
1 IEEE CICC 2022

An Energy-Efficient and Runtime-Reconfigurable FPGA-
Based Accelerator for Robotic Localization Systems
Qiang Liu*1, Zishen Wan*2, Bo Yu*3, Weizhuang Liu1, Shaoshan
Liu3, Arijit Raychowdhury2
1Tianjin University, China, 2Georgia Institute of Technology, USA,
3PerceptIn, USA
*Equally-Credited Authors (ECAs)
A robot usually localizes itself in an environment by estimating the
collection of its position and rotation states, while constructing a map
of unknown surroundings, giving rise to the notion of Simultaneous
Localization and Mapping (SLAM). SLAM is a fundamental kernel in
autonomous machines at all computing scales, from drones, AR, VR
to self-driving cars. Principled mathematical solutions for SLAM
involve filtering-based or non-linear optimization-based (Fig. 1a),
where the latter recently shows higher robustness but with intensive
computation. Prior ASICs [1,2] and FPGAs [3,4,5] have accelerated
SLAM on hardware, but they usually target one specific design. In
this work, we present a runtime-reconfigurable FPGA accelerator for
robotic localization tasks. We exploit SLAM-specific data locality,
sparsity, reuse, and parallelism, and achieve >5x performance
improvement over the state-of-the-art. Especially, our design is
reconfigurable at runtime according to the environment and platform
to save power while sustaining accuracy and performance.
Fig.1b shows the SLAM system compute latency characterization on
software. SLAM consists of a vision frontend to extract features and
an optimization backend to estimate the pose. We find that the
localization computation accounts for 46% and 78% latency on two
commonly-used SLAM systems, indicating a lucrative acceleration
target. The localization is usually formulated as a constrained non-
linear optimization problem, often through bundle adjustment, which
minimizes the pose projection errors from 2D features to 3D points
in the map. The optimization problem is solved using the Levenberg-
Marquardt (LM) method, consisting of 1) a nonlinear least squares
(NLS) solver that solves maximum a posteriori estimation, and 2)
marginalization that generates the prior of NLS solver. We will
accelerate both phases through software-hardware co-design by
leveraging SLAM-specific data patterns and inherent parallelism.
The proposed robotic localization design accelerates both NLS solver
and marginalization algorithm (Fig. 2a). The NLS solver circuit first
calculates Jacobians, following by Schur elimination and Cholesky
decomposition. Marginalization is performed after NLS solver. Fig. 2b
shows the circuit for visual Jacobian. We divide the computation into
three levels: keyframe, feature, and observation. The keyframe-level
solves each keyframe’s rotation matrix. The feature-level uses pixel
coordinates and inverse depth to obtain feature spatial coordinates.
The observation-level is divided into two phases. The first phase uses
coordinates from feature-level and the second phase uses rotation
matrix from keyframe-level to calculate final Jacobian and residual.
This three-level computation enables two unique SLAM data reuse.
First, each keyframe’s rotation matrix is reused over all observations
within the keyframe. Second, each feature’s coordinate is reused
across its associated observations. Since the number of features is
10x more than keyframes, we prioritize feature reuse over keyframe
reuse, thus calculating Jacobian matrix in feature (row)-stationary
dataflow. Fig. 2c shows the circuit for IMU Jacobian, which consists
of two pipeline stages. The first stage contains three parallel blocks
for Jacobian matrix calculation, and the second stage calculates the
residual and stores Jacobian and residual. Zero and identities of IMU
Jacobian matrix will not be stored, which can reduce memory by 72%.
SLAM requires us to solve the linear system Ap=b. We use Schur
elimination to simplify the equation, where the visual Jacobian matrix
is divided into four blocks (Fig. 3a). Blocks U, W, and X only relate to
visual observations, and V relates to IMU and prior information. Thus,
when calculating Schur complement matrix V – WU-1X, it can be
considered that we first calculate the visual part and then add IMU
and prior information to it. Two optimization schemes are proposed
in the Schur elimination block. First, we make U as a diagonal matrix
to reduce the computational complexity of U-1 from O(n3) to O(n).
Second, when U is a diagonal matrix, X becomes the transpose of
W, reducing the on-chip memory storage requirement by 1.34x. After
Schur elimination, Cholesky decomposition decomposes the

symmetric matrix S into a lower triangular matrix L such that LLT=S.
Fig. 3b illustrates the circuit for Cholesky Decomposition, where the
hardware iteratively generates the i-th column of matrix L (Evaluate)
and updates S for calculating (i-1)-th column of L (Update). We find
that at i-th iteration, the number of operations of Evaluate and Update
are i and i(i-1)/2, respectively. Thus, we propose to pipeline Evaluate
and Update, where multiple Update units are time-multiplexed with
the Evaluate unit. With pipelining and time-multiplexing, the latency
is reduced by 5.75x with 3.3x less resources consumption.
Marginalization uses NLS solver outputs and performs A - ZM-1ZT to
generate the priors for the next window computation (Fig. 4a). The
difficulty lies in M-1 computation. We propose to divide M into four
blocks and make M11 as a diagonal matrix. In this way, the Schur
elimination and Cholesky decomposition circuits for NLS solver can
be reused in marginalization, greatly reducing resource consumption
without performance degradation. During marginalization, S matrix
that stores the parameters for linear system, contributes 60% of total
memory (Fig. 3a). We notice S is a symmetric matrix, so the memory
can be reduced by half. To further reduce the storage, we leverage
the unique SLAM data structured sparsity. Since S is obtained by
integrating camera and IMU, we propose to store their contributions
separately. IMU’s observation only relates to adjacent keyframes, so
the non-zero elements are in diagonal and sub-diagonal blocks. The
non-zero elements of camera contributions only exist in the 6x6 sub-
block of each state, donating 6 DoF. The camera storage is further
reduced by limiting the number of keyframes that capture the feature
(co-observations). The storage is reduced by 4.1x in this process.
The design is dynamically optimized at runtime to adapt to different
surroundings and save power while maintaining accuracy (Fig. 4b).
When entering new environments with various feature points, the
number of NLS iterations is dynamically adjusted to meet target
accuracy based on the offline constructed lookup table. Along with
NLS solver iterations, the number of Schur elimination modules and
update modules during Cholesky decomposition will be dynamically
reconfigured for less resource consumption. Since the lookup table
is updated asynchronously, this runtime reconfiguration has minimal
overhead. Instead of reconfiguring bitstream to FPGA, we applied
clock gating for dynamically adjusted modules, enabling 1.59x power
reduction with only 0.15% overhead. This runtime optimization has
little impact on accuracy with <0.01cm degradation and sometimes
even improves the accuracy due to its stochastic nature.
The proposed hardware is implemented on Xilinx ZC706 FPGA, with
a fixed operational frequency at 143 MHz (Fig. 5a). We evaluate the
design with two datasets: EuRoC for drones and KITTI Odometry for
cars (Fig. 5b). Compared with CPU operating at 2.9 GHz, our FPGA
design achieves 8.73x (10.49x) speedup and 164x (183x) energy
reduction on EuRoC (KITTI). Compared with TX1 operating at 1.9
GHz, our FPGA design achieves 70x (45x) speedup and 41x (25x)
energy reduction on EuRoC (KITTI). To validate the generalization
of our design, we evaluate two additional Xilinx FPGAs: Kintex-7 and
Virtix-7 series. Evaluated on EuRoC, our design achieves 7x and 11x
speed up as well as 56x and 86x energy reduction over CPU on two
boards. The significant efficiency gains are consistently found on
KITTI dataset. Fig.6 demonstrates that our design achieves >5x
better performance against recent prior SLAM accelerators.
Acknowledgements:
This work was supported in part by NSF OAC 2103951 and C-BRIC,
one of six centers in JUMP, a SRC program sponsored by DARPA.
References:
[1] Z. Li et al., "An 879GOPS 243mw 80fps VGA Fully Visual CNN-
SLAM Processor for Wide-Range Autonomous Exploration," ISSCC,
Feb. 2019.
[2] A. Suleiman et al., "Navion: A 2-mw Fully Integrated Real-Time
Visual-Inertial Odometry Accelerator for Autonomous Navigation of
Nano Drones," JSSC, Apr. 2019.
[3] Q. Liu et al., "π-BA: Bundle Adjustment Hardware Accelerator
Based on Distribution of 3D-Point Observations," TC, July. 2020.
[4] Z. Zhang et al., "Visual-Inertial Odometry on Chip: An Algorithm-
and-Hardware Co-design Approach," RSS, July. 2017.
[5] Y. Gan et al., "Eudoxus: Characterizing and Accelerating
Localization in Autonomous Machines," HPCA, Mar. 2021.

 IEEE CICC 2022 2

Fig. 1. Robotic localization algorithm comparison, system profiling,
and associated processing procedures.

Fig. 2. Proposed overall robotic localization system architecture,
with detailed Jacobian and Residual block for both vision and IMU.

Fig. 3. Proposed memory optimization for Schur elimination, as
well as time-multiplexed and pipeline for Cholesky decomposition.

Fig. 4. Proposed hardware optimization for marginalization, and
dynamic optimization techniques for robotic adaptive computing.

Fig. 5. Measurement on three FPGA platforms with two datasets,
and performance and power comparison with CPU and TX1.

Fig. 6. Comparison with recent prior works.

N: the number of sensors
rp, Hp: prior information from marginalization
p: to be estimated state vector
oi: sensor observation
Pi (x): mapping function
Ci: covariance matrix for i-th sensor

Filter-Based
SLAM

Optimization-Based
SLAM

Problem
formulation

Motion and
Observation Model

Maximum a
Posteriori Estimation (MAP)

Kalman filter Gauss-Newton (GN)
Levenberg-Marquardt (LM)

Complexity* O (MN3) O (NM2+M3)
Accuracy &
efficiency

* N: # 3D Landmark, M: # pose

Medium High

(a) Non-Linear Optimization-Based SLAM

(b) SLAM System Characterization and Flow

6 DoF Trajectory
+ Map

Input Image
Sensing

Autonomous
Robots

Typical
algorithm

NLS Solver
50.15%

Jacobian Matrix
and Residual
Calculation

Schur
Elimination

Cholesky
Decomposition

Marginalization

Prior information

Sensor
measurements

State vector p

(Localization) (Mapping)

Others
10.80%

Margina-
lization
44.40%

Jocobian
& Residual

Schur
Elimination

Cholesky
DecompositionFE

54% BE
46%

FE
22%

BE
78%

Legend
ORB: Oriented FAST and Rotated BRIEF
LK: Lucas-Kanade optical flow
LM: Levenberg-Marquardt

SLAM Latency Distribution
ORB-SLAM

FrontEnd: ORB
BackEnd: LM

LK-SLAM

FrontEnd: LK
BackEnd: LM

Nonlinear Squares (NLS) Optimization Problem:

Algorithm Flow

p: 6 DoF poses + 3D space coordinates

Localization

Back
Substitution

Critical kernel in
drone, AR/VR,

self-driving cars
…

IMU

(a) Schur Elimination

(b) Cholesky Decomposition

Update#1 (U1)

Update#2 (U2)

Evaluate
(E)

Baseline
Time-

multiplexed
and Pipeline

Processing Time

3.97 ms

0.69 ms
5.75x

E

E

E

E

U6

U5

U2

U1

Update#5 (U5)

Update#6 (U6)

720 kb 175.97 kb
Compute complexity: O(n3) -> O(n)

Memory: 86.5 kb -> 64.8 kb (1.34x reduction)

S

L

Stage 1

Stage 2

Stage5

Stage 6

Time

Baseline
Time-

multiplexed
and Pipeline

Hardware Resources

9654 LUT
15990 FF

3139 LUT
4860 FF3.3 x

Time-multiplexed Update modules Execution Pipeline

Sqrt

Si

L1

Si-1

Cholesky Decomposition Circuit
(Evaluate + Update)

Evaluate

Update

Si

Si

L1

Si-1

Symmetry

Symmetry

+
Vision

Co-
observation

4.1x reduction

Linear system A ∆p = b A
U X
W V

5

3

35

U [5x5] X [5x3]

W [3x5] V [3x3]

S matrix

6

15
(a) Marginalization

(b) Runtime Reconfigurable Technique

Matrix
Inverse

Matrix
Multiplier

Matrix
Multiplier

Matrix
Adder

RAM

RAM

R
AM

5.47W

M

M-1L

Ev Ei Hp, rp

Hp = A - ZM -1ZT
Information matrix H

M =
M11 M12

M21 M22

S’ = M22 - M21M11M12

M is general matrix

Make M11 diagonal

Reuse Schur Elimination and
Cholesky Decomposition

M -1 = f (M, S’)

A [4x4]Z [4x6]

ZT [6x4]M [6x6]
M11

6

4

46

M12

M21 M22

Goal: prior information Hp

-1

S’-1

Jv Jv
T

Ji Ji
-T

Old Hp, rp

Marginalization Circuit

Calculation of M inverse

E: residual J: Jacobian
Hp, rp: prior information

Legend

3.73W
Feature
Points

Levenberg-
Marquardt (LM)

Algorithm

Marginalization
Calculation

State Vector
(Localization +

Mapping)

NLS Solver
Accelerator

Marginalization
Accelerator

6 DoF poses +
3D coordinantes

Sensors

Software
Processing

Hardware
Operation

Asynchronous

Runtime Reconfig.
+ Clock Gating

(RR + CG)

Runtime Reconfig.
+ Clock Gating

(RR + CG)

Time

Feature
Points

Schur
blocks

0-200
200-250
250-300

6
5
4

… …

Iterations
in NLS

Update
blocks

47 97
42 63
35 42
… …

Lookup Table
(0.3 kb)

Automated Self-Update
with New Environments

Feature
Points

Po
w

er

Baseline RR+CG

5.48W 3.45W

Po
w

er

KITTI Dataset

EuRoC Dataset

1.47x

1.59x

Baseline RR+CG

This work
ISSCC’19

CNN-SLAM [1]
JSSC’19

Navion [2]
TC’20

pi-BA [3]
RSS’17

VIO on Chip [4]
HPCA’21

Eudoxus

FPGA ASIC ASIC FPGA FPGA FPGA

digital digital digital digital digital digital

Yes N/A N/A No No No

SLAM SLAM SLAM SLAM SLAM SLAM

Levenberg-
Marquardt

(optimization-based)

Gaussian-
Newton

(optimization-based)

Gaussian-
Newton

(optimization-based)

Kalman
Filter

(Filter-based)

6-DoF 6-DoF 6-DoF 6-DoF 6-DoF 6-DoF

1 V 0.63-0.9V 1.2V 1 V 1 V 0.85 V

3.45W 243.6mW @ 0.9V
61.75mW @ 0.63V

24mW 5.50W 1.46 W 8.96W

Platform

Design

Dynamic
Optimiza-

tion

Type

Algorithm

DoF

Voltage

Power

Frequency 143 MHz 240 MHz 62.5/83.3 MHz 143 MHz 100 MHz 180 MHz

Throughput 55.8 GOPS
879.6 GOPS @ 0.9V

329.8 GOPS @ 0.63V 10.5-59.1 GOPS 4.4-24.6 GOPSN/A N/A

Latency 16.43 ms N/A 30.8 ms 110 ms 200 ms 44.6 ms

Technology 28 nm 28 nm 65 nm 28nm 28nm 16nm

Levenberg-
Marquardt

(optimization-based)

Levenberg-
Marquardt

(optimization-based)

Energy
per Frame 56.6 mJ N/A 739.2 uJ 605 mJ 292 mJ 399.6 mJ

	The proposed hardware is implemented on Xilinx ZC706 FPGA, with a fixed operational frequency at 143 MHz (Fig. 5a). We evaluate the design with two datasets: EuRoC for drones and KITTI Odometry for cars (Fig. 5b). Compared with CPU operating at 2.9 GH...
	Acknowledgements:
	This work was supported in part by NSF OAC 2103951 and C-BRIC, one of six centers in JUMP, a SRC program sponsored by DARPA.
	References:

