
TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 1

Towards Hard Real-Time and Energy-Efficient
Virtualization for Many-core Embedded Systems

Zhe Jiang, Kecheng Yang, Yunfeng Ma, Nathan Fisher, Neil Audsley, Zheng Dong§

AbstractÐIn safety-critical computing systems, the I/O virtualization must simultaneously satisfy different requirements, including
time-predictability, performance, and energy-efficiency. However, these requirements are challenging to achieve due to complex I/O
access path and resource management at the system level, lack of support from preemptive scheduling at I/O hardware level, and
missing an effective energy management method. In this paper, we propose a new framework, I/O-GUARD, which reconstructs the
system architecture of I/O virtualization, bringing a dedicated hardware hypervisor to handle resource management throughout the
system. The hypervisor improves system real-time performance by enabling preemptive scheduling in I/O virtualization with both
analytical and experimental real-time guarantees. Furthermore, we also present a dedicated energy management unit to adjust
I/O-GUARD’s dynamic energy using frequency scaling. Associated with that, a frequency identification algorithm is proposed to find the
appropriate executing frequency at run-time. As shown in experiments, I/O-GUARD simultaneously improves the predictability,
performance and energy-efficiency compared to the state-of-the-art I/O virtualization.

Index TermsÐReal-time Systems, I/O Virtualization, Energy-Efficiency, Schedulability, Scalability, Hardware/Software Co-design.

✦

1 INTRODUCTION

Safety-critical systems have stringent assurance and ver-
ification requirements that are absolutely essential to
life-critical applications, including medical, automotive,
aerospace and industrial automation [1]±[3]. In safety-
critical systems, virtualization has gained increasing mo-
mentum, driven by the robust isolation between differ-
ent Virtual Machines (VMs) [4]. Such inter-VM isolation
prevents fault propagation between different VMs, which
satisfies the demands of both safety and security required
by safety-critical systems [1].

As a part of safety-critical systems, Input/Output (I/O) is
vital but has not been widely recognized [5], [6]. Specifically,
the I/O often interfaces with physical sensors and actuators
that need to either sense a potential hazard in time or make
a maneuver to avoid a dangerous scenario [7], [8]. Therefore,
it is important to assure that I/O operations behave correctly,
in a timely manner, and most importantly with secured band-
widths [8]. For instance, in an autonomous control system,
real-time decision making module and driving maneuver
control module usually require a series of I/Os to occur
timely and accurately during specified periods with guar-
anteed performance, for the detection of objects [8].

It is very difficult to guarantee predictability and per-
formance of I/O virtualization, especially for multi-/many-

• Zhe Jiang is with Computer Science Department, University of Cam-
bridge, United Kingdom, CB3 0FD.

• Kecheng Yang is with the Department of Computer Science, Texas State
University, San Marcos, TX 78666, United States.

• Yunfeng Ma is with Computer Science Department, University of York,
United Kingdom, YO10 5GH.

• Neil Audsley is with the Department of Computer Science, City, Univer-
sity of London, United Kingdom, EC1V 0HB.

• Zheng Dong and Nathan Fisher are with the Department of Computer
Science, Wayne State University, Detroit, MI, 48202, United States.

This work was supported in part by the U.S. National Science Foundation
under Grants CNS-2103604, CNS-2140346, CNS-2038609, IIS-1724227,
CCF-2118202 and CNS-2104181, in part by a start-up Grant from Wayne
State University, in part by start-up and REP grants from Texas State
University.

§. Corresponding author, dong@wayne.edu.

core architectures, such as Network-on-Chip (NoC). This is
because of the research challenges (C.x) listed below:

C.1: System level. Conventional I/O virtualization in-
volves complicated I/O access paths and resource manage-
ment [4], [8], [9], especially in multi-/many-core architec-
tures. For instance, to access an I/O device in a Network-
on-Chip-based many-core virtualized system, I/O opera-
tions must pass through the guest Operating System (OS),
virtual hardware, Virtual Machine Monitor (VMM), and ar-
biters/routers (shown in Fig. 1). Such complicated paths
introduce significant communication latency and timing
variance to I/O operations, compared to a legacy system
(which does not support any virtualization features). More-
over, along the access paths, potential resource contentions
occur at each system level, which involve additional re-
source management throughout the entire system. The extra
resource management elevates the difficulty of satisfying the
real-time requirements of I/O virtualization [4].

C.2: I/O hardware level. The implementation of traditional
I/O controllers relies on FIFO queues, which forbids context
switches at the hardware level [5]. Effective scheduling
methods, e.g., Preemptive Earliest-Deadline-First (P-EDF)
policy, cannot be applied to ensure system predictability [4]
by prioritizing I/O tasks according to their importance.

C.3: Energy-efficiency. Safety-critical systems are usually
implemented on embedded computing platforms, in which
the energy is usually constrained. A methodology presented
to solve the above challenges must be energy-efficient. Dif-
ferent from the processor and memory virtualization, an
effective energy management method of I/O virtualization
is still missing.

Contributions. We propose I/O-GUARD, a scalable and
energy-efficient system framework, guaranteeing the real-
time performance of multi/many-core NoC-based I/O vir-
tualization. To this end, we introduce a novel system archi-
tecture, including both a new hypervisor micro-architecture
and a two-layer scheduler, which simultaneously optimize
I/O access paths and resource management throughout the
system. Moreover, we present a dedicated energy manage-
ment unit to support run-time frequency scaling of the I/O

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 8

Thus, the following theorem provides a schedulability
test for the tasks in each VM i.

Theorem 3. All I/O jobs from VM i meet their deadlines if

∀t ≥ 0,
∑

τk∈Ti

dbf(τk, t) ≤ sbf(Γi, t), (17)

where sbf(Γi, t) and dbf(τk, t) are calculated by (15) and (16).

Again, Theorem 3 does not specify an upper-bound on
the ∀t, and checking up to the least common multiple of all
elements in {Πi}∪{Tk}τk∈Ti

may results in the schedulabil-
ity test running in exponential time. The following theorem
provides a pseudo-polynomial schedulability test with a
minimal limitation similar to that of Theorem 2.

Theorem 4. For each VM i such that Θi

Πi
−

∑
τk∈Ti

⌈ρqCk⌉

Tk
> c′

where c′ is a certain constant such that c′ > 0 (e.g., c′ = 0.01),
(17) is true if

∀t : 0 ≤ t <
maxτk∈Ti

{Tk −Dk}+ 2Πi −Θi − 1

c′
,

∑

τk∈Ti

dbf(τk, t) ≤ sbf(Γi, t).

Proof. We prove this by showing that

∃t∗ ≥ 0 such that
∑

τk∈Ti

dbf(τk, t) > sbf(Γi, t) (18)

implies t∗ <
maxτk∈Ti

{Tk−Dk}+2Πi−Θi−1

c′
. By (15), we have

sbf(Γi, t
∗) ≥

⌊

t∗−(Πi−Θi)

Πi

⌋

·Θi (19)

≥
t∗−(Πi−Θi)−(Πi−1)

Πi

·Θi

≥ t∗ ·
Θi

Πi

− (2Πi −Θi − 1). (20)

The last inequality is because 1 ≤ Θi ≤ Πi implies that
2Πi − Θi − 1 ≥ 0 and 0 < Θi

Πi
≤ 1. On the other hand,

by (16), we have

∑

τk∈Ti

dbf(τk, t
∗) ≤

∑

τk∈Ti

t∗ + (Tk −Dk)

Tk

· ⌈ρqCk⌉

≤
∑

τk∈Ti

t∗ +maxτk∈Ti
{Tk −Dk}

Tk

· ⌈ρqCk⌉

=
∑

τk∈Ti

⌈ρqCk⌉

Tk

· (t∗ + max
τk∈Ti

{Tk −Dk})

≤
∑

τk∈Ti

⌈ρqCk⌉

Tk

· t∗ + max
τk∈Ti

{Tk −Dk}.

(21)

The last inequality is because
∑

τk∈Ti

⌈ρqCk⌉
Tk

≤ Θi

Πi
≤

1 is necessarily required for no over-utilization and

maxτk∈Ti
{Tk − Dk} ≥ 0 holds for constrained-deadline

tasks. Thus, by (20) and (21), (18) implies

∑

τk∈Ti

⌈ρqCk⌉

Tk

· t∗ + max
τk∈Ti

{Tk −Dk} > t
∗ ·

Θi

Πi

− (2Πi −Θi − 1)

⇒ t
∗
<

maxτk∈Ti
{Tk −Dk}+ 2Πi −Θi − 1

Θi

Πi
−

∑
τk∈Ti

⌈ρqCk⌉

Tk

⇒ t
∗
<

maxτk∈Ti
{Tk −Dk}+ 2Πi −Θi − 1

c′

The theorem follows.

5.3 Frequency Identification Algorithm

We are now ready to present our frequency identification
algorithm that select the largest ρq (so that the minimum
frequency) such that the system is still schedulable.

In this frequency identification algorithm, we assume
that the period of each VM (i.e., Πi) is pre-selected and
given while the budget (i.e., Θi) can be adjusted to max-
imize the schedulability. That is, system designers need
select such periods according to the application and system
requirements and limitations first, e.g., considering context-
switch overheads. Then. for each selected combination of
the periods of VMs, our frequency identification algorithm is
able to identify the minimum needed operation frequency
as well as the budgets for each VM. If multiple candidates
of the period selection may be considered, the frequency
identification algorithm can be applied multiple times to each
candidate and therefore identify the best periodic selection
from the candidates.

For clarity and conciseness, we describe the frequency
identification algorithm as follows, so that we do not need
to present fairly standard code/pseudo-code structure (e.g.,
binary search) nor re-present mathematical formulas we
just derived in the above subsections. Please note that, the
following 1) to 4) are not four subsequent steps; instead,
they are four layers.

1) We can determine the largest schedulable ρq by
a binary search on all its possible candidates (i.e.,
{1, 3

2
, 2, 5

2
, ..., 10}).

2) For each given ρq , we determine the YES/NO for
schedulability by Theorem 1, where the time slot table σ
is given and VM parameters {(Πi,Θ

∗
i)} are determined

below.
3) Under the given ρq , for each VM i with given Πi and its

associated task set Ti, we can determine the minimum
required budget Θ∗

i by a binary search for Θi in the
range [0,Πi].

4) Under the given ρq , i, Πi, and Ti, for each Θi, we can de-
termine the YES/NO for schedulability by Theorem 3.

In terms of the time complexity of our frequency identi-
fication algorithm, it can be analyzed as follows.

• The largest schedulable ρq is obtained when 1) has been
completed. Due to the binary search, 1) consists of at
most O(logNρ) iterations of 2), where Nρ denote the
number of candidates to be selected as ρq . Ð There are
polynomial number of iterations of 2).

• Each iteration of 2) completes by applying Theorem 1.
According to Theorem 2, it takes pseudo-polynomial
time.

• Moreover, for each iteration of 2), we need do one itera-
tion of 3) to determine the {Θ∗

i }. 3) consists O(n) binary

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 11

6.4 Case Study: Overall Real-time Performance

We use an automotive case study to examine the benefits of
the I/O-GUARD over conventional virtualized systems.
Systems Configurations. We configured I/O-GUARD(|E) as
I/O-GUARD(|E)-x (x ∈ [0, 40, 70, 100]), which pre-loaded x%
of I/O tasks into the virtualization manager before run-time.
In other words, I/O-GUARD(|E)-x indicates that x% of I/O
tasks were executed by the P-channel and (1 − x%) of I/O
tasks were executed by the R-channel.
Task sets. We introduced three sets of I/O-related tasks:

• 20 automotive safety tasks, selected from the Renesas
automotive use case database [27], e.g., RSA32, etc..

• 20 automotive function tasks, selected from EEMBC
benchmark [28], e.g., FFT, speed calculation, etc..

• synthetic workloads, selected from EEMBC benchmark,
can be optionally added to control overall utilization.

We employed a hybrid-measurement approach to obtain
WCETs for all the task. The raw data processed by the
40 tasks was randomly generated off-chip and sent to the
evaluated systems via an Ethernet controller (1 Gbps) at
run-time. The fetching of the raw data was packed as I/O
tasks in I/O-GUARD variants. The results were sent back
via a FlexRay (10 Mbps), which were formed as sporadic
I/O tasks. Each task had a randomly defined period and
implicit deadline, with overall system utilization approxi-
mately 40%. Since the execution time of a task is affected
by diverse factors (e.g., cache miss rate); hence, adding syn-
thetic workloads to a system only gives it a target utilization.
Note that the random generation of the task parameters may
result in the taskset being physically unschedulable.
Experimental Setup We introduced three groups of experi-
mental setups, which activated 4/8/16 VMs to execute the
experimental task sets and synthetic workloads. In each
experimental group, we executed each examined system
1, 000 times under varying target utilization from 40% to
100% (with an interval of 5%). Each execution lasted 100
seconds, which guaranteed that all tasks executed at least
250 times. For fair comparison, we also ensured the data in-
put to the examined systems was identical in each execution.
We evaluated the examined systems using success ratio and
I/O throughput. The success ratio recorded the percentage of
trials that executed successfully (i.e., without deadline miss
of any safety and function task), under a specified target
utilization. The I/O throughput evaluated the average I/O
performance during I/O processing. We also performed the
schedulability tests (Sec. 5) on the given tasksets to check
the consistency between theoretical analysis and practical
evaluation. Based on the experimental results in Sec. 6.3, we
configured the I/O-GUARD without VEMU to ensure the
best real-time performance.
Obs 6. Introducing I/O-GUARD improved system-level real-
time performance. Such benefit was slightly decreased by
the energy management module in I/O-GUARD|E.

As shown in Fig. 14 and 15, with the same configu-
rations, the I/O-GUARD variants always achieved higher
success ratios and I/O throughput compared to the base-
line systems. However, such improvements were slightly
decreased in I/O-GUARD|E, due to the involvement of
VMEU. This observation is aligned to the experiments using
synthetic workloads, i.e., Obs. 5. The results also shows
that I/O-GUARD(|E)-100 consistently outperformed other
I/O-GUARD(|E) variants in both success ratios and I/O
throughput, with less experimental variance, meaning that
pre-loading a higher percentage of I/O tasks into the I/O-

GUARD before run-time introduces more benefits. While
comparing the theoretical results with the experimental
results in Fig. 6.4, we reported that the I/O-GUARD vari-
ants consistently outperformed the theoretical results, which
demonstrates the consistency between theoretical analysis
and the experimental results.
Obs 7. I/O-GUARD(|E)-0 had the worst real-time perfor-
mance in I/O-GUARD(|E) variants, but still outperformed
the baseline systems.

This observation is given by Fig. 14. With the same con-
figurations, I/O-GUARD(|E)-0 achieved the lowest success
ratio in the I/O-GUARD(|E) variants, but still higher than the
baseline systems. In I/O-GUARD(|E)-0, none I/O task was
pre-loaded in I/O-GUARD hypervisor, and such improve-
ment is acquired by the novel architecture presented by I/O-
GUARD (see Sec. 2), simplifying the I/O access paths.
Obs 8. Increasing the number of VMs reduced the success
ratio and I/O throughput of the conventional virtualization.
I/O-GUARD effectively reduced such issues.

This observation is shown by the comparison between
the results of three experimental groups in Fig. 14 and 15.
In 4-VM BS|RT-XEN and BS|BV, significant drops in the
success ratios occurred at 70% and 75% of target utilization;
whereas these drops moved to 60% target utilization in
16-VM BS|RT-XEN and BS|BV. Moreover, BS|RT-XEN and
BS|BV also suffered from an approximate 20% reduction
of I/O throughput. This observation mainly results from
the additional on-chip interference and resource contention
generated by the introduced VMs and tasks (see Sec.1).

In I/O-GUARD and I/O-GUARD|E, the system architec-
ture optimizes the I/O access paths and leaves the re-
source management to the hypervisor. It hence reduces
on-chip interference and manages the I/O resources in a
time-predictable manner (achieved via 2-layer scheduler),
which improves overall I/O real-time performance. In an
8-VM system, when target utilization approached 100%,
I/O-GUARD(|E)-100 maintained a success ratio which was
close to 45% (35%) with negligible loss of I/O throughput.
For the experiments with 16 VMs, I/O-GUARDs still kept
outperforming the baseline systems.

6.5 Power Distribution and Energy Efficiency

We now evaluate power distribution and energy efficiency
of I/O-GUARD|E.
Experimental Setup. We configured I/O-GUARD|E to sup-
port 4 processors and 2/4/8 I/Os (Ethernet). We first
adopted the method described in Sec. 6.2 to synthesize the
systems and reported their power distributions. We then
executed the case study described in Sec. 6.4 and recorded
the clock frequency in the I/O domain. With that, we cal-
culated the dynamic energy consumption using the method
described in Sec. 4. We executed the experiments 100 times.
Note that, we set γ as 0.5 (median number) and normalized
the experimental results by I/O-GUARD.
Obs 9. With the increasing number of I/Os, the I/O virtual-
ization dominated the entire system’s energy consumption.

This observation is shown by comparing the three exper-
imental groups in Fig. 16. When the number of I/Os scaled
from 2 (Fig. 16(a)) to 8 (Fig. 17(c)), the power distribution of
the I/O domain was increased from 39.9% to 70.1%, becom-
ing to dominate the entire system’s energy consumption.
Obs 10. Implementing VEMU in I/O-GUARD effectively
reduced the overall dynamic energy consumption.

TRANSACTION OF COMPUTERS, VOL. XX, NO. XX, XXXX XXXX 13

of predictable I/O virtualization. However, without consid-
eration of other system layers (research challenge C.1), real-
time virtualization can not be guaranteed from the system-
level perspective. Different from the previously reviewed
work, Kim et al. [31] proposed a methodology to enhance
I/O predictability from the OS level. This work proposed
optimized memory management (i.e., isolating dynamic-
memory allocations) and improved IPC-related mechanisms
(i.e., selective LLC bypass, and concurrency elimination) to
improve the system performance and predictability. This
work makes numerous improvements but has the same
drawbacks when the system as a whole is considered.

Hardware-level Optimization. Work focusing on the hard-
ware level has mostly contributed to the predictability
of on-chip communication. For instance, Burns et al. [32]
and Plumbridge et al. [10] adopted different scheduling
algorithms to optimize predictable communication flow in
many-core systems, such as via an on-chip network. This
work, and others like it, assist the system designer to de-
velop predictable traffic flows, although they focus entirely
on the communications network making it challenging to
cast virtualization-related overheads into the context of real-
time virtualization. With consideration of both virtualiza-
tion and hardware implementation, Single Root I/O virtu-
alization [33] proposed a set of hardware enhancements for
PCIe devices. Rather than relying on the VMM to intervene
on I/O instructions, it moved the intervention for perfor-
mant data movement to the I/O device itself, for tasks such
as packet classification and address translation. However,
these research efforts did not aim to provide system-level
predictability, although it is a contributing factor.

System Structure Optimization. Considering the entire
system, Intel’s VT-D and AMD’s IOMMU optimized the
access paths in the I/O virtualization, providing direct
communication channels between the VMs and the un-
derlying hardware. However, these technologies have not
been developed for real-time application scenarios. Based
on the concept of ªVMM-bypass virtualizationº, Jiang et
al. [9] proposed BlueVisor, a dedicated coprocessor, handling
I/O virtualization at the hardware level, which improved
I/O throughput by introducing paralleling computation for
virtualization-related functionalities. However, same as the
other frameworks, the implementation of the BlueVisor re-
mains the FIFO structure at I/O hardware level , leading
the timing-bound of the I/O behaviors to become very pes-
simistic. (i.e., research challenge C.2). Distinct from VMM-
bypass virtualization, Siemens has presented a static parti-
tioning virtualization architecture, named Jailhouse [34]. It
statically allocates all system resources, including I/Os, at
initialization time by exclusively assigning each to a single
partition. Jailhouse replaces run-time memory allocation
and physical-to-virtual CPU assignment with a 1:1 map-
ping, which effectively reduces system overhead and en-
sures that system performance is close to the native system.
Such physical separation provides strong isolation between
different VMs. However, this separation is contrary to a
fundamental concept of virtualization. Since the hardware
can only be accessed by a specific partition, it is not really
shared between VMs.

Timing Analysis for I/O Virtualization. In real-time sys-
tems, there has been existing work modeling and providing
the timing guarantee for I/O virtualization. In the context
of Quest-V, Danish et al. [35] proposed a Sporadic Servers
(SS) and Priority Inheritance Bandwidth Preserving Server

(PIBS) to handle I/O operations. Following this work, Mis-
simer et al. [30] further presented a theoretical model and
schedulability analysis for the SSs and PIBSs, ensuring the
I/Os’ predictability in the context of Quest-V. However,
the hardware-assisted I/O virtualization was not consid-
ered. Schwaricke et al. [36] presented a ªbroker-basedº real-
time communication framework for the VMs, and pro-
vided guidelines to system designers on the dimensioning
of the system regulation to achieve maximum bandwidth
while preserving the I/O flow schedulability. Same as [35]
and [30], this work only focused on the software-based I/O
virtualization. As a summation of real-time I/O virtualiza-
tion, Casini et al. [37] grouped I/O virtualization into three
categories: pass-through virtualization, para-virtualization
with I/O VMs, and para-virtualization I/O VMs and shared
buffers. With that, this work presented the theoretical model
and schedulability analysis for each category, providing the
timing guarantees for I/O virtualization. However, same
with the other work, hardware-assisted was not discussed.

8 CONCLUSION

This paper proposes a system framework for multi-/many-
core NoC-based I/O virtualization. I/O-GUARD introduces
a novel system architecture, including both a new hy-
pervisor micro-architecture and a two-layer scheduler, to
simultaneously optimize I/O access paths and resource
management throughout the system. I/O-GUARD contains a
dedicated energy management unit to adjust the energy con-
sumption of the I/O virtualization using frequency scaling.
Associated with that, a frequency identification algorithm
is proposed to find the appropriate clock frequency at run-
time. A theoretical model and schedulability analysis are
presented for I/O-GUARD, which demonstrates improved
schedulability compared to conventional I/O virtualization.
As shown in the evaluation, I/O-GUARD outperforms state-
of-the-art I/O virtualization with varying hardware archi-
tectures. Also, the I/O-GUARD design is energy efficient.

REFERENCES

[1] A. Burns and R. Davis, ªMixed criticality systems-a review,º
Department of Computer Science, University of York, Tech. Rep, 2013.

[2] N. Guan, P. Ekberg, M. Stigge, and W. Yi, ªEffective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,º
in 2011 IEEE 32nd Real-Time Systems Symposium. IEEE, 2011.

[3] A. Kritikakou, C. Pagetti, O. Baldellon, M. Roy, and C. Rochange,
ªRun-time control to increase task parallelism in mixed-critical
systems,º in Proc. ECRTS. IEEE, 2014.

[4] A. Vaishnav, K. D. Pham, and D. Koch, ªA survey on fpga
virtualization,º in International Conference on Field Programmable
Logic, 2018.

[5] A. Burns and A. J. Wellings, Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX, 2001.

[6] Z. Jiang et al., ªMcs-iov: Real-time i/o virtualization for mixed-
criticality systems,º in Proc. RTSS.

[7] J. MÈossinger, ªSoftware in automotive systems,º IEEE software,
2010.

[8] X. Gong, D. Cao, Y. Li, X. Liu, Y. Li, J. Zhang, and T. Li, ªA
thread level slo-aware i/o framework for embedded virtualiza-
tion,º TPDS, 2020.

[9] Z. Jiang and N. Audsley, ªBluevisor: A scalable real-time hardware
hypervisor for many-core embedded systems,º in RTAS, 2018.

[10] G. Plumbridge, ªBlueshell: a platform for rapid prototyping
of multiprocessor NoCs and accelerators,º Computer Architecture
News, 2014.

[11] J. Sahoo, S. Mohapatra, and R. Lath, ªVirtualization: A survey on
concepts, taxonomy and associated security issues.º

[12] R. Nathuji, K. Schwan, A. Somani, and Y. Joshi, ªVpm tokens:
virtual machine-aware power budgeting in datacenters,º Cluster
computing, vol. 12, no. 2, pp. 189±203, 2009.

