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Coupled bond dynamics alters relaxation in
polymers with multiple intrinsic dissociation
rates†

Robert J. Wagner a and Franck J. Vernerey *b

Dynamic networks containing multiple bond types within a continuous network grant engineers another

design parameter – relative bond fraction – by which to tune storage and dissipation of mechanical

energy. However, the mechanisms governing emergent properties are difficult to deduce experimentally.

Therefore, we here employ a network model with prescribed fractions of dynamic and stable bonds to

predict relaxation characteristics of hybrid networks. We find that during stress relaxation, predominantly

dynamic networks can exhibit long-term moduli through conformationally inhibited relaxation of stable

bonds due to exclusion interactions with neighboring chains. Meanwhile, predominantly stable networks

exhibit minor relaxation through non-affine reconfiguration of dynamic bonds. Given this, we introduce

a single fitting parameter, x, to Transient Network Theory via a coupled rule of mixture, that

characterizes the extent of stable bond relaxation. Treating x as a fitting parameter, the coupled rule of

mixture’s predicted stress response not only agrees with the network model’s, but also unveils likely

micromechanical traits of gels hosting multiple bond dissociation timescales.

1. Introduction

Networked polymeric materials containing multiple bond types

have become increasingly investigated for their exemplary

combinations of mechanical strength and toughness.1–5 Many

state-of-the-art polymers contain both relatively stable covalent

bonds and dynamic physical (or covalent) bonds (e.g., metallo–

ligand interactions, ionic bonds, hydrogen bonds, etc.) within

the same continuous network.6–12 In such systems, the stable

bonds often form a scaffold that supports the dynamic bonds

throughout the material. Under these conditions, the stable

bonds may preserve suitably high moduli, while incorporation of

the sacrificial or reversible dynamic bonds introduces tunable

viscoelasticity6,13–17 and self-healing ability.9,18,19

While designing such materials, researchers often employ

physically motivated constitutive modeling techniques through

which the properties of individual bonds may be used to

predict the globally emergent responses of the networks.20–23

However, real-time experimental characterization of suchmaterials’

microstructures remains exceedingly challenging and is relatively

limited to techniques such as small angle neutron scattering,24 or

inference from diffusion and rheology data.25 Therefore, gauging

the degree of phenomenology in such models or interpreting their

parameters is somewhat difficult, thus limiting the confidence in

extrapolations made about microstructure using these approaches.

To address this limitation, many researchers have resorted

to network-scalemodeling to explore polymericmicrostructure.3,26–31

We here employ one such recently developed model29 to inves-

tigate the percolation threshold of stable bonds in 2D networks

containing interstitial dynamic bonds (Fig. 1). Through this

model, we examine the mechanical stress response of networks

containing different fractions of stable and dynamic bonds, and

then relate the clustering and geometric percolation of stable

bonds to the emergence of a long-term, finite stress plateau

beyond which further stress relaxation is likely governed by

reptation,32 bond lifetime renormalization,33 and other topolo-

gical effects neglected by the simple 2D model.

This network model deliberately hosts just one relaxation

mechanism – that of bond dynamics-driven reconfiguration –

and therefore allows us to isolate the effects of bond dynamics

on dissipation over intermediate experimental timescales

(above short term segmental relaxation but below long term

reptation34 timescales). We find that under some topological

conditions, a portion of stable bonds that are fully percolated

undergo non-affine conformational relaxation due to the
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reconfiguration of neighboring dynamic bonds. Equipped with

this information we establish a coupled rule of mixture for

hybrid networks using transient network theory (TNT).23 This

rule introduces just one additional, dimensionless parameter,

x A [0,1], that characterizes the degree to which stable bonds

can conformationally relax due to adjacent bond dynamics.

Finally, we apply the model (in conjunction with other perti-

nent phenomena, such as bond lifetime renormalization,33,35

and force-sensitive bond dissociation36) to predict the mechan-

ical relaxation response of an experimental gel6 that hosts two

reversible, covalent bond types with differing intrinsic binding

energies.

2. Discrete model overview

The networkmodel used here, introduced byWagner et al. (2021),29

simulates discrete networks within 2D, periodic, representative

volume elements to which deformations may be applied. For

detailed methods pertaining to network initiation and spatiotem-

poral normalization, see ESI† Section SIA. The networks are

comprised ofN = 400 (see Fig. S1, ESI† for domain size conver-

gence results), four or eight-armed (z A {4,8}), star-shaped macro-

mers whose central junctions represent permanent crosslinks or

‘‘nodes’’ and whose free ends are functionalized with binding sites

or ‘‘stickers’’. Either stable or dynamic telechelic bonds may form

between neighboring nodes, the latter of which are assigned some

constant dissociation kinetic rate, kd. Bond association is captured

through the sub-diffusive Rouse scaling utilized in Wagner et al.

(2021),29 that gives the attachment rate as:33

ka ¼ t0
�1 b

d

� �4

; (1)

where b is the length of a single Kuhn segment, t0 is the time it

takes a Kuhn segment to diffuse a distance of b, and d is the

pairwise separation distance between neighboring nodes having

open stickers within cutoff distance do lc (see ESI† Section SIB for

details). Here, lc = Nb where N is the number of Kuhn segments in

an attached chain so that lc is its contour length. Both bond

association and dissociation are treated as memoryless processes

such that the probability of a reaction event occurring at time t

follows:29

dP = ke�ktdt, (2)

where k represents either the rate of bond association, ka –

governed by eqn (1) – or dissociation, kd (set a priori). For

simplicity, attached chains are treated as ideal entropic springs

that impart pairwise tensile forces on the nodes to which they

are attached according to:

f t ¼ 3kBT
l
ffiffiffiffi

N
p

b

r

jrj; (3)

where kB is the Boltzmann constant, T is the ambient tempera-

ture, l ¼ jrj=ð
ffiffiffiffi

N
p

bÞ is the chain stretch, and r is the end-to-end

vector of a chain. Entropic forces are balanced by repulsive

forces deriving from steric interactions between neighboring

nodes or polymer chains. For simplicity, repulsive forces are

captured via a phenomenological inverse potential for soft

particles37 that yields a force–distance relation of:

f r ¼
d

jdj
�gE lc

�1 þ ðlcÞgd�ðgþ1Þ� �

; if do lc

0; if d � lc

(

; (4)

where E is a parameter with units of energy that characterizes

the extent of repulsion, g = 2 is a scaling coefficient that

modulates particle stiffness, d is the end-to-end separation

vector between nodes, and lc = Nb is the cutoff distance beyond

which steric interactions are impossible.

Pairwise interactions are used to compute the unbalanced

force on each node, denoted by a, as f a ¼P
b

f ab. Here, f ab

represents a single pairwise force (either f t or f r) between node

a and its b-th neighbor. Assuming quasi-equilibrium, unba-

lanced forces are used to iteratively equilibrate each nodes

position after every deformation or network reconfiguration

step (i.e., ‘‘timestep’’) using a gradient descent approach.38

Namely, the position of node a is updated from iteration k to

k + 1 according to:

xak+1 = xak + Z�1f a, (5)

where Z is an overdamping coefficient with units of mass per

time-squared set to ensure stable convergence. Note that Z is not to

be confused with the overdamping coefficient of Brownian

dynamics models, which relates to the thermal energy, kBT, particle

diffusion coefficient, D, and differential time interval, Dt, through

the Einstein relation (ZB kBTD
�1Dt�1).39,40 Rather, Z is a numerical

value set arbitrarily to ensure stable convergence to the lowest

energy network conformation within each timestep on the basis of

quasistatic loading conditions. After equilibration within each

timestep, network stress is computed via the virial formula:

r ¼ 1

2V

X

N

a

X

b

rab � f ab; (6)

where V is the domain volume, rab is the end-to-end vector between

node a and attached neighbor b, and f ab denotes the pairwise

tensile and repulsive force between said nodes.

Fig. 1 Hybrid network schematic. A schematic of a dynamic network

including both stable bonds (blue-to-grey) and dynamic bonds (red-to-

grey) is displayed before (left) and after (right) a set of dissociation and

attachment events at characteristic rates kd and ka, respectively.
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Since the discrete model domains are periodic, rectangular

volume elements, incremental changes to their four corners

cause the chains that transcend the four boundaries to stretch

or shorten. Accordingly, incompressible deformations may be

applied by displacing the four corners of the domain. To conduct

simulated stress relaxation experiments, we here apply a symme-

trical velocity gradient of the form, L = diag(� _e, _e), where _e is the

true strain rate. When _e is set far greater than the intrinsic bond

dissociation rate, kd, dynamic networks approach elastic beha-

vior. Therefore, to ensure that bond dynamics are negligible

during initial loading for stress relaxation experiments, we here

set _e/kd = 100. The networks are strained until they reach a

principal stretch of l = 2, after which the deformation is held and

stress relaxation is allowed to occur for t* E 4 (where t* = tkd),

corresponding to relaxation within 2% of the steady state value

predicted by exponential decay. The applied loading history (true

strain with respect to time) is depicted in Fig. S2 (ESI†).

Discrete model parameters are preserved from Wagner et al.

(2021)29 unless specified otherwise in ESI† Section SIC. However,

here distinct fractions of stable bonds (with kd = 0) and dynamic

bonds (with kd assigned a priori) are randomly and uniformly

introduced throughout the networks. The relative fractions of

stable and dynamic bonds are assigned as f and 1 � f ,

respectively, where f A [0,1]. Note that while the discrete model

parameters may be assigned physical units as needed,41 they are

here prescribed in arbitrary normalized units. This is permissi-

ble for the purposes of this work, which are to examine the

isolated (yet coupled) microstructural evolutions of each bond

type, as f is swept, and then relate said microstructures to each

chain population’s weighted stress. Observations are then used

to develop a more general and physically representative conti-

nuum approach for application to real-world polymers.

3. A standard rule of mixture for the TNT

While this discrete model permits direct observation of micro-

scale statistics, its relatively high computational expense and

phenomenological volume exclusion interactions motivate the

development of a representative continuum approach (e.g.,

TNT). TNT predicts the Cauchy stress of a dynamic network

comprised entirely of linear entropic springs as:23,29

r = ckBTl + pI, (7)

where c is the attached chain concentration, kB is the Boltzmann

constant, T is the ambient temperature, pI is the isotropic

pressure enforcing elastic incompressibility, and l is the con-

formation tensor whose eigenvalues and eigenvectors define the

instantaneous principal magnitudes and directions of average

chain stretch, respectively. Supposing constant values of kd and

ka, the conformation tensor evolves as:‡ 21,23,29,42

:
l = Ll + lLT � kd(l � I). (8)

To model networks containing both stable bonds and dynamic

bonds, we postulate a general rule of mixture whereby total

network stress is given by the weighted sum-of-independent

Markov processes governing each bond type’s stress response:

r = ckBT[p
sfls + pd(1 � f )ld] + pI, (9)

where c is the total chain concentration, while ps and pd are the

respective probabilities that a given stable or dynamic bond are

attached. Note that ls = b becomes the left Cauchy Green tensor

for stable bonds (kd = 0). While ps requires some a priori

knowledge about the conversion ratio of activated stable bonds,

the probability of finding a dynamic bond in the attached state

may be approximated as pd E ka/(ka + kd).
23 Applying stress

relaxation loading conditions (ESI,† Section SIC), solving for p,

and normalizing by the peak stress (see ESI,† Sections SIIA and

B for details) gives the normalized stress relaxation response as:

s* = P�1[psf + pd(1 � f )e�kdt], (10)

where the normalization factor, P = psf + pd(1� f ), enforces that

s* is unity immediately upon halting the load rate.

Predicted stress from the discrete model and eqn (10) are

presented in Fig. 2A for four-armed macromers (z = 4), and

multiple values of f . The dissociation rate was set such that

kac kd, regardless of f , ensuring that the fraction of attached

bonds remained above 95% for all networks (see ESI† Section

SIIIA for detailed discussion on the interplay between kd, ka,

and network connectivity). Here, ps and pd were measured from

the discrete model (Fig. S4, ESI†). While eqn (10) provides good

agreement with discrete model predictions for purely dynamic

(f = 0) or stable (f = 1) networks, it over-predicts the long-term

stress for hybrid networks (0 o f o 1).

To elucidate the origins of disagreement, we utilize the

discrete model to examine the isolated stable bond and

dynamic bond characteristics, beginning with the independent

probabilities (denoted, respectively, as Xs and Xd) that the

stable and dynamic bonds form independently percolated

networks.43 Note that the continuous network formed by both

bond types is always percolated for this model, however the

probabilities that either bond type forms its own continuous

paths spanning the domain bounds varies. Fig. 3A–F display

undeformed networks with f A {0.2,0.5,0.8}, comprised of four-

armed (z = 4) and eight-armed (z = 8) macromers, respectively.

When f o 0.2, the stable bonds rarely, if ever, form continuous

networks (i.e., Xs
B 0) (Fig. 3G and H). Instead, they form

clustered regions suspended in a matrix of dynamic bonds

(Fig. 3A and D). In contrast, at high f (f 4 0.6 for z = 4 and f 4

0.8 for z = 8), the stable bond networks are always percolated.

One might expect that when the stable bonds percolate

through the domain, they will store stress purely elastically,

and that eqn (10) will provide good agreement with the network

model predictions. Yet Fig. 2A indicates that when 0.8 r f o 1

(Xs = 1, Fig. 3G and H) long-term stress is still overpredicted by

eqn (10), suggesting that the stable bonds undergo some

relaxation. While in physical materials, long-term relaxation

‡ While recent development reveals that eqn (8) is specific to non-incompressible

plastic flow, we find that it is a suitable approximation for the conditions of

constant average rate kinetics, and intermediate stretches (l = 2) used here.

Specifically, it yields less than 3% error in principle chain stretch over the

updated evolution equation, which gives: _l = Ll + lLT � kd[l � 3/tr(l�1)I].
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may slow down due to the bond lifetime renormalization effect

put forth by Stukalin et al. (2013),33 in the present discrete

model, these effects are temporarily ignored to isolate the

impact of coupled bond dynamics at intermediate timescales

and due to applied strain. The results suggest that conforma-

tional degrees of freedom in the stable bonds permit non-affine

relaxation modes when inter-connected with dynamic bonds.

Indeed, since no relaxation is observed when f = 1, it must stem

from dynamic bond reconfiguration when f o 1.

Furthermore, one might also expect that whenever the stable

bonds are discontinuous, their clusters may relax completely

such that no long-term stress persists. Yet the network model

predicts non-negligible long-term stress when f = 0.2 (Fig. 3A),

implying that stable bonds clusters are conformationally con-

strained by surrounding dynamic bonds. Assuredly, this result

is due to the phenomenological choice of steric repulsive

interactions and node packing employed in the discrete model,

which mitigate non-affine deformations of the stable bonds.

Whereas physical polymers will relax at longer timescales due

to diffusion and reptation dynamics,32,44 this simple model

neglects these for the time being such that any non-affine

relaxation observed is attributed to bond dynamics. Neverthe-

less, these findings highlight the significant coupling between

the stable and dynamic components of network stress, thereby

motivating amendment to the rule of mixture.

4. Coupling between bond types
mediates relaxation

To amend the rule of mixture we posit that some fraction, x, of

stable bonds in hybrid networks relax at rate kd due to

reconfiguration of adjacent dynamic bonds, whereas the frac-

tion 1 � x cannot relax over intermediate timescales because

they are constrained by the stable bond network structure,

suffer from relaxation retardation due to bond lifetime renor-

malization effects,33,35 or are otherwise constrained by steric

interactions (as in the case of the 2D, highly packed networks

observed in the current discrete model). Incorporating x into

eqn (9), gives a coupled rule of mixture for hybrid networks:

r = ckBT[(1 � x)Psb + xPsl + Pdl] + pI, (11)

where we use Ps = psf and Pd = pd(1 � f ) for brevity. Solving for

p, and normalizing stress (see ESI† Section SIIC for details)

gives the relaxation response:

s* = P�1[(1 � x)Ps + xPse�kdt + Pde�kdt]. (12)

Fig. 2 Fitting the general rule of mixture. (A) Normalized stress, s*, is

plotted with respect to normalized time, t*, for the ensemble average of

n = 10 discrete network simulations (solid curves with shaded regions

representing standard error, S.E.) and as predicted by eqn (10) (dotted

curves) when kd = 1. (B) Absolute errors between the models s* are plotted

with respect to t*. (A and B) Results are shown for f = 0% (red), f = 20%

(maroon), f = 50% (grey), f = 80% (teal), and f = 100% (cyan). Note that t* is

normalized by the same value of kd
�1 for all values of f, such that the

timescale is the same for all curves.

Fig. 3 Network percolation with respect to stable bond fraction and

crosslink functionality. (A–C) Sample discrete networks with z = 4 when

(A) f = 20%, (B) f = 50%, and (C) f = 80%, illustrate the clustering of (A) stable

and (C) dynamic bonds. (B) Dynamic bond paths highlighted by red and

stable bond paths highlighted by blue illustrate how under certain conditions

(e.g., sufficiently long chain length and high functionality, z), both bond types

can form their own percolated load paths. (D–F) Comparable schematics to

(A–C) for z = 8 reveal comparable clustering formations. (G) The probability

that the stable (cyan) and dynamic (red) bonds independently form geome-

trically percolated networks (Xs and Xd) are plotted with respect to f for (G) z =

4 and (H) z = 8. (G and H) The regions shaded grey demark transition zones

wherein simultaneous, independent percolation of both bond types is pos-

sible (Xs 4 0 - Xd 4 0). The probability that the dynamic bonds percolate

also decreases as the fraction ka/(ka + kd) decreases (Fig. S3–S5, ESI†). (G and

H) the region wherein both stable and dynamic bonds can independently

percolate (grey) exists over a higher range of mixing fractions, f, and with

greater probability for networks with higher coordination (e.g., Xs E Xd E 1

from f B 0.4–0.5 for z = 8).
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When x = 1, all stable bonds relax completely, and the stress

response is purely dynamic whereas when x = 0, no stable

bonds relax and eqn (12) returns the decoupled rule of mixture.

The discrete model stress and eqn (12) are in excellent agree-

ment for all values of f when x is treated as a fitting parameter

(Fig. 4A). Significantly, the isolated stress contributions from

the stable (Fig. 4B) and dynamic bonds (Fig. 4C) also agree

between models. As confirmed by Fig. S3A or B (ESI†), the

relaxation rate remains kd for all relaxation responses in

Fig. 4A–C, regardless of stable bond fraction, f , or bond type.

Therefore, the only major difference between curves in Fig. 4A

or B is the extent (and not timescale) of stress decay. Further-

more, Fig. S3A and B (ESI†) confirm that the values of kd (i) set

a priori in the discrete model, (ii) emerging stochastically from

the discrete model, and (iii) fitted to the discrete data with

the continuum model are all in good agreement indicating

consistency between approaches. With this confirmed, we may

interpret the isolated stress responses of each bond type.

Fig. 4C confirms that isolated dynamic bond stress from both

models decays exponentially to zero stress at a rate of kd, in all

networks. This indicates that only stable bond relaxation is

significantly affected by coupling in the discrete model and

justifies the way in which the second term of eqn (12) depends

only on the stable bond fraction (through Ps). Furthermore, it

supports the presumption that, ignoring short term a-relaxation45

Fig. 4 Fitting the coupled rule of mixture. (A) Normalized stress, s*, is

plotted with respect to normalized time, t*, for the ensemble average of

n = 10 discrete simulations (solid curves with shaded S.E.) and as predicted

by eqn (12) (dotted curves) when kd = 1. Stress is decoupled into the

contribution from (B) stable bonds, ss*, and (C) dynamic bonds, sd*. Error

between models is consistently o5% at all values of t* and f. Note that t* is

normalized by the same value of kd
�1 for all values of f, such that the

timescale is the same for all curves. Regardless, the relaxation timescale

remains independent of f (as supported by Fig. S3A and B, ESI†).

Fig. 5 Topological relaxation data. (A and B) The PMFs of (A) stable and (B) dynamic bond end-to-end stretch, l, at t* = 0 and t* = 4. Insets of (A and B)

display the joint (i.e., 2D) PMFs of the respective bond types and the visually isolated stable and dynamic bond networks, also at times t* = 0 and t* = 4.

(C) The PMFs of er22 = (r2 � r02)/r
0
2 (blue), er11 = (r1 � r01 )/r

0
1 (green), and 8er8 = (|r| � |r0|)/|r0| (black) are presented where r

0 and r are the end-to-end vectors

of stable bonds at times t* = 0 and t* = 4, respectively. (D) Fitted values of 1� x are plotted with respect to f for three different values of kd. Discrete circles

represent the results of the network model, while dashed curves represent fitted functions per eqn (13) where Z = 0.52 for kd = 0.1 (magenta, R2 = 0.94),

Z = 0.46 for kd = 0.1 (grey, R2 = 0.96), and Z = 0.22 for kd = 10 (magenta, R2 = 0.99).
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(which is not modeled on the basis of very fast short term

segmental relaxation45,46), bond types with faster dissociation

kinetics in multi-bond-type networks dominate the reconfigu-

ration-driven relaxation response.17 Fig. 4B confirms that stable

bond stress predictions agree between models, and that x char-

acterizes the extent to which stable bonds conform non-affinely

into lower energy states at a rate of kd (Fig. 4B). However, it is not

immediately clear whether x defines a fraction of stable bonds

that relax entirely, the degree to which all stable bonds relax

partially, or some combination of both. To elucidate the meaning

of x, as it applies to the network model, we leverage directly

measured discrete topological data.

Fig. 5A and B illustrate the probability mass functions

(PMFs) of stable and dynamic bonds end-to-end stretches,

k ¼ r=ð
ffiffiffiffi

N
p

bÞ, in the principal direction of loading at the start

and end of relaxation (f = 0.5). The insets display the 2D PMFs

of chain stretch, along with isolated network snapshots at the

start and end of relaxation. As evidenced by the axisymmetric

2D PMF of Fig. 5B (t* = 4), dynamic bonds reconfigure com-

pletely to an isotropic state, whereas the elongated 2D PMF and

diminished reduction in variance from Fig. 5A confirm that

stable bond relaxation is partial. To quantify modes of stable

bond relaxation, Fig. 5C presents the distributions of single-

chain relaxation strains, er, in the principal directions of the

orthonormal basis {e1, e2}, and the change in end-to-end

norms, 8er8. Notably, some stable bonds elongate (8er8 4 0),

indicating that thermal fluctuations stochastically move a

minority of stable bonds to temporarily higher energy states.

However, most stable bonds relax into lower energy states

(8er8 o 0), and shorten in the direction of principal stretch,

e2. In contrast, stable bonds undergo roughly equiprobable

shortening or lengthening in direction e1. Lengthening in e1
can occur due to chain stretching but is confirmed to occur

predominantly due to reorientation.

Fig. 5C confirms that most stable bonds relaxed, but to a

variable degree. Therefore, x cannot be mapped to a single,

physical value, rather it lumps the effects of stable bond short-

ening and reorientation into some effective scalar. Neverthe-

less, we seek to understand how x evolves with respect to f .

First, we recognize that no stable bond relaxation occurs in

permanent networks (i.e., x(f = 1) = 0). We also observe that,

some fraction of stable bonds, Z, may fail to relax even in the

limit f - 0 (consistent with studies of highly packed granular

networks that jam through exclusively repulsive forces47,48 or

polymers that exists below their glass transition state due to low

free volume49). Motivated by these observations, we introduce a

simple phenomenological scaling rule that gives the degree of

stable relaxation as:

x � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z2 þ f 2ð1� Z2Þ
q

: (13)

When Z = 1 (i.e., no stable bonds relax, even in the limit f - 0),

eqn (13) devolves into x B 1 regardless of the stable bond

fraction, f . This states that if a network of entirely dynamic

bonds deforms affinely and fails to relax stress, then so too will

networks containing increasingly large fractions of stable bonds.

In contrast, when Z = 0 (indicative of full stable bond relaxation

for f - 0, which is likely more representative of polymers),

eqn (13) devolves to x B 1 � f suggesting that the fraction of

stable bonds that relax over intermediate timescales is propor-

tionate to the relative compositional fraction of dynamic bonds

in the overall network (as seen in the following section for an

experimentally tested gel).

Fig. 5D depicts the degree of stable bond non-relaxation,

1 � x, with respect to f A (0,1] for kd A {0.1,1,10} and z = 4.

As f increases, 1 � x increases, implying that percolation of

stable bonds inhibits their relaxation. This interpretation is

further supported by the fact that networks with higher coordi-

nation (begetting greater stable bond percolation) display

(1 � x)-versus-f relations that extrapolate to greater values of

Z (Fig. S6, ESI†). Surprisingly, networks in which stable bond

percolation is enhanced by increased chain length – although

well-represented by eqn (12) – do not exhibit higher Z suggesting

a diminishing effect of stable bond percolation on relaxation

inhibition. Notably, without sufficient network connectivity

(e.g., for short chain networks, Fig. S7 and S8, ESI†), the coupled

rule of mixture cannot accurately predict stable bond relaxation,

as it becomes dominated by floppy deformation modes43 at

shorter timescales.

Another factor influencing network percolation is dynamic

bond reaction rates. Networks with higher kd generally demon-

strate greater stable bond relaxation in the limit f - 0 (Z =

0.52 for kd = 0.1 whereas Z = 0.22 for kd = 10) (Fig. 5D). Since all

networks relaxed for t* = t/kd = 4, one might expect identical

behavior regardless of kd. However, the parameters governing

ka are preserved across simulations so that the steady state

fraction of attached dynamic bonds (pd E ka/(ka + kd)),

decreases as kd increases. This indicates that Z is correlated

with pd and suggests that networks in which ka c kd mitigate

conformational change of stable bonds to a greater extent in a

manner that supports the concept of bond lifetime renormali-

zation discussed in the following section.33

It must be noted that the failure of stable bonds to relax

below their independent percolation threshold is here attribu-

table to steric interactions arising from the phenomenological

pairwise repulsive potential, node packing, and 2D conditions

utilized in the discrete network. Lowering the degree of repul-

sion or node density, as well as implementing the model in 3D,

would inhibit this effect by increasing the networks’ effective

free volumes.49 While reduced chain mobilization is certainly

observable in polymers below glass transition conditions (e.g.,

low temperature and free volume), even glassy polymers are

expected to relax residual stress over longer timescales at rates

inversely related to polymer packing and inter-chain interaction

strength.50–52 Therefore, the discrete model is not representa-

tive of long term relaxation, but rather usefully elucidates

the effects of bond kinetics at intermediate timescales

(above the timescale of short term a-relaxation35 but below

the timescale of reptation32). Nevertheless, the concept of

finite Z within polymeric networks is seemingly non-physical

and in the remainder of this work Z = 0 (i.e., x B 1 � f ) is

observed.
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5. Coupling effects on dynamic
hydrogel relaxation

To exhibit the utility of the coupled rule of mixture, we apply it to

the stress relaxation data provided by Richardson et al. (2019)6

for hydrazone covalently adaptable, 8-arm, poly(ethylene glycol)-

based hydrogels. These gels contain ‘‘slower’’ and ‘‘faster’’

benzyl-hydrazone (bHz) and alkyl–hydrazone (aHz) bonds with

kinetic dissociation rates of kb and ka, respectively. Here, ka and

kb are not to be confused with the attachment rate, ka, or

Boltzmann constant, kB, described in prior sections. Based on

the experiments’ use of parallel plate rheometry, eqn (12) is

rederived for simple shear conditions as:

s* = P�1[(1 � x)Pbe�kbt + xPbe�kat + Pae�kat], (14)

where Pb = fpb and Pa = (f � 1)pa; f is the fraction of bHz; and pb

and pa are the attached fractions of bHz and aHz, respectively

(pb = pa 4 0.9 assuming network equilibrium is met before strain

is applied and that the attachment rate is much greater than the

detachment rate) (see ESI† Section SIID for detailed derivations).

Significantly, we have again postulated that the coupled stress

term relaxes at the faster of the two kinetic rates, ka.
17

As indicated by Richardson et al. (2019),6 and evidenced by

non-exponential relaxation curves for f = {0,1} (Fig. 6A), bHz

and aHz bonds exhibit slower relaxation at longer timescales

than immediately after strain is applied. While a similarly

observed effect in the discrete network model is attributed to

a low free volume-induced, glassy-like state, a more suitable

explanation for this behavior in gels is the bond lifetime

renormalization effect proposed by Stukalin et al. (2013),33

which posits that reversible bonds – while detaching at some

mean thermodynamic rate according to an Arrhenius type

equation35,53 – relax network stress only as fast as they may

attach into new configurations. Essentially, the renormalized

bond lifetime accounts for functional end groups’ tendencies to

repeatedly dissociate and associate with the same neighboring

chains before diffusing through sufficient space to bind into

lower energy states, thereby retarding the long-tail relaxation

rate. We here incorporate bond lifetime renormalization into

the continuum framework per the details of ESI† Section SIIE.

To fit the non-exponential relaxation of the experimental

data, we find that we must also account for the change in

polymer chains’ free energies as they are extended beyond their

mean equilibrium stretch of l = 1 (where l ¼ r=ð
ffiffiffiffi

N
p

bÞ for

Gaussian chains29). Following Eyring’s supposition that intrin-

sic bond lifetime within complex polymer systems decreases

with increasing chain force,54 we utilize Bell’s model36,55–57 that

gives the force-adjusted bond lifetime according to:

ti ¼ t0 exp
ei � ftDx

kBT

� �

; (15)

where i A {a, b} denotes either aHz or bHz; t0 remains the time

it takes a single Kuhn segment to diffuse its own length, b; ea
and eb are the bond activation energies of aHz and bHz,

respectively; f t is the single chain force from eqn (3); Dx is

the reaction coordinate characterizing the distance from the

equilibrium bond length to the activation barrier; kB is the

Boltzmann constant; and T is temperature.

Accounting for both bond lifetime renormalization and

force-adjusted bond dissociation kinetics through eqn (15)

(see ESI† Section SIIE for details) gives the effective relaxation

rate of each respective bond type as:

ka �
c�openð1� f Þ
h i1=3

t0
K0

a exp �
ffiffiffiffiffi

s�

s�0

s !

þ 1

c�openð1� f Þ

" #�1

;

(16)

and:

kb �
c�openf
� �1=3

t0
K0

b exp �
ffiffiffiffiffi

s�

s�0

s !

þ 1

c�openf

" #�1

; (17)

where c�open ¼ b3copen is the total open sticker concentration,

copen, normalized by the characteristic Kuhn volume, b3; Ki
0 =

exp(ei/kBT) is the dissociation kinetic constant of bond type i A

{a, b} when it connects a chain at the equilibrium stretch (such

Fig. 6 Experimental validation. (A) The coupled rule of mixture with bond

lifetime renormalization and force-dependent bond dissociation (solid

curves) is fit to the experimental stress relaxation data (circles) for hydra-

zone covalently adaptable network with f A {0, 10, 20, 30, 40, 70, 100}%

bHz. f = 0 is represented by red and f = 1 is represented by cyan. R2 4 0.99

for all values of f. Experimental data adapted from Richardson et al. (2019).

(B) Fitted values of 1 � x (black circles) are plotted with respect to f. The

dotted curve represents the scaling relation 1 � x B f (with a correlation

coefficient of R = 0.99). (C and D) The normalized distance between open

stickers, r�open and bond activation length scale, x*, are plotted against f,

respectively. The dotted curves represent the fits from linear regression

analysis giving correlation coefficients of R = �0.56 and R = �0.30,

respectively.
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that the force-free bond lifetime is Ki
0t0); and s�0 defines the

intrinsic bond dissociation rates sensitivity to internal stress,

where s�0 ! 1 begets stress invariance. Analytically, s�0 is

treated as a fitting parameter but it is related to the bond

reaction coordinate length, Dx, by:

Dx ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N sinð2gÞ
3pg

s�0

s

; (18)

where N = 88 is the approximate number of Kuhn segments

of length b = 0.78 nm, based on the molecular weight of the

8-armed, star-shaped macromers used in experiments (Mw =

8000 g mol�1) and that of ethylene glycol (Meg = 44.05 g mol�1).

Furthermore, p E pb E pa 4 0.9 is the fraction of attached

chains and g = 0.1 is the experimentally applied shear strain

magnitude.6,41 Note that through eqn (16) and (17), the relaxa-

tion rate goes to zero when the open sticker concentration or

bond fraction (f for bHz and 1 � f for aHz) of the corres-

ponding bond type is zero.

This model has five dimensionless free parameters, K0
a, K

0
b,

c�open, s
�
0, and x as well as a fifth unknown parameter, t0. While

c�open, s
�
0, and x are liable to change with respect to the relative

bond fraction, K0
a and K0

b are intrinsic constants associated with

aHz and bHz bonds, respectively. Furthermore, t0 is the time-

scale of monomer diffusion treated as identical between func-

tional groups since they are on the same order molecular

weight. Therefore, the steps used to fit the model parameters

are as follows:

1. Fit the normalized stress versus time for the purely aHz

network with t0, K
0
a, c

�
open, and s�0 as the fitting parameters (since

x = 0 without bHz present). K0
a is then fixed moving forward for

any networks containing aHz.

2. Fixing t0, fit the normalized stress versus time for the

purely bHz network with K0
b, c

�
open, and s�0 as the only fitting

parameters (since x E 1 for a network comprised of bHz). K0
b is

fixed moving forward for networks containing bHz.

3. Fit the remainder of the mixed networks’ stress responses

with s�0, c
�
open, and x treated as free parameters.

Fitting the parameters per the procedure above and the

methods detailed in ESI† Section SIIF, the model predicts that

the timescale of tethered monomer diffusion is on the order of

20 ms (consistent with the segmental relaxation timescale of

comparable telechelic bond groups such as poly(isobutylene) at

room temperature).46 It also predicts that the bond activation

energies of aHz and bHz are ea = kBT lnK0
a E 38.5 kJ mol�1 and

eb = kBT lnK0
b E 85.7 kJ mol�1, respectively (where an ambient

temperature of T E 293 K is assumed). For comparison, the

activation energy of hydrogen bonding in water is on the order

of 18 kJ mol�1 while that of single carbon–carbon bond is

upwards 271 kJ mol�1 indicating that the model predicts

realistic values.58,59 Indeed, fixing these values while treating

x, c�open, and s�0 as fitting parameters for the mixed networks, the

coupled rule of mixture predicts stress responses in excellent

agreement (R2 4 0.99) with the experimental data (Fig. 6A).

Fitted values of the bHz non-relaxation degree (1 � x), average

normalized distance between open stickers ðr�open ¼ copen
�1=3=NbÞ,

and normalized bond reaction coordinate length (x* = Dx/b

through eqn (18)) are presented in Fig. 6B–D, respectively. The

values of r�open (Fig. 6C) suggest that the distance between open

stickers is believably on the order of a chains contour length (here,

Nb E 70 nm). Specifically, r�open � 2 indicating that most open

stickers are not within reach of adjacent open sites and thus

partially explaining the appearance of slower relaxation rates over

longer timescales. Interpreting x* (Fig. 6D), we see that the

reaction coordinate length scale is roughly on the order of two

to four Kuhn lengths (where b = 0.78 nm) suggesting that the

distance between the minimum energetic spacing and the transi-

tion length is on the order of 1.6 to 3.2 nm. Alternatively,

recognizing through eqn (3) and (15) that the dissociation rate

for either species may be written as ki ¼ k0i expð3lx�=
ffiffiffiffi

N
p

Þ, then
l0 ¼

ffiffiffiffi

N
p

=3x� is the stretch at which the dissociation rate

increases by a factor of e1 as compared to the force-free rate,

k0i = (K0i t0)
�1. On average, this occurs at a predicted chain stretch

of l = 1.8. Note that, while we here simply treat x* as a single

fitting parameter for both species, more accurate fitting is attain-

able by decoupling this length scale for aHz and bHz. However, we

find that decoupling Dx for both bond types into separate para-

meters does not significantly impact the relation between x and f

(the primary focus of this work).

Significantly, neither r�open nor x* are strongly correlated with

the fraction of stable bonds, f . Thus, while still significant for the

non-exponential relaxation response observed across all hybrid

networks, bond lifetime renormalization and force-sensitive bond

dissociation are not the primary factors influencing differences

observed between these samples. In contrast, the degree of bHz

non-relaxation, 1 � x, is strongly correlated with f , justifying the

choice of scaling through eqn (13), under the condition that Z- 0

and x E 1 � f .§ Furthermore, it proves necessary to account for

some degree of stable bond relaxation through x to fit the

observed stress response. In other words, a standard rule of

mixture – presuming that all bHz relax no faster than the rate

allowed by kb – does not predict the correct mechanical response.

Together, the necessity of including the coupled rule of mixture

and the strong correlation between 1 � x and f , suggest that the

degree of coupled relaxation is a significant effect governing the

observed trends as the relative fractions of each bond type are

swept in this model hydrogel.

6. Conclusion

Here we utilized a network model to explore coupled stress

response of networks containing multiple bond types within

one continuous network. We discovered that for a simple 2D

network model whose only relaxation timescale is governed by

bond dynamics, long-term moduli may subsist at low stable

§ As mentioned previously, finite values of Z are not expected for polymeric

systems wherein reptation and Rouse diffusion ensure relaxation, especially for

swollen gels whose polymer volume fractions are on the order of 0.01–0.1.41
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bond fractions due to low free volume and hinderance of stable

chain reptation. However, this result is specific to the phenom-

enological repulsive potentials, high packing fractions, and 2D

framework employed in the discrete network model such that it

is not expected to hold in 3D frameworks or real-world systems.

Indeed, stored stress in even tightly packed polymer systems

decays at longer timescales due to segmental relaxation and

reptation.34 Meanwhile, long-term moduli of polymers with

high free volumes (e.g., swollen gels) are likely unaffected by

inter-chain topological volume exclusion. This result neverthe-

less emphasizes the important influence that network topology

has on stable chains segmental relaxation. A more representa-

tive finding of the network model is that even stable bonds may

undergo non-affine, conformational stress relaxation over inter-

mediate timescales due to adjacent dynamic bond reconfigura-

tion. Notably, the rate of stable bond relaxation in the discrete

model – whose only source of stress relaxation is stochastic

bond exchange – coincides with that of the prescribed dynamic

bond dissociation. These effects motivated the introduction of

a novel, dimensionless coupling parameter, x, that weights the

degree of stable bond relaxation at rate kd and which inversely

correlates with the stable bond fraction, f . Incorporating this

parameter into TNT, we developed a coupled rule of mixture for

hybrid dynamic networks.

Significantly, the discrete model is a deliberate idealization

formulated to isolate the effects of bond kinetics, thereby

neglecting other first-order physical effects such as polydisper-

sity, segmental relaxation,35,45 poroelastic relaxation,60

damage-induced dissipation,61,62 long-term hydrolysis/degra-

dation,63,64 or reptation.32,44 These additional confounding

factors emphasize that coupling the relaxation between sepa-

rate bond types is, on its own, not sufficient to encapsulate the

complex dissipative behavior of polymeric systems. Neverthe-

less, to demonstrate the importance of bond coupling, we

employed the coupled rule of mixture through TNT to model

the mechanical response of physical gel networks hosting two,

reversible hydrazone bond types. To account for experimentally

observed strain-dependent relaxation times,36,54,55,65 we con-

currently considered the effects of relaxation-retarding bond

lifetime renormalization33,35 and relaxation-enhancing force-

sensitive dissociation.6,36 The model predicts that the concen-

trations of open binding sites (governing bond lifetime renor-

malization) and the reaction coordinate length (governing the

sensitivity of force-dependent bond dissociation) are only

weakly correlated with f . However, the coupling parameter

(dictating the degree of relatively stable bond relaxation due

to kinetics of more dynamic bonds) is highly correlated with f .

This provides strong evidence that inter-bond coupling is a

dominant effect that researchers should consider when inves-

tigating networks with controlled fractions of mixed bond

types. The simplicity and robustness of this approach, com-

bined with its compatibility with other first-order physical

phenomena, may render it useful for predictive design of

diverse hybrid networks including elastomers with charge

interactions,16,65,66 vitrimers,6 and metallopolymers.7,9 Therefore,

in future work, this method may be utilized in conjunction with

additional modeling approaches for other significant phenomena

(e.g., entanglement, reptation, etc.) to investigate polymer micro-

mechanics or guide design applications.
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