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Coupled bond dynamics alters relaxation in
polymers with multiple intrinsic dissociation
ratest
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Dynamic networks containing multiple bond types within a continuous network grant engineers another
design parameter — relative bond fraction — by which to tune storage and dissipation of mechanical
energy. However, the mechanisms governing emergent properties are difficult to deduce experimentally.
Therefore, we here employ a network model with prescribed fractions of dynamic and stable bonds to
predict relaxation characteristics of hybrid networks. We find that during stress relaxation, predominantly
dynamic networks can exhibit long-term moduli through conformationally inhibited relaxation of stable
bonds due to exclusion interactions with neighboring chains. Meanwhile, predominantly stable networks
exhibit minor relaxation through non-affine reconfiguration of dynamic bonds. Given this, we introduce
a single fitting parameter, & to Transient Network Theory via a coupled rule of mixture, that
characterizes the extent of stable bond relaxation. Treating ¢ as a fitting parameter, the coupled rule of
mixture's predicted stress response not only agrees with the network model’s, but also unveils likely
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1. Introduction

Networked polymeric materials containing multiple bond types
have become increasingly investigated for their exemplary
combinations of mechanical strength and toughness.'” Many
state-of-the-art polymers contain both relatively stable covalent
bonds and dynamic physical (or covalent) bonds (e.g., metallo—
ligand interactions, ionic bonds, hydrogen bonds, etc.) within
the same continuous network.°™> In such systems, the stable
bonds often form a scaffold that supports the dynamic bonds
throughout the material. Under these conditions, the stable
bonds may preserve suitably high moduli, while incorporation of
the sacrificial or reversible dynamic bonds introduces tunable
viscoelasticity”*™"” and self-healing ability.”'*"?

While designing such materials, researchers often employ
physically motivated constitutive modeling techniques through
which the properties of individual bonds may be used to
predict the globally emergent responses of the networks.”’ >
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micromechanical traits of gels hosting multiple bond dissociation timescales.

However, real-time experimental characterization of such materials’
microstructures remains exceedingly challenging and is relatively
limited to techniques such as small angle neutron scattering,* or
inference from diffusion and rheology data.”® Therefore, gauging
the degree of phenomenology in such models or interpreting their
parameters is somewhat difficult, thus limiting the confidence in
extrapolations made about microstructure using these approaches.

To address this limitation, many researchers have resorted
to network-scale modeling to explore polymeric microstructure.**®>"
We here employ one such recently developed model® to inves-
tigate the percolation threshold of stable bonds in 2D networks
containing interstitial dynamic bonds (Fig. 1). Through this
model, we examine the mechanical stress response of networks
containing different fractions of stable and dynamic bonds, and
then relate the clustering and geometric percolation of stable
bonds to the emergence of a long-term, finite stress plateau
beyond which further stress relaxation is likely governed by
reptation,*” bond lifetime renormalization,®® and other topolo-
gical effects neglected by the simple 2D model.

This network model deliberately hosts just one relaxation
mechanism - that of bond dynamics-driven reconfiguration -
and therefore allows us to isolate the effects of bond dynamics
on dissipation over intermediate experimental timescales
(above short term segmental relaxation but below long term
reptation®* timescales). We find that under some topological
conditions, a portion of stable bonds that are fully percolated
undergo non-affine conformational relaxation due to the

Soft Matter



Published on 17 March 2023. Downloaded by University of Colorado at Boulder on 3/28/2023 9:49:40 AM.

Paper

L)

@ Stable Bonds @Dynamic Bonds

Fig. 1 Hybrid network schematic. A schematic of a dynamic network
including both stable bonds (blue-to-grey) and dynamic bonds (red-to-
grey) is displayed before (left) and after (right) a set of dissociation and
attachment events at characteristic rates kq and k,, respectively.

reconfiguration of neighboring dynamic bonds. Equipped with
this information we establish a coupled rule of mixture for
hybrid networks using transient network theory (TNT).>* This
rule introduces just one additional, dimensionless parameter,
¢ € [0,1], that characterizes the degree to which stable bonds
can conformationally relax due to adjacent bond dynamics.
Finally, we apply the model (in conjunction with other perti-
nent phenomena, such as bond lifetime renormalization,*:**
and force-sensitive bond dissociation®®) to predict the mechan-
ical relaxation response of an experimental gel® that hosts two
reversible, covalent bond types with differing intrinsic binding
energies.

2. Discrete model overview

The network model used here, introduced by Wagner et al. (2021),>°
simulates discrete networks within 2D, periodic, representative
volume elements to which deformations may be applied. For
detailed methods pertaining to network initiation and spatiotem-
poral normalization, see ESIf Section SIA. The networks are
comprised of /" = 400 (see Fig. S1, ESIt for domain size conver-
gence results), four or eight-armed (z € {4,8}), star-shaped macro-
mers whose central junctions represent permanent crosslinks or
“nodes” and whose free ends are functionalized with binding sites
or “stickers”. Either stable or dynamic telechelic bonds may form
between neighboring nodes, the latter of which are assigned some
constant dissociation kinetic rate, k4. Bond association is captured
through the sub-diffusive Rouse scaling utilized in Wagner et al.
(2021),”° that gives the attachment rate as:**

ky=19" (2)4, (1)

where b is the length of a single Kuhn segment, 1, is the time it
takes a Kuhn segment to diffuse a distance of b, and d is the
pairwise separation distance between neighboring nodes having
open stickers within cutoff distance d < [, (see ESIt Section SIB for
details). Here, I. = Nb where N is the number of Kuhn segments in
an attached chain so that /. is its contour length. Both bond
association and dissociation are treated as memoryless processes
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such that the probability of a reaction event occurring at time ¢
follows:*

dp = ke "dt, (2)

where k represents either the rate of bond association, k, -
governed by eqn (1) - or dissociation, k4 (set a priori). For
simplicity, attached chains are treated as ideal entropic springs
that impart pairwise tensile forces on the nodes to which they
are attached according to:

fi= TSl ©
where kg is the Boltzmann constant, T is the ambient tempera-
ture, A = |r|/(v/ND) is the chain stretch, and r is the end-to-end
vector of a chain. Entropic forces are balanced by repulsive
forces deriving from steric interactions between neighboring
nodes or polymer chains. For simplicity, repulsive forces are
captured via a phenomenological inverse potential for soft
particles®” that yields a force-distance relation of:

d { B[l + (k) ifd <o

fr:_ ’ (4)
4| o, ifd > I

where E is a parameter with units of energy that characterizes
the extent of repulsion, y = 2 is a scaling coefficient that
modulates particle stiffness, d is the end-to-end separation
vector between nodes, and . = Nb is the cutoff distance beyond
which steric interactions are impossible.

Pairwise interactions are used to compute the unbalanced
force on each node, denoted by «, as f* = f*/. Here, f*/

B

represents a single pairwise force (either f; or f,) between node
o and its f-th neighbor. Assuming quasi-equilibrium, unba-
lanced forces are used to iteratively equilibrate each nodes
position after every deformation or network reconfiguration
step (i.e., “timestep”) using a gradient descent approach.®
Namely, the position of node o is updated from iteration & to
k + 1 according to:

Xig = x5+ (5)

where 7 is an overdamping coefficient with units of mass per
time-squared set to ensure stable convergence. Note that # is not to
be confused with the overdamping coefficient of Brownian
dynamics models, which relates to the thermal energy, kT, particle
diffusion coefficient, D, and differential time interval, At, through
the Einstein relation (7 ~ kgTD ™~ "At™").3*® Rather, 7 is a numerical
value set arbitrarily to ensure stable convergence to the lowest
energy network conformation within each timestep on the basis of
quasistatic loading conditions. After equilibration within each
timestep, network stress is computed via the virial formula:

N
7= 2t er 0

where V is the domain volume, 7 is the end-to-end vector between
node « and attached neighbor f, and f* denotes the pairwise
tensile and repulsive force between said nodes.

This journal is © The Royal Society of Chemistry 2023
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Since the discrete model domains are periodic, rectangular
volume elements, incremental changes to their four corners
cause the chains that transcend the four boundaries to stretch
or shorten. Accordingly, incompressible deformations may be
applied by displacing the four corners of the domain. To conduct
simulated stress relaxation experiments, we here apply a symme-
trical velocity gradient of the form, L = diag(—¢, ¢), where ¢ is the
true strain rate. When ¢ is set far greater than the intrinsic bond
dissociation rate, k4, dynamic networks approach elastic beha-
vior. Therefore, to ensure that bond dynamics are negligible
during initial loading for stress relaxation experiments, we here
set é/kq = 100. The networks are strained until they reach a
principal stretch of A = 2, after which the deformation is held and
stress relaxation is allowed to occur for t* &~ 4 (where t* = tky),
corresponding to relaxation within 2% of the steady state value
predicted by exponential decay. The applied loading history (true
strain with respect to time) is depicted in Fig. S2 (ESIY).

Discrete model parameters are preserved from Wagner et al.
(2021)*° unless specified otherwise in ESI{ Section SIC. However,
here distinct fractions of stable bonds (with k4 = 0) and dynamic
bonds (with k4 assigned a priori) are randomly and uniformly
introduced throughout the networks. The relative fractions of
stable and dynamic bonds are assigned as f and 1 — f,
respectively, where f € [0,1]. Note that while the discrete model
parameters may be assigned physical units as needed,*" they are
here prescribed in arbitrary normalized units. This is permissi-
ble for the purposes of this work, which are to examine the
isolated (yet coupled) microstructural evolutions of each bond
type, as f is swept, and then relate said microstructures to each
chain population’s weighted stress. Observations are then used
to develop a more general and physically representative conti-
nuum approach for application to real-world polymers.

3. A standard rule of mixture for the TNT

While this discrete model permits direct observation of micro-
scale statistics, its relatively high computational expense and
phenomenological volume exclusion interactions motivate the
development of a representative continuum approach (e.g,
TNT). TNT predicts the Cauchy stress of a dynamic network
comprised entirely of linear entropic springs as:***°

6 = ckgTp + nl, (7)

where c is the attached chain concentration, kg is the Boltzmann
constant, T is the ambient temperature, nl is the isotropic
pressure enforcing elastic incompressibility, and u is the con-
formation tensor whose eigenvalues and eigenvectors define the
instantaneous principal magnitudes and directions of average
chain stretch, respectively. Supposing constant values of kq and
k,, the conformation tensor evolves as:} >1:>32%42

+ While recent development reveals that eqn (8) is specific to non-incompressible
plastic flow, we find that it is a suitable approximation for the conditions of
constant average rate kinetics, and intermediate stretches (2 = 2) used here.
Specifically, it yields less than 3% error in principle chain stretch over the
updated evolution equation, which gives: ji = Lu + uL” — ka[u — 3/tr(u~))1].

This journal is © The Royal Society of Chemistry 2023

View Article Online

Paper

ft=Lp+ pL" — ka(p — ). (8)

To model networks containing both stable bonds and dynamic
bonds, we postulate a general rule of mixture whereby total
network stress is given by the weighted sum-of-independent
Markov processes governing each bond type’s stress response:

o = ckeT[p’fu’ + p*(1 — f)u] + nl, )

where c is the total chain concentration, while p* and p“ are the
respective probabilities that a given stable or dynamic bond are
attached. Note that u® = b becomes the left Cauchy Green tensor
for stable bonds (kg = 0). While p® requires some a priori
knowledge about the conversion ratio of activated stable bonds,
the probability of finding a dynamic bond in the attached state
may be approximated as p® ~ ku/(k, + kq).>> Applying stress
relaxation loading conditions (ESI,} Section SIC), solving for =,
and normalizing by the peak stress (see ESL Sections SIIA and
B for details) gives the normalized stress relaxation response as:

o' =P '[pf + pi1 — fle ], (10)

where the normalization factor, P= pf + p%(1 — f), enforces that
¢* is unity immediately upon halting the load rate.

Predicted stress from the discrete model and eqn (10) are
presented in Fig. 2A for four-armed macromers (z = 4), and
multiple values of f. The dissociation rate was set such that
ka > kg, regardless of f, ensuring that the fraction of attached
bonds remained above 95% for all networks (see ESIf Section
SIITA for detailed discussion on the interplay between kg, &,
and network connectivity). Here, p° and p“ were measured from
the discrete model (Fig. S4, ESIt). While eqn (10) provides good
agreement with discrete model predictions for purely dynamic
(f = 0) or stable (f = 1) networks, it over-predicts the long-term
stress for hybrid networks (0 < f < 1).

To elucidate the origins of disagreement, we utilize the
discrete model to examine the isolated stable bond and
dynamic bond characteristics, beginning with the independent
probabilities (denoted, respectively, as X* and x9) that the
stable and dynamic bonds form independently percolated
networks.*’ Note that the continuous network formed by both
bond types is always percolated for this model, however the
probabilities that either bond type forms its own continuous
paths spanning the domain bounds varies. Fig. 3A-F display
undeformed networks with f € {0.2,0.5,0.8}, comprised of four-
armed (z = 4) and eight-armed (z = 8) macromers, respectively.
When f < 0.2, the stable bonds rarely, if ever, form continuous
networks (i.e., X*> ~ 0) (Fig. 3G and H). Instead, they form
clustered regions suspended in a matrix of dynamic bonds
(Fig. 3A and D). In contrast, at high f (f > 0.6 forz=4 and f >
0.8 for z = 8), the stable bond networks are always percolated.

One might expect that when the stable bonds percolate
through the domain, they will store stress purely elastically,
and that eqn (10) will provide good agreement with the network
model predictions. Yet Fig. 2A indicates that when 0.8 < f < 1
(X* =1, Fig. 3G and H) long-term stress is still overpredicted by
eqn (10), suggesting that the stable bonds undergo some
relaxation. While in physical materials, long-term relaxation
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( A) — Discrete Network Model

Fig. 2 Fitting the general rule of mixture. (A) Normalized stress, ¢*, is
plotted with respect to normalized time, t*, for the ensemble average of
n = 10 discrete network simulations (solid curves with shaded regions
representing standard error, S.E.) and as predicted by eqn (10) (dotted
curves) when kg = 1. (B) Absolute errors between the models ¢* are plotted
with respect to t*. (A and B) Results are shown for f = 0% (red), f = 20%
(maroon), f = 50% (grey), f = 80% (teal), and f = 100% (cyan). Note that t* is
normalized by the same value of kq~* for all values of f, such that the
timescale is the same for all curves.

may slow down due to the bond lifetime renormalization effect
put forth by Stukalin et al (2013),> in the present discrete
model, these effects are temporarily ignored to isolate the
impact of coupled bond dynamics at intermediate timescales
and due to applied strain. The results suggest that conforma-
tional degrees of freedom in the stable bonds permit non-affine
relaxation modes when inter-connected with dynamic bonds.
Indeed, since no relaxation is observed when f = 1, it must stem
from dynamic bond reconfiguration when f < 1.

Furthermore, one might also expect that whenever the stable
bonds are discontinuous, their clusters may relax completely
such that no long-term stress persists. Yet the network model
predicts non-negligible long-term stress when f = 0.2 (Fig. 3A),
implying that stable bonds clusters are conformationally con-
strained by surrounding dynamic bonds. Assuredly, this result
is due to the phenomenological choice of steric repulsive
interactions and node packing employed in the discrete model,
which mitigate non-affine deformations of the stable bonds.
Whereas physical polymers will relax at longer timescales due
to diffusion and reptation dynamics,*>** this simple model
neglects these for the time being such that any non-affine
relaxation observed is attributed to bond dynamics. Neverthe-
less, these findings highlight the significant coupling between
the stable and dynamic components of network stress, thereby
motivating amendment to the rule of mixture.

4. Coupling between bond types
mediates relaxation

To amend the rule of mixture we posit that some fraction, &, of
stable bonds in hybrid networks relax at rate kq due to
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Fig. 3 Network percolation with respect to stable bond fraction and
crosslink functionality. (A—C) Sample discrete networks with z = 4 when
(A) f=20%, (B) f = 50%, and (C) f = 80%, illustrate the clustering of (A) stable
and (C) dynamic bonds. (B) Dynamic bond paths highlighted by red and
stable bond paths highlighted by blue illustrate how under certain conditions
(e.g., sufficiently long chain length and high functionality, z), both bond types
can form their own percolated load paths. (D—F) Comparable schematics to
(A—-C) for z = 8 reveal comparable clustering formations. (G) The probability
that the stable (cyan) and dynamic (red) bonds independently form geome-
trically percolated networks (X* and X) are plotted with respect to f for (G) z =
4 and (H) z = 8. (G and H) The regions shaded grey demark transition zones
wherein simultaneous, independent percolation of both bond types is pos-
sible (X* > 0 A X¢ > 0). The probability that the dynamic bonds percolate
also decreases as the fraction k./(k, + kq) decreases (Fig. S3—-S5, ESIY). (G and
H) the region wherein both stable and dynamic bonds can independently
percolate (grey) exists over a higher range of mixing fractions, f, and with
greater probability for networks with higher coordination (e.g., X* ~ X® ~ 1
from f ~ 0.4-0.5 for z = 8).

©
o

100

reconfiguration of adjacent dynamic bonds, whereas the frac-
tion 1 — ¢ cannot relax over intermediate timescales because
they are constrained by the stable bond network structure,
suffer from relaxation retardation due to bond lifetime renor-
malization effects,>>”> or are otherwise constrained by steric
interactions (as in the case of the 2D, highly packed networks
observed in the current discrete model). Incorporating ¢ into
eqn (9), gives a coupled rule of mixture for hybrid networks:

6 = ckpT[(1 — E)P°b + EPPu + P + ml, (11)
where we use P* = p°f and P? = p(1 — f) for brevity. Solving for
n, and normalizing stress (see ESIt Section SIIC for details)

gives the relaxation response:

o* =P (1 — &P + EPfe kit 4 plehat), (12)

This journal is © The Royal Society of Chemistry 2023
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Fig. 4 Fitting the coupled rule of mixture. (A) Normalized stress, o*, is
plotted with respect to normalized time, t*, for the ensemble average of
n = 10 discrete simulations (solid curves with shaded S.E.) and as predicted
by egn (12) (dotted curves) when kg = 1. Stress is decoupled into the
contribution from (B) stable bonds, a.*, and (C) dynamic bonds, a4*. Error
between models is consistently <5% at all values of t* and f. Note that t* is
normalized by the same value of kq~* for all values of f, such that the
timescale is the same for all curves. Regardless, the relaxation timescale
remains independent of f (as supported by Fig. S3A and B, ESI¥).
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When ¢ = 1, all stable bonds relax completely, and the stress
response is purely dynamic whereas when ¢ = 0, no stable
bonds relax and eqn (12) returns the decoupled rule of mixture.
The discrete model stress and eqn (12) are in excellent agree-
ment for all values of f when ¢ is treated as a fitting parameter
(Fig. 4A). Significantly, the isolated stress contributions from
the stable (Fig. 4B) and dynamic bonds (Fig. 4C) also agree
between models. As confirmed by Fig. S3A or B (ESIt), the
relaxation rate remains kq for all relaxation responses in
Fig. 4A-C, regardless of stable bond fraction, f, or bond type.
Therefore, the only major difference between curves in Fig. 4A
or B is the extent (and not timescale) of stress decay. Further-
more, Fig. S3A and B (ESIt) confirm that the values of k4 (i) set
a priori in the discrete model, (ii) emerging stochastically from
the discrete model, and (iii) fitted to the discrete data with
the continuum model are all in good agreement indicating
consistency between approaches. With this confirmed, we may
interpret the isolated stress responses of each bond type.

Fig. 4C confirms that isolated dynamic bond stress from both
models decays exponentially to zero stress at a rate of kg, in all
networks. This indicates that only stable bond relaxation is
significantly affected by coupling in the discrete model and
justifies the way in which the second term of eqn (12) depends
only on the stable bond fraction (through P*). Furthermore, it
supports the presumption that, ignoring short term o-relaxation®
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Fig. 5 Topological relaxation data. (A and B) The PMFs of (A) stable and (B) dynamic bond end-to-end stretch, 4, at t* = 0 and t* = 4. Insets of (A and B)
display the joint (i.e., 2D) PMFs of the respective bond types and the visually isolated stable and dynamic bond networks, also at times t* = 0 and t* = 4.
(C) The PMFs of &5, = (r, — r9)/r3 (blue), &5y = (ry — r))/rf (green), and ||| = (|r| — |rol)/|rol (black) are presented where r° and r are the end-to-end vectors
of stable bonds at times t* = 0 and t* = 4, respectively. (D) Fitted values of 1 — & are plotted with respect to f for three different values of kq4. Discrete circles
represent the results of the network model, while dashed curves represent fitted functions per eqn (13) where 5 = 0.52 for kq = 0.1 (magenta, R? = 0.94),
i = 0.46 for kq = 0.1 (grey, R? = 0.96), and 5 = 0.22 for kq = 10 (magenta, R = 0.99).
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(which is not modeled on the basis of very fast short term
segmental relaxation*>*®), bond types with faster dissociation
kinetics in multi-bond-type networks dominate the reconfigu-
ration-driven relaxation response.'” Fig. 4B confirms that stable
bond stress predictions agree between models, and that ¢ char-
acterizes the extent to which stable bonds conform non-affinely
into lower energy states at a rate of kq (Fig. 4B). However, it is not
immediately clear whether ¢ defines a fraction of stable bonds
that relax entirely, the degree to which all stable bonds relax
partially, or some combination of both. To elucidate the meaning
of &, as it applies to the network model, we leverage directly
measured discrete topological data.

Fig. 5A and B illustrate the probability mass functions
(PMFs) of stable and dynamic bonds end-to-end stretches,
4 =r/(v/Nb), in the principal direction of loading at the start
and end of relaxation (f = 0.5). The insets display the 2D PMFs
of chain stretch, along with isolated network snapshots at the
start and end of relaxation. As evidenced by the axisymmetric
2D PMF of Fig. 5B (¢* = 4), dynamic bonds reconfigure com-
pletely to an isotropic state, whereas the elongated 2D PMF and
diminished reduction in variance from Fig. 5A confirm that
stable bond relaxation is partial. To quantify modes of stable
bond relaxation, Fig. 5C presents the distributions of single-
chain relaxation strains, &', in the principal directions of the
orthonormal basis {e;, e,}, and the change in end-to-end
norms, ||&'|. Notably, some stable bonds elongate (||¢'| > 0),
indicating that thermal fluctuations stochastically move a
minority of stable bonds to temporarily higher energy states.
However, most stable bonds relax into lower energy states
(I&"] < 0), and shorten in the direction of principal stretch,
e,. In contrast, stable bonds undergo roughly equiprobable
shortening or lengthening in direction e;. Lengthening in e;
can occur due to chain stretching but is confirmed to occur
predominantly due to reorientation.

Fig. 5C confirms that most stable bonds relaxed, but to a
variable degree. Therefore, { cannot be mapped to a single,
physical value, rather it lumps the effects of stable bond short-
ening and reorientation into some effective scalar. Neverthe-
less, we seek to understand how ¢ evolves with respect to f.
First, we recognize that no stable bond relaxation occurs in
permanent networks (i.e., (f = 1) = 0). We also observe that,
some fraction of stable bonds, 1, may fail to relax even in the
limit f — 0 (consistent with studies of highly packed granular
networks that jam through exclusively repulsive forces*””*® or
polymers that exists below their glass transition state due to low
free volume*®). Motivated by these observations, we introduce a
simple phenomenological scaling rule that gives the degree of
stable relaxation as:

v b=/ + 20 =) (13)
When n =1 (i.e., no stable bonds relax, even in the limit f — 0),
eqn (13) devolves into ¢ ~ 1 regardless of the stable bond
fraction, f. This states that if a network of entirely dynamic
bonds deforms affinely and fails to relax stress, then so too will
networks containing increasingly large fractions of stable bonds.
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In contrast, when 7 = 0 (indicative of full stable bond relaxation
for f — 0, which is likely more representative of polymers),
eqn (13) devolves to ¢ ~ 1 — f suggesting that the fraction of
stable bonds that relax over intermediate timescales is propor-
tionate to the relative compositional fraction of dynamic bonds
in the overall network (as seen in the following section for an
experimentally tested gel).

Fig. 5D depicts the degree of stable bond non-relaxation,
1 — &, with respect to f € (0,1] for k4 € {0.1,1,10} and z = 4.
As f increases, 1 — ¢ increases, implying that percolation of
stable bonds inhibits their relaxation. This interpretation is
further supported by the fact that networks with higher coordi-
nation (begetting greater stable bond percolation) display
(1 — &)versusf relations that extrapolate to greater values of
n (Fig. S6, ESIt). Surprisingly, networks in which stable bond
percolation is enhanced by increased chain length - although
well-represented by eqn (12) - do not exhibit higher n suggesting
a diminishing effect of stable bond percolation on relaxation
inhibition. Notably, without sufficient network connectivity
(e.g:, for short chain networks, Fig. S7 and S8, ESIt), the coupled
rule of mixture cannot accurately predict stable bond relaxation,
as it becomes dominated by floppy deformation modes*® at
shorter timescales.

Another factor influencing network percolation is dynamic
bond reaction rates. Networks with higher k4 generally demon-
strate greater stable bond relaxation in the limit f — 0 (y =
0.52 for kq = 0.1 whereas 5 = 0.22 for k4 = 10) (Fig. 5D). Since all
networks relaxed for ¢* = t/kq = 4, one might expect identical
behavior regardless of k4. However, the parameters governing
k, are preserved across simulations so that the steady state
fraction of attached dynamic bonds (p® ~ ki(k. + ka)),
decreases as kg increases. This indicates that x is correlated
with p® and suggests that networks in which k, > kq mitigate
conformational change of stable bonds to a greater extent in a
manner that supports the concept of bond lifetime renormali-
zation discussed in the following section.*?

It must be noted that the failure of stable bonds to relax
below their independent percolation threshold is here attribu-
table to steric interactions arising from the phenomenological
pairwise repulsive potential, node packing, and 2D conditions
utilized in the discrete network. Lowering the degree of repul-
sion or node density, as well as implementing the model in 3D,
would inhibit this effect by increasing the networks’ effective
free volumes.*® While reduced chain mobilization is certainly
observable in polymers below glass transition conditions (e.g.,
low temperature and free volume), even glassy polymers are
expected to relax residual stress over longer timescales at rates
inversely related to polymer packing and inter-chain interaction
strength.>*”>? Therefore, the discrete model is not representa-
tive of long term relaxation, but rather usefully elucidates
the effects of bond kinetics at intermediate timescales
(above the timescale of short term o-relaxation®> but below
the timescale of reptation®?). Nevertheless, the concept of
finite n within polymeric networks is seemingly non-physical
and in the remainder of this work n = 0 (ie, & ~ 1 — f) is
observed.

This journal is © The Royal Society of Chemistry 2023
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5. Coupling effects on dynamic
hydrogel relaxation

To exhibit the utility of the coupled rule of mixture, we apply it to
the stress relaxation data provided by Richardson et al. (2019)°
for hydrazone covalently adaptable, 8-arm, poly(ethylene glycol)-
based hydrogels. These gels contain ‘“‘slower” and “faster”
benzyl-hydrazone (bHz) and alkyl-hydrazone (aHz) bonds with
kinetic dissociation rates of ks and k,, respectively. Here, k, and
kg are not to be confused with the attachment rate, k,, or
Boltzmann constant, kg, described in prior sections. Based on
the experiments’ use of parallel plate rheometry, eqn (12) is
rederived for simple shear conditions as:

6)P/fe—k/;t + gvp/ie—kyt +Pae7k1t]’ (14)

where P = fp and P* = (f — 1)p% f is the fraction of bHz; and p”
and p” are the attached fractions of bHz and aHz, respectively
(* = p* > 0.9 assuming network equilibrium is met before strain
is applied and that the attachment rate is much greater than the
detachment rate) (see ESIt Section SIID for detailed derivations).
Significantly, we have again postulated that the coupled stress
term relaxes at the faster of the two kinetic rates, k,."”

As indicated by Richardson et al. (2019),° and evidenced by
non-exponential relaxation curves for f = {0,1} (Fig. 6A), bHz
and aHz bonds exhibit slower relaxation at longer timescales
than immediately after strain is applied. While a similarly
observed effect in the discrete network model is attributed to
a low free volume-induced, glassy-like state, a more suitable
explanation for this behavior in gels is the bond lifetime
renormalization effect proposed by Stukalin et al (2013),*
which posits that reversible bonds — while detaching at some
mean thermodynamic rate according to an Arrhenius type
equation®>? - relax network stress only as fast as they may
attach into new configurations. Essentially, the renormalized
bond lifetime accounts for functional end groups’ tendencies to
repeatedly dissociate and associate with the same neighboring
chains before diffusing through sufficient space to bind into
lower energy states, thereby retarding the long-tail relaxation
rate. We here incorporate bond lifetime renormalization into
the continuum framework per the details of ESI{ Section SIIE.

To fit the non-exponential relaxation of the experimental
data, we find that we must also account for the change in
polymer chains’ free energies as they are extended beyond their
mean equilibrium stretch of 4 = 1 (where A= r/(v/Nb) for
Gaussian chains®’). Following Eyring’s supposition that intrin-
sic bond lifetime within complex polymer systems decreases
with increasing chain force,>* we utilize Bell’s model®>***™” that
gives the force-adjusted bond lifetime according to:
& — fil\x

kBT )7

a*=P (1 -

T, = To exp( (15)

where i € {o, i} denotes either aHz or bHz; 7, remains the time
it takes a single Kuhn segment to diffuse its own length, b; ¢,
and ¢ are the bond activation energies of aHz and bHz,
respectively; f; is the single chain force from eqn (3); Ax is
the reaction coordinate characterizing the distance from the

This journal is © The Royal Society of Chemistry 2023
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Fig. 6 Experimental validation. (A) The coupled rule of mixture with bond
lifetime renormalization and force-dependent bond dissociation (solid
curves) is fit to the experimental stress relaxation data (circles) for hydra-
zone covalently adaptable network with f € {0, 10, 20, 30, 40, 70, 100}%
bHz. f = O is represented by red and f = 1 is represented by cyan. R> > 0.99
for all values of f. Experimental data adapted from Richardson et al. (2019).
(B) Fitted values of 1 — & (black circles) are plotted with respect to f. The
dotted curve represents the scaling relation 1 — ¢ ~ f (with a correlation
coefficient of R = 0.99). (C and D) The normalized distance between open
stickers, ry,., and bond activation length scale, x*, are plotted against f,
respectively. The dotted curves represent the fits from linear regression
analysis giving correlation coefficients of R = —0.56 and R = —0.30,
respectively.

equilibrium bond length to the activation barrier; kg is the
Boltzmann constant; and T is temperature.

Accounting for both bond lifetime renormalization and
force-adjusted bond dissociation kinetics through eqn (15)
(see ESIt Section SIIE for details) gives the effective relaxation
rate of each respective bond type as:

-1
R

1]
Copen! —. *
k,{ ~ p— K;) eXp — O——* + *;
To Oy Copcn(l -
(16)

and:
1/3 .
(C* ‘f> *
oper 0 [ 1
kp~—~———|Kgexp| =\ | | += , (17)
7o 0o Copenf
where ¢g., = b3copen is the total open sticker concentration,

Copens Normalized by the characteristic Kuhn volume, b%; K° =
exp(e;/kgT) is the dissociation kinetic constant of bond type i €
{a, B} when it connects a chain at the equilibrium stretch (such

Soft Matter
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that the force-free bond lifetime is K;°7); and g, defines the
intrinsic bond dissociation rates sensitivity to internal stress,
where ¢; — oo begets stress invariance. Analytically, o is
treated as a fitting parameter but it is related to the bond
reaction coordinate length, Ax, by:

.
N sin( /)a*, (18)

Ax=b
3py °

where N = 88 is the approximate number of Kuhn segments
of length » = 0.78 nm, based on the molecular weight of the
8-armed, star-shaped macromers used in experiments (M, =
8000 g mol ') and that of ethylene glycol (M, = 44.05 g mol ).
Furthermore, p ~ p” ~ p* > 0.9 is the fraction of attached
chains and y = 0.1 is the experimentally applied shear strain
magnitude.®*" Note that through eqn (16) and (17), the relaxa-
tion rate goes to zero when the open sticker concentration or
bond fraction (f for bHz and 1 — f for aHz) of the corres-
ponding bond type is zero.

This model has five dimensionless free parameters, K2, K%,
Copens 00, and ¢ as well as a fifth unknown parameter, 7,. While
Copens 00, and ¢ are liable to change with respect to the relative
bond fraction, K2 and K}; are intrinsic constants associated with
aHz and bHz bonds, respectively. Furthermore, 7, is the time-
scale of monomer diffusion treated as identical between func-
tional groups since they are on the same order molecular
weight. Therefore, the steps used to fit the model parameters
are as follows:

1. Fit the normalized stress versus time for the purely aHz
network with 7., K9, Copens and o) as the fitting parameters (since
¢ = 0 without bHz present). K is then fixed moving forward for
any networks containing aHz.

2. Fixing 1o, fit the normalized stress versus time for the
purely bHz network with K, ¢;..,, and ¢ as the only fitting
parameters (since ¢ ~ 1 for a network comprised of bHz). K is
fixed moving forward for networks containing bHz.

3. Fit the remainder of the mixed networks’ stress responses
with 6§, ¢5p.,, and ¢ treated as free parameters.

Fitting the parameters per the procedure above and the
methods detailed in ESI{ Section SIIF, the model predicts that
the timescale of tethered monomer diffusion is on the order of
20 ps (consistent with the segmental relaxation timescale of
comparable telechelic bond groups such as poly(isobutylene) at
room temperature).*® It also predicts that the bond activation
energies of aHz and bHz are ¢, = kgTIn K> ~ 38.5 k] mol " and
s = ksTIn K} ~ 85.7 kJ mol ', respectively (where an ambient
temperature of T &~ 293 K is assumed). For comparison, the
activation energy of hydrogen bonding in water is on the order
of 18 kJ mol " while that of single carbon-carbon bond is
upwards 271 kJ mol ' indicating that the model predicts
realistic values.>®> Indeed, fixing these values while treating
¢, Copen» and 0y as fitting parameters for the mixed networks, the
coupled rule of mixture predicts stress responses in excellent
agreement (R* > 0.99) with the experimental data (Fig. 6A).

Soft Matter

View Article Online

Soft Matter

Fitted values of the bHz non-relaxation degree (1 — ¢), average
normalized distance between open stickers (., = copen /> /Nb),
and normalized bond reaction coordinate length (x* = Ax/b
through eqn (18)) are presented in Fig. 6B-D, respectively. The

values of r% . (Fig. 6C) suggest that the distance between open

open
stickers is believably on the order of a chains contour length (here,
Nb ~ 70 nm). Specifically, r;,, ~ 2 indicating that most open
stickers are not within reach of adjacent open sites and thus
partially explaining the appearance of slower relaxation rates over
longer timescales. Interpreting x* (Fig. 6D), we see that the
reaction coordinate length scale is roughly on the order of two
to four Kuhn lengths (where b = 0.78 nm) suggesting that the
distance between the minimum energetic spacing and the transi-
tion length is on the order of 1.6 to 3.2 nm. Alternatively,

recognizing through eqn (3) and (15) that the dissociation rate
for either species may be written as k; = k& exp(3/x*/v/N), then

Jo =+/N/3x* is the stretch at which the dissociation rate
increases by a factor of €' as compared to the force-free rate,
K = (KP1,) . On average, this occurs at a predicted chain stretch
of 4 = 1.8. Note that, while we here simply treat x* as a single
fitting parameter for both species, more accurate fitting is attain-
able by decoupling this length scale for aHz and bHz. However, we
find that decoupling Ax for both bond types into separate para-
meters does not significantly impact the relation between ¢ and f
(the primary focus of this work).

Significantly, neither rj,., nor x* are strongly correlated with
the fraction of stable bonds, f. Thus, while still significant for the
non-exponential relaxation response observed across all hybrid
networks, bond lifetime renormalization and force-sensitive bond
dissociation are not the primary factors influencing differences
observed between these samples. In contrast, the degree of bHz
non-relaxation, 1 — ¢, is strongly correlated with f, justifying the
choice of scaling through eqn (13), under the condition thaty — 0
and ¢ &~ 1 — f.§ Furthermore, it proves necessary to account for
some degree of stable bond relaxation through ¢ to fit the
observed stress response. In other words, a standard rule of
mixture — presuming that all bHz relax no faster than the rate
allowed by k; — does not predict the correct mechanical response.
Together, the necessity of including the coupled rule of mixture
and the strong correlation between 1 — £ and f, suggest that the
degree of coupled relaxation is a significant effect governing the
observed trends as the relative fractions of each bond type are
swept in this model hydrogel.

6. Conclusion

Here we utilized a network model to explore coupled stress
response of networks containing multiple bond types within
one continuous network. We discovered that for a simple 2D
network model whose only relaxation timescale is governed by
bond dynamics, long-term moduli may subsist at low stable

§ As mentioned previously, finite values of n are not expected for polymeric
systems wherein reptation and Rouse diffusion ensure relaxation, especially for
swollen gels whose polymer volume fractions are on the order of 0.01-0.1."!

This journal is © The Royal Society of Chemistry 2023
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bond fractions due to low free volume and hinderance of stable
chain reptation. However, this result is specific to the phenom-
enological repulsive potentials, high packing fractions, and 2D
framework employed in the discrete network model such that it
is not expected to hold in 3D frameworks or real-world systems.
Indeed, stored stress in even tightly packed polymer systems
decays at longer timescales due to segmental relaxation and
reptation.>® Meanwhile, long-term moduli of polymers with
high free volumes (e.g., swollen gels) are likely unaffected by
inter-chain topological volume exclusion. This result neverthe-
less emphasizes the important influence that network topology
has on stable chains segmental relaxation. A more representa-
tive finding of the network model is that even stable bonds may
undergo non-affine, conformational stress relaxation over inter-
mediate timescales due to adjacent dynamic bond reconfigura-
tion. Notably, the rate of stable bond relaxation in the discrete
model - whose only source of stress relaxation is stochastic
bond exchange - coincides with that of the prescribed dynamic
bond dissociation. These effects motivated the introduction of
a novel, dimensionless coupling parameter, ¢, that weights the
degree of stable bond relaxation at rate kq and which inversely
correlates with the stable bond fraction, f. Incorporating this
parameter into TNT, we developed a coupled rule of mixture for
hybrid dynamic networks.

Significantly, the discrete model is a deliberate idealization
formulated to isolate the effects of bond kinetics, thereby
neglecting other first-order physical effects such as polydisper-
sity, segmental relaxation,*>*> poroelastic relaxation,*
damage-induced dissipation,®"®> long-term hydrolysis/degra-
dation,®*®* or reptation.**** These additional confounding
factors emphasize that coupling the relaxation between sepa-
rate bond types is, on its own, not sufficient to encapsulate the
complex dissipative behavior of polymeric systems. Neverthe-
less, to demonstrate the importance of bond coupling, we
employed the coupled rule of mixture through TNT to model
the mechanical response of physical gel networks hosting two,
reversible hydrazone bond types. To account for experimentally
observed strain-dependent relaxation times,>®>*3>°
currently considered the effects of relaxation-retarding bond
lifetime renormalization®*®> and relaxation-enhancing force-
sensitive dissociation.®*® The model predicts that the concen-
trations of open binding sites (governing bond lifetime renor-
malization) and the reaction coordinate length (governing the
sensitivity of force-dependent bond dissociation) are only
weakly correlated with f. However, the coupling parameter
(dictating the degree of relatively stable bond relaxation due
to kinetics of more dynamic bonds) is highly correlated with f.
This provides strong evidence that inter-bond coupling is a
dominant effect that researchers should consider when inves-
tigating networks with controlled fractions of mixed bond
types. The simplicity and robustness of this approach, com-
bined with its compatibility with other first-order physical
phenomena, may render it useful for predictive design of
diverse hybrid networks including elastomers with charge
interactions,'*®>°® vitrimers,® and metallopolymers.”® Therefore,
in future work, this method may be utilized in conjunction with

we con-
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additional modeling approaches for other significant phenomena
(e.g., entanglement, reptation, etc.) to investigate polymer micro-
mechanics or guide design applications.
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