
Infrastructure for Analysis of Large Microscopy and Microanalysis Data Sets 
 
Jingrui Wei1, Carter Francis1, Dane Morgan1, KJ Schmidt2, Aristana Scourtas2, Ian Foster2, Ben 
Blaiszik2, Paul M. Voyles1* 
 
1. Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison WI, 
53705 USA 
2. University of Chicago, Globus / Argonne National Laboratory – Data Science and Learning Division 
* Corresponding author: paul.voyles@wisc.edu 
 
Microscopy and microanalysis research increasingly depends on sophisticated computational analysis to 
derive meaningful signals from large, complex, multidimensional, and often noisy data sets. Analysis 
methods span a range from physically-motivated approaches with no adjustable parameters, through 
unsupervised machine learning (ML) methods which require careful hyperparameter optimization, to 
supervised ML methods which require labeled training data. 
 
We have employed two different infrastructure approaches to disseminating advanced analysis in 
microscopy. One approach is to support the open source analysis platform hyperspy [1] and the associated 
4D STEM analysis package pxyem [2] to improve their ability to handle large datasets. With the advent 
of large format and ultrafast direct electron detectors for 4D STEM, datasets that are 100s of GB to TBs 
in size are becoming commonplace. These datasets cannot be held entirely in memory on most computers, 
so a “lazy” approach, in which subsets of the data in chunks are loaded into memory, operated on, then 
unloaded, is required. Hyperspy implemented lazy data processing with the widely-used dask library. We 
have updated the hyperspy implementation to operate efficiently on 4D STEM data by improving how 
functions are applied to chunks of data, dividing data into more efficient chunks, and implementing 
support for zarr, a package for fast reading and writing of data using efficient compression and 
multiprocessing. The resulting system implements the powerful analytics and development tools provided 
by dask, scales seamless from desktop computing to high-performance computing environments, and 
supports shared memory multiprocessing on data chunks. It supports all of the analysis capabilities of 
hyperspy and pyxem, including ML analyses like component analysis and physics-based analyses like 
orientation imaging for crystals or fluctuation electron microscopy for glasses. 
 
Our other infrastructure approach leverages the Foundry software [3], as summarized in Figure 1. Foundry 
is software built on services to simplify dissemination and reuse of ML models and their associated 
training and test data. Foundry unifies two existing services: the Materials Data Facility, which offers 
large scale storage and permanent accessibility to data, and DLHub, which publishes and executes ML 
models. Foundry associates the data with the model under a single digital object identifier (DOI) and 
provides a unified Python interface for working with both data and models. 
 
Foundry stores and serves ML models from containers, which removes the need to configure a computing 
environment to run a model from just the software distributed through (for example) Github. Models can 
be executed using Foundry-provided computing, on cloud computing resources including Google Colab 
or NSF Jetstream, or using local computing resources with a local install of the Foundry execution client. 
Foundry provides interfaces and containers for models built using the common ML libraries Scikit-Learn, 
Tensorflow, Keras, and PyTorch. It can also host models that execute arbitrary Python code, which 
accommodates custom pre- and post-processing of data and libraries without specialized support. At this 

mailto:paul.voyles@wisc.edu


point, publishing models requires involvement of Foundry staff or collaborators, but direct user upload 
will be implemented in the future. Models are reviewed for appropriateness for the Foundry before being 
published. 
 

 
Figure 1: Foundry combines published data and models through a single Python interface to enable 
simplified access to training datasets and models for both execution of existing models or publication of 
updated or completely new models. 
 
Foundry datasets must conform to defined shapes and contain specified metadata which are designed to 
ease access and reuse for training ML models, so they are not domain-science specific. Shapes and 
metadata are currently available for tabular data, JSON-based, and hierarchical data (e.g. HDF5). HDF5 
can be used for data sets consisting of images or spectra. In addition to basic labels, the Foundry metadata 
captures splits of the data, for example into subsets for training and validation. 
 
We imagine three general use cases for Foundry. The first use case is reuse of containerized models. The 
user installs Foundry in their Python environment, then calls existing published models with a single line 
of code with nothing else to install. Such models might identify all the atoms in the high-resolution image, 
denoise a noisy spectrum image, or locate all the diffraction disks in a 4D STEM dataset. Additional 
models might take those outputs and use them to quantify defect densities from atom positions or 
determine crystal orientations from disk positions. Foundry-hosted models from different researchers and 
non-Foundry software can be flexibly combined to create complex, powerful analysis workflows. 
 
The second use case is dissemination of ML models. Disseminating models and data through Foundry 
follows FAIR principles [4], making them findable, accessible, interoperable, and reusable. FAIR is the 
emerging standard for open science, and FAIR ML models are more likely to find use and impact outside 
the group that developed them. 
 
The third use case is retraining and evolving ML models. By permanently linking data and models, 
Foundry makes it possible for users to train a different type of model on the same training data or to test 
a new model on the same validation data. This type of head-to-head performance comparison offers 
opportunities for rapid advancement in the state-of-the-art of ML models for microscopy. The ultimate 



use of Foundry is to enable users to augment training data with new data or by combining data sets, then 
use the larger data to retrain existing models or train new models. Foundry offers tools for data set and 
model versioning and citing to ensure proper credit for all researcher’s work [5]. 
 
References: 
 
[1] hyperspy, DOI: 10.5281/zenodo.5608741 
[2] pxyem, DOI: 10.5281/zenodo.2649351 
[3] Foundry: Data, Models, Science, https://ai-materials-and-chemistry.gitbook.io/foundry/ 
[4] M. D. Wilkinson, et al., Scientific Data 3, 160018 (2016). DOI: 10.1038/sdata.2016.18 
[5] Development of pyxem at UW-Madison is supported by the Wisconsin MRSEC (DMR-1720415). 
Development of Foundry is support by the National Science Foundation (OAC-1931298). 
 


