

¾ 
∩ GL(F).

4

Proof. We present the proof only for the more delicate case S R .  The proof for S  is
identical with M¶ substituting R  throughout.

Let A3 A4
� NGL( F ) (SR ), where A1 , A2 , A3 , A4 � End(M). Then

µ
A 1

A3

¶ µ ¶

A4      
diag(ma, ma) =  diag(mb, mb) A3 A4      

,

for all a � R  and some b =  π(a) where π : R  → R  is a bijection. Simple matrix
multiplication implies Ai (ax) =  bAi (x) for i  � {1, 2, 3, 4}.

We now write the mappings as linearized polynomials, i.e. A i  = j = 0
1  c j , i xp j

for i  � {1, 2, 3, 4}. The equations above then immediately yield

m − 1 m − 1

cj , i ap j  
xp j  

=  b c j , i xp j

j = 0                                       j = 0

for i  � {1, 2, 3, 4} and all a � R .  We now compare the coefficients of these polyno-
mials. If a =  1, it is not contained in any proper subfields of M by Lemma 5.6, so we
have b =  apj      

only for at most one j  � {0, 1, . . . , m −  1}. So A1 , A2 , A3 , A4 are zero or
monomials of the same degree pj , which proves the statement for the normalizer. In
the case of the centralizer, we have b =  a, so we get the same possible mappings
except with j  =  0 forced. ¤

We have shown in Lemma 5.5 that Z ( q , r )  is a subgroup of Aut(P). Now we show
that, under a certain condition which is key to our proofs, it is not just a Sylow p0-
subgroup of Z (q , r ) ,  but even a Sylow p0-subgroup of Aut(P).

Lemma 5.8. Let P be a (q, r)-biprojective pre-semifield. Assume that CP  contains
Z ( q , r )  as an index I  subgroup such that p0 does not divide I .  Then Z ( q , r )  is a Sylow
p0-subgroup of Aut(P).
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Proof. First define

U =  {(diag(ma, mb), diag(mc, md),

diag(me, mf )) : a, b, c, d, e, f � R } .

Clearly, |U| =  |R|6. We will now show that U is a Sylow
p0-subgroup of GL(F)3. We have

2m

| GL(F)| =  | GL(2m, Fp)| =  pm (2 m−1) (pi −  1).
i = 1

1697

GL(F)3

Clearly, p m + i  −  1 ≡  pi  −  1 (mod pm  −  1). As p0 is a p-
primitive divisor of pm  −  1, all integers pj  −  1 with j  in
[1, 2m] are coprime to p0, except for j  � {m, 2m}. Fur-
thermore, the p0-part of p2m −  1 =  (pm −  1)(pm +  1) is
|R| since p0 =  2. Thus the p0-part of | GL(F)| is |R|2 and
U is a Sylow p0-subgroup of GL(F)3 as claimed. All Sy-
low p0-subgroups of GL(F)3 are abelian since U is abelian,
by Sylow Theorem (iii). Note that any p0-subgroup of a
group G  is contained in a Sylow p0-subgroup of G  by Sy-
low Theorem (ii). Let T be a Sylow p0-subgroup of Aut(P)
that contains the p0-group Z (q , r ) .  Then T itself is (again
by Sylow Theorem (ii)) contained in a Sylow p0-subgroup
of GL(F)3, say U0. In particular, T is abelian. This im-
plies that T is a subgroup of the centralizer CP  of Z ( q , r )  in
Aut(P). By assumption, Z ( q , r )  is an index I  subgroup of
CP  and p0 does not divide I .  Moreover Z ( q , r )  is a Sylow p0-

subgroup of Z ( q , r )  and therefore p0 - [Z (q , r )  : Z (q , r ) ]  =  I1 .

Let [T : Z (q , r ) ]  =  I2  =  p0h for h ≥  0, since both are p0-
groups. Since I2|I1 I , and p0 - I1 I ,  we must have p0 - I2  and I2

=  1. Thus, Z ( q , r )  =  T and Z ( q , r )  is a Sylow p0-subgroup of
Aut(P). ¤

U0 Aut (P)

CP

I

T Z ( q , r )

I2
I1

(q ,r )
R

5.2. A theorem on isotopisms between bipro jective semifields. Now we
are going to show that if two biprojective pre-semifields are isotopic, an isotopism
(N, L, M ) that satisfies strong requirements on the shape of the linearized polyno-
mials N , L  and M has to exist, whenever the condition appearing in the assumption of
Lemma 5.8 is satisfied. We will name it Condition (C). First we need a simple
lemma.

Lemma 5.9. Let

(x, y) → F (x, y) =  [f (x, y), g(x, y)] =  [(a0, b0, c0, d0)q, (a1, b1, c1, d1)r]

be a (q, r)-biprojective mapping for arbitrary values of q, r. If F  is planar, then
(a0, a1) =  (0, 0) and (d0, d1) =  (0, 0). That is to say, all biprojective pre-semifield
polarizations Δ F  ((x, y), (u, v)) have a component that contains both monomials xσu
and xuσ  and a component (not necessarily different) that contains both yτ v and yvτ

for σ, τ � {q , r }  depending on the component.

Proof. If a0 =  a1 =  0, then D∞(x, y) =  0 =  D∞(x, y) for y =  0 and arbitrary
x, contradicting Lemma 3.1 for u =  ∞. The contradiction for d0, d1 is obtained
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similarly by considering Lemma 3.1 for u =  0. The statement on the corresponding
pre-semifield follows immediately by Eq. (3.1) and the fact that (a0, a1) =  (0, 0). ¤

We are now ready to prove the main result of this section: If two biprojective
semifields are isotopic, then there exists an isotopism between them of a very specific
form.

Theorem 5.10. Let P1 =  (M × M, +, �1) and P2 =  (M × M, +, �2) be (q1, r1)- and
(q2, r2)-biprojective pre-semifields, respectively, such that q1 � {r1 , r1 },  1 �/ {q1 , r1 }
and Q � {q1 , r1 }, where qi =  pk i      and r i  =  pl i  for i  � {1, 2}. Assume that

(C) CP 1  contains Z ( q 1 , r 1 )  as an index I  subgroup such that p0 does not divide I .

If P1, P2 are isotopic, then there exists an isotopism γ =  (N, L, M ) � GL(F)3 , with
the following properties:

• Al l non-zero subfunctions of N , L  and M are monomials.
• Al l non-zero subfunctions of L  and M have the same degree pt .
• We have,

– either k1 ≡  ±k2  (mod m) and l1 ≡  ± l 2  (mod m),
– or k1 ≡  ± l 2  (mod m) and l1 ≡  ±k2  (mod m).

More precisely, we have either,

• N2 =  N3 =  0 and N1 , N4 =  0,
• k1 ≡  ±k2  (mod m) and l1 ≡  ± l 2  (mod m),
• if k1 ≡  k2 (mod m) (resp. l1 ≡  l2 (mod m)) then N1 (resp. N4 )  is a

monomial of degree pt ,
• if k1 ≡  −k2  (mod m) (resp. l1 ≡  − l 2  (mod m)) then N1 (resp. N4 )  is a

monomial of degree p t + k 2  (resp. pt + l 2  ),

or,

• N1 =  N4 =  0 and N2 , N3 =  0,
• k1 ≡  ± l 2  (mod m) and l1 ≡  ±k2  (mod m),
• if k1 ≡  l2 (mod m) (resp. l1 ≡  k2 (mod m)) then N3 (resp. N2 )  is a

monomial of degree pt ,
• if k1 ≡  − l 2  (mod m) (resp. l1 ≡  −k2  (mod m)) then N3 (resp. N2 )  is a

monomial of degree pt + l 2  (resp. pt + k 2 ) .

Proof. Set

(x, y) �1 (u, v) =  (f1(x, y, u, v), g1(x, y, u, v)), and

(x, y) �2 (u, v) =  (f2(x, y, u, v), g2(x, y, u, v)).

By Lemma 5.5, we have Z ( q 1 , r 1 )  ≤  Aut(P1) and Z ( q 2 , r 2 )  ≤  Aut(P2). Assume P1

and P2 are isotopic via the isotopism δ � GL(F)3 that maps P1 to P2. Then δ −1

Aut(P2)δ =  Aut(P1) by Lemma 5.1. Observe that |δ−1Z (q2 ,r2 )δ| =  |R| =

|Z (q1 ,r1 )|, so Z ( q 1 , r 1 )  and δ −1 Z (q 2 , r 2 ) δ  are Sylow p0-subgroups of Aut(P1) by Lemma
5.8 as long as Condition (C) holds. In particular, these two subgroups are conjugate in
Aut(P1) by Sylow Theorem (iii), i.e., there exists a λ  � Aut(P1) such that

(5.1) λ−1 δ −1 Z ( q 2 , r 2 ) δλ  =  (δλ)−1 Z (q2 , r 2 ) (δλ) =  Z (q 1 , r 1 ) .
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Set γ =  (N, L, M ) =  δλ. Note that γ is an isotopism between P1 and P2 since
λ  � Aut(P1). Eq. (5.1) then immediately implies that

diag(maq2 +1 , ma r 2 + 1  )N =  N  diag(mbq1 +1 , mb r 1 + 1  ),

diag(ma, ma)L =  L diag(mb, mb),

diag(ma, ma)M =  M diag(mb, mb),

for all a � R  and b =  π(a) where π : R  → R  is a permutation. In particular, L  and M
are in the normalizer of S R  =  {diag(ma, ma) : a � R } .  By Lemma 5.7, all of the four
subfunctions of L  and M are zero or monomials of the same degree, say pt2 and pt3 ,
respectively. Then, for all (x, y), (u, v) � M2,

L(x, y) �2 M(u, v)

=  (a2xpt2 +  b2ypt2 , c2xpt2 +  d2ypt2 ) �2 (a3upt3 +  b3vpt3 , c3upt3 +  d3vpt3 ),

=  (h1(x, y, u, v), h2(x, y, u, v))

for some a2, b2, c2, d2, a3, b3, c3, d3 � M. We also have

N ((x, y) �1 (u, v)) =  (N1(f1(x, y, u, v)) +  N2(g1(x, y, u, v)),

N3(f1(x, y, u, v)) +  N4(g1(x, y, u, v))).

Let us now assume that N ((x, y)�1(u, v)) =  L(x, y)�2 M (u, v). We consider the first
component, i.e. h1(x, y, u, v) =  N1(f1(x, y, u, v)) +  N2(g1(x, y, u, v)). Lemma 5.9
implies both monomials xq u and xuq occur in one of the two components of P1.
Since switching the components clearly preserves isotopy, we can assume without
loss of generality that they occur in the first component f1 . Let us for now assume N1

=  0. We know that N1(f1(x, y, u, v)) has then terms of the form

(5.2) x p k 1 + t  
upt 

and xp t  
up k 1 + t

for at least one 0 ≤  t ≤  m −  1. Observe that the differences of p-adic valuations of
exponents in the x- and u-degrees of the monomials are k1 +  t −  t =  k1 and t −  k1

−  t =  −k1 , respectively. In particular, if q1 =  r1, q1 =  r1, then these terms cannot be
canceled out by N2(g1(x, y, u, v)). Since P2 is a (q2, r2)-biprojective pre-semifield, all
possible terms in h1 are of the form

(5.3) w p k 2 + t 2  zpt3 or wpt2 z p k 2 + t 3  ,

where w � {x, y } ,  z � {u, v } and 0 ≤  t2, t3 ≤  m−1. Comparing Eqs. (5.2) and (5.3)
gives either

k1 +  t ≡  k2 +  t2 (mod m), k1 +  t ≡  t2 (mod m),

t ≡  t3 (mod m),

t ≡  t2 (mod m),

t ≡  k2 +  t3

t ≡  k2 +  t2

(mod m),

(mod m),

k1 +  t ≡  k2 +  t3 (mod m), or, k1 +  t ≡  t3 (mod m).

The first possibility is equivalent to t =  t2 =  t3, k1 ≡  k2 (mod m) and the second
implies t2 =  t3, t =  t2 +  k2 and k1 ≡  −k2  (mod m). Note in particular that
in any case t2 =  t3. Moreover, both cases cannot occur simultaneously since, by
assumption, k1 ≡  m/2 (mod m). We conclude that N1 is a monomial with the
same degree pt2 as the L i , Mi  if k1 ≡  k2 (mod m), and a monomial with the degree
p t 2 + k 2  if k1 ≡  −k2  (mod m).
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Now assume N2 =  0 and observe that the terms of N2(g1(x, y, u, v)) are of the
form

(5.4) w p l 1 + t  
zpt 

or wpt 
z p l 1 + t  

,

where w � {x, y } ,  z � {u, v} and some 0 ≤  t ≤  m−1. In particular, the difference of p-
adic valuations of exponents of the two monomials is l1 or − l1 . This however yields a
contradiction since the difference of p-adic valuations of exponents in Eq. (5.3) is k2

or −k2 , that is by the considerations above, −k1  or k1, which leads to k1 ≡  ± l 1  (mod
m) which is not possible since q1 =  r1, q1 =  r1. We conclude that N2 =  0.

Let us now consider the second component. Since N2 =  0, we must have N4 =  0
since N  is bijective. The terms of N4(g1(x, y, u, v)) are then again of the same form as
in Eq. (5.4). Similar to Eq. (5.3), the terms in h2 are of the form (using t2 =  t3)

(5.5) w p l 2 + t 2  zpt2 or wpt2 z p l 2 + t 2  ,

where w � {x, y } ,  z � {u, v}. A comparison between Eqs. (5.4) and (5.5) yields
either t =  t2 and l1 ≡  l2 (mod m) or t =  l2 +  t2 and l1 ≡  − l 2  (mod m). Again, this
means that N4 is a monomial of degree pt2 or pl 2 + t 2  as both cases cannot occur
simultaneously since l1 ≡  m/2 (mod m).

Since q1 =  r1, q1 =  r1, we can again deduce N3 =  0 with the same argument we
used to prove N2 =  0 before. This concludes the case N1 =  0.

Now assume N1 =  0. Since N  is bijective, this implies N3 =  0. We can then em-
ploy the entire argument, just starting with the second component and exchanging k2

and l2, N1 and N3, and N2 and N4 throughout. We conclude that in this case
N3 , N2 =  0 and N1 =  N4 =  0. ¤

Remark 5.11.

(i) We exclude the cases q1 =  r1, q1 =  r1, 1 � {q1 , r1 }, and Q � {q1 , r1 }. It is
possible to give (slightly weaker) versions of Theorem 5.10 also in the
excluded cases. We avoided these cases to simplify the exposition. For
instance, when we allow Q � {q1 , r1 }, then the subfunctions of N  may be

binomials of the form N i  =  axpt  
+ b x p t + m / 2  

. We will showcase an isotopy of
this kind in Remark 8.3 in Section 8. Observe that in the version we have
given, all non-zero subfunctions of N , L, M are monomials. We chose this
presentation of the theorem to avoid listing unnecessary special cases that
we do not need in this paper.

(ii) We will mainly use Theorem 5.10 to determine the number of isotopy classes in
Family S . Of course, it can also be used to give alternative (in most cases
simpler) proofs of the number of isotopy classes of the known commutative
biprojective pre-semifields.

Theorem 5.10 enables us to settle the isotopy question of biprojective pre-
semifields with relative ease as long as Condition (C) is satisfied. In the next
section we will first show that Condition (C) is satisfied for our family and then use
Theorem 5.10 to determine the number of non-isotopic semifields in the family. Note
that the condition m >  2 we stipulate in this section is not restrictive when
considering S  since it does not yield semifields when m is a power of 2.
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6. Isotopisms within t h e  Fami ly  S

In this section we will show that the number of non-isotopic semifields within the
Family S  is exponential in n (when n =  4t, where t is not a power of 2). We first
need to check Condition (C) in Theorem 5.10 for the pre-semifields in the Family S .
Lemma 6.1 does that in a straightforward manner.

Lemma 6.1. Let n =  2m and P =  (M ×  M, +, �) be a (q, r)-biprojective pre-
semifield in the Family S .  Then

|CP| =  (pm −  1)(pgcd(k,m) −  1), or

|CP| =  2(pm −  1)(pgcd(k,m) −  1).

In particular, Condition (C) is always satisfied.

Proof. If (N, L, M ) � CP  then, by Lemma 5.7, the subfunctions L i  and Mi for
i  � {1, 2, 3, 4} are zero or monomials of degree 1, we write

L1 (x) =  a2x, L2 (x) =  b2x, L3 (x) =  c2x, L4 (x) =  d2x,
M1(x) =  a3x,      M2(x) =  b3x,      M3(x) =  c3x,      M4(x) =  d3x.

We then have

L(x, y) � M(u, v) =(a2 x +  b2y, c2x +  d2y) � (a3u +  b3v, c3u +  d3v)

=((a2x +  b2y)q(a3u +  b3v) +  (a2x +  b2y)(a3u +  b3v)q

+  B((c2 x +  d2y)q(c3u +  d3v) +  (c2x +  d2y)(c3u +  d3v)q),

(a2x +  b2y)qQ(c3u +  d3v) +  (c2x +  d2y)(a3u +  b3v)qQ

(6.1) +  
B

((a2x +  b2y)(c3u +  d3v)qQ +  (c2x +  d2y)qQ(a3u +  b3v))).

Similarly, we have

N ((x, y) � (u, v))

=  (N1(xq u +  xuq +  B(yq v +  yvq)) +  N2(xq Q v +  yuqQ +  
B

(xv q Q  +  yqQu)),

N3(xq u +  xuq +  B(yq v +  yvq)) +  N4(xq Q v +  yuqQ +  
B

(xv q Q  +  yqQu))).

By comparing the degrees, it is then easy to see that N ((x, y) � (u, v)) =  L(x, y) �
M(u, v) implies N2 =  N3 =  0 and N1 =  a1x, N4 =  d1x for some a1, d1 � M× .
Then
(6.2)

N ((x, y)�(u, v)) =  (a1(xq u+xuq +B(yq v+yvq )), d1(xq Qv+yuqQ +
B

(xvq Q +yq Q u))).
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We compare the coefficients of xq u, xuq , xq v, xvq , yqu, yuq, yqv, yvq in the first
component of Eqs. (6.1) and (6.2) to get the following 8 equations:

(6.3)                                                 a1 =  a2a3 +  Bc2c3 ,

(6.4)                                                 a1 =  a2a3 +  Bc2c3 ,

(6.5) 0 =  a2b3 +  Bc2d3 ,

(6.6) 0 =  a2bq +  Bc2dq ,

(6.7) 0 =  bqa3 +  Bdq c3 ,
(6.8) 0 =  b2aq +  Bd2cq ,

(6.9)                                              B a1 =  bqb3 +  Bdq d3 ,

(6.10) B a1 =  b2b3 +  Bd2d3 .

And similarly the 8 equations that come from comparing the coefficients in the
second component:

(6.11) 0 =  aqQc3 +  (a/B)cqQa3 ,

(6.12) 0 =  (a/B)a2cq Q +  c2aqQ,

(6.13)                                           d1 =  aqQd3 +  (a/B)cqQ b3 ,

(6.14)                                    d1 a/B =  (a/B)a2dqQ +  c2bqQ,

(6.15)                                    d1 a/B =  bqQc3 +  (a/B)dqQa3 ,

(6.16)                                           d1 =  (a/B)b2cqQ +  d2aqQ,

(6.17) 0 =  bqQd3 +  (a/B)dqQ b3 ,

(6.18) 0 =  (a/B)b2dqQ +  d2bqQ.

Let us first assume that a2, c2, a3, c3 =  0. Then by Eqs. (6.11) and (6.12), we
have

a aqQc3 c2aqQ

B cqQa3 a2cqQ

Setting a3 =  ω1a2, c3 =  ω2c2 gives
q Q −1 q Q −1 q Q

2 2 2 1

B c2                   ω1              c2                        ω2

This implies ωq Q+1 =  ωq Q+1 , that is ω2 =  ζω1 where ζ  is a (qQ + 1)st root of unity.
Substituting this into the previous equation yields

µ ¶ q Q − 1

(6.19) −
B  

=      
c

2                   ζ .

By Lemmas 4.2 and 4.3(iii), we have gcd(qQ +  1, pm −  1) =  pgcd(k ,m)/2 +  1, so ζ  is a
(pgcd(k ,m)/2 +  1)st root of unity. In particular, ζ  � E  since pgcd(k ,m)/2 +  1 divides
pgcd(k ,m) −  1. The (pgcd(k ,m)/2 +  1)st roots of unity in E  are precisely the (pgcd(k ,m)/2

−  1)st powers in E .  In particular, ζ  is a square. This is however a contradiction to
Eq. (6.19) since the left hand side is a non-square (recall that −1  and a are
squares), and the right hand side is a square. We conclude that a2c2a3c3 =  0.
We can proceed identically with b2, d2, b3, d3 and Eqs. (6.17) and (6.18) which
yields b2d2b3d3 =  0. The conditions in Eqs. (6.11), (6.12), (6.17),
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(6.18) and the bijectivity of L, M then only leave two possibilities: Either a2 =  a3

=  d2 =  d3 =  0 and b2, b3, c2, c3 =  0 or, the other way round, a2, a3, d2, d3 =  0 and b2

=  b3 =  c2 =  c3 =  0. We will deal with these two cases separately. Note that in both
cases, Eqs. (6.5), (6.6), (6.7), (6.8), (6.11), (6.12), (6.17), (6.18) are always satisfied.

Case b2, b3, c2, c3 =  0. We set a3 =  ω1a2, d3 =  ω2d2. Then Eqs. (6.3), (6.4), (6.9),
(6.10) become

a1 =  aq+1ω1 =  aq+1ωq =  dq+1ω2 =  dq+1ωq ,
which is satisfied if and only if ω1,ω2 � E  and

(6.20) (a2/d2)q+1 =  ω2/ω1.

Similarly, from Eqs. (6.13), (6.14), (6.15), (6.16), we get immediately (using
ω1,ω2 � E),

d1 =  aqQd2ω2 =  a2dqQωQ =  a2dqQω1 =  aqQd2ωQ.
This is equivalent to ω1 =  ωQ , (a2/d2)qQ−1 =  ωQ−1 . Multiplying this with
Eq. (6.20) gives

(a2/d2)q (Q+1) =  1,
i.e., a2/d2 � (M× )Q−1 ,  say ζ Q − 1  =  a2/d2. Rewriting Eq. (6.20) gives

(a2/d2)q+1 =  (ζ q +1 )Q−1 =  ωQ−1 .

The equation cannot be satisfied if ω1 is a non-square. If ω1 is a square, then d2 is
uniquely determined up to the sign from ω1 and a2. Thus we have in total pm  −  1
choices for a2, (pgcd(k,m) −  1)/2 choices for ω1 and 2 choices for d2, making in total
(pm −  1)(pgcd(k,m) −  1) choices in this case.

Case a2, a3, d2, d3 =  0. Similarly to the previous case, we set b3 =  ω1b2, c3 =  ω2c2.
We get from the first set of equations:

a1 =  Bcq +1ω2 =  Bcq +1ωq =  (1/B)bq+1ω1 =  (1/B)bq+1ωq ,

which is equivalent to ω1,ω2 � E  and

(6.21) (b2/c2)q+1 =  B2ω2/ω1 .

The second set of equations gives

d1 =  (a/B)cqQb2ω1 =  (B/a)c2bq QωQ =  (B/a)c2bqQω2 =  (a/B)cqQ b2ωQ.

This again implies ωQ  =  ω2 and (b2/c2)qQ−1 =  (1/ωQ−1)(a/B)2 . Multiplying this
with Eq. (6.21) gives

(b2/c2)q (Q+1) =  
ω

Q
 a2 =  a2 =  aQ+1 .

1

Thus, b2/c2 is determined up to multiplication with a (Q +  1)st root of unity, that
is, a (Q −  1)st power, say (b2/c2)q =  ζ Q −1 a . Eq. (6.21) can be rewritten as

(b2/c2)q+1 =  aq +1 (ζ q +1 )Q−1 =  B 2ωQ−1 .

This equation has a solution if and only if (aq+1)/B 2 is a (Q −  1)st power, say
(aq+1)/B 2 =  ρQ−1 .  In this case, there are (pgcd(k,m) −  1)/2 possible choices for ω1,
either all squares or all non-squares, depending on if ρ is a square or not. Then ζ  is
determined up to the sign, so there are pm  −  1 possible choices for b2, 2 possible
choices for c2 and (pgcd(k ,m)−1)/2 possible choices for ω1. This case thus contributes
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either 0 or (pm −  1)(pgcd(k,m) −  1) elements. Both cases together show that |CP| is
either (pm −  1)(pgcd(k,m) −  1) or 2(pm −  1)(pgcd(k,m) −  1).

Now it is clear that p0 - [CP : Z (q , r ) ]  � {pgcd(k ,m)  −  1, 2(pgcd(k,m) −  1)} by our
assumption that p0 is p-primitive (recall p0 =  2).                                                         ¤

We can now apply Theorem 5.10 to the pre-semifields in the Family S .

Theorem 6.2. Let Pq,B ,a =  (M ×  M, +, �1) and Pq0 ,B 0 ,a0      =  (M ×  M, +, �2) be
pre-semifields from the Family S .  Then

(i) Pq ,B ,a and Pq0 ,B 0 ,a0     are isotopic if and only if they are strongly isotopic.
(ii) Pq ,B ,a is isotopic to Pq ,B ,a0     for a0 =  B Q + 1 / a  and arbitrary q.
(iii) Pq ,B ,a is isotopic to Pq,B 0 ,a0     for arbitrary q, B, B0, a and a suitable choice

for a0.
(iv) If Pq ,B ,a is isotopic to Pq,B ,a0 , then it is also isotopic to Pq , B ,−a 0  .
(v) There are at most 2m =  n different a0 such that Pq ,B ,a is isotopic to Pq,B ,a0 .
(vi) No other isotopisms exist.

Proof. Let (N, L, M ) be an isotopism between Pq,B ,a and Pq0 ,B 0 ,a0 =  (M×M, +, �2).
All subfunctions of N , L, M are zero or monomials by Theorem 5.10. Moreover,
Pq,B ,a and Pq0 ,B 0 ,a0 can only be isotopic if q0 =  q, q0 =  q, q0 =  qQ, or q0 =  qQ. Note
that if m/gcd(k, m) is odd, then m/gcd(k +  m/2, m) is even by Lemma 4.3(iii), so
the cases q0 =  qQ, q0 =  qQ do not satisfy the conditions of Theorem 4.4 and need not
be considered.

We first show the isotopy in the case q0 =  q. We have

(x, y) �1 (u, v) =  (xq u +  xuq +  B(yq v +  yvq ), xqQv +  yuqQ +  (a/B)(xvq Q +  yqQu)).

A transformation with

N1 =  x, N4 =  (B Q /a)xQ , N2  =  N3 =  0

and raising x, y, u, v to the q-th power yields

N ((xq, yq) �1 (uq, vq))

=  (xuq +  xq u +  B(yvq +  yq v), (BQ /a)(xvqQ +  yqQu) +  xq Q v +  yuqQ).

Observe that one can write B Q / a  =  a0 /B for some a0 � L  (indeed this is equivalent to
B Q + 1  =  aa0 which has always a solution since B Q + 1  � L). We conclude that there
is always a strong isotopism between Pq ,B ,a and Pq , B , B Q + 1 / a .  Thus we have proved
Part (ii) of the theorem.

It thus only remains to deal with the case q0 =  q. By Theorem 5.10, we only
need to consider isotopisms (N, L, M ) with subfunctions

N1 =  a1xpt 
,

L 1  =  a2xpt 
,

N4 =  d1xpt 
,

L 2  =  b2xpt 
, L 3  =  c2xpt 

, L 4  =  d2xpt 
,

M1 =  a3xpt 
, M2 =  b3xpt 

, M3 =  c3xpt 
, M4 =  d3xpt 

,
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for some t � {0, . . . , m −  1}. Then

L(x, y) �2 M(u, v)

=  (((a0 x  +  b0 y)q(a0 u +  b0 v) +  (a0 x  +  b0 y)(a0 u +  b0 v)q)pt

+  B0((c0 x  +  d0 y)q(c0 u +  d0 v) +  (c0 x  +  d0 y)(c0 u +  d0 v)q)pt 
,

((a0 x  +  b0 y)qQ(c0 u +  d0 v) +  (c0 x  +  d0 y)(a0 u +  b0 v)qQ)pt

+  (a0/B0)((a0 x  +  b0 y)(c0 u +  d0 v)qQ +  (c0 x  +  d0 y)qQ(a0 u +  b0 v))pt 
),

where ai =  ai 
m − t  

and similarly for the other coefficients bi, ci , di . We also obtain

N ((x, y) �1 (u, v))

=  (a1(xqu +  xuq +  B(yq v +  yvq))pt 
, d1(xqQv +  yuqQ +  (a/B)(xvq Q +  yqQu))pt 

).

We compare the coefficients (xq u)pt 
, (xuq)pt 

, (xq v)pt 
, (xvq)pt 

, (yqu)pt 
, (yuq)pt 

,
(yqv)pt 

, (yvq)pt 
in the first component to get the following 8 equations.

(6.22) a1 =  a2a3 +  B0c2c3,

(6.23) a1 =  a2a3 +  B0c2c3,

(6.24)                                                  0 =  aqb3 +  B0cqd3,

(6.25)                                                  0 =  a2bq +  B0c2dq,

(6.26)                                                  0 =  bqa3 +  B0dqc3,

(6.27) 0 =  b2a3 +  B0d2c3,

(6.28)                                          B p t  
a1 =  b2b3 +  B0d2d3,

(6.29)                                          B p t  
a1 =  b2b3 +  B0d2d3.

And similarly the 8 equations that come from comparing the coefficients in the
second component:

(6.30) 0 =  aqQc3 +  (a0/B0)cqQa3,

(6.31) 0 =  (a0/B0)a2cqQ +  c2aqQ,

(6.32)                                             d1 =  aqQd3 +  (a0/B0)cqQb3,

(6.33)                               d1(a/B)pt 
=  (a0/B0)a2dqQ +  c2bqQ,

(6.34)                               d1(a/B)pt 
=  bqQc3 +  (a0/B0)dqQa3,

(6.35)                                             d1 =  (a0/B0)b2cqQ +  d2aqQ,

(6.36) 0 =  bqQd3 +  (a0/B0)dqQb3,

(6.37) 0 =  (a0/B0)b2dqQ +  d2bqQ.

Note that Eqs. (6.30), (6.31), (6.36), (6.37) are identical to Eqs. (6.11), (6.12),
(6.17), (6.18) in the proof of Lemma 6.1, just with a/B  substituted by (a0/B0). We
can thus conclude with the same reasoning as in the proof of Lemma 6.1 that either b2

=  b3 =  c2 =  c3 =  0 or a2 =  a3 =  d2 =  d3 =  0.

Case b2 =  b3 =  c2 =  c3 =  0. Here, we also proceed similarly to the proof of
Lemma 6.1. We set a3 =  ω1a2, d3 =  ω2d2 and get from Eqs. (6.22), (6.23),
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(6.28), (6.29)

a1 =  aq+1ω1 =  aq+1ωq =  (B 0 /B p t  
)dq+1ω2 =  (B 0 /B p t  

)dq+1ωq ,

which is satisfied if and only if ω1,ω2 � E  and
q +1 0

(6.38)
d2                

=  
ω1 B pt  .

Similarly, from Eqs. (6.32), (6.33), (6.34), (6.35), we get immediately (using
ω1,ω2 � E)

t t

d1 =  aqQd2ω2 =  
apt B0

 a2dqQωQ =  
apt B

0 a2dqQω1 =  aqQd2ωQ.

This is equivalent to ωQ  =  ω2 and (a2/d2)qQ−1 =  ωQ−1(a0 B pt  
)/(apt 

B0). Multiply-
ing the second condition with Eq. (6.38) gives

µ ¶q ( Q + 1 ) Q  
0 0

(6.39)                                        
d2                       

=  
ω1apt     =  

apt .

Using ω1 =  ω2, we rewrite Eq. (6.38):
q +1 Q − 1      0

(6.40)
d2                

=       
B p t .

Observe that B, B0, t, ω1 uniquely determine (a2/d2) up to the sign from Eq.
(6.40). Since (a2/d2)q (Q+1) � L ,  there is thus for each B, B0, t, ω1, a precisely one a0

that satisfies all conditions. For all ω1 that are squares (i.e., all (q + 1)st powers), this
a0 is the same since ω ( Q −1 ) ( Q + 1 )  =  1. Similarly, for all ω1 that are non-squares,
we have ω ( Q−1 ) ( Q + 1 ) / 2  =  −1, so they also all yield the same a0, and in fact precisely
the same a0 as when ω1 is a square, just with different sign. In particular, we conclude
that a pre-semifield Pq ,B ,a is always isotopic to Pq,B 0 ,a0     for arbitrary B0 and a
suitable choice of a0. Since we can choose ω1 =  ω2 =  1, we can even choose a0 such
that the pre-semifields are strongly isotopic. Thus, we have proved Part (iii) of our
theorem.

Consequently, it is enough to consider isotopisms in the case B  =  B0 for an
arbitrary non-square B .  When B  =  B0, every possible choice of t yields an a0 such
that a pre-semifield Pq ,B ,a is strongly isotopic to Pq,B ,a0     and isotopic to Pq ,B ,−a 0  .
Assume the choice of t in the previously described procedure leads to a strong
isotopy between Pq ,B ,a and Pq,B ,a0 . We now show that choosing t0 defined by t0

− t  ≡  m/2 (mod m) in the same procedure gives a strong isotopy to Pq , B ,−a 0  , i.e.
Pq,B ,a and Pq ,B ,−a 0  are not just isotopic but also strongly isotopic.

Let (a2/d2)q+1 be determined by ω1 =  1 and fixed B  =  B0 , t via Eq. (6.40), i.e.
q +1

d2
=  

B p t − 1  
.

Similarly, let (a0 /d0 )q+1 be determined by ω1 =  1, the same B  =  B0 and t0:
0 q +1

d
0 =  

B p t 0  − 1  
.

We then have µ  0
 ¶q +1 µ ¶q +1

d2
=

d2
· 

B p t 0  − p t  .
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Since B p t 0  
− p t      

=  (B Q−1 )p t      
� (M× )Q−1 ,  we have (a0 /d0 )q+1 =  (ζa2/d2)q+1 where

ζ q +1 =  1/(B pt  − p t  
) � (M× )Q−1 .  Note that ζ  �/ (M × )Q−1  since B  is a non-square, so

B ( Q −1 ) ( Q + 1 ) / 2  =  1. In particular, we have ζ Q + 1  =  −1. Then by Eq. (6.39), (a0

/d0 )q (Q+1)  =  ζ q (Q+1) (a2 /d2)q (Q+1) =  −(a2 /d2)q (Q+1) =  −a0 /apt 
. We conclude that

Pq,B ,a and Pq,B ,a0     are strongly isotopic if and only if Pq,B ,a and Pq ,B ,−a 0      are strongly
isotopic.

Case a2, a3, d2, d3 =  0. Similarly to the previous case, we set b3 =  ω1b2, c3 =  ω2c2.
Since we know from the previous case that different B , B 0 always lead to strongly
isotopic pre-semifields (for suitable choices of a, a0), we only consider the case B  =  B0

without loss of generality. We get from the first set of equations:

a1 =  Bcq +1ω2 =  Bcq +1ωq =  (1/B pt  
)bq+1ω1 =  (1/B pt  

)bq+1ωq ,

which is equivalent to ω1,ω2 � E  and
µ ¶q +1

(6.41) 2 =  B p t + 1  ·     2 .
2                                             1

The second set of equations gives

d1 =  (a0/B)cqQb2ω1 =  (B/a)pt  
c2bqQωQ =  (B /a)pt  

c2bqQω2 =  (a0/B)cqQ b2ωQ.

This again implies ωQ  =  ω2 and (b2/c2)qQ−1 =  (1/ωQ−1)(a/B )pt  
(a0/B). Multiply-

ing this with Eq. (6.41) gives
µ ¶q ( Q + 1 )

2 = 2 apt 
a0 =  apt 

a0.
2                                 1

Eq. (6.41) can be rewritten as
µ ¶q +1

2 =  ωQ−1 B p t + 1 .
2

These two equations are structurally identical to Eqs. (6.39) and (6.40) from the
previous case. With the same argumentation, we conclude that every possible
choice of t yields an a0 such that a pre-semifield Pq ,B ,a is strongly isotopic to Pq,B ,a0

and isotopic to Pq ,B ,−a 0  . Again, choosing t0 such that t0 −  t ≡  m/2 (mod m) gives
also strong isotopy between Pq ,B ,a and Pq , B ,−a 0  . This proves Parts (iv) and (i) of
our theorem. Now we can simply prove Parts (v) and (vi). Considering both cases
together, there are thus at most 2m =  n different a0 such that Pq ,B ,a is strongly
isotopic to Pq,B ,a0 . We have considered all cases thus there are no more isotopisms.

¤

Remark 6.3 (Planar equivalence and strong isotopy). Instead of the exposition we
chose based on isotopy, we could have developed an approach based on (in)equiva-
lences of planar (q, r)-biprojective mappings. Recall that Theorem 2.1 states that
strong isotopy of pre-semifields corresponds to equivalence of the corresponding
planar mappings. We give a very brief sketch of such an approach: One can define
the automorphism group Aut(F ) of a planar mapping F  of F  =  M ×  M from a DO
polynomial as the set of all (N , L) � GL(F)2 such that N F L − 1  =  F .  Note that, by
Theorem 2.1, Aut(F ) =  AutS (P), where AutS (P) is the group of all strong
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autotopisms of the pre-semifield P belonging to F .  It is then clear (identically to
Lemma 5.5) that the set

Z ( q , r )  =  {(diag(maq +1 , mar+1 ), diag(ma, ma)) : a � M × }  =  Z ( q , r )

is a subgroup of Aut(F ). The same group theoretic machinery can then be ap-

plied, with Z ( q , r )  and Aut(F ) taking the role of Z ( q , r )  and Aut(P) in the approach we
presented, proving an analogue of Theorem 5.10, with the conclusion that all
subfunctions of N  and L  are zeros or monomials.

Then, the planar mappings from Family S  can be tested for equivalence similar
to Theorem 6.2 by comparing the coefficients of the polynomial equation N F  =  F L .
One obtains the same set of equations as Eqs. (6.22)-(6.37), just with the simpli-
fication that M =  L .  Then the same argumentation of the proof of Theorem 6.2
can be followed, with the result that the only possible equivalences that need to be
considered are equivalences via N , L  where the subfunctions are

N1 =  a1xpt 
,

and either
L 1  =  a2xpt 

,

N2 =  N3 =  0,

L 2  =  L 3  =  0,

N4 =  d1xpt

L 4  =  d2xpt

or
L 1  =  0, L 2  =  b2xpt 

, L 3  =  c2xpt 
, L 4  =  0.

The conditions on the coefficients are then identical to the ones in the proof of
Theorem 6.2 (e.g. Eqs. (6.39) and (6.40)), just with ω1 =  ω2 =  1. This way, one
obtains the same result as Theorem 6.2, except that one only gets information on
strong isotopy and not regular isotopy.

Since an isotopy class of a commutative semifields contains at most 2 strong-
isotopy classes [8, Theorem 2.6.], this approach would suffice to prove the exponen-
tial count. With some more effort, the planar mapping approach can also be used to
find all isotopisms between commutative semifields (not just strong isotopisms).
Indeed, by [8, Theorem 2.6.], if two commutative semifields with corresponding
planar mapping F  : x  → x  �1 x  and G  : x  → x  �2 x  are isotopic, then either F  and
G  are equivalent (the semifields are then strongly isotopic) or F  is equivalent to G0 :
x  → x  �2 (a �2 x) where a is an arbitrary non-square element in the mid-dle nucleus
of the semifield. So in order to settle the isotopy question one could check
equivalence between F  and both G  and G0, yielding an alternative proof of Theorem
5.10. The two approaches are essentially equivalent and require similar effort.

The isotopy approach we chose has the advantage that it can be extended natu-
rally to non-commutative semifields where the connection to planar mappings does
not exist.

The number of distinct isotopy classes can now be counted.

Corollary 6.4. Let NS (p, n) be the number of non-isotopic pre-semifields in Family
S  on Fp . Then

σ(n) −  1 
· 

pn/4 −  1 
≤  NS (p, n) ≤  

σ(n) −  1 ³
p n / 4  −  1

´
.

Proof. This follows directly from Theorem 6.2(i), (ii), (iv) and (v): There are
σ(n) −  1 admissible values for q, and only q, q yield isotopic pre-semifields. Then
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there are pn/4 −  1 admissible values for a, with at most n of them yielding isotopic
pre-semifields.                                                                                                                    ¤

In particular, S  is the first known family of commutative (pre-)semifields that
yields exponentially many non-isotopic (pre-)semifields. Since non-isotopic pre-
semifields lead to inequivalent planar mappings (see Theorem 2.1), this also shows
that the number of inequivalent planar mappings grows exponentially in n.

Corollary 6.5. The number of non-isotopic commutative semifields of order pn

and the number of inequivalent planar DO mappings of F p n      are exponential in n for
a fixed odd prime p and n divisible by 4.

7. T h e  nuc le i

In this section we will compute the nuclear parameters of Family S . As ex-
plained in Section 2, the nuclei are defined for semifields and not for pre-semifields.
However, the nuclei of the isotopic semifield can be computed using the following
theorem of Marino and Polverino [25, Theorem 2.2] (we give the commutative ver-
sion of their general theorem) that allows computing the nuclei directly from the
pre-semifield.

Let P =  (Fp , +, �) be a commutative pre-semifield with right multiplication
defined as

R U  : X  → X  � U, for U � Fp .

Then the spread set associated to P is defined as

L  =  { R U
 : U � Fp } .

In the following Nj (P) denotes the corresponding nucleus of the semifield isotopic
to P, for j  � {l , m, r}.

Theorem 7.1 ([25, Theorem 2.2]). Let N0 , N1 � End(Fp ) be the largest sets (and
then necessarily fields) such that

L N 0  � L  and N 1 L  � L .

Then

Nm(P) =  N0  and Nl(P) =  Nr(P) =  N1 .

Now, let P =  (M ×  M, +, �) be a pre-semifield in Family S . Then L  =  { R u , v  :
(u, v) � M ×  M}, where

R u , v  : (x, y) → (Ru,v (x, y), Ru,v (x, y)),

with

R ( 1 )  (x, y) =  xq u + xuq  + B (y q v + yvq ) and R ( 2 )  (x, y) =  xr v + A x v r  + Ay r u + yur .

We write again L  � End(M ×  M) as L  : (x, y) → (α(x) +  β(y), γ(x) +  δ(y)), where
α,β, γ, δ � End(M).

Theorem 7.2. The left, middle and right nuclei Nl(P), Nm(P), Nr(P) satisfy Nl(P)
=  Nr(P) =  D and Nm(P) =  E .
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Proof. We have nonzero L  � N1 , if and only if, for every (u, v) � M ×  M there
exists (w, t) � M ×  M such that

αRu , v  +  βRu , v  =  Rw,t , and

γRu , v  +  δRu , v  =  Rw,t ,

that is

α(xqu +  xuq +  B(yq v +  yvq)) +  β(xr v +  Axv r  +  Ay r u +  yur)

=  xq w +  xwq +  B(yq t +  ytq),

and

γ(xqu +  xuq +  B(yq v +  yvq)) +  δ(xr v +  Axv r  +  Ay r u +  yur)

=  xr t  +  Axt r  +  Ay r w +  ywr .

This implies (after a routine comparison of degrees of x, y, u, v as in previous
sections) that β =  γ =  0 and α(x) =  z1x and δ(x) =  z4x for some z1, z4 � M× .
Now, the above equations become

z1(xqu +  xuq +  B(yq v +  yvq)) =  xq w +  xwq +  B(yq t +  ytq), and

z4(xr v +  Axv r  +  Ay r u +  yur) =  xr t  +  Axt r  +  Ay r w +  ywr ,

or (the case uv =  0 is easy to see)

z1 =  w/u =  (w/u)q =  t/v =  (t/v)q, and

z4 =  w/u =  (w/u)r =  t/v =  (t/v)r .

Thus for every (u, v) � M ×  M there exists (w, t) � M ×  M if and only if z4 =  z1 =  z =
zr if and only if z1 � Fq ∩ F r  ∩ M =  D. That is to say L  � N1 if and only if L(x, y) =
(zx, zy) for z � D. Now Theorem 7.1 implies Nl(P) =  Nr(P) =  D.

Similarly for the middle nucleus, non-zero L  � N0 , if and only if,

Ru,v (α(x) +  β(y), γ(x) +  δ(y)) =  Rw,t(x, y), and

Ru,v (α(x) +  β(y), γ(x) +  δ(y)) =  Rw,t(x, y),

that is

(α(x) +  β(y))qu +  (α(x) +  β(y))uq +  B(γ(x) +  δ(y))qv +  B(γ(x) +  δ(y))vq

=  xq w +  xwq +  B(yq t +  ytq),

and

(α(x) +  β(y))rv +  A(α(x) +  β(y))vr +  A(γ(x) +  δ(y))ru +  (γ(x) +  δ(y))ur

=  xr t  +  Axt r  +  Ay r w +  ywr .

This implies (after a routine comparison of degrees of x, y, u, v) that α(x) =  z1x,
β(y) =  z2y, γ(x) =  z3x and δ(y) =  z4y for z1, z2, z3, z4 � M. Now, the x-part of the
first of the above equation implies

z1 xq u +  z1xuq +  B(z3 xq v +  z3xvq) =  xq w +  xwq ,

in other words,
z1u +  Bz3 v =  w and z1uq +  Bz3vq =  wq,
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which implies

(zq2 

−  z1)uq +  (B q zq 2 

−  Bz3)vq =  0,
for all u, v � M. That is to say z1 � Fq 2  ∩M =  E .  The x-part of the second equation
yields (after simple calculations)

A r z r 2  

−  
A  

=  0.

That is to say, if z3 =  0 then

z q 2 −1 =  
B q

−
1  and z r 2 −1  =  

A
r
+ 1  .

By definition of S , B  is a non-square in M =  F Q 2      and A  =  a/B where a � F × .
Recalling that q2 ≡  r2 (mod Q2), we reach

B q ( Q + 1 )  =  B q + r  =  ar +1 .

Note that since B  is a non-square in F Q 2  we have B ( Q + 1 )
(

Q − 1
)

/ 2  =  −1  and B Q + 1  is

a non-square in F Q .  But ar +1 is a square in F Q  and we get z3 =  0. By the y-parts of
the equations we similarly reach z2 =  0 and z4 � E .  Thus,

z1xq u +  z1xuq +  B(z4 yq v +  z4yvq)) =  xq w +  xwq +  B(yq t +  ytq), and

z r xr v +  Az1 xv r +  Az r y r u +  z4yur) =  xr t  +  Axt r  +  Ay r w +  ywr ,

implying (the case uv =  0 is easy to see)

z1 =  w/u and z1 =  (w/u)q,

zq =  t/v and z4 =  (t/v)q,

z r =  t/v and z1 =  (t/v)r ,

z r =  w/u and z4 =  (w/u)r .

Thus for every (u, v) � M ×  M there exists (w, t) � M ×  M if and only if z4 =  z1 =  zq

=  z r 2  
if and only if z1 � Fq 2  ∩ M =  E .  That is to say L  � N0  if and only if L(x, y) =

(zx, zy) for z � E .  Now Theorem 7.1 implies Nm(P) =  E . ¤

8. Comparison t o  o t h e r  co m m utat i ve  semifields a n d  conc lud ing
r e m a r k s

Table 2 lists known commutative semifields that are not biprojective. We should
say here that these commutative semifields are not obviously represented as bipro-
jective semifields. When the order is square, there might be isotopic semifields that
can be biprojective, but we are not aware of such isotopisms.

We now consider isotopisms between the new Family S  and other commutative
pre-semifields.

Theorem 8.1. Let Pq ,B ,a =  (M×M, +, �) be a pre-semifield in the Family S .  Pq ,B ,a is
not isotopic to any other known commutative semifield, except possibly semifields
from Family B4 . Family S  yields new examples of commutative semifields.

Proof. The non-isotopy with the biprojective pre-semifields follows directly from
Theorem 5.10, except for possible isotopisms between the families S  and Z P  when
the coefficients q, r coincide. We exclude this case by again applying Theorem 5.10:
Consider the Zhou-Pott pre-semifield Pα  =  (M ×  M, +, ?) with multiplication

(x, y) ? (u, v) =  (xq u +  uq x +  α(yqv +  yvq ), xqQv +  yuqQ)
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for some (arbitrary) non-square α. Note that it is not possible to use the parameter
qQ in the first component and q in the second component since gcd(k + m/2, m) =
gcd(k, m)/2 by Lemma 4.3 (iii), contradicting the necessary conditions of a Zhou-
Pott pre-semifield. If Pα  is isotopic to Pq,B ,a , then (using Theorem 5.10), there is
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an isotopism (N, L, M ), where

N1 =  a1xpt 
,

L 1  =  a2

t 
xp t  

,

N4 =  d1xpt 
,

L 2  =  b2

t 
xp t  

,

N2 =  N3 =  0,

L 3  =  c2

t 
xp t  

, L 4  =  d2

t 
xp t  

,

M1 =  a3

t 
xp t  

, M2 =  b3

t 
xp t  

, M3 =  c3

t 
xp t  

, M4 =  d3

t 
xp t  

,

where a1, d1 =  0. Then (only considering the second components), we have

L((x, y)) ? M((u, v))

=  (     , (a2x +  b2y)q Q+pt 
(c3u +  d3v)pt 

+  (c2x +  d2y)pt 
(a3u +  b3v)q Q+pt 

)

and

N ((x, y) � (u, v)) =  (     , d1(xqQv +  yuqQ +  (a/B)(xvq Q +  yqQu))pt 
).

Comparing the coefficients of (xq Qv)pt 
, (xvqQ)pt 

, (xq Qu)pt 
and (xuqQ)pt 

yields the
following four equations:

³
a q Q d3

´p t  

=  d1,
³
c2 b q Q

´p t  

=  d1(a/B)pt 
,

aqQc3 =  0,

c2aqQ =  0.

The bijectivity of L  and M induces the conditions (a2, c2) =  (0, 0) and (a3, c3) =
(0, 0). Thus, the last two equations only allow a2 =  a3 =  0 or c2 =  c3 =  0. Both
cases contradict the first two equations. We conclude that Pq ,B ,a is not isotopic to a
Zhou-Pott pre-semifield.

The pre-semifields from S  are also not isotopic to the ones from CG, G, C M / D Y ,
Z K W ,  B3 by considering the order of the semifields and their nuclei (see Table 2).
Furthermore, the Family S  is not contained in B4 since we can choose p, m, q in a
way that the conditions for B4 in Table 2 are violated. ¤

Although the parameters p, m, q for the pre-semifields from Family S  are more
general than that of Family B4, for suitable choices of p, m, q the parameters may
coincide. Proposition 8.2 shows that even in that case Family S  contains new
semifields thanks to its exponential count. More precisely, we show that the number of
non-isotopic semifields from Families B3 and B4 of order p3s and p4s, respectively, is
linear in s.

Proposition 8.2. The number of non-isotopic pre-semifields in Family B3 (and
B4 resp.) of order p3s (and p4s resp.) is at most 9σ(s) (and 8σ(s) resp.).

Proof. The B4 planar mappings are of the form

f (X )  =  X q + 1  −  a Q − 1 X q Q + Q 3

,

where a generates F  4 s  . We count the number of different a’s which give inequivalent
planar mappings. Consider the change of variable X  → B X ,  and rescaling of f  to get

X q + 1  −  B Q 3 + q Q − q − 1 a Q − 1 X q Q + Q 3

.
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Note that Q3 +  qQ −  q −  1 =  (Q −  1)(Q2 +  Q +  q +  1). We have by [3, Lemma 6]

gcd(Q2 +  Q +  q +  1, Q3 +  Q2 +  Q +  1) =  gcd(Q3 −  q, Q3 +  Q2 +  Q +  1) =  4,

when the semifield conditions on q, Q appearing on Table 2 are satisfied. Thus the
number of inequivalent planar mappings in the Family B4 for a given q is at most 4.
This means that (using Theorem 2.1) for a given q, the number of pre-semifields,
that are not strongly isotopic, is also at most 4. Any isotopy class of a commutative
semifield contains at most 2 strong-isotopy classes [8, Theorem 2.6.], so for a given q
there are at most 8 non-isotopic pre-semifields. Thus the total number of non-
isotopic pre-semifields in the Family B4 of order p4s is bounded by 8σ(s). The B3

case is essentially the same using [3, Lemma 5]. In this case (again with [8, Theorem
2.6.]) strong isotopy and isotopy coincide. ¤

For the Family Z K W  we are not aware of any result on the exact value or a
bound on the number of non-isotopic pre-semifields.

Remark 8.3. We remark that we could also allow q =  1 in S . However, in that case
the resulting pre-semifields are strongly isotopic to Dickson semifields. Indeed,
consider the planar mapping F  =  [(1, 0, 0, B)1, (0, 1, A, 0)Q] with A  =  a/B  where B
is a non-square and a � L × .  Note that A  �/ (M× )Q −1  since it is a non-square. Define
N  via its subfunctions N1 =  x, N2 =  N3 =  0, N4 =  d1x +  d0 x Q  with d1 =
1/(1 − AQ + 1 ) and d0 =  −A /(1 − A Q + 1 ) .  Note that x  → αx − β x Q  is bijective if and
only if α/β � (M× )Q−1 . Therefore, N4 is bijective since ((AQ +1  − 1)/(A(1 −
A Q + 1 ))Q + 1  =  (−1/A)Q + 1  =  1 since A  �/ (M× )Q−1 . We conclude that N  is bijective.
The subfunction N4 is chosen such that d1 +  AQd0 =  1 and Ad1 +  d0 =  0. Then

N F  =  [(1, 0, 0, B)1, d1(0, 1, A, 0)Q +  d0 (0, AQ, 1, 0)Q ]

=  [(1, 0, 0, B)1, (0, d1 +  AQd0 , d1A +  d0 , 0)Q ] =  [(1, 0, 0, B)1, (0, 1, 0, 0)Q],

so F  is equivalent to a planar mapping belonging to a Dickson pre-semifield and the
corresponding semifields are strongly isotopic by Theorem 2.1. It makes thus sense to
exclude the case q =  1 so that the different families do not intersect (as proven in
Theorem 8.1). Note that the same choice of N  also yields equivalence between the
Budaghyan-Helleseth planar mapping and the planar mappings associated with
Dickson semifields for the parameter q =  Q.

Remark 8.4. Recall that Kantor [19] gave a family that contains an exponential
number of non-isotopic commutative semifields in characteristic two using a con-
struction of Kantor and Williams [20]. We remark that Family S  (and in general, a
planar mapping) does not exist in characteristic two. However, a conceptual ana-
logue of planar functions in characteristic two is possible. These are the so-called
almost perfect non-linear (APN) functions (whose polarizations are 2-to-1) that
parallel planar mappings (whose polarizations are 1-to-1) without the connection to
semifields. In a follow-up work to this one, we give an analogous method for de-
termining equivalence of biprojective APN functions and an analogous family that
contains an exponential number of inequivalent APN functions in [16]. The first
result to show that an APN family contains an exponential number of inequivalent
functions was given recently by Kaspers and Zhou [21] using a different method.
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