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A robot usually localizes itself in an environment by estimating the 
collection of its position and rotation states, while constructing a map 
of unknown surroundings, giving rise to the notion of Simultaneous 
Localization and Mapping (SLAM). SLAM is a fundamental kernel in 
autonomous machines at all computing scales, from drones, AR, VR 
to self-driving cars. Principled mathematical solutions for SLAM 
involve filtering-based or non-linear optimization-based (Fig. 1a), 
where the latter recently shows higher robustness but with intensive 
computation. Prior ASICs [1,2] and FPGAs [3,4,5] have accelerated 
SLAM on hardware, but they usually target one specific design. In 
this work, we present a runtime-reconfigurable FPGA accelerator for 
robotic localization tasks. We exploit SLAM-specific data locality, 
sparsity, reuse, and parallelism, and achieve >5x performance 
improvement over the state-of-the-art. Especially, our design is 
reconfigurable at runtime according to the environment and platform 
to save power while sustaining accuracy and performance. 
Fig.1b shows the SLAM system compute latency characterization on 
software. SLAM consists of a vision frontend to extract features and 
an optimization backend to estimate the pose. We find that the 
localization computation accounts for 46% and 78% latency on two 
commonly-used SLAM systems, indicating a lucrative acceleration 
target. The localization is usually formulated as a constrained non-
linear optimization problem, often through bundle adjustment, which 
minimizes the pose projection errors from 2D features to 3D points 
in the map. The optimization problem is solved using the Levenberg-
Marquardt (LM) method, consisting of 1) a nonlinear least squares 
(NLS) solver that solves maximum a posteriori estimation, and 2) 
marginalization that generates the prior of NLS solver. We will 
accelerate both phases through software-hardware co-design by 
leveraging SLAM-specific data patterns and inherent parallelism. 
The proposed robotic localization design accelerates both NLS solver 
and marginalization algorithm (Fig. 2a). The NLS solver circuit first 
calculates Jacobians, following by Schur elimination and Cholesky 
decomposition. Marginalization is performed after NLS solver. Fig. 2b 
shows the circuit for visual Jacobian. We divide the computation into 
three levels: keyframe, feature, and observation. The keyframe-level 
solves each keyframe’s rotation matrix. The feature-level uses pixel 
coordinates and inverse depth to obtain feature spatial coordinates. 
The observation-level is divided into two phases. The first phase uses 
coordinates from feature-level and the second phase uses rotation 
matrix from keyframe-level to calculate final Jacobian and residual. 
This three-level computation enables two unique SLAM data reuse. 
First, each keyframe’s rotation matrix is reused over all observations 
within the keyframe. Second, each feature’s coordinate is reused 
across its associated observations. Since the number of features is 
10x more than keyframes, we prioritize feature reuse over keyframe 
reuse, thus calculating Jacobian matrix in feature (row)-stationary 
dataflow. Fig. 2c shows the circuit for IMU Jacobian, which consists 
of two pipeline stages. The first stage contains three parallel blocks 
for Jacobian matrix calculation, and the second stage calculates the 
residual and stores Jacobian and residual.  Zero and identities of IMU 
Jacobian matrix will not be stored, which can reduce memory by 72%.  
SLAM requires us to solve the linear system Ap=b. We use Schur 
elimination to simplify the equation, where the visual Jacobian matrix 
is divided into four blocks (Fig. 3a). Blocks U, W, and X only relate to 
visual observations, and V relates to IMU and prior information. Thus, 
when calculating Schur complement matrix V – WU-1X, it can be 
considered that we first calculate the visual part and then add IMU 
and prior information to it. Two optimization schemes are proposed 
in the Schur elimination block. First, we make U as a diagonal matrix 
to reduce the computational complexity of U-1 from O(n3) to O(n). 
Second, when U is a diagonal matrix, X becomes the transpose of 
W, reducing the on-chip memory storage requirement by 1.34x. After 
Schur elimination, Cholesky decomposition decomposes the 

symmetric matrix S into a lower triangular matrix L such that LLT=S. 
Fig. 3b illustrates the circuit for Cholesky Decomposition, where the 
hardware iteratively generates the i-th column of matrix L (Evaluate) 
and updates S for calculating (i-1)-th column of L (Update). We find 
that at i-th iteration, the number of operations of Evaluate and Update 
are i and i(i-1)/2, respectively. Thus, we propose to pipeline Evaluate 
and Update, where multiple Update units are time-multiplexed with 
the Evaluate unit. With pipelining and time-multiplexing, the latency 
is reduced by 5.75x with 3.3x less resources consumption. 
Marginalization uses NLS solver outputs and performs A - ZM-1ZT to 
generate the priors for the next window computation (Fig. 4a). The 
difficulty lies in M-1 computation. We propose to divide M into four 
blocks and make M11 as a diagonal matrix. In this way, the Schur 
elimination and Cholesky decomposition circuits for NLS solver can 
be reused in marginalization, greatly reducing resource consumption 
without performance degradation. During marginalization, S matrix 
that stores the parameters for linear system, contributes 60% of total 
memory (Fig. 3a). We notice S is a symmetric matrix, so the memory 
can be reduced by half. To further reduce the storage, we leverage 
the unique SLAM data structured sparsity. Since S is obtained by 
integrating camera and IMU, we propose to store their contributions 
separately. IMU’s observation only relates to adjacent keyframes, so 
the non-zero elements are in diagonal and sub-diagonal blocks. The 
non-zero elements of camera contributions only exist in the 6x6 sub-
block of each state, donating 6 DoF. The camera storage is further 
reduced by limiting the number of keyframes that capture the feature 
(co-observations). The storage is reduced by 4.1x in this process. 
The design is dynamically optimized at runtime to adapt to different 
surroundings and save power while maintaining accuracy (Fig. 4b). 
When entering new environments with various feature points, the 
number of NLS iterations is dynamically adjusted to meet target 
accuracy based on the offline constructed lookup table. Along with 
NLS solver iterations, the number of Schur elimination modules and 
update modules during Cholesky decomposition will be dynamically 
reconfigured for less resource consumption. Since the lookup table 
is updated asynchronously, this runtime reconfiguration has minimal 
overhead. Instead of reconfiguring bitstream to FPGA, we applied 
clock gating for dynamically adjusted modules, enabling 1.59x power 
reduction with only 0.15% overhead. This runtime optimization has 
little impact on accuracy with <0.01cm degradation and sometimes 
even improves the accuracy due to its stochastic nature. 
The proposed hardware is implemented on Xilinx ZC706 FPGA, with 
a fixed operational frequency at 143 MHz (Fig. 5a). We evaluate the 
design with two datasets: EuRoC for drones and KITTI Odometry for 
cars (Fig. 5b). Compared with CPU operating at 2.9 GHz, our FPGA 
design achieves 8.73x (10.49x) speedup and 164x (183x) energy 
reduction on EuRoC (KITTI). Compared with TX1 operating at 1.9 
GHz, our FPGA design achieves 70x (45x) speedup and 41x (25x) 
energy reduction on EuRoC (KITTI). To validate the generalization 
of our design, we evaluate two additional Xilinx FPGAs: Kintex-7 and 
Virtix-7 series. Evaluated on EuRoC, our design achieves 7x and 11x 
speed up as well as 56x and 86x energy reduction over CPU on two 
boards. The significant efficiency gains are consistently found on 
KITTI dataset. Fig.6 demonstrates that our design achieves >5x 
better performance against recent prior SLAM accelerators.  
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Fig. 1. Robotic localization algorithm comparison, system profiling, 
and associated processing procedures. 

 
Fig. 2. Proposed overall robotic localization system architecture, 
with detailed Jacobian and Residual block for both vision and IMU. 

Fig. 3. Proposed memory optimization for Schur elimination, as 
well as time-multiplexed and pipeline for Cholesky decomposition. 

Fig. 4. Proposed hardware optimization for marginalization, and 
dynamic optimization techniques for robotic adaptive computing. 

Fig. 5. Measurement on three FPGA platforms with two datasets, 
and performance and power comparison with CPU and TX1. 

 
 

Fig. 6. Comparison with recent prior works. 
 

N: the number of sensors
rp, Hp: prior information from marginalization
p: to be estimated state vector
oi: sensor observation
Pi (x): mapping function
Ci: covariance matrix for i-th sensor
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