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Abstract—Big data analytics and mining have the potential
to enable real-time decision-making and control in a range of
Internet of Things (IoT) application domains, such as the Internet
of Vehicles, the Internet of Wings and the Airport of Things. The
prediction toward air mobility, which is essential to the studies
of air traffic management, has been a challenging task due to
the complex spatial and temporal dependencies in air traffic
data with highly nonlinear and variational patterns. Existing
works for air traffic prediction only focus on either modeling
static traffic patterns of individual flight or temporal correlation,
with no or limited addressing of the spatial impact, namely
the propagation of traffic perturbation among airports. In this
paper, we propose to leverage the concept of graph and model
the airports as nodes with time-series features and conduct data
mining on graph-structured data. To be specific, firstly, Airline
On-Time Performance (AOTP) Data is preprocessed to generate
a temporal graph dataset, which includes three features: the
number, average delay, and average taxiing time of departure and
arrival flights. Then a spatial-temporal graph neural networks
model is implemented to forecast the mobility level at each
airport over time, where a combination of graph convolution and
time-dimensional convolution is used to capture the spatial and
temporal correlation simultaneously. Experiments on the dataset
demonstrate the advantage of the model on spatial-temporal air
mobility prediction, together with the impact of different priors
on adjacency matrices and the effectiveness of temporal attention
mechanism. Finally, we analyze the prediction performance and
discuss the capability of our model. The prediction framework
proposed in this work has the potential to be generalized to other
spatial-temporal tasks in IoT.

Index Terms—Internet of Things, air mobility, air traffic man-
agement, spatial-temporal prediction, graph neural networks,
multivariate time-series prediction.

I. INTRODUCTION

W ITH the development of Internet of Things (IoT)
[1]–[5], existing fundamental research efforts are be-

ing made to facilitate the development of healthcare, civil
infrastructure, aeronautics and so on [6]–[9]. In particular, a
variety of IoT-based applications and services are being devel-
oped to transform the aviation industry. They have the potential
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to enable safer and more efficient operations, better customer
experience, and thus a significant increase in revenue. On the
other hand, more and more data become available with the
emergence and rise of information systems and data gathering
platforms, which have enabled big data analytics and mining
for different areas in the IoT ecosystem [10]–[13], as well as a
set of algorithms and solutions for more dependable IoT based
information managements and data-driven decision making
[14]–[17]. For the smart aviation industry, a huge volume

of aviation data is gathered to address various tasks toward
intelligent air transportation systems. Among these tasks, the
prediction toward air mobility has been a key component in the
research of air traffic management and the aviation industry.

Originally, air mobility referred to the ability to transport
military troops and supplies in and out of combat areas
by means of aircraft [18]. In recent years, this concept has
been gradually introduced to the aviation industry, which can
be described as a safe and efficient aviation transportation
system. Moreover, air mobility in aviation is an important
research topic toward the development of Advanced Aerial
Mobility (AAM) [19], a newly emerging field that aims
at safe and responsible operation in an integrated National
Airspace System (NAS). Air mobility in aviation is crucial to
multiple stakeholders including passengers, airlines, airports,
and air traffic management authorities, as a deterioration of air
mobility can lead to significantly undesired consequences like
severe flight delays, cancellations of flights, and congestion of
airports, disrupting the aviation system and resulting in a huge
economic loss. Therefore, to achieve efficient airport operation
and air traffic management, accurate prediction toward air
mobility in dynamic air transportation networks is a requisite.
Based on the prediction, timely monitoring and interpose can
be executed to capture the perturbation in the air traffic and
mitigate the negative impact before the operation efficiency
deteriorates.

However, the prediction toward air mobility in aviation
remains challenging due to the highly uncertain and dynamic
patterns in air traffic data. Most of the existing works based
on machine learning methods either focus on extracting static
air traffic patterns or only treat it as a regular time-series
prediction problem, whose model capacity is unable to address
the interdependence of different spatial locations. Therefore,
in order to address this challenge, the key is to capture the
spatial-temporal dependencies so that the useful features can
be extracted effectively and prediction performance can be
improved. Recently, researchers have tried to extract spatial-
temporal features by composite deep learning models, which
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integrate the Recurrent Neural Networks (RNN) with Convo-
lutional Neural Networks (CNN) due to its excellent ability
to spatial-related tasks. Nevertheless, the modeling of spatial
dependencies based on CNN methods narrows down the input
data to be Euclidean, in other words, grid-partitioned, which
limits the modeling methods and thus hinders the learning of
spatial-temporal correlations in the actual air transportation
system.

In recent years, the rise of graph learning has aroused the
other formulation of spatial dependencies in traffic prediction
tasks. Without the prior knowledge of Euclidean inputs, more
complex relationships within the transportation network can be
addressed based on graph-structured formulation. A variety of
studies on road networks were conducted and achieved success
where graph-based learning models were developed to model
spatial-temporal dependencies [20]–[23]. On the other hand,
there have been many studies of graph theory based on avia-
tion networks [24], [25], which also suggests the feasibility of
utilizing graph neural networks to capture the spatial-temporal
correlations for the prediction toward aviation air mobility. In
our work, we formulate the air transportation network of the
United States as a graph, where each commercial airport is
treated as a node whose features are a time-series measuring
the air mobility level, as shown in Figure 1. Besides, a flight
on-time dataset is transformed to a graph dataset, including an
adjacency matrix and the aforementioned features. Moreover,
we conduct graph data mining based on the obtained dataset
and apply a composite model based on spatial-temporal graph
neural networks to predict the measurements of air mobility at
each airport at a macro-level. The contributions of our paper
are summarized as follows:
• To the best of our knowledge, this is the first research

which attempts to apply graph neural networks to predict
aviation air mobility at a macro level, where multiple
measurements are considered, and spatial-temporal de-
pendencies are captured.

• We provide a detailed prepossessing of the raw dataset
and construction of spatial-temporal graph dataset.

• We performed extensive ablation experiments to evaluate
different priors on adjacency relationships within the air
transportation network and verify the effectiveness of
temporal attention on our prediction model. In addition,
we analyze the model in terms of prediction performance
and discuss the model capability.

The remainder of this paper is structured as follows: A
literature review of machine learning in the prediction of air
traffic patterns and spatial-temporal characteristics is presented
in Section II. We formulate the problem and provide our
proposed methodology in Section III. The pre-processing of
the dataset to be explored is introduced in Section IV. Perfor-
mance evaluation, ablation experiments, and model analysis
are presented in Section V. Section VI concludes this paper.

II. RELATED WORK

In recent years, more and more aviation data were collected
and became available due to the development of aviation
information systems, which enabled the research on aviation

Fig. 1: Visualization of the air transportation network and air
mobility measurements at Orlando International Airport(MCO).

big data analytics and learning-based data mining for various
prediction tasks. To be specific, there are some studies on
applying machine learning models to historical flight data,
Automatic Dependent Surveillance-Broadcast (ADS-B) data,
and weather data for the prediction of micro-level patterns such
as on-time performance of flight [26]–[28] and macro-level
traffic patterns, including the flight delay and traffic flow of
regional airspace and airports, in order to analyze and improve
air traffic management [29]–[31]. However, the above works
mainly consider the temporal patterns and do not address the
spatial-temporal correlation in a joint manner, which is an
important characteristic for the mining of complex aviation
data, especially for the macro-level air traffic prediction task.

To address this issue, the spatial-temporal correlation is
considered from data-level and model-level. In the data-level
method [32], the spatial-temporal features are extracted from
multi-source datasets consisting of the information of flight
path, airspace, and weather for the prediction of air traffic
flow at a single airport. In [33], features are extracted in a
similar manner and a k-means clustering is applied to origin-
destination pairs to generate the abstract spatial features. In
model-level methods [34], [35], the air traffic patterns are mod-
eled as a temporal 3D cube where the spatial information is
constructed as a actual 2D grid map with multiple flight levels,
so that CNN and RNN modules can be utilized to extract the
spatial correlation and temporal correlation, respectively.

The traditional deep learning models, which capture spatial
dependencies in nearby regions, rely on a prior that the
explored patterns are grid-partitioned. This prior does not
always hold for the flight-driven air transportation network.
Recently, with the development of graph research, the concept
of convolution has been generalized from grid-like data to
graph-structured data, which includes spectral-based meth-
ods [36], [37] and spatial-based methods [38], [39]. These
works motivated researchers to reconsider the general spatial-
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temporal tasks and formulate some problems under the context
of a graph, which enabled the studies addressing spatial
correlations on graph structure. So far, the spatial-temporal
graph neural networks have gained success on skeleton-based
action recognition [40], sleep stage classification [41] and the
forecasting of traffic flow in ground transportation systems
[20]–[23]. For the traffic forecasting, these works abstracted
the actual road networks or urban as a graph on which
each sensor represents a node and provides one or more
measurements as the features to be learned. Under this setting,
the aggregate strategies of neighborhood information in spatial
dimension can be learned and further applied to temporal
prediction. While the researches that leverage spatial-temporal
graph neural networks toward ground transportation tasks are
developing fast, those in air traffic prediction are very limited
and underdeveloped. Enlightened by previous researches, we
propose a spatial-temporal graph neural network model for
predicting macro-level aviation air mobility, where quite a
number of airports are considered as nodes with multiple
measurements as the input features and targets.

III. METHODOLOGY

In this section, we present the problem formulation toward
predicting air mobility and introduce the prediction framework
based on spatial-temporal graph neural networks. Moreover,
the evaluation metrics measuring the performance of the pre-
diction models are presented.

A. Problem Formulation

In this paper, the air transportation network is defined as
an undirected graph G = (V,E,A), where V is a set of
nodes with size |V| = N , the number of airports(nodes)
in the network, E denotes the set of edges indicating the
connection between two airports, A ∈ RN×N is the adjacency
matrix of graph G whose elements measures the connectivity
of node pairs. As the properties of the air transportation
network are different from those of the road network, two
different weighted adjacency matrices will be tested based on
the distance and the number of flights between departure-and-
arrival airports, in addition to the unweighted one. Each airport
on the air transportation network will have F measurements
indicating its capacity and air mobility level within a certain
period. Each measurement is a time series involving temporal
traffic information. To be more specific, the feature matrix is
defined as X = (X1,X2, . . . ,XL)

T ∈ RN×L×F , where L
denotes the number of steps in the entire traffic sequence. For
each time step t, Xt =

(
x1
t ,x

2
t , . . . ,x

N
t

)T ∈ RN×F denotes
all the measurements of all airports. For every element above,

xit =
(
xi,1t , . . . ,xi,Ft

)T
∈ RF denotes all the measurements

of airport i at time step t and xi,jt ∈ R denotes the value
of j-th measurement of xit. Besides, we define yiτ = xi,jτ
as the value of j-th measurement of i-th airport at time τ in
the future. In this paper, we consider three measurements: the
number, average delay, and average taxiing time of departure-
and-arrival flights; and we will discuss them respectively in
detail. The future status of all airports at future time step τ

can be represented by Y τ =
(
y1
τ ,y

2
τ , . . . ,y

N
τ

)T ∈ RN×1.

Based on above description, the problem of air mobility
prediction is formulated as follows: For a specific time step t,
given all the historical measurements of all airports over cur-
rent and past k steps: Xt−k,Xt−(k−1), . . . ,Xt, the objective
is to predict the most likely status of all airports over future
m steps: Y t+1,Y t+2, . . . ,Y t+m as,

Ŷ t+1, . . . , Ŷ t+m =
argmax

Y t+1,...,Y t+m

P (Y t+1, . . . ,Y t+m|Xt−k, . . . ,Xt) (1)

B. Spatial-Temporal Graph Neural Networks

To capture the spatial-temporal correlation for a better
prediction for air mobility, the Spatial-Temporal Graph Neural
Networks is leveraged, which mainly consists of node-level
graph convolution layers to extract spatial features and time-
dimensional convolution layers to extract temporal features.
The basic framework of Spatial-Temporal Graph Neural Net-
works is shown in Figure 2.

1) Graph Convolution Network for Modeling Spatial De-
pendency: One of the key components for air traffic forecast-
ing is to address the complex spatial dependency, namely to
capture the propagation of traffic perturbation among airports.
As mentioned above, the air transportation network organizes
as a graph, whose structure and related properties can be
analyzed by spectral graph convolution. With a graph G
and corresponding adjacency matrix A, the degree matrix
D ∈ RN×N of G is obtained to describe the degree of
each node, which is measured by the number of edges
attached to each node. Therefore it is a diagonal matrix
with Di,i =

∑
j Ai,j . Laplacian matrix, the other important

concept representing the graph with many useful properties, is
introduced as L = D−A, whose symmetric normalized form
is more often used as I − D−

1
2 AD−

1
2 , where I ∈ RN×N

is an identity matrix. As the Laplacian matrix is a positive
semi-definite and symmetric matrix, the eigenvalue decom-
position can be performed such that it can be rewritten by
L = UΛUT , where Λ = diag ([λ0, . . . , λN−1]) ∈ RN×N , λ
denotes the eigenvalue and U denotes the orthogonal matrix
formed by corresponding eigenvectors. The eigenvalue can be
treated as the frequency component, and the matrix serves
as a basis of Fourier space, such that Fourier and inverse
Fourier transform on graph are introduced as f̂ = UT f and
f = Uf̂ , where f is the graph signal, i.e. Xt under our
context, the traffic information of all airports at time step t.
Therefore, the spectral convolution on a graph is defined as
the inverse Fourier transform of the product of the learn-able
kernel and feature signals in the spectral domain, which is
given by U(UT g)UT f = UgθU

T f , where g and gθ denote
the kernel in time and spectral domain respectively.

In the first generation of graph convolutional networks, a
single gθ is often rewritten as a diagonal matrix with N learn-
able elements. When the number of nodes is large, the number
of parameters is even larger for a feature matrix with multi-
channels(F in our case), which is not computational efficient.
Moreover, performing eigendecomposition on a large graph
leads to high computational complexity, and local connectivity
is not considered as the whole graph feeds as an input.
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Fig. 2: The basic framework of Spatial-Temporal Graph Neural Networks which consists of the input layer, several spatial-temporal
convolution blocks, a fully-connected layer and the output layer.

To address these issues, we can set gθ ≈
∑K
k=0 θkΛ

k,
where θk is a learn-able parameter. This approximation makes
the final convolution result as

∑K
k=0 θkL

kf . It reduces the
computational complexity as Laplacian matrix is used directly
without eigendecomposition. Besides, the local connectivity,
or K-hop receptive field is introduced by LK . Based on
above method, Chebyshev polynomials are leveraged to fur-
ther improve the computational efficiency, which is given by
gθ ≈

∑K−1
k=0 θkTk(Λ̂) and Λ̂ = 2

λmax
Λ − I, where λmax

is the maximum eigenvalue of Λ. The recursive formulas of
Chebyshev polynomials are given by T0(x) = 1,T1(x) = x,
and Tk(x) = 2xTk−1(x) − Tk−2(x) for integer k > 1.
Therefore, the graph convolution layer used in our paper is:

GConv = GConv(gθ, f) = σ(
K−1∑
k=0

θkTk(L̂)f) (2)

where GConv(·) denotes the operation of graph convolution,
L̂ = 2

λmax
L − I, σ(·) is the activation function. Under our

context, we further extend f ∈ RN×Fin×Lin to be the input
of a certain layer with time dimension Lin, while Fin denotes
the number of input channel, which is F in the first layer. Thus
the layer output GConv has the dimension of RN×Fout×Lin ,
where Fout denotes the number of convolutional kernels.

2) Time-Dimensional Convolution Neural Network for
Modeling Temporal Dependency: In order to capture the
temporal correlations of the nodes’ features that are aggregated
from their neighbors by graph convolution layer, a time-
dimensional convolution operation is leveraged to extract the
features across the time dimension. Note that this convolution
is actually a 1-D convolution if we only consider the temporal
dimension, which is similar to other recurrent neural networks
such as Long-Short Term Memory (LSTM) [42] and Gated
Recurrent Units (GRU) [43]. The temporal convolution layer
is described as follows:

TConv = TConv(ψ,GConv) = σ(ψ ∗ (GConv)) (3)

where the layer output TConv ∈ RN×Fout×Lout , TConv de-
notes the layer operation, ∗ denotes the convolution operation
used in convolutional neural networks, ψ denotes the learn-
able convolution kernel, and Lout denotes the length of output
after the convolution along time dimension.

A graph convolution layer and a time-dimensional convo-
lution layer form a spatial-temporal convolution block that is
able to extract spatial features and temporal features at the
same time. We expect to capture a wider range of complex
dynamics in the air traffic data by stacking several spatial-
temporal convolution blocks. Moreover, we also add a skip-
connection between two blocks for the countermeasure of the
over-smoothing problem and enhance the representation learn-
ing. Finally, a fully-connected layer with an activation function
is applied to compile the extracted features by previous blocks
for prediction tasks.

3) Attention Based Mechanism: Enlightened by [21], [41]
and their success on proposing to apply attention mechanism
on their own spatial-temporal prediction tasks, we also attempt
to employ the attention based mechanism for the purpose of
further extracting temporal attentive information in an adaptive
manner as spatial-temporal convolution operation is ongoing.
The definition of applied attention is presented as follows:

AttScore = V · Sigmoid(h1WhT
2 + b) (4)

where V,W,b are learn-able parameters, Sigmoid(·) denotes
the sigmoid function, h1 and hT

2 are the product of current
input and different learn-able kernels. After attention score
matrix AttScore is calculated, a softmax function is used
for element-wise normalization and the temporal attention
Attt ∈ RN×F ′×L′

is obtained, where F ′ denote the number
of channels and L′ denotes length of the current input. The
temporal attention describes the degree of correlation between
two time steps and is directly applied to the input when fed
into temporal convolution layer. We leverage above temporal
attention mechanism to improve the ability of prediction model
to capture valuable temporal information.

C. Evaluation Metrics

To evaluate the performance of the prediction model, the
following metrics is used:

1) Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yt − ŷt| (5)
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2) Root Mean Absolute Error (RMSE):

RMSE =

√√√√ 1

n

n∑
j=1

(yt − ŷt)2 (6)

As shown in equations (5) and (6), MAE is the average abso-
lute error of predictions and actual observations, while RMSE
is the root of mean squared difference between predictions
and actual observations. Therefore, MAE measures the actual
situation of prediction error in a better manner, while RMSE
can better evaluate the capability of a prediction model to
capture patterns of abrupt perturbation as it is more sensitive
to abnormal values.

IV. DATA PRE-PROCESSING

In this section, we provide a detailed prepossessing of the
raw dataset and the construction strategy of the spatial-tempo-
ral graph dataset, which consists of the adjacency matrix and
time-series feature data.

The dataset that we are exploring in this paper is Airline
On-Time Performance (AOTP) data of the year 2016, which
is provided by the Bureau of Transportation Statistics. This
dataset contains the basic on-time arrival and departure in-
formation for each non-stop domestic flight, including the
schedule and actual departure and arrival data, the carrier,
origin and destination with airtime and non-stop distance.

In the first stage, we aggregate the raw data sets by month
and set up the cleansing strategy regarding incompleteness,
redundancy, and irrelevance. To be specific, we remove the
flight records with the high missing rate of flight departure
delay, flight arrival delay, departure time, and arrival time.
Besides, the redundant flight records are filtered out. As there
is other information that is out of our interest, such as flight
schedule, aircraft, and airline information, we also filter these
features out and get the following ones for future exploration:
day of the month, month, departure and arrival airports, actual
departure and arrival time, departure delay and arrival delay,
taxiing in and taxiing out time, distance of the flight.

As all records in the cleansed data are based on individual
flights, we further aggregate the information to generate node-
level representations so that it can be fed into the prediction
model. The first step is to generate adjacency matrices ac-
cording to different priors. The first kind of adjacency matrix
is unweighted, whose element is one if there is a flight
between departure-and-arrival airports and otherwise zero. The
second one is a weighted matrix based on the flight distance
between departure-and-arrival airports. Moreover, we apply the
threshold Gaussian kernel [44] to scale the elements:

Ai,j =

{
exp(−dist(vi,vj)

2

σ2 ) if dist(vi, vj) ≤ κ
0 otherwise

(7)

where Ai,j denotes the element of adjacency, dist(vi, vj)
denotes the flight distance between departure airport vi and
arrival airport vj , σ denotes the standard deviation of flight
distances and κ denotes the threshold of flight distance. This
kernel is often used in road networks while we wonder if it
is still a good prior for air transportation networks. The third

kind of adjacency relationship is also described by a weighted
matrix based on the other prior whose element is calculated
by the total number of flights between departure-and-arrival
airports. Instead of distance, the third prior formulates the
spatial connectivity in the air transportation network as a factor
of flight frequency. We will further explore these priors under
the context of air mobility prediction task.

Besides the adjacency matrix, the other input is a time-
series feature data. The first step is to gather all departure
information and arrival information separately on an airport
basis. Besides, the timezone is assigned to each airport, and the
local time of departure and arrival in each record is converted
under the same standard. Note that the time and date need
to be adjusted again if the converted time of some records is
beyond the 24-hour time window due to the time difference.
Based on converted time and date, each record is assigned
with a sequence number. After that, the records are then
grouped by airport and sequence number, where the features
are summarized in a 30-minute time window. To be more
specific, three features are calculated, the average number,
delay and taxiing time of departure and arrival flights. Next,
processed departure and arrival data are merged by the key
of the airport and then fitted in a template data frame with
all airports and the whole sequence. Finally the data frame is
constructed as a 3-D array X ∈ RN×L×F = R285×17606×3,
which means the sequence length is 17606, each of which has
3 measurements of 285 airports.

V. EXPERIMENTS

In this section, we introduce the experiment settings and
conduct extensive experiments regarding the comparison with
baseline models, different priors on adjacency matrices, and
the temporal attention mechanism in our prediction model. A
model analysis with prediction visualizations is also presented
to discuss the model capability.

A. Settings

In our experiments, we utilize the air traffic information of
the past 4 hours to predict that over the next 90 minutes, which
means the input is built by chopping the dataset into a 4-D
array by 8 units along the sequence dimension, and the output
is built by further gathering 3 units right after the end of each
input. Moreover, a zero-mean normalization is performed on
the input. The dataset is split into 7:2:1 for the training set,
evaluation set, and testing set respectively. The threshold κ for
distance-based adjacency matrix is the largest value of flight
distance. There are Nblock = 4 spatial-temporal convolution
blocks, where the max order of Chebyshev polynomials K
used in graph convolution layer is set as 3, the kernel size
along the temporal axis is 3 in the time-dimension convolution
layer. The activation function within each spatial-temporal
convolution block is Rectified Linear Unit (ReLU) [45]. For
training details, the batch size is 32, Adamax [46] is used as
the optimizer with an initial learning rate 0.001 and decay rate
0.003. The loss function of the model output is Mean Squared
Error(MSE).
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TABLE I: Performance comparison of different models

Model Number Average Delay Average Taxiing

MAE RMSE MAE RMSE MAE RMSE

CNN 2.026 4.211 7.401 23.321 3.965 6.143
1-D Conv 2.102 5.972 7.469 25.324 3.883 7.448
LSTM 1.518 3.834 7.190 23.945 3.685 6.010
GRU 1.503 3.870 6.938 23.851 3.448 5.872
3-D Conv 1.724 3.959 6.975 23.019 3.498 5.532

Ours 0.773 1.706 6.320 22.427 2.574 5.033

B. Result Comparison with Baseline Models

On the final dataset, we compare our model with 5 baseline
models commonly used in air traffic prediction tasks including
spatial learning model CNN, temporal learning models 1-D
convolution, LSTM and GRU, and spatial-temporal learning
model 3-D convolution. Table I demonstrates the average MAE
and RMSE of three measurements, number of departure and
arrival flights, average delay of departure and arrival flights,
average taxiing time of departure and arrival flights, which
indicate the air mobility level of an airport within the air
transportation network. It can be observed that our model
outperforms all 5 baseline models in terms of all evaluation
metrics and all measurements. Among these baseline models,
the spatial learning model CNN simply addresses the spatial
dependencies in the air transportation network as a grid-like
relationship and fails to capture temporal patterns. Temporal
learning models can only address temporal correlations in a
relatively coarse manner and do not incorporate any counter-
measure for complex spatial characteristics. By comparison,
the spatial-temporal learning model captures both kinds of
dependencies, but the manipulation of spatial characteristics
is still limited due to the same constraint in CNN. Differently,
our model gains advantages on prediction tasks as it jointly
addresses the spatial-temporal correlations, where the spatial
dependencies in the air transportation network are captured by
the graph convolution module and temporal contexts are also
involved and captured by the time-dimensional convolution
module.

More specifically speaking, for the number and average
taxiing time of departure and arrival flights, our model shows
a more obvious strength of capturing general traffic patterns
and a larger capability to make an accurate prediction with
the existence of abrupt perturbations. For average delay of
departure and arrival flights that is highly uncertain with
multiple complex factors, our model also gains favors by
making a prediction with lower errors in terms of absolute
magnitude and against perturbations.

C. Ablation Experiments

1) Exploration of different priors on adjacency matrix:
To explore the impact of prior knowledge in the air traffic
graph learning, we test three different adjacency matrices:
unweighted, flight-based, and distance-based. Table II illus-
trates the performance comparison of our prediction model
with different adjacency matrices as the input. According to
the results, prior knowledge of the adjacency relationship can

TABLE II: Comparison of different adjacency matrix

Adjacency Number Average Delay Average Taxiing

MAE RMSE MAE RMSE MAE RMSE

Unweighted 0.849 1.840 6.637 22.738 2.761 5.063
Flight 0.773 1.706 6.320 22.427 2.574 5.033
Distance 0.811 1.816 6.542 22.689 2.682 5.024

TABLE III: Comparison of model with/without temporal attention

Attention W/O Attention

30 min 60 min 90 min Overall 30 min 60 min 90 min Overall

Number MAE 0.753 0.766 0.801 0.773 0.851 0.913 0.941 0.901
RMSE 1.663 1.698 1.755 1.706 1.970 2.082 2.174 2.077

Delay MAE 6.297 6.326 6.339 6.320 6.622 6.697 6.764 6.695
RMSE 22.227 22.487 22.568 22.427 22.590 22.643 22.700 22.644

Taxiing MAE 2.416 2.642 2.663 2.574 2.809 2.897 2.964 2.883
RMSE 4.848 5.090 5.157 5.033 5.228 5.257 5.294 5.259

impact the performance of the prediction model. Besides, it
can be easily observed that the model with a flight-based
adjacency matrix generally makes more accurate predictions
by a marginal improvement in terms of number and delay
measurements. For the taxiing measurement, the flight-based
adjacency still gives rise to a smaller MAE and a slightly infe-
rior result of RMSE compared to the distance-based adjacency
matrix.

These results indicate the appropriateness of flight-based de-
scription of adjacency relationship within the air transportation
network, which actually makes more sense than a distance-
based prior and reflects the actual situation of the flight-
driven network: the more flights between two airports, the
more contribution it will make when traffic pattern propagates.
Nevertheless, the distance-based adjacency relationship still
leads to a slightly lower MAE and RMSE comparing to the
unweighted one, and it seems to be a reasonable prior in
some scenarios when traffic events occur: The impact of traffic
events may share within a region covering two or more airports
that are geographically close to each other, especially when the
scales of such events are large.

2) Analysis of temporal attention mechanism: To verify
the benefits of the temporal attention mechanism, we also
perform ablation experiments on our prediction model with
and without temporal attention involved. Table III shows the
metrics of two settings for predicting three measurements over
90 minutes with the overall and individual results at each time
step. These results illustrate that the attention mechanism on
temporal dimension boosts the performance of the prediction
model. To be more specific, the model with temporal attention
achieves lower errors by an obvious margin for 30-minute, 60-
minute and 90-minute traffic prediction, and in terms of all
measurements, which indicates the improvement of our model
in both short-term and long-term traffic prediction. Besides,
with the temporal attention, the performance of our prediction
model generally has less tendency to decrease as the time step
goes, which suggests a certain degree of robustness regarding
the time of prediction. The above results and analysis show
the effectiveness of the temporal attention mechanism, where
the valuable dynamic temporal information is exploited in an
adaptive manner for prediction tasks.
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D. Model Analysis

To further analyze our prediction model, we select a 400-
step time window(200 hours) of Orlando International Air-
port(MCO) in the testing set and visualize the ground truth
and prediction results of different models as shown in Figure
3, Figure 4 and Figure 5. For the purpose of clear visualization,
we select a deep learning model GRU beside our model,
as it is generally better than other baseline models. We can
observe that for the measurements of average taxiing time and
the number of departure and arrival flights that have certain
periodic patterns, either explicit or not, our model can have
a relatively accurate prediction and show the capability to
keep tracking of actual air traffic situation. On the other hand,
the GRU model can also predict the trend of mobility level
changes, but the prediction is more likely to be smoother;
namely, it seems not acute enough to capture the abrupt
perturbation. It could be due to the lack of handling complex
spatial dependencies, and the model prediction could be simply
smoothed by the data of smaller airports that have fewer flights
and appear to be inactive.

Moreover, although deep learning models like the 3-D
convolution and composite CNN-RNN models generally have
a certain capability to address spatial-temporal correlation,
they have certain limitations due to the constraint of the input.
To be specific, the input fed into any deep learning model must
be shaped as grid-like data, namely Euclidean data. However,
the complex spatial dependencies in some scenarios seem
more suitable to be modeled in non-Euclidean space, such as
the social network and traffic network. Our model leverages
the advantage of graph neural networks, which have no prior
on Euclidean input, so that the propagation of traffic status
among airports can be better captured by learning to aggregate
the features of neighboring airports that are not necessarily
neighbors in a geographical sense.
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Fig. 3: Visualization results for number of departure and arrival
flights at MCO.

For the measurement of average delay of departure and
arrival flights that is even more uncertain and complicated,
similar conclusions can be drawn for the baseline model. In
the meantime, our prediction model can still capture short-
period heavy delay patterns and roughly track the trend of
fluctuation. Nevertheless, our model shows one drawback,
which also reflects in other measurements: our model has
limited capability to seize highly variational air traffic patterns,
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Fig. 4: Visualization results for average taxiing time of departure
and arrival flights at MCO.

for example, two peak delay around time step 80 and 130, as
shown in Figure 5.

We would explain such limited prediction capability from
two points of view. From the perspective of the model, the
stack of graph convolution layers can give rise to an over-
smoothing issue, namely over-aggregating the information of
the neighborhood for each node. Even if we add a skip-
connection between two spatial-temporal blocks to alleviate
this issue, the receptive field of a node could still inevitably
extend to the whole graph and reduce the diversity of each
node within the network which impedes the representation
learning of nodes’ features. From the data perspective, highly
variational air traffic patterns are often caused by multi-factors
such as weather, operational interference, mechanical failure,
and event-based disturbance, which is not involved in the
dataset we explored, thus not learned by our prediction model.
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Fig. 5: Visualization results for average delay of departure and arrival
flights at MCO.

VI. CONCLUSION AND FUTURE WORK

In this paper, we conduct spatial-temporal graph data min-
ing regarding the prediction toward aviation air mobility for
airports. Different from existing works that only consider mod-
eling temporal dependencies or model spatial dependencies in
a grid-partitioned manner, we formulate the air transportation
network in a graph structure and construct a graph dataset
from AOTP data. Then we apply spatial-temporal graph neural
networks to predict three measurements related to air mobility:
number, average delay, and average taxiing time of departure
and arrival flights at 285 airports in the United States. The
experiment results show the advantage of our model in air
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traffic prediction tasks. Moreover, we conduct ablation studies
to compare different priors on adjacency relationships in the
air transportation network and verify the effectiveness of
the temporal attention mechanism. Furthermore, we analyze
the performance of our prediction model and discuss the
model capability. For future work, we suggest involving the
weather data and event information for a more accurate
spatial-temporal prediction toward air mobility in aviation. The
spatial-temporal prediction framework proposed in this paper
has the potential to be generalized to other spatial-temporal
applications to enable real-time decision-making and control
in IoT.
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