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Abstract—The Internet of Things (IoT) is becoming an indis-
pensable part of everyday life, enabling a variety of emerging
services and applications. However, the presence of rogue IoT
devices has exposed the IoT to untold risks with severe conse-
quences. The first step in securing the IoT is detecting rogue IoT
devices and identifying legitimate ones. Conventional approaches
use cryptographic mechanisms to authenticate and verify le-
gitimate devices’ identities. However, cryptographic protocols
are not available in many systems. Meanwhile, these methods
are less effective when legitimate devices can be exploited or
encryption keys are disclosed. Therefore, non-cryptographic IoT
device identification and rogue device detection become efficient
solutions to secure existing systems and will provide addi-
tional protection to systems with cryptographic protocols. Non-
cryptographic approaches require more effort and are not yet ad-
equately investigated. In this paper, we provide a comprehensive
survey on machine learning technologies for the identification
of IoT devices along with the detection of compromised or
falsified ones from the viewpoint of passive surveillance agents or
network operators. We classify the IoT device identification and
detection into four categories: device-specific pattern recognition,
Deep Learning enabled device identification, unsupervised device
identification, and abnormal device detection. Meanwhile, we
discuss various ML-related enabling technologies for this pur-
pose. These enabling technologies include learning algorithms,
feature engineering on network traffic traces and wireless signals,
incremental learning, and abnormality detection.

Index Terms—Internet of Things, Security, Physical-layer Se-
curity, Malicious Transmitter Identification, Radiometric signa-
ture, Non-cryptographic identification, Physical-layer identifica-
tion.

I. INTRODUCTION

AS a rapidly evolving field, the Internet of Things (IoT),
involves the interconnection and interaction of smart

objects, i.e., IoT devices with embedded sensors, onboard
data processing capabilities, and means of communication,
to provide automated services that would otherwise not be
possible [1]. Trillions of network-connected IoT devices are
expected to emerge in the global network around 2020 [2]. The

Yongxin Liu was with the Security and Optimization for Networked Globe
Laboratory (SONG Lab), Embry-Riddle Aeronautical University, Daytona
Beach, FL 32114 USA, and is with the Department of Computer Science,
Auburn University at Montgomery, Montgomery, AL 36117 USA.

Jian Wang, Shuteng Niu and Houbing Song are with the Security and
Optimization for Networked Globe Laboratory (SONG Lab), Embry-Riddle
Aeronautical University, Daytona Beach, FL 32114 USA

Jianqiang Li is with the College of Computer Science and Software
Engineering, Shenzhen University, Shenzhen, Guangdong 518060 China

Corresponding authors: Jianqiang Li, Houbing Song
Manuscript received October 18, 2020; revised XXX.

IoT is becoming an indispensable part of smart cities, enabling
a variety of emerging services and applications in cities and
communities [3], including in health [4], transportation [5]–
[8], energy/utilities, and other areas. Furthermore, big data
analytics enables the move from the IoT to real-time control
[9]–[11].

However, the IoT is subject to threats stemming from
increased connectivity [12], [13]. For example, rogue IoT
devices, defined as devices claiming a falsified identity or
compromised legitimate devices, can exposed the IoT to untold
risks with severe consequences. Rogue IoT devices could
conduct various attacks: forging the identity of trusted entities
to access sensitive resources, hijacking legitimate devices to
participate in distributed denial of service (DDoS) attacks
[13], and etc. The problem of rogue devices becomes even
more hazardous in wirelessly connected IoT, as the network
traffic is easier to be intercepted and falsified. Hence, from the
perspective of network operators, the first step in securing the
IoT against rogue devices is identifying known (or unknown)
devices and detecting compromised ones. This survey defines
the term Device Detection and Identification to contain two
perspectives: a) Identity verification of known devices. b)
Detection of falsified or compromised devices.

Conventional cryptographic mechanisms use message au-
thentication code, digital signatures, challenge-response ses-
sions, and etc. to authenticate legitimate peers or verify the
identities of message senders [14]. These methods make it
mathematically impossible for the malicious to forge the
legitimates’ identities. Even though cryptographic mechanisms
are effective as long as secret keys are securely protected,
security requirements may not be fully satisfied in pervasively
distributed IoT. Reports have shown that it is possible to
use reverse engineering to access encryption keys or conduct
further exploitations [15]–[19]. Moreover, it is impossible
to install cryptographic protocols into the huge amount of
insecure systems or devices in a short time. Some of those
insecure systems have already become part of critical infras-
tructures [20]–[25]. Finally, cryptographic approaches become
less effective in dealing with hijacked devices. Therefore,
as a supplementary to existing cryptography mechanisms,
non-cryptographic Device Identification with Rogue Device
Detection are needed to secure the IoT ecosystem especially
from the perspective of network operators and cybersecurity
surveillance agents.

Non-cryptographic device identification and rogue device
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Fig. 1. Overview of ML for the Detection and Identification of Rogue IoT Devices

detection have emerged as essential requirements in safety-
critical IoT [26]–[28] or physical layer authentication [29].
Compared with cryptographic approaches, non-cryptographic
approaches aim to identify known devices and detect rogue
devices by exploiting device-specific signal patterns or behav-
ior characteristics [30]. More importantly, non-cryptographic
approaches do not require modifications to the existing sys-
tems that can not be upgraded easily, e.g., ADS-B (Automatic
Dependent Surveillance Broadcasting [31]), AIS (Automatic
Identification System [32]) and etc.

Non-cryptographic device identification and detection are
still challenging. Firstly, the flexible deployment scenarios
and diverse specifications of devices make it challenging to
provide a general solution to derive distinctive features from
signals or network traffic. Moreover, even though machine
learning (ML) and Deep Learning (DL) have the potential to
automatically discover distinctive latent features for accurate
device identification, state-of-art algorithms require intensive
modifications to be utilized in IoT [33]. Therefore, these gaps
motivate us to conduct a comprehensive survey as a summary
of existing works and anticipate the future directions from the
perspective of machine learning.

The scope of this paper and related surveys are compared
in Table I. In general, existing surveys focus on presenting
broad overviews of threats and countermeasures in IoT. In this
paper, we focus on a more specific perspective by providing
a comprehensive survey of machine learning for the detection
and identification of devices in IoT using passively collected
traffic traces and wireless signals, which are easily accessible
to network operators and surveillance agents. Figure 1 presents
an overview of ML for the detection and identification of IoT
devices with relations between concepts in Figure 2. We divide
the IoT device identification and detection into four categories:
device-specific pattern recognition, Deep Learning enabled
device identification, unsupervised device identification, and
abnormal device detection. We identify various ML-related
enabling technologies and tools for this purpose, including sta-
tistical learning, feature engineering, digital signal processing,
and deep learning. These tools include incremental learning,
unsupervised learning, and anomaly detection.

The remainder of this paper is structured as follows. Section

TABLE I
A COMPARISON WITH EXISTING SURVEYS

Surveys Year FD DL DT UD RD
[34] 2020 • • •
[35] 2019 • • •
[36] 2017 • • •
[37] 2016 • • •
[38] 2012 • •
[39] 2010 • • •
This paper 2021 • • • • •

FD: Feature-based specific device identification; DL: Deep
Learning enabled specific deivice identification; DT: De-
vice type identification; UD: Unsupervised device identi-
fication; RD: Rogue device detection.
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Fig. 2. Key concepts in this survey.

II presents a general threat model and attack chain of rogue
devices in IoT. In Section III, we review device type identifica-
tion (Section III-A) and statistical learning on device-specific
feature identification (Section III-B), including conventional
radiometric signature and statistical learning. In Section III-C
we review state-of-the-art Deep Learning (DL) based methods
for device identification with a focus on emerging issues such
as incremental learning, abnormality detection, hyperparam-
eter, and architecture search. A novel emerging approach,
unsupervised device detection, is reviewed in Section III-D. In
Section IV, we present methodologies to detect compromised
wireless devices using anomaly detection algorithms, which
is complementary to device-specific identification. Section V
pinpoints the challenges and future research directions with
discussions on enabling technologies. Section VI concludes
this paper.
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II. THREAT MODE OF ROGUE DEVICES IN IOT

This section briefly reviews the threat modes of rogue
devices along with countermeasures in IoT. We analyze the
attack chain and identify the requirements of IoT device
detection and identification: verifying legitimate devices’ iden-
tity, detecting unknown or falsified devices, and detecting
compromised (hijacked) devices with abnormal behaviors.

The cyberinfrastructure of IoT allows sharing information
and collaborating among devices with different capacities and
vulnerabilities. On the one hand, this scheme cultivates a
large open system with low entry restrictions. On the other
hand, adversaries can conduct rogue activities with great
convenience [40]. Generally, the attack modes of adversaries
in IoT are in two folds: passive attack and proactive attacks.
In a passive attack, adversaries do not cause damage or perfor-
mance degradation for a long time. Still, they passively analyze
devices’ communication and activity patterns, providing plans
for attacks in the future. If we regard passive attackers as spies
secretly and peacefully gathering intelligence, the proactive at-
tackers do whatever possible to conduct malicious activities. In
practical attacks, proactive and passive attacks are combined.
A typical attack chain in IoT is shown in Figure 3 with a
more specific demonstration of spoofing attacks depicted in
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Message consumer
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Legitimate 
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This is device C 
with message x

Hijacked 
device C

Fig. 4. Identity spoofing attacks.

Figure 4. We divided the whole attack chain into five stages
as follows:

1) Penetration: In this stage, the rogue devices try to
eavesdrop on communication channels or attain the
control privileges of vulnerable devices for further ac-
tions. Research in [41] shows that using ARP (Address
Resolution Protocol) spoofing, the malicious can easily
observe ongoing traffic generated by connected IoT
devices from more than 20 manufacturers. Nowadays,
it is still challenging to develop software stacks with
assured security [42].

2) Spying: In this stage, the malicious will observe the

TABLE II
COMPARE OF CRYPTOGRAPHIC AND NON-CRYPTOGRAPHIC COUNTERMEASURES

Methods Principles Advantages Challenges

Cryptographic

Use shared secrecy to mathematically
make the decryption of sensitive
information and forge of identity
computationally expensive.

• Device independent
• Protects both confidentiality
and can verify identity

• Disclosure of secret keys.
• Re-distribution of secret keys.
• Needs special adapation to
existing systems.

Non-cryptographic

Extract and verify device-specific
features from received messages to
assure that messages are from known
sources.

• Device-specific.
• Can identify Hijacked
devices with abnormal behaviors.
• compatible with existing IoT

• Computationally expensive.
• Identity disclosure.
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ongoing activities by exploiting penetrated devices as
its agents. As in [41], more than 50% of tested popular
smart home IoT devices contain at least one vulnerable
ports.

3) Data analytics: The malicious attackers analyse the
behaviors and evaluate the vulnerabilities of the IoT
from multiple perspectives. An example in [43] reveals
that even if encryption mechanisms are employed, an
attacker can still extract sensitive information, such as
manufacture, device functionality, and etc.

4) Planning: In this stage, the adversaries perform strategic
planning and wait for the best time to minimize their risk
and maximize the rewards.

5) Attack: In this stage, prevalent attacks are in action.
From the perspective of network operators or cybersecurity
surveillance agents, if we can prevent the adversaries from
successfully impersonating legitimate devices in the first stage
(penetration) or can identify hijacked devices in the second
stage (spying). Network operators and surveillance agents can
destroy the whole attack chain easily.

Various countermeasures can be applied in IoT device
identification and detection. Both cryptographic and non-
cryptographic methods can be applied. A brief comparison
of them is presented in Table II. Cryptographic methods
are widely used in computer networks and telecommunica-
tion systems. However, special modifications are needed to
deploy cryptographic protocols to existing systems without
cryptographic protocols such as ADS-B, AIS, and etc. Non-
cryptographic methods require higher computational capacity
to derive device-specific fingerprints, but they are transparently
compatible with existing systems.

III. LEARNING-ENABLED DEVICE IDENTIFICATION IN IOT

This section reviews methods to recognize devices’ iden-
tities and types in IoT. Most of them are based on network
traffic and wireless signal pattern recognition. We first review
device type identification methods, which are widely used
in identifying commercial IoT devices. We then discuss and
compare the corresponding signal feature based device recog-
nition approaches. Especially, we discuss Deep Learning in
device identification with emerging issues extensively. Finally,
we review the unsupervised device identification and its open
issues. A brief summary of open datasets for wireless device
identification is provided in section V-A4.

A. Device type identification

Even though device types are not directly related to devices’
identities, they still provide essential information for network
management and risk control. A brief diagram of typical
IoT devices considering their protocols is in Figure 5, and
comparisons of their Physical Layer, Data Link Layer as well
as aggregated data transmission characteristics are presented in
[44], [45] and [46]. As in Figure 5, WiFi is pervasively utilized
in smart home devices while smart city facilities prefer reliable
cellular networks. Device type identifications are frequently
performed on network, transportation, and application layers
and have been implemented in Software Defined Network

(SDN) controllers or Software Routers [47]–[49]. Device
types reveal functionality and activity profiles. A taxonomy of
features for device type identification is presented in Figure 6.

Fig. 5. Typical IoT devices and protocols.

As in Figure 6, remote service is a popular attack surface
to disclose the device type or even identity. The reason is that
the IoT devices communicate with remote service providers
through the REST API [50]. Even though sensitive data are
encrypted, some unique strings in their Web requests can still
be exploited to infer device types. Authors in [51] present
that using only port numbers, domain names, and cipher
suite information, a Naive Bayesian classifier can reach high
accuracy in classifying 28 commercial IoT devices.
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Storage
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Fig. 6. Features for device type identification.

However, remote service information may not work if
devices interact with anonymous service providers. For alle-
viation, device activity and data flow patterns can be utilized.
Authors in [52] propose that their Random Forest classifier
reaches a high accuracy of 95% in identifying 20 IoT devices
when the features of activities, network data flows, and remote
service requests are utilized simultaneously. In [53], devices’
types are identified based on the periodicity of activities.
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The authors first used the Discrete Fourier Transform (DFT)
and discrete autocorrelation to find the dominant periods
in protocol-specific activities. They then used statistical and
stability metrics to model the devices’ behavioral patterns.
Finally, the Bayesian-optimized k-Nearest Neighbor algorithm
was employed for classification. In [54] and [55], the authors
extracted the protocols and network flow properties within a
sliding window to generate fingerprints of devices. They used
one-versus-rest classifiers to identify commercial devices. In
[56], The authors first provided a Random Forest classifier
using TCP/IP stream features. They incorporated confidence
thresholds and averaged decisions within a sliding window to
identify known or unknown device types. Similar research is
presented in [56] and [57]. In [58], the authors also present
that network traffic, device types, and their operation states
(boot, active, and idle) can be inferred simultaneously.

An extra benefit of modeling device activity patterns is in-
creasing the chances of identifying behavioral variations. Such
benefit directly contributes to the detection of compromised
devices or network attacks, which will be discussed in section
IV.

Deriving devices’ benign flow characteristics is nontrivial,
therefore, the IETF standard Manufacturer Usage Description
(MUD) profile [59] is proposed as an initial static profile to
describe IoT device network behavior and support the making
of security policies. A collection of MUD profiles from 30
commercial devices in [60]. The MUD profiles can be used
to either verify device types or detect devices under attack
or being compromised [61]. However, one issue of using the
static profiles is that long observation time is needed to make
decisions.

Device identifiers based on network flow and activity
patterns may encounter emerging issues. First, IoT devices
are becoming smart devices where new extensions can be
installed, and firmware upgrades can happen periodically,
thereby changing activity patterns or network flow statistics,
as suggested in [62], [63] and [51]. Second, deriving relevant
and distinctive features is not always easy and straightforward.
To automate the processes of deriving useful features, in [57],
the authors proposed a Genetic Algorithm (GA) enabled fea-
ture selector. Furthermore, a Deep Neural Network approach,
which does not require complicated feature engineering, is
presented in [64]. Third, device types do not necessarily
correlate with their identities. Therefore, behavior-independent

specific device identification is of great significance..

B. Feature-based statistical learning for specific device iden-
tification

IoT device identification can be formalized as a classifica-
tion problem. In this section, we first introduce the generic
pipeline for signal reception and then focus on feature-based
statistical learning approaches for specific device identification
from raw signals and their open issues.

1) Generic wireless signal reception pipeline for device
identification: Software-Defined Radios (SDR) are multipur-
pose front-ends to deal with various modulation and baseband
encoding schemes in wireless device identification. Funda-
mental technologies in SDR are quadrature modulation and
demodulation [65].

Generally, the wireless signals of IoT devices can be repre-
sented as: S(t) = I(t) ·cos[2π(fc+f ′)t]+Q(t) ·sin[2π(fc+
f ′)t], where I(t) and Q(t) are denoted as in-phase and
quadrature components, respectively. The key idea is use I(t)
and Q(t) to represent different modulation schemes.

A brief quadrature demodulation pipeline is given in Fig-
ure 7. We denote the reconstructed version of I(t) and
Q(t) as Î(t) and Q̂(t), respectively. We can derive the
signals instantaneous amplitude, phase, and frequency by

m̂(t) =

√
Î2(t) + Q̂2(t), φ̂(t) = tan−1(Q̂(t)/Î(t)) and

f̂(t) = ∂φ̂(t)/∂t. Manufacturing imperfections and channel
characteristics can cause m̂(t), φ̂(t) and f̂(t) to deviate from
its original form, providing side channels to identify wireless
devices. A brief overview of features for IoT device identity
verification using wireless signals in Physical Layer is given
in Figure 8. The features for wireless device identification are
also named Radiometric Fingerprints.

2) Hardware imperfections: Heterogeneous imperfections
exist in IoT devices’ wireless frontends. These imperfections
do not necessarily degrade the communication performance
but influence signal waveforms, thereby providing a side
channel to identify different devices. Such features enclosed
in transmitted signals are named Physical Unclonable Features
(PUF) [66], [67]) since regular users can not clone or forge
the characteristics of these manufacturing imperfections.

a) Error / noise patterns: The errors between expected
rational signals and actual received signals can disclose useful
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device-specific information. In [68] and [69], the authors used
the phase errors of Phase Lock Loop (PLL) in transmitters
as a distinctive feature. Their simulations indicate promising
results even with low SNR (Signal-to-Noise Ratio). In [70], the
authors used the instantaneous differences between received
I/Q signals and theoretically expected templates to construct
error vectors. They combined error vectors’ statistics and time-
frequency domain statistics to synthesize the fingerprints of RF
transmitters.

In [71]–[73], the authors used the differential constellation
trace figure (DCTF), carrier frequency offset, phase offset,
and I/Q offset to identify different Zigbee devices. They
developed a low-overhead classifier, which learns how to
adjust feature weights under different SNRs. The behaviors of
their classifiers are similar to k-NN algorithms. Authors in [74]
used the odd harmonics of center frequencies as fingerprints
for RFID transmitters.

b) Persistent patterns: Persistent pattern recognition as-
sumes that the statistics of consecutive subregions in received
signals can disclose identity-related information. A typical
method is named as RF-DNA (Distinctive Native Attributive
[75], [76]. The basic idea is to use the statistical metrics of
signals’ consecutive subregions to form device fingerprints.
A brief dataflow of RF-DNA is given in Figure 9. In [77]–
[79], the authors captured the preamble of WPAN (Wireless
Personal Area Network) signals and extract the variance, skew-
ness, and kurtosis of signals’ subregions (bins) as signatures.
Research in [80] showed that RF-DNA can even be applied to

model the Fourier spectrum of devices.
From the perspective of Stochastic Process, a sequence of

signal symbols can be regarded as a sample from a multivariate
distribution. The parameters of such distribution represent
the unique fingerprints of a wireless transmitter. With this
idea, the authors in [81] used the Central Limit Theorem and
proposed a repetitive stacking symbol-based algorithm. They
modeled that the preamble of each packet as a sample from a
specific multivariate distribution. They extracted statistics from
the preambles of ZigBee devices and employed Mahalanobis
Distance and nearest neighbor algorithm to identify 50 Zigbee
devices.

Regional statistic vectors from complete messages can un-
intentionally embed protocol-dependent features and result in
unreliable device identification models. Therefore, if we only
extract persistent features from the protocol-agnostic part of
the signals (e.g., preambles), the resulting device identification
model will focus on signal features rather than communication
protocols.

c) Transient patterns: Compared with persistent statistics
of signals’ subregions, transient patterns are more difficult to
forge in terms of wireless channels [82]. An example of tran-
sient periods in wireless communication is given in Figure 10.
Transient periods are commonly seen at the beginning and end
of wireless packet transmission. In [83], the authors employed
the nonlinear in-band distortion and spectral regrowth of the
received signals (potentially caused by power amplifiers of
transmitters) to distinguish the masquerading device. In [84],
the authors derived the energy spectrum from transmitters’
turn-on transient amplitude envelopes to classify eight different
devices. The results show that frequency-domain features are
more reliable than time-domain features. In [85] and [86],
the time-domain statistical metrics and wavelet features of
transmitters’ turn-on transient signals were transformed into
devices’ RF fingerprints. Finally, it is notable that the authors
in [87] captured the turn-on transient signal of Bluetooth
devices and extracted 13 time-frequency domain features (via
Hibert-Huang spectrum) to construct the devices’ fingerprints.
Their experiments have shown that well-designed fingerprints
provide promising results even without using complicated
machine learning models.

The merit of transient features is that an adversary could
not forge such nonlinear features unless they can accurately
forge the coupled characteristics of pair-wise wireless channels
and RF front-ends between victims and surveillance agents.
In other words, the transient features can be influenced by the
locations of devices, as different locations can result in vari-
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period

Time
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Fig. 10. Transient periods during wireless communication.



IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 5, MAY 2020 7

ation of RF channel characteristics, e.g., transient responses,
machine learning algorithms can produce accurate but unre-
liable device identification results by exploiting RF channel
characteristics rather than learning device-specific features.

3) Channel state features: : From the perspective of signal
propagation, the nonlinear characteristics of radio channels
can cause recognizable distortions to the received signals.
Those distortions can become unique profiles of transmitters.
Therefore, the channel state recognition approach’s basic idea
is to: a) mathematically or statistically describe the nonlinear
characteristics of the propagation channel within receivers and
transmitters. b) Estimate whether a wireless device’s signals’
distortions comply with specific channel characteristics. A
typical solution was provided in [94], the authors used a kernel
regression method to model the nonlinear pattern of signals’
propagation channels. Their basic idea is that the combination
of frequency offsets and special channel characteristics may
not be forged easily, and therefore, can be used as a profile
for wireless devices.

Channel state features are commonly seen in Orthogonal
Frequency-Division-Multiplexing OFDM modulated commu-
nication systems. In the OFDM and MIMO schemes of wire-
less communication, the channel state information (CSI) [95],
[96] can provide rich information on the time-varying char-
acteristics of radio channels. IEEE 802.11 receivers estimate
CSI during the reception of each packet’s preamble. For each
packet, its CSI is expressed as a complex-valued Tn by Rm by
K matrix H along with a noise component n ∼ CN (0,S),
where Tn denotes the number of transmitter’ antennas, Rn

denotes the number of receivers’ antennas, K denotes the
number of sub-carriers and n denotes the complex-valued
Gaussian random variable with mean zero and covariance
matrix S. Each complex-valued element in H provides the
instantaneous phase and amplitude response of antenna-wise
channels at specific subcarriers.

Channel state information directly reveals the phase, fre-
quency, and amplitude responses of radio channels and has
been utilized to identify fixed-position wireless transmitters.
Specifically, CSI is affected by propagation obstacles, signal
reflections, and even baseband data patterns [96]. In [97], a
CSI based device identification scheme was proposed. The
authors used averaged CSI to construct an SVM based profile
for each legitimate device to prevent and identify spoofing
attacks. They compared CSI and RSS based approaches and
demonstrated the superiority of CSI. Another merit of their
solution is utilizing the two-cluster k-means algorithm to de-
tect the presence of rogue IoT transmitters when constructing
legitimate devices’ profiles. Similar research was presented
in [98], legitimate devices’ CSI from multiple locations are
collected to train a more robust device identification model.
Comparably, in [99], the authors used the information from
CSI to model the radiometric signatures of obstacles within
the signals’ propagation path. They provided an iterative
differentiation approach to derive the weights and factor out
the multipath components in the received signals.

Except for wireless channel characteristics, CSI can disclose
RF transmitter-specific information for persistent feature-based
device identification. Related researches are as follows:

Channel state 
information

Persistent  pattern 
recognition

Transient  pattern 
recognition

Transmitter 
specific features

Channel specific 
recognition

Location based 
recognition

Direct recognitionIndirect recognition

Time/phase of 
arrivals

Fig. 11. A brief overview of channel state recognition and related approaches.

• Carrier Frequency Offsets (CFOs): In [100], the authors
propose to derive Carrier Frequency Offsets (CFOs) from
CSI as devices’ fingerprints. Their primitive hypothesis
was that the constant CFOs can cause a linearly vary-
ing trend in instantaneous phases in received signals.
Specifically, the authors first used phase measurements
on specifically selected subcarriers to eliminate phase
shifts at the receiver of the device identification oracle.
They then used the differentiated phases from adjacent
packets to eliminate the phase shifts introduced by the
relative positions of transmitters. Finally, they derived
the carriers’ frequency offsets by the slope (relative to
the time intervals of adjacent packets) of the purified
instantaneous phase.

• Phase errors: Authors in [101] used the summation of
selected subcarriers’ instant phases to extract the rationale
arrival phases of subcarriers. They then estimated and
subtracted the rationale arrival phases and receivers’
insertion phase lag to derive the phase error caused by the
transmitters’ internal imperfections. A drawback of their
approach is they need to estimate the Time of Flight (ToF)
of received packets.

A summary of device identification based on channel state
features is in Figure 11. The drawbacks of channel state
features are apparent. For one thing, researches show that
channel state features can even be influenced by the motions
of obstacles in subcarriers’ propagation path [102]–[104]. On
the other hand, the channel characteristics are environment-
oriented. Consequently, using channel state features based
device identifier in indoor or mobile environments with human
activities is still challenging [105], [106].

It should be noted that a great majority of CSI enabled
researches depend on limited categories of Network Interface
Cards (NICs) for data collection, owing to the limitation of
CSI Tools [95]. However, the authors in [107] provided a
new way. They used generic SDR transceivers to extract the
Long Training Sequences (LTS) in the preambles of IEEE
802.11n pilot carriers and successfully identified more than
50 Network Interface Cards. They showed that by exploiting
the frequency offsets and comparing LTS frequency responses
of adjacent pilot carriers, they even derived a location-agnostic
device identification model.

4) Cross domain features: Many researchers convert sig-
nals to other domains that are more distinguishable. A straight-
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TABLE III
INFLUENTIAL FACTORS FOR FEATURE-BASED SPECIFIC DEVICE IDENTIFICATION

Influential factors1 Persistent feature
recognition

Transient feature
recognition

Channel status
recogniton

Cross-domain
recognition

Hybrid
approaches Countermeasures Reference

Stationary noise Median
(Exc. noise pattern) Median Low Median Low

• Denoise filtering.
• Data argumentation [81], [88]

Rx imperfections Median Median Median Median Median
• Adaptive filtering.
• Calibrations [89], [90]

Co-channel devices High High Low High High
• MIMO receivers.
• Blind signal separation [91], [92]

Channel features Median Median High Low Low • Adaptive filtering [89]

Baseband patterns Median
(Exc. noise pattern) Low Median Low Low • Message-independent

features
[93]

1 High: solutions include hardware modifications; Median: solutions are software-based but require high capacity processors; Low: Software-based optimal
solutions are available and compatible with regular processors;

forward way is to remap signals into the time-frequency
domain [108]. In [109], the authors used the STFT (Short-Time
Fourier Transform) with the SVM algorithm to identify four
different transceivers. This research is comparable to [110],
where Discrete Gabor Transform (Gaussian windowed STFT)
was employed.

Other signal transformation methods can be utilized. In
[111], [112], the authors utilized the wavelet transform as
well as classifiers (SVM and Probabilistic Neural Network)
to construct a device identifier, compared with [109], they
also used the PCA algorithm to reduce the redundancy of
the extracted data. In [113], the authors provided a nor-
mal frequency-based method along with PCA and SVM to
distinguish devices in the GSM band. They compared their
method with Hibert-Huang Transform based method in [114].
Similar work presented in [115], showed that Variation Mode
Decomposition theoretically provides even better performance
than the conventional EMD method for relaying scenarios.
Please note that Bispectrum is also widely utilized. In [116],
the energy entropy and color moments of the Bispectrum com-
bined with Support Vector Machine (SVM) were employed to
simulate the possibility of device identification. Their results
indicated that higher-order statistics can theoretically improve
the performance of identification under low SNR. However,
other authors [117] claimed that compared to Bispectrum, the
squared integral bispectra (SIB) is more robust to noise while
providing the same amount of information as the Bispectrum.
In [118], the authors employed singular values of the Axial
Integrated Wigner bispectrum (AIWB) feature to identify
spoofing signals from genuine signals in navigation satellite
systems (GNSS).

5) Hybrid methods: A large number of device-specific
features have been discovered along with different signal trans-
form techniques. Hybrid methods aim to find the optimized
combinations of features from different domains to derive
robust identification models. In [119], the authors extracted
the signals’ energy distribution from wavelet coefficients [120]
and used k-NN and SVM to identify eight devices. Their
test showed that this k-NN requires higher SNR than SVM.
In [121], the authors applied Intrinsic Time-Scale Decompo-
sition (ITD) [122] to input signals. They extracted factual,

bispectrum, and energy features from all subchannels of ITD
decomposition subsignals, their test on SVM shows that more
features can significantly improve device identifiers’ perfor-
mance.

Although integrating signals’ features from multiple do-
mains can provide promising device identification results, the
redundant information within the integrated features requires
complicated models and considerable processing capacity.
Therefore, automatic feature selection is introduced and be-
comes an indispensable part. Research in [77] demonstrated
that properly selected features, particularly from the F-test
and MLF methods, enable a significant (80%) reduction of
redundancy. In [123], the authors captured the pilot tones of
the OFDM signals and extract a series of features relative
to the rational signal. They used an information-theoretic
approach to select useful features for device identification. In
[124], four types of features, scramble seed similarity, carrier
frequency offset, sampling clock offset, and transient pattern,
were used for the physical layer fingerprints of WiFi devices.

A comparison of device-specific feature-based approaches
in Table III, hybrid approaches have superior performance
under various influential factors, since the automatic feature
selection methods can remove irrelevant information and pro-
vide an optimal combination of features. However, hybrid fea-
tures could bring side effects, especially in statistical learning
algorithms: a) The complicated combination of a large number

TABLE IV
A BRIEF COMPARE OF CLASSIFIERS IN DEPLOYABLE WIRELESS

TRANSMITTER IDENTIFICATION SYSTEMS

Approach Application
overhead

Continual
learning

Abnormality
detection

k-NN Depends on the size of
fingerprint library.

Natively
supported

Clustering or
statistical models

SVM Depends on the number
of feature dimensions

Knowledge
replay

One-class
SVM

Random
forest

Depends on the number
of decision trees.

Knowledge
replay

Isolation
forest

Neural
network

Depends on structural
complexity

Section
III-C2d

Section
III-C2c
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of features can result in a highly accurate identifier with
its internal mechanism not interpretable. b) High dimension
features can potentially result in complicated models that are
computationally expensive to retrain for operational variations.
We can make better use of hybrid features in Deep Neural
Networks, which will be discussed in Section III-C.

6) Open issues: In general, the following issues need to
be investigated in feature-based statistical learning for specific
device identification:

1) These methods require efforts to manually extract fea-
tures or high-order statistics, the quality of handcraft
features dominates device identification performances.
E.g., authors in [129] showed that the combination of
permutation entropy [130] and K-NN even surpasses
combination of bispectrum [131] and SVM in [116].

2) Experiments are conducted in rational environments
with a limited number (less than 30) of IoT devices.
Therefore, publicly available datasets containing sig-
nals from a larger number of IoT devices are needed
to provide a reliable benchmark. Currently, publicly
available datasets for IoT device identification from
wireless signals are still limited. Some small datasets are
available in [132], [133] and [134] while a larger dataset
but with only ADS-B signals is available in [135].

3) There’s no guarantee whether a specific type of feature
is time-invariant. Therefore, this type of system should
incorporate wireless channel estimation approaches to
identify real device-specific patterns.

4) A brief comparison of the device-specific feature-based
wireless device identification with influential factor is
given in Table III, co-channel devices have the most
significant impacts among all solutions. Unfortunately,
there’s limited research in dealing with it.

5) A deployable wireless device identification system
should have the capacity to report unknown abnormali-
ties and continually evolve and adapt to operational vari-
ations. A comparison of frequently employed statistical
learning algorithms on incremental learning and abnor-
mality detection is in Table IV. Among these algorithms,
only k-NN provides intuitive and native supports for in-
cremental learning and abnormality detection. However,
k-NN is insufficient in handling complicated features.
Though SVM or Random Forest could handle more
complicated features, they lack the incremental learning
and abnormality detection abilities and explainability.

C. Deep Learning enabled specific device identification

The feature-based statistical learning approaches require
manual selection of useful transforms or features. In contrast,
deep neural networks (DNN) can incorporate existing features
or directly deal with raw inputs and derive latent distinctive
features. Therefore, Deep Learning enabled device identi-
fication mechanisms are increasingly investigated. A brief
comparison of device-specific feature-based statistical learning
and deep learning based approaches are presented in Table
VII. In this section, we discuss typical deep learning enabled
wireless device identification solutions and then focus on open

Input FiltersFilters
Results

Input Convolution 
layer

Convolution 
layer

Fully-connected 
layer

Fig. 12. Typical architecture of deep neural network classifiers

issues that impede the application of deep learning in IoT
device identification.

1) Case studies and comparisons: A typical Deep Neural
Network enabled classifier is depicted in Figure 12. Generally,
it employs convolutional layers to extract latent features and
uses fully connected dense layers to produce final results. Deep
Neural Networks with convolutional layers are also referred as
Covolutional Neural Networks (CNN).

Deep neural networks can be seamlessly integrated with
existing feature engineering methods. In [127], the authors
used the differential error between the reconstructed rational
signals and received signals to train Deep Neural Networks to
distinguish Zigbee transceivers. In [136], the authors compared
the effects of short-time Fourier features and wavelet features
for device identification, and their results show that wavelet
features can outperform Fourier features. In [126], the authors
extracted the 1-D Regions of Interest (ROIs) from 54 Zigbee
devices’ preambles under different SNRs and then resampled
the signals within ROIs into various substreams with different
sample rates. Finally, the substreams were fed into a convo-
lutional neural network for identification. Similar ideas are in
in [125], [137] and [138].

Compared with the conventional fully connected neural
network, convolutional layers apply filters (a.k.a. kernels)
with much fewer parameters to obtain distinctive informa-
tion. In [88], the authors proposed a combined solution to
denoise signals and identify devices simultaneously using an
autoencoder and a CNN network. The authors used their
encoder to automatically extract relevant features from the
received signals and use the derived features to train another
deep neural network for device identification. Similar methods
are presented in [139]. In [128], the authors provided an
optimized Deep Convolutional Neural Network approach to
classify wireless devices in 2.4 GHz channels and compare
the performance with SVM and Logistic Regression. Their
results showed that, even by using raw I/Q digital baseband
signals, CNN can achieve high accuracy and surpass the best
performance of SVM and Logistic Regression. In [132], neural
networks were trained on raw IQ samples using the open
dataset1 from CorteXlab. Their results also showed that CNN
can achieve promising results even on raw I/Q signals, but the
movement of devices and the varying amplitudes can degrade
CNN’s performance.

An extensively discussed topic for Deep Learning based de-
vice identification is preventing the network from learning only
trivial features, such as protocol identifiers, unique identifiers,

1https://wiki.cortexlab.fr/doku.php?id=tx-id
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etc. Generally, three types of countermeasures are applied, and
their comparisons are provided as in Table V.

Compared with feature-based device identification ap-
proaches, Deep Learning methods usually require a much
larger dataset to initialize the network. To know how large
the training data is needed. In [140], CNN models were used
to classify different devices’ signals with controlled difficulty
levels. The classification accuracy of a fixed CNN network
with different dataset sizes was predicted using a power-law
model and the Levenberg-Marquardt algorithm. Their results
show that the dataset size should be at least 10,000 to 30,000
times the number of devices to be identified. However, this
conclusion is only a rough estimation.

New architectures in Deep Learning are emerging and can
significantly influence the performance of device identifica-
tion systems. In [125], the authors used Convolutional Deep
Complex-valued Neural Network (CDCN) and Recurrent Deep
Complex-valued Neural Network [141] to address the device
identification problem. Their networks utilized fragments of
raw I/Q symbols as input, and their test was conducted on
both WiFi and ADS-B datasets. Their experiments show that
the Complex-valued neural networks surpass regular real-
valued deep neural networks. In [142], [143], a zero-bias
dense layer was proposed. The authors have shown that their
solution enables deep neural networks’ final decision stage to
be transparent. Their zero-bias deep neural network maintains
equivalent identification accuracy and outperforms regular
DNN and one-class SVM in detecting unknown devices.

2) Open issues in Deep Learning for IoT device identifica-
tion: Deep Learning is becoming a promising technology in
this domain. However, as in other domains, Deep Learning
encounters several challenges. Although researches in IoT
device identification rarely cover the issues, we briefly discuss
their current states and solutions.

a) Hyperparameter searching: One critical problem for
using deep neural networks is hyperparameter tuning. Hyper-
parameters such as learning rate, mini-batch size, dropout rate,
etc. are used to initialize the training process. Hyperparame-
ters can significantly impact the performance of deep neural
networks. For instance, in [151], the authors compared the
performance of Deep Neural Networks, Convolutional Neural
Network, and the LSTM (Long Short Term Memory) in device
identification using the raw I/Q signals directly. Their results
showed that CNN has the best performance, followed by DNN

and LSTM. They have pointed out that the hyper-parameters
of Deep Learning, especially for network architectural param-
eters, significantly influence the upper bound of performance.

Obtaining optimized hyperparameters is computationally
expensive. Several strategies are proposed for efficient hy-
perparameter searching, such as grid search, random search,
prediction-based approaches, and evolutionary algorithms.
Their characteristics are as follows:
• Grid search: Grid search divides the whole parameter

space into identical intervals and performs brute-force
trials to find optimal parameter combinations. However,
this strategy is inefficient since useless combinations of
parameters can not be pruned rapidly.

• Random search: In random search, sample points are
distributed uniformly in the search space. This strategy
increases the variation and outperforms the grid search
when only a small number of parameters can impact the
network performance.

• Prediction-based: In prediction-based approaches, the
algorithms first perform random trials at the beginning
to model the relation between the network performances
with hyperparameters. Then the algorithms perform new
trials based on parameters that are more probable to
yield better results. Such trial-model-predict paradigm is
conducted repeatedly [152]. A typical prediction strategy
is the Bayesian optimization process [153], in which the
algorithms model the target outcome space as Gaussian
processes.

• Evolution based: In evolutionary algorithm based ap-
proaches, the heuristic searches are performed as in other
nonlinear optimization problems. In [154], the authors
used the Genetic Algorithm to find the optimal hyperpa-
rameters of a neural network. Compared with prediction-
based approaches, evolutionary algorithms provide the
best guess with bio-inspired strategies. However, there
is no guarantee for the performance of evolutionary
algorithms.
b) Neural network Architecture search: Network Archi-

tecture Search (NAS) is another challenging task in designing
neural networks. Network architecture defines the flow of
tensors and could significantly affect the complexity and
performance of neural networks [155], [156]. At the current
stage, most network architectures are specified manually or
with trial-and-error.

TABLE V
COUNTERMEASURES TO PREVENT LEARNING FROM TRIVIAL FEATURES

Reference Methodology Description Challenges

[125] Fragmenting
The raw I/Q signals are split into
small signal fragments
or only use the preambles of packets..

Long range dependent features
will be destroyed after fragmenting

[126] Masking One can directly mask or remove the
trivial parts in raw signals.

The position and length of the
masking bits or discontinuity can
leak protocol information

[127], [128] Randomization One has to force transmitters to send random
contents

One has to gain the access of
large number of transmitters to
train a reliable classifier.
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Architecture searching algorithms are provided by several
Automatic Machine Learning (AutoML) platforms. A brief
comparison of their functionality and performance on different
datasets is in [157]. A collection of recent literature and open-
source tools are given in [158] and [159] respectively. These
efforts can be classified into three categories: (i) network
pruning [160], (ii) progressively growing [161], and (iii)
heuristic network architecture search [162]. Their features are
as follows:

• Network pruning: Network pruning algorithms use
group sparsity regularizers [163] to remove unimportant
connections from a regularly trained network. Then the
pruned network will be retrained to fine-tune the weights
of the remaining connections [164], [165]. A key benefit
of network pruning is that it can greatly compress neural
networks and make them suitable to deploy in low
capacity IoT devices.

• Progressively growing: This strategy grows a neural
network architecture during training. It is effective in
simple networks with only one hidden layer [166], [167].
More recent advances employ growing strategies to pro-
gressively add nodes and layers to increase the network’s
approximation ability [168], [169].

• Heuristic network search: In heuristic network search,
the architecture of the Deep Neural Network (which can
either be block-wise [170] or element-wise [171]) can
first be represented in a high dimension space with bil-
lions of parameters. Next, heuristic searching algorithms
are applied to transverse this search space to find the
optimal solutions. Examples are given in [162], [172]
and [173]. The authors used the Genetic Algorithm to
find the possible structure of neural networks. Notably,
the Genetic Algorithm fits perfectly in NAS problems
since it allows using length-varying variables (genes) to
encode the candidate solutions. An empirical example is
the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [172].

• Reinforcement Learning: Reinforcement learning (RL)
has become a popular strategy in NAS [174]–[176].
The basic idea is to let a deep learning-enabled agent
explore network architectures’ representative space and

use validation accuracy or other metrics as rewards to
adjust the agents’ solutions. Ideally, as an RL process
moves on, an agent can find an optimal searching strategy
and discover a novel architecture. Intuitively, evolution
algorithms use a fixed strategy to discover the optimal
architecture while RL agents learn their own strategies
and have better capabilities in avoiding bad solutions.

• Differentiable space search: Aforementioned, NAS
strategies use discrete space to encode the architecture of
neural networks, which is not differentiable and lacks ef-
ficiency. Therefore, differentiable spaces to represent the
Neural Networks’ architectures are proposed, in which ef-
ficient off-the-shelf optimization algorithms can be used.
Typical solutions are given in [177], [178]. The algorithm,
DART (Differentiable Architecture search), is presented.
The authors used the Softmax function to represent the
discrete selections in a numerically continuous domain.
They then used a gradient descent algorithm to explore
the search space. Similar work with an enhanced stochas-
tic adaptive searching strategy is in [179]. Block-wise
representations of the neural network and differentiable
searching space together are bringing NAS to practice.

Network architecture search has become an emerging topic
for deep neural network research with publicly available
benchmarking tools in [180] and [181], respectively.

c) Openset recognition: A critical problem for learning
based device identification is that classifiers only recognize
pretrained devices’ signals but can not deal with novel ones
that are not in the training dataset. In [150], the authors
formulated it as a semi-supervised learning problem. They
first trained a CNN model with the last layer as a Softmax
output on a collection of known devices. They then removed
the Softmax function and turn the neural network into a
nonlinear feature extractor. Finally, they used the DBSCAN
algorithm to perform cluster analysis on the remapped features
of raw I/Q signals. Their results showed that such a semi-
supervised learning method has the potential of detecting a
limited number of untrained devices. Comparably, in [182],
the authors used an incremental learning approach to train
neural networks to classify newly registered devices.

From the perspective of Artificial Intelligence, this issue

TABLE VI
METHODS FOR UNKNOWN DEVICE RECOGNITION

Methods Description Complexity Memory Pros & Cons Reference

GAN Use the discriminator from GAN model as
an outlier detector. High1 Depends on final

network
• Can catch deep latent features.
• Hard to design and train. [137], [144]

Autoencoder
Train a deep Autoencoder on known signals
and use its reconstruction error to judge
outliers.

High1 Depends on final
network

• Can catch deep latent features.
• Easier than GAN to design
and train

[145], [146]

Statistic metrics
Measure the confidence of whether a signal
or its fingerprint is generated by a given
category.

Low Low
• Provide explainable results.
• Accuracy depends on the
fingerprinting methods.

[143], [147]–[149]

Clustering
Perform clustering analysis on known signals’
fingerprints to judge whether it is in an identical
cluster where the known ones are in.

Median2
Depends on the
number of existing
fingerprints.

• Provide explainable results
• Accuracy depends on the
fingerprinting methods.

[147], [150]

1 Needs to specify both network architecture and hyperparameters. 2 Needs to specify the clustering algorithms to use.
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Fig. 13. Transfer learning and incremental learning.

is categorized to the Open Set Recognition [183], [184] and
the Abnormality Detection problem. The taxonomy of existing
approaches is given in table VI. In [137], the authors used
the Generative Adversarial Network (GAN) to generate highly
realistic fake signals. Then they extracted the discriminator
network to distinguish whether an input is from an abnormal
source. In [147], the authors provided two methods to deal
with unknown devices: i) Reuse trained convolutional layers to
transform signals to feature vectors, and then use Mahalanobis
distance to judge the outliers. ii) Reuse pretrained convolu-
tional layers to transform signals to feature vectors, and then
perform k-means (k = 2) clustering to group outliers.

d) incremental learning: In practical scenarios, deep
neural networks would have to evolve to adapt to operational
variations continuously. Intuitively, a deep learning enabled
IoT device identifier has to learn to distinguish new devices’
characteristics during its life cycle. Therefore, such func-
tionalities are defined as lifelong learning. Generally, there
are two ways to achieve this goal: Transfer Learning (TL)
and Incremental Learning (IL). In Transfer Learning, neural
networks are pre-trained in the lab and then fine-tuned for
deployment using practical data [186], [187]. In incremental
learning, neural networks are trained incrementally as new data
come in progressively [188]. Incremental learning does not
allow neural networks to forget what they have learned in the
early stages compared with transfer learning. The phenomenon
in which a neural network forgets what it has previously
learned after training on new data is named Catastrophic For-
getting. Therefore, transfer learning is useful when deploying
new signal identification systems, and incremental learning is
useful in regular maintenance, as depicted in Figure 13. The
strategies to implement incremental learning for deep neural
networks are as follows:

• Knowledge replay: An intuitive solution for incremental
learning is to replay data from old tasks while training
neural networks for new tasks. However, such a solu-
tion requires longer training time and larger memory
consumption. Besides, one can not judge how many
old samples are enough to catch sufficient variations.
Therefore, some studies employ data generator networks
to replay data from old tasks. For instance, in [189],
Generative Adversarial Network (GAN) based scholar
networks were proposed to generate old samples and
mixed with the current task. In this way, the deep neural
network can be trained on various data without using
substantial memories to retain old training data.

• Regularization: Initially, regularization is employed to
prevent models from overfitting by penalizing the mag-
nitude of parameters [190]. In incremental learning,
regularization is employed to prevent model parameters
from changing dramatically. In this way, the knowledge
(represented by weights) learned from the old tasks will
be less likely to vanish when an old network is trained
on new tasks. There are two types of regularization
strategies: global regularization and local regularization.
Global regularization penalizes the whole network’s pa-
rameters from rapid change but impedes the network
from learning new tasks. In local regularization strategies,
such as Elastic Weight Consolidation (EWC) [191], the
algorithms identify important connections and protect
them from changing dramatically, in which the non-
critical connections are used to learn new tasks.

• Dynamic network expansion: Network expansion strate-
gies lock the weights of existing connections and sup-
plement additional structures for new tasks. For instance,
the Dynamic Expanding Network (DEN) [192] algorithm
first trains an existing network on a new dataset with
regularization. The algorithm compares the weights of
each neuron to identify task-relevant units. Finally, criti-
cal neurons are duplicated and to allow network capacity
expansion adaptively.

• Orthogonal memory organization: Some recent re-
searches have shown that real biology brains organize
memory representation vectors within a mutually orthog-
onal manner to minimize the interference and avoid catas-
trophic forgetting during incremental learning. Authors in
[193], [194] discovered and proved that this phenomenon
also exists in DNNs. Consequently, they invented a Chan-
nel Separation Incremental Learning framework based on
orthogonal memory organization as in [195].

Incremental learning algorithms, as well as abnormality
detection, together provide great potential for deploying neural
networks in complex, uncertain scenarios.

e) Summary: A brief comparison of Deep Learning
and other statistical learning methods is given in Table IV.
Compared with statistical learning, Although Deep Learning is
not yet an idealistic solution, its unified development pipeline,
and the capability of dealing with complex features are making
it easy to use. Furthermore, for practical issues such as
incremental learning and abnormality detection, deep learning
provides better performance than the majority of statistical
learning algorithms. In one word, although deep learning is
not theoretically novel, it gains its place by providing the most
balanced merits.

D. Unsupervised device detection and identification

Feature-based statistical learning and deep learning are
supervised learning schemes, where classifiers must learn the
features of legitimate devices in advance. Unsupervised device
detection and identification are required in scenarios where the
identities of devices are not directly available [196]. Generally,
the methods in this topic can be divided into two folds, device
behavior modeling and signal propagation pattern modeling.
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TABLE VII
BRIEF COMPARE OF IOT DEVICE IDENTIFICATION AND DETECTION METHODS

Device identification
approaches

Technology
branch

Feature
requirement

Model
explanability

Continuous
learning Anomaly detection Challenges

Feature based
device identification

Supervised
learning High1 Strong (k-NN) /

median (SVM)
Easy (k-NN) /

median (PCA-SVM)
Low (k-NN)

Median (k-Means)
Can not discover
latent feature.

Deep learning enabled
device identification

Supervised
learning Low Weak2 Hard (EWC)3 High (Autoencoder) /

Median (clustering)
Learning from
trivial features

Unsupervised device
detection and identification

Unsupervised
learning High1 Strong N/A Low Can not be applied to

complex environment
1 Requires an extra feature engineering process. 2 Please refer to Explainable AI (XAI) in [185] 3 Please refer to section III-C2d

Feature extraction Clustering Identifying known devices

Detecting abnormalitiesState transitionFeature mapping

ModelingFeature engineering Decision

Fig. 14. Unsupervised device detection and identification

the essence of unsupervised device detection is to map devices’
signals or activity profiles into latent representative spaces,
where different devices are represented by separated clusters
or probabilistic distributions. If behavior or signal propagation
patterns are strictly correlated with specific devices, extracted
behavior or signal features can be used to verify the identity
of devices. Comparisons of the supervised and unsupervised
learning based device identification are (also in Table VII)):
• The training data does not directly indicate device specific

information (device identifier, device type, and etc.).
• The number of devices may not be known in advance.

As depicted in Figure 14, the work flow of unsupervised
learning enabled device detection and identification is made up
of three steps: a) Feature engineering on IoT devices’ signals
or behavior profiles, including feature selection and mapping.
b) Modeling the latent spaces, this step finds out cluster
centers, probabilistic distributions, related decision boundaries,
or state transition models. c) Matching input signal or behavior
profiles to the most likely clusters or reporting abnormalities.

1) Device behavior modeling: Device behavior modeling
extracts distinctive features from the input data and finds out
the number of different devices using unsupervised learning
algorithms. However, the physical layer does not provide
much information for device behavior modeling. Therefore,
the methods are more frequently employed in the upper layers
with related techniques employed are unsupervised feature en-
gineering, clustering, and Software-Defined Networking [49].

In [197] and [198], the data traffic attributes were obtained
from flow-level network telemetry to recognize different IoT
devices. The authors utilized Principle Component Analysis

along with an adaptive one-class clustering algorithm to find
the optimal representative components and cluster centers for
each device. They provided a conflict resolution mechanism
to associate different types of devices to corresponding cluster
centers in the representative space. A similar approach using
Deep Learning is presented in [199]. The authors used TCP
data traffics for each device to train an LSTM-enabled au-
toencoder to map inputs into a representative feature space.
They then used a clustering algorithm to divide the training
samples into their natural clusters. Finally, they used proba-
bilistic modeling to associate new data with known clusters
for device identification. Unfortunately, their results show that
unsupervised behavior identification may not work once there
are devices with an identical model.

2) Signal propagation pattern modeling: In the Physical
Layer, signal propagation patterns provide information for
device identification. On the one hand, if devices positions are
unique and known in advance, we may directly use wireless
localization algorithms to specify whether a received data
packet is from its claimed identity. Corresponding surveys
on wireless device localization are available in [204]–[206],
and we provide a brief comparison of the widely employed
methods in Table VIII.

On the other hand, signal propagation modeling derives the
path loss or attenuation patterns of received signals to detect
different devices using unsupervised learning algorithms [39].
In [207], the authors used the signals’ propagation path effect,
and they discovered that the received signal strength from
transmitters in the same location would have very similar
varying trends. They converted the signal strength metrics into
time series and incorporated the Dynamic Time Warping algo-
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TABLE VIII
COMPARISON OF DEVICE LOCALIZATION METHODS IN IOT

Methods Requirements Unit cost1 Precision Weakness References

Signal propagation
modeling

Multiple collaborative transmitters
to construct signal strength map. Low

Depends on environmental
features and refresh rate of
respondent data.

• Depends highly on signal
propagation models of certain area.
• Results do not directly indicate
certain device types or identities.

[200]

Coherent TDoA
At least 4 coherent receivers and 5
receivers are recommended to
linearize the computational process.

Median
Depends on the estimation
of signals’ Time of Arrival
(ToA).

• Receivers needs to be strictly
synchronized. [201]

Sync-free TDoA At least 4 receivers and receivers
are able to communicate mutually. Median Same as coherent TDoA • Needs specific hardware

with known response latency. [202], [203]

1 Low: Does not require extra RF receivers; Median: Requiring commercially available RF receivers; High: Requiring dedicated hardware and specific
processing stacks. 2 Requiring multiple distributed receivers.

rithm to align and find differences between received signals.
Finally, they applied a clustering algorithm to identify signals
from active transmitters. In [208], the authors assumed that
the received signals’ Power Spectrum Density coefficients of
each device, in a specific time window, form a mixture model
of Gaussian distributions and propagation path related Relay
distributions. In this way, they used the Expectation-Maximum
algorithm to estimate the composition (different transmitters)
of the received signals.

Signal propagation pattern modeling only provides an indi-
rect evaluation on whether specific signals come from devices
in close locations or with similar propagation paths. Although
related methods are not widely utilized in commercial IoT
devices owing to their complicated deployment environments,
the methods provide a useful solution in preventing identity
spoofing attacks in ADS-B systems [209], [210].

3) Open issues: Unsupervised device identification pro-
vides a novel solution when the identities of devices are
not directly available. In essence, the unsupervised device
identification and detection are similar to automatic knowledge
discovery with the following issues to be addressed:

1) Feature engineering: Unsupervised device identifica-
tion relies on feature engineering since representative
vectors of devices are supposed to form distinctive
clusters. Feature selection is still conducted manually,
and there is no guarantee on whether the outputs of the
mapped feature can form distinctive clusters.

2) Clustering: Clustering in the latent space can be chal-
lenging if the number of devices is unknown. Although
one may use adaptive algorithm such as DBSCAN
[211], Optics [212] or X-Means [213], the proper con-
figurations of these algorithms is still difficult, similar
obstacles are seen in setting hyperparameters in Deep
Neural Networks (section III-C2a).

3) Decision boundaries Even if we know the number of
devices, we can still get clusters with uncertain shapes or
density, in which decision boundaries between different
devices are difficult to define, as indicated in [197].

4) Direct identity verification: Researches on unsuper-
vised device identification using behavior-independent
and location-agnostic device specific features are still
limited. Although unsupervised behavioral modeling has

shown promising results in identifying different types
of devices, whether these methods are still effective
in distinguishing devices from the same model needs
further investigation.

Therefore, we believe learning-based unsupervised device de-
tection is promising with great novelty, but the topic needs
substantial investigation.

IV. LEARNING-ENABLED ABNORMAL DEVICE DETECTION

Previous sections have discussed methods to identify spe-
cific IoT devices. However, detection of compromised devices
with abnormal behaviors is needed to alert ongoing attacks
and discover system vulnerabilities.

In general, abnormal device detection algorithms are de-
ployed in network and application layers. The detection al-
gorithms first collect a certain amount of normal operation
data from devices to create reference models (or signatures).
Then IoT devices’ operational data are collected and compared
with reference models to judge whether significant deviations
appear. Compared with device-specific identification schemes,
the key methods are: abnormality detection, unsupervised
learning [214], and supervised learning [215].

A. Statistical Modeling

Statistical modeling aims to judge whether devices are in
abnormal situations. In [216], Markov models are utilized
to judge whether IEEE 802.11 devices are compromised by
calculating the probabilities of its sequential transitions of
the protocol state machines. In [217], the authors modeled
the Electronic Magnetic (EM) harmonics peaks of medical
IoT devices as probabilistic distributions to assess whether
a specific device is under attack. They assumed that when
devices are operated under an abnormal scenario (with rogue
shellcodes executing), its EM radiometric signals can deviate
from known scenarios. However, statistical modeling requires
manual selection of potentially informative features.

To reduce the cost of modeling IoT devices’ normal be-
havior, Manufacturer Usage Description (MUD) profile [59]
is proposed. A collection of MUD profiles for 30 commercial
devices is provided in [60]. The MUD profiles enable operators
to know devices’ network flow patterns and dynamically
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monitor their behavioral changes. Several open-source tools
are provided to dynamically generate, validate, and compare
IoT devices’ MUD profiles in [61]. Besides, the authors
presented that by comparing the deviation of devices’ run-
time MUD profiles with static ones, they can identify their
behavioral deviations or even identify device types. In [218],
the authors translated MUD profiles of devices into flowtable
rules. The authors then used PCA to map each device’s data
traffic from side windows into its own representative one-
class space, where X-Means [213] and Markov chains were
used to partition the space and model the state transition in
cluster centers. Finally, an exception will be triggered by a
specific detector on either the mapped traffic pattern is out
of boundaries or the state transitions do not comply with the
reference model. Their results showed the accurate detection
of several types of volumetric attacks.

B. Reconstruction Approaches

Reconstruction approaches aim to learn and reconstruct
domain-specific patterns from devices’ normal operation
records. In other words, we need to develop a model to ”mem-
orize” the normal schemes of IoT devices by producing low
reconstruction errors. Simultaneously, the model is supposed
to produce high reconstruction errors for unknown scenarios
or encounters behavioral deviations. This goal is generally
achieved using deep autoencoders. Since an encoder removes
a great amount of information, the corresponding decoder
needs to reconstruct the lost information according to domain-
specific memories. Consequently, once abnormal inputs are
given to a well-trained autoencoder, its decoder would not be
able to reconstruct such unknown inputs and yields a high
abnormal score (reconstruction error). In [219]–[221], the au-
thors utilized a deep autoencoder to detect abnormal activities
by modeling the data traffic and content of IoT devices once
abnormal activities are detected. In [222], the authors have
shown that compared with other anomaly detection methods
(one-class SVM [223], Isolation Forest [224] and Local Outlier
Factor [225]), deep autoencoder yields the best result in terms
of reliability and accuracy.

C. Prediction Approaches

Prediction approaches utilize temporal information in de-
vices’ operation records. Corresponding methods model each
IoT device’s operational data as multi-dimension time series.
Then, device-specific prediction models are trained using time
series from normal schemes. When devices are hijacked for
rogue activities, they are not supposed to behave as predicted,
causing the corresponding time series predictors to output high
prediction errors.

In [226], the authors employed a CNN based predictor to
analyze the abnormal behaviors in devices’ network traffics.
The results showed that predictors trained without abnormal
data are sensitive (yield high prediction error) to anomalies.
Similar work is shown in [227], and the authors used an
autoregression model to capture the normal varying trend of
devices’ traffic volumes. However, modeling a single variable
can not be sufficient in dealing with complicated scenarios.

Recent studies combine deep Autoencoder with Long Short
Term Memory (LSTM) to derive abstracted representations of
complex scenarios and make predictions. In [228] and [229],
Deep Predictive Coding Neural Network [230] was used to
predict consecutive frames of time-frequency video streams
of wireless devices. They can even specify the type of attacks
using the spatial distribution of error pixels in the reconstructed
frames.

D. Open issue

Methods in this topic overlap with the methods of open
set recognition in Deep Learning. We briefly list several open
issues in this topic:
• Selection of behavioral features: Manual feature selec-

tion along with dimension reduction are applied exten-
sively. A concern is that we can not guarantee the selected
features are sensitive to unknown intrusions in the future.

• Processing of abnormality metrics: Generally, intrusion
detection approaches provide metrics corresponding to
the degree of deviation. However, the output error metrics
require a posterior process, e.g., selecting appropriate
decision thresholds or aggregation window length, which
balances between the true positive, false negative, and
response latency. One solution is to regard the corre-
sponding parameters as hyperparameters and use cross-
validation to tune them. The processing of error metrics
remains a case-specific open issue.

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Our literature review has shown that device detection and
identification provide another layer of security features to IoT.
However, the existing solutions are still far from perfect. This
section summarizes the existing challenges of IoT device iden-
tification and detection as well as future research directions.

A. Challenges in machine learning models

1) Unknown device recognition: Existing works focus on
the accuracy they can obtain using a fixed dataset with all
devices labeled, in which Black-Box models (e.g., Deep Learn-
ing and SVM) are commonly employed. In practical scenarios,
these models can produce wrong answers when encountering
novel devices. Additional mechanisms are needed to identify
unknown signals. Although we can use the one-versus-rest
technique to train a group of classifiers and avoid producing
results on unknown devices. However, once we have new
devices to register, all classifiers in the group are supposed
to be retrained from scratch. Therefore, we need to provide a
solution to verify the known devices. Meanwhile, we need to
identify:
• Devices that are exactly not in the scope of the identifi-

cation system.
• Unknown devices that are from identical manufacturers.

Devices of the same model from an identical manufac-
turer can share similar behavior patterns, e.g., network
flow characteristics. Such similarities can impede identity
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TABLE IX
EXISTING DATASET FOR PHYSICAL LAYER IOT DEVICE IDENTIFICATION

Dataset Number of
transmitters

Sample
rate Frequency Protocol /

device
Fingerprint
injection

[231] 6 50 MS/s Multiple GNSS N
[232] 100+ 10 MSa/s 1090 MHz ADS-B N
[135] 100+ 8 MSa/s 1090 MHz ADS-B N
[133] 4 40 MSa/s 2.4 GHz Drones N
[233] 17 20 GSa/s 2.4 GHz Drone remote controllers N
[234] 27 5 to 20 GSa/s 2.4 GHz Bluetooth N
[235] 16 5 Msa/s 2.4 GHz USRP X310 Y
[236] 4 5 Msa/s 900 MHz USRP B200mini Y
[237] 4 5 MSa/s to 7.69 MS/s 2.685 GHz USRP X310 Y
[238] 7 10 MSa/s 2.4 GHz DJI M100 drones N

verification in the network, transportation, or application
layers.

The latter is more challenging and requires extracting
behavior-independent characteristics. We believe that without
the capability of unknown device recognition, these types of
systems are still far from practice.

2) Incremental learning with new devices: Incremental
learning [188] in this domain emphasizes that an identification
or detection model should be able to learn newly registered
devices without retraining on a large dataset containing new
and old devices. Because retaining the old dataset or deriving
generators for knowledge replay is computationally expensive.
This topic faces several challenges:
• Knowing the maximum number of devices a model can

memorize, especially for the Deep Neural Networks.
• Expanding models dynamically as new devices are being

added. Incremental learning is natively supported in Near-
est Neighbor algorithms but is challenging to implement
in Deep Neural Networks.

3) Deployment of device identification models: The deploy-
ment sites and model providers’ lab can differ dramatically, in
which identification accuracy can be impaired. This issue is
more severe in device identification models using wireless sig-
nals due to the difference of wireless channel characteristics.
For alleviation, extra works are needed:
• Deriving features that are independent of wireless chan-

nels or deployment sites. Authors in [235], [239] sug-
gested that neural networks can only learn about channel-
specific features rather than device-specific features.

• Occasional finetunes are needed with the help of incre-
mental or transfer learning to adapt to variations.

• Model providers need to use data augmentation methods
to simulate operational variations during lab training, as
suggested in [240].

• Model providers can use multi-domain training to derive
multi-purpose feature extractors, which will be utilized as
building blocks for domain-specific device identification
models. Diverse training from different domains could
provide more robust feature extractors.

4) Reliable benchmark datasets: The IoT device identifi-
cation is a pattern recognition problem on signals or commu-
nication patterns. A common benchmark dataset is critical for
comparing various methods in device identification and rogue

device detection reliably. However, by the end of this survey,
we only find a limited number of datasets providing devices’
raw signals or network traffic traces in diverse scenarios. Some
datasets are available in [132], [133] and [134], respectively.
For physical layer device identification, some popular datasets
are summarized in Table IX. As summarized, many of them
only contain a limited number of devices, while a larger dataset
containing only ADS-B raw signals from more than 100
airborne transponders are provided in [135]. Another dataset
containing more than 30 IoT devices’ traffic traces under vol-
umetric attack and benign scenarios are in [60]. These dataset
are important because they provide fair comparisons between
algorithms. Additionally, models trained on large datasets can
be efficiently transferred to more specific applications [241],
[242].

B. Challenges in feature engineering

1) The robustness of features: Although many existing
works claim the effectiveness of their discovered features,
only very few evaluate the features’ robustness under various
scenarios in terms of device mobility pattern, temperature,
obstacles, etc. Feature robustness has a limited influence on
device type identification in the network or higher layers.
However, in the Physical Layer identification of wireless
devices, the robustness of features would severely impair
the final model. Currently, a popular way to enforce robust
feature discovery is through data augmentation to simulate
various scenarios. Besides, in neural networks, regularization
and dropout methods can encourage models to make full use
of input data and discover robust latent features, but their
effectiveness needs further study.

2) Making use of time-varying features: Some device de-
tection and identification models use protocol-agnostic and
behavior-independent features from physical layer wireless
signals. However, in mobile environments, devices’ move-
ments can result in time-varying channel conditions, in which
device identification methods based on static channel char-
acteristics can be impaired. On the other hand, varying pat-
terns of channels, signal strength, etc. also encode valuable
features, e.g., location, distance, noise pattern, and etc., to
help distinguish IoT devices [243], [244]. Therefore, both
discovering time-invariant features and making use of time-
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varying features are still an open issue in device identification
and detection.

3) Challenges from deep generative attackers: : The uti-
lization of GAN brings challenges to device identification,
especially in the Physical Layer. Using GAN models, an
attacker can train highly realistic signal or data packet gen-
erators to mimic its victims’ signal characteristics. Research
in [245] showed that GAN can increase the success rate of
spoofing attacks from less than 10% to approximately 80%.
Fortunately, a simple remedy is to use MIMO receivers and
wireless localization methods to estimate whether a transmitter
is at an expected position. Additionally, controlled imperfec-
tions can be dynamically imprinted into the devices’ signals
or data flows in a Pseudorandom Noise Code driven time-
varying manner [239], which is cryptographically impossible
to predict.

C. Future research trends

1) Deep identification models with explainable behaviors
and assured performances: The conveniences of Deep Neural
Network make it a versatile tool to implement IoT device
identification and rogue device detection systems, but more ef-
forts have to be made, especially for model explainability and
performance assurability. On the one hand, we have limited
knowledge of the decision process, especially on how a deep
neural network makes its final decisions and corresponding de-
cision boundaries. Without knowing the decision process and
decision boundaries, there is no way to assure its performance.
On the other hand, researches on the explainability of Deep
Neural Networks focus on explaining models’ behaviors but
do not provide guidelines on deriving assurable performance.
Without explainability, we can not assure the performance of
models.

2) Unsupervised and incremental deep learning for device
identification: With a large number of devices being connected
to IoT, device identification and detection models need to
incrementally adapt to operational variations in real-time.
A solution can be the seamless integration of the feature
abstraction capability of deep neural networks, incremental
learning, and unsupervised learning. The knowledge of using
deep neural networks to perform unsupervised learning for
IoT device identification and detection is currently limited.
Meanwhile, incremental learning in deep models for device
identification and detection is also rarely investigated.

3) Controlled imprinting of verifiable patterns: Compared
with passive non-cryptographic device identification and de-
tection methods in this survey, a proactive way is imprinting
verifiable patterns into devices’ transmitted signals or activity
patterns. As suggested in [236], controlled imperfections are
utilized as verifiable patterns. Embedded these patterns in
signals could significantly enhance the performance of device
identification. However, a critical concern is how to prevent the
adversaries from collecting and learning about the imprinted
identity verification information. As suggested in [235], a pos-
sible solution is to dynamically change the identity verification
patterns according to a pair of synchronized pseudorandom
code generators, where the initialization keys are only shared

among the device and corresponding device identifiers. Meth-
ods are still limited in imprinting verifiable patterns that are
difficult to learn.

VI. CONCLUSION

This survey aims to provide a comprehensive on the existing
technologies on IoT device detection and identification from
passively collected network traffic traces and wireless signal
patterns. We discuss existing non-cryptographic IoT device
identification mechanisms from the perspective of machine
learning and pinpoint several key developing trends such as
incremental learning, abnormality detection, and deep unsu-
pervised learning with explainability. We found that a multi-
perspective IoT wireless device detection and identification
framework is needed. Future research for rogue IoT device
identification and detection needs to cope with challenges
beyond signal processing and borrow ideas from advanced
topics in Artificial Intelligence and Knowledge Discovery.
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