Designs, Codes and Cryptography (2023) 91:293-307
https://doi.org/10.1007/510623-022-01107-2

®

Check for
updates

New hemisystems of the Hermitian surface

Vincenzo Pallozzi Lavorante! ® - Valentino Smaldore?

Received: 15 April 2022 / Revised: 12 August 2022 / Accepted: 22 August 2022 /

Published online: 17 September 2022

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may
apply 2022

Abstract

Constructing hemisystems of the Hermitian surface is a well known, apparently difficult,
problem in Finite geometry. So far, a few infinite families and some sporadic examples have
been constructed. One of the different approaches relies on the Fuhrmann-Torres maximal
curve and provides a hemisystem in PG (3, p?) for every prime p of the form p = 14442, a
even. Here we show that this approach also works in PG (3, p?) for every prime p = 1+4a?,
a odd. The resulting hemisystem gives rise to two weight linear codes and strongly regular
graphs whose properties are also investigated.
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1 Introduction

The Hermitian surface H3 ,2 of PG (3, g?) is the set of all self-dual points of a non-degenerate
unitary polarity of PG (3, ¢%). Generators of Hj 42 are totally isotropic subspaces of maximal
dimension. A generator of H3 .2 is a totally isotropic line of PG (3, g?). The total number of
generators of H3 2 is (¢ + 1)(g + 1) and through any point P € H3,42 there exist exactly
g + 1 generators and they are the intersection of 3 > with its tangent plane at P. Therefore,
for any divisor m of g + 1, one can ask whether a symmetric point-generator configuration for
a family of generators exists such that each point of H3 2 is incident with exactly (¢ +1)/m
generators from the family.
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In [17] B. Segre proved that such a symmetric point-generator configuration does not exist
for m # 2, and he introduced the concept of a hemisystem for the case m = 2. Therefore, a
hemisystem of H3 .2 consists of %(q3 +1)(g + 1) generators of H3 2, exactly %(q + 1) for
each point on H3 ;2. Segre exhibited a hemisystem for ¢ = 3.

Hemisystems are interesting configurations which are connected with important combi-
natorial objects such as strongly regular graphs, partial quadrangles and 4-class imprimitive
cometric Q-antipodal association schemes that are not metric; see [4, 6, 8]. Nevertheless, find-
ing hemisystems is a challenging problem. The first infinite family was constructed almost 50
years after by Cossidente and Penttila [8] who also found a new sporadic example in H3 25.
Later on, Bamberg, Giudici and Royle [1] and [2, Section 4.1] constructed more sporadic
examples for g = 7,9, 11, 17, 19, 23, 27. In [1] the authors provide a construction method
of hemisystems for a class of generalized quadrangles which includes H; 42- A hemisystem
obtained by this method is left invariant by an elementary abelian group of order ¢2 and the
Cossidente-Penttila hemisystem can be also obtained in this way. Recently several new infi-
nite families of hemisystems appeared in the literature. Bamberg, Lee, Momihara and Xiang
[4] constructed a new infinite family of hemisystems on H3 2 for every ¢ = —1 (mod 4)
that generalize one of the previously known sporadic examples. Their construction is based
on cyclotomic classes of F*, and involves results on characters and Gauss sums. Cossidente
and Pavese [7] constructed, for every odd ¢, a hemisystem of H3 ;2 invariant by a subgroup
of PGU(4, ¢) of order (g + 1)g>.

The approach introduced in [13] relies on the Fuhrmann-Torres curve over g2 naturally
embedded in H3 2. Here the term curve defined over g? is used for a (projective, geometri-
cally irreducible, non-singular) algebraic curve X of PG (3, g%). Their construction provided
a hemisystem of 3, whenever ¢ = p is a prime of the form p = 1 + 4a? for an even
integer a. In this paper we investigate the analogous construction for p = 1 + 4a® with
an odd integer a, and show that it produces a hemisystem , as well, for every such p. We
mention that a prime number p of the form p = 1+ 4a? with an integer a is called a Landau
number. Since the famous Landau’s conjecture, dating back to 1904, is still to be proved (or
disproved), it is unknown whether there exists an infinite sequence of such primes, and hence
whether an infinite family of hemisystems is obtained or not. What is known so far is that
37 primes up to 51000 with this property exist, namely 5, 17, 37, 101, 197, 257, 401, 577,
677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377,
15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617,
42437, 44101, 50177, see [15]. Our main result is stated in the following theorem.

Theorem 1.1 Let p be a prime number where p = 1+ 4a* with an odd integer a. Then there
exists a hemisystem in the Hermitian surface Hs ;2 of PG(3, p?) which is left invariant by a
subgroup of PGU(4, p) isomorphic to PSL(2, p) x C p+1.

2

2 Background on Hermitian surfaces, maximal curves and hemisystems

By algebraic curve defined over F,» we mean a projective, geometrically irreducible, non-
singular algebraic curve X’ of PG(3, qz) viewed as a curve of PG(3, qu), where qu is the
algebraic closure of F2. The Hasse-Weil bound gives an upper (and lower) bound for the
number of points a curve can have over a finite field. More precisely, given a curve X defined
over I > one has
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|X(F,)| < g° +1+28(X)q,

where X (qu) is the set of the points whose coordinates are defined over Iqu and g(X) is
the genus of X. An algebraic curve X" defined over qu is qu-maximal if the number of
its IF 2-rational points attains the Hasse-Weil upper bound. Our aim is to use the Natural
Embedding Theorem of a maximal curve, [14], to construct new families of hemisystems on
H3 q2-

A canonical form of H3 ;2 is

x4 x x4 x4t =o.
The group of projectivities preserving Hz .2 is isomorphic to the projective unitary group
PGU(4, ¢) and it acts on the points of H3 ,» as a permutation group [10]. The number of
points of 'H37q2 is (q2 + 1)(q3 + 1). A hemisystem of H3‘qz consists of %(43 + (g +1)

generators of H3 2, exactly %(q + 1) of them through each point of H3 ;2. Up to a change
of the projective frame in PG(3, ¢?), the equation of H3 42 may also be written in the form

Ha ot XTI 4 2X37 — XIX0 — X3X] = 0.

In PG(2, Fq) with homogeneous coordinates (X : Y : Z), the Fuhrmann-Torres curve is
the plane curve F 1 of genus %(q — 1)? with equation

g+l q—1
2

Friyi—yzil=x72
The morphism
¢: F© > PGB, F,), (X:Y:Z)> (Z*:XZ:YZ:Y?)

defines an embedding (called natural embedding) of £t which is a ¢ + 1 degree curve X't

whose points (including those defined over F,) are contained in H3 42 In particular, 7 T is

an [ »-maximal curve. The twin Fuhrmann-Torres curve is defined by the equation
Foovi—yzil = —x*T 7

and the above claims remain valid with respect to the same morphism. For more details see

[9].

Some useful properties of the Fuhrmann-Torres curve, also valid for any F 2-maximal
curve X' naturally embedded in H;, 42> can be found in [13, Sections 2,3,4].

In particular, X * is a ¢ + 1 degree curve lying in the Hermitian surface 3, 42 Furthermore
X*(F,2) is partitioned in © and X (F,2) \ = AT, where Q is the set cut out on X" by
the plane 7 : X| = 0. Note that |2| = ¢ + 1 and |[AT| = %(q3 —q).

Equivalently 2 is the intersection in 7 of the conic C with equation XoX3 — X % =0and
the Hermitian curve (2, ¢%) with equation X§ X3 + XoX7 — ZXE’Jrl = 0. Moreover, the
above properties hold true when * is replaced by ~ and X'~ is the natural embedding of the
plane curve F~. The curves Xt and X'~ are isomorphic over F,2 and Q is the set of common
points of X+ and X'~.

We use classical terminology regarding maximal curves. In particular, a (real) chord of X
is aline in PG(3, ¢%) which meets X (F 42) inatleast two distinct point, whereas an imaginary
chord of X is a line in PG(3, ¢?) joining a point P € X (F,4) \ X(F,2) toits conjugate, that
is, its Frobenius image.

The key point of the construction below is the following corollary to the NET.
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Lemma 2.1 [13, Lemma 3.4] Let C be an qu-maximal curve naturally embedded in the
Hermitian surface Hs ;2. Then

(i) No two distinct points in C(F2) are conjugate under the unitary polarity associated
with H3 2.
(ii) Any imaginary chord of C is a generator of Hs ;2 which is disjoint from C.
(iii) For any point P € Hs .2 in PG(3, q?), if P ¢ C(F,2) and Tl p is the tangent plane to
Hs3 42 at P, then I1p NC consists of ¢ + 1 pairwise distinct points which are in C(F ;).

3 The Fuhrmann-Torres construction

From now on let ¢ be a prime p =1 (mod 4) and let X' be an F 2-maximal curve. Denote
by N2 the number of F 2 -rational points of X'

Let H denote the set of all imaginary chords of X'. Furthermore, for a point P € PG(3, ¢2)
lyingin H3 ;2\ X (F,2), letn p(X) denote the number of generators of H3 2 through P which
contain an F > -rational point of X'.

Definition 3.1 A set M of generators of H3 2 is an half-hemisystem on X if the following
properties hold:

(A) Each Iqu -rational points of X is incident with exactly %(q + 1) generators in M.
(B) For any point P € Hj 2 \ X(F,2) lying in PG(3, ¢%), M has as many as %I’lp(.)()
generators through P which contain an Iqu -rational point of X'.

Note that M consists of %(q + 1)N,> generators and H of %(q2 +q)(g* — q —2g(X))
generators of H3 2. Therefore M U H has exactly %(q3 + 1)(g + 1) generators of H3 2.

Result 3.2 [13, Proposition 4.1] M U H is a hemisystem ofH3’qz.

Let & be a subgroup of Aut(&X’) and oy, . . ., o, be the &-orbits on X(qu). Let G be the set
of all generators meeting X . Moreover, for1 < j <r,letG ' denote the set of all generators
of H3 ,» meeting o0;. Note that & leaves each G; invariant.

Result 3.3 [13, Proposition 4.2] With the above notation, assume that the subgroup ® fulfills
the hypothesis:

(C) & has a subgroup by of index 2 such that & and Y have the same orbits o1, ..., 0, on
X(qu ).
(D) Forany 1 < j <r, & acts transitively on G; while t) has two orbits on G;.

Let P ¢ X(F,2) be a point lying on a generator in G, if
(E) there is an element in & p not in hp,

then P satisfies (B).

From [13, Lemma 5.1] G is also the set of all generators meeting X' ~. In particular, G
splits into two subset

G§=G1UG, 3.1

where G» is the set of the (g + 1)? generators meeting 2, while G; is the set of the %(q3 —
q)(g + 1) generators meeting both AT and A™. Thus, the following characterization of G is
very useful.
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Result 3.4 [13, Lemma 5.3] The generator set G consists of all the lines g, 5.1 spanned by
the points Py, = (1 :u:v:v?) € AT and Qs; = (1:s5:t:t%) € A~ such that

F:F@, 1) =@+ =2t + (v1)?) =0

and
1 1
W't =l - v, B —t, uls =t —vh)>
Result3.5 [13, Lemma 5.4] Aut(F) contains a subgroup ¥ = PGL(2, q) that acts faithfully
on the set F(F 2) \ F(Fq) as a sharply transitive permutation group.

4 Automorphisms preserving G and X+

In this subsection we recall the main results about the group-theoretic properties involving,
X7T, X~ and G; see [13, Section 5]. The authors showed that W contains a subgroup I" which
acts sharply transitively on G. Furthermore, I" has a unique index 2 subgroup & such that

® = PSL(2,q) x Cyr1.
2

In particular, ® has two orbits on Gi, namely M and M.
In terms of subgroups of PGU (4, ¢), the following holds.

Result4.1 [13, Lemma 5.7] The group PGU(4, q) has a subgroup & with the following
properties:

(i) & is an automorphism group of X and X~ ;
(ii) & preserves AT, A=, Qand G;;
(iii) & acts faithfully on A+, A~ and Gy,
(iv) the collineation group induced by ® onm is &/ Z(®) = PGL(2, g) with Z(®) = Cy+1;

2
(v) the permutation representation of ® on Gy is I'; in particular & = T';

(vi) B/Z(®8) acts on Q as PGL(2, q) in its 3-transitive permutation representation.
Furthermore, ® has an index 2 subgroup Y isomorphic to PSL(2, g) x Cg+1.
2
With the above notation, in the isomorphism & = T, h and ® correspond.

Result4.2 [13, Lemma 5.9] The elements of order 2 in t) are skew perspectivities, while those
in & \ § are homologies. Furthermore, the linear collineation vo, defined by

1 0 0 0

0 -1 0 0
=10 o 1 ol

0 0 0 1

interchanges X+ with X~ and the linear group generated by & and o is the direct product
& x (to).

Result 4.3 [13, Lemma 5.11] & acts transitively on Gy while b has two orbits on G.

From the result of this section, the following theorem follows
Theorem 4.4 [13, Theorem 5.13] Conditions (C) and (D) are fulfilled for X = X+, with
'=6and ® =

@ Springer



298 V. Pallozzi Lavorante, V. Smaldore

More precisely, G = G UG, with G; = M U/\/l/1 and G = M3 UM/Z, where G| and G,
are the &-orbits on G whereas M, M’l , Ma, M’z are the h-orbits on G and G, respectively.
This notation fits with [13, Section 5].

5 Points satisfying condition (E)

The plane 77: X; = 0 can be seen as the projective plane PG(2, ¢2), with homogeneous
coordinates (X¢ : X2 : X3). Then C is the conic of equation X9 X3 — X% = 0 and €2 is the
set of points of C lying in the (canonical Baer) subplane PG(2, ¢).
The points in PG(2, qz) \PG(2, q) are of three types with respect to the lines of PG(2, ¢),

ie.

(I) points of a unique line disjoint from €2 which meets C in two distinct points both in

PG(2,¢%) \ PG(2. 9):

(II) points of a unique line meeting €2 in two distinct points;

(II) points of a unique line which is tangent to C with tangency point on €2.

Points of type (I) - (IT) and points in PG(2, ¢) satisfy condition (B), as can be readily seen in
the next result.

Result 5.1 [13, Theorem 6.1] If the projection of P € H3 ,» on 7 is a point P’ of type () -
(I) or P’ € PG(2, q), then condition (E) is fulfilled for X = X, T' = & and ® = .

6 Condition (B) for case (lll) andp = 5 (mod 8)

Condition (B) is not always satisfied in Case (III), that is, for points P whose projection from
Xoo = (0,1,0,0) on 7 is a point P’ lying on a tangent [ to C. Our goal is to show that [13,
Theorem 7.1], proven for p = 1 (mod 8), remains true for p =5 (mod 8), extending their
results to the case p = 1 (mod 4).

For this reason, from now on, we assume g be a prime p =5 (mod 8).

Theorem 6.1 Condition (B) for Case (I111) is satisfied if and only if the number N, of Fy-
rational points of the elliptic curve with affine equation Y* = X3 — X equals either ¢ — 1,
orgq +3.

We need few steps before to prove Theorem 6.1. To begin with, we have to prove the
following theorem.

Theorem 6.2 Let n, be the number of & € I, for which f (&) = &% — 4882 + 64 is a square
in Fy. Condition (B) for Case (111) is satisfied if and only if ny equals either %(q + 1) or
3(q =3

The proof of Theorem 6.2 is carried out by a series of lemmas.

Since ¢ =5 (mod 8), 2 is not a square in .

Let i and —h be the square roots of 2 in F 2. In particular we have that 2 + 4 = 0 and
(£h)?t! = —2. Moreover & is a non-square in Iqu.

Moreover h9~1/? = o € F,, witha? = —1. Thus,a ¢ O, and (14+a)(1—a) =2 ¢ O,.

Since & is transitive on €2, the point O = (1 : 0 : 0 : 0) may be assumed to be the
tangency point of /. Then / has equation X = 0, X3 = 0, and P = (ag : a; : ap : 0) with
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a1 #0and a?™ 42487 = 0.1fap = O then P = (0: d : 1:0) with 4+ +2 = 0 and
his projectionto w: X1 = 01is P’ = (0 : 1 : 0), which is a point in PG(2, ¢). By Result 5.1
the case ap = 0 can be dismissed and ap = 1 may be assumed.

Therefore, after the dehomogenization with respect to X, consider the affine coordinates
(X, Y, Z) for a point in PG(3, qz).
We may limit ourselves to a point P = (a, b, 0) such that a9t 4+ 2p9+1 = 0. The latter
equation holds for a = A2 and b = h. Then we may choose

P = (2¢,h,0), wheree e {—1,1}

and we can carry out the case ¢ = 1 and ¢ = —1 simultaneously.

6.1 Case of G,

We keep up our notation P, , = (u, v, v?) for a point in A*. The following lemmas are
analogous to those in [13, section 7.1].

Lemma6.3 Letv € F2 \ Fy. Then there exists u € ¥ 2 such that the line joining P at Py,
is a generator of Hs 2 if and only if

% +2h0) " = 2607 — v). 6.1)
If (6.1) holds, then u is uniquely determined by v.

Proof Theline! = P P, , is a generator if and only if P, , lies on the tangent plane to H3,42
at P. This implies

24 2n
L (6.2)
2¢e
and since P, , € AT then u% = v? — v and [ is a generator. The converse follows from
the proof of [13, Lemma 7.4]. ]

Lemma 6.1 can be extended to Qs , € A™, providing that u, v are replaced by s, ¢ and

Equations (6.1), (6.2) by
1
% +2h)"T = —26(t7 — 1) 6.3)

and
124 2h
T2
Furthermore P, P, , and Q;,; are collinear if and only if

6.4)

N

2(’3(12 — vz) =12y — vzs,
(6.5)
vt —h(v+1t)=0.
Therefore, the following lemma holds.

Lemma 6.4 Let v,t € ]qu \ Fy with F(v,t) = 0. If the line through P, , € AT and
Q5.1 € A7 is a generator through P, then

vt —h(v+1)=0 (6.6)
holds.
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We now count the number of generators in G; which pass through P.
Lemma 6.5 Equation (6.1) has exactly %(q + 1) solutions in ]qu \ Fy.
Proof Let r = vh~!. We obtain:

2 +20)'F = eh(r? + 1),

Hence,

2_
22T =1

and then r2 + 2 is a non-square of IF 2. Thus, there exists z € 2™ such that r24+2r = hz%.

Now the system is
hz? =r? +2r
{ ahzdt = eh(r? +r)
CLet A = zr~ !, so that
i =r+2,
{ a(Ar)it = e(r? 4 r).
Since r = 2/(hA? — 1) we obtain
42 It —2e(ha? — 1) — 2e(hA> — 1)? = 0.
Now if A = Ay + h), with A1, A2 € F,, Equation (6.9) reads

ar} —2ar3 —4eriry + & =0.

6.7)

(6.8)

(6.9)

(6.10)

Since the determinant of the matrix of the quadratic form associated to (6.10) is —2¢, that
quadratic form is the equation of an irreducible conic of PG(2, ¢). Thus, we have exactly

g + 1 solutions A of (6.9): if A is a solution, then —A is too, hence we have

both r and v.

Every solution v of (6.1) is in F 2 \ Fy. In fact, if (Ar)? = hr thenr? = —

which contradicts the first equation of (6.8).
Note that @ = 17 is a non-square of IF,.

Lemma 6.6 For every solution v = vy + hv; of (6.1),
o
evy + E(UIUZ +v1) ¢ Ug.
Proof Consider System (6.7) and let z = z; + hzp and r = r| + hrp. Then

z% + 21% =2r1r +2r
az% — 2otz% = 2¢ery.

Summing the two equations we have:
az% =ary(r + 1) +er.
Since a2 = —1 and g = 5 (mod 8), it follows « ¢ [y and then

ary(ri+ 1) +erp
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is a non-square of I,. With v = ry and v; = 2r; we obtain

o
svy + E(UIUZ +v1) ¢ 0.

Our next step is to characterize the generators of G; through P.
To begin with, we need some notions of number theory, which would allow us to simplify

the notation we will use. Note that (2 + &) % = \h, where,
A= QTR [+ T R = A+ )T RS (6.12)
Since
=14 n2 T = e - =1,
we have A = £1. Applying the Frobenius map to (6.12) gives
A=(1—hT (—n'T.
Hence A is independent of the choice of / as a square root of 2.
Proposition 6.7 We have

it g=13 (mod 16)
T 1-1, g=5 (mod 16)

Proof See Appendix A. O
Let

) -1, ifeithere = landg =13 (mod 16)ore = —landg =5 (mod 16)
x= 1, ifeithere =landg =5 (mod 16)ore = —landg =13 (mod 16)

According to Proposition 6.7, we have Ay = —e and hence

Q@+ x5 = txih = Feh. (6.13)
Furthermore,
vo := —2(h —2x), up:= g(Z — xh)

and

4
fo:= —2(h +2x), so:= 5(2 + xh)

Equation (6.13) implies

q+1
ve —vo =4h =u,’ (6.14)
and
ulso =162 — hy)* = (to — v{)*.
Furthermore,

(vo + 10)7H! = =32 = 2(tgvp + (fov0)?)
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Therefore, F(vg, t9) = 0. Thus, from Result 3.4, the line through P, ,, and Qy, ;, is a
generator go € Gj. Moreover the following hold:
B v% + 2hvg
T 2

_ 13 + 2hty

uo
2¢e

> S0

showing that go passes through P.
‘We show how each generator g passing through P can be obtained from go. If ¢ = Py, Oy ¢
is a line through P, then, by Lemma 6.4, F(v,t) = 0 and vt = h(v + t). Now for «, B, y
and § € F,, with ad — By # 0, write
U_oevo—i—,B _alp+ B
yvo+48’ yig+68 '
From vgty = —8 and vy + o = —4h, we may write Equation (6.6) as
8ay = 2ap + B4,
B> = 8(a® — s — By).

Our aim is to show that these equations hold if and only if «, B, ¥ and § depend on a unique
parameter § € I, U {oo}. To begin with, let § # 0. Then o # 0. The first equation in (6.15)
forces

(6.15)

Qa+ 1)
y=—g—""
8a
Together with the other equation, we have

8o — 3ap” — 8 — B2 =0.
Let & = Ba~'. This implies > (8a — 3a£? — 8 — £2) = 0. Therefore

_E2+38

g — &2’
and the assertion follows for § # 0. For § = 0 we may assume § = 1. Ifa # Otheny = 1/4
and 8a2 = —1, which is impossible as —1 is a square in IF, while 8 is not. Whené = o =0

and 8 = 1,theny = %1.
Therefore,
2+38 2+8 1

vy = O TOWTE IS — 2(h+2y). (6.16)

i 42483820 T L

Let As and A, be two matrices in GL(2, IF,) representing the fractional linear maps v
and vyo. Thus,

(82 +8)(* —485° + 64)

det(Ag) = 3 . det(Ax) = (8) 7. 6.17)
These equations remain true for 7y and ¢:
2+ 8)1 2438 1
t=t = C+O0+E +85 = —2(h — 2X). (6.18)

b2ty +8-382" T g

Next we show that Lemma 6.6 imposes a condition on £ in (6.16).

Lemma 6.8 £2 + 8 is a square in F,.
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Proof To use Lemma 6.6 we rewrite vy + %(vl vy +v1) in terms of &€. This requires a certain
amount of straightforward and tedious computations that we omit. From (6.16), we have

4(E2+8)
= .1
U= 16— X262 + h(8 — x8E 4 £9) (6-19)
and
_ _ 2 2 _ 2 _ 2
o = 4(x16 — x25°)(8 + & ), v — 48 +&°)(8 — x8& +£7) 6.20)
k k
where k = 128 + x256& — 224£% + x32&3 + 2&4.
Then,

2(1 — xea)(8 + E2)((—16 + 16cr) + (8 + 3200)& + (6 + 100)£2 + £3)2
(64 — 1282 — 112E2 — 1683 + £4)2

[07
gvy + 5(v1v2 +v) =
6.21)

Note that (1 + @)(1 —«) = 2 and that 1 + « € [, if and only if ¢ = 13 (mod 16). In fact,

3 _1)(g+3
l+a=+r"T e, & "3 =1

and in this case 1 — « is a non-square in IF.
Since ¢ = 1 wheng =5 (mod 16) and xe = —1 when g = 13 (mod 16), we get that
1 — xea is always a square in IF,. Hence £24 8¢ Oy O

To state a corollary of Lemmas 6.5, 6.6 and 6.8, the partition of IF;, U {oco} into two subsets
¥ U {oo} and %, is useful, where x € X1 U {oo} or x € ¥, according as x24+8¢ 0, or
not.

Proposition 6.9 Let P = (2¢,h,0) € H3!qz with h? = 2. Then the generators in Gy through
the point P which meet X* are as many as np = %(q + 1). They are precisely the lines g¢
joining P to P, , = (u, v, v)) withu, v asin equation (6.2) and (6.16), where & ranges over
the set X1 U {oc0}.

6.2 Case of G,

This case requires much less effort. The tangent plane 7p at P = (2¢ : h : 0) meets 7 in
the line r of equation 2k9Y + Z = 0. Since C has equation Z = Y? in 7, the only common
points of r and C are (0: 0:0) and Q = (0: 2% : 8), with Q ¢ Qash ¢ [F,. Then we have
the following result.

Proposition 6.10 Let P = (2¢,h,0) € H3!qz, with h? = 2. Then there is a unique generator
through the point P which meets 2, namely the line [ through P and the origin O = (0 : 0 : 0).

From now on, we denote with ¢ and £~ the two generators through P when & = 1 and
& = —1 respectively.

6.3 Choice of M and M,
In this last subsection, we are going to choose M| and M5 such that Condition (B) is fulfilled.
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We have two different generators go’s, one for ¢ = 1, the other for ¢ = —1:
gar passing through P*(2: 4 : 0)
and
8o passing through P~ (=2 :h:0)
Lemma 6.11 The generators g(')" and g, are in different orbits of ®.
Proof The linear collineation associated to the matrix W interchanges the two generators. O

Let r (resp. r’) be the number of generators in M (resp. M) through the point P that
meet A*. Note that

1
r+r = E(q +1). (6.22)
Similarly,
Lemma 6.12 The generators £™ and £~ are in different orbits of ®.

Proof We use the same arguments of [13, Lemma 7.14]. Indeed, we replace (v/—2b, b, 0)
and (—+/—2b, b, 0) with P* and P~ and the proof follows. m]

We are ready to choose M and M.

e M is the ®-orbit containing gar .
e M, is the ®-orbit containing £ for r < ' and £~ forr > r’'.

Remark 6.13 Asin [13, Proposition 7.15], 7’ is obtained counting the squares in the value set
of the polynomial f(&), defined in Theorem 6.2. More precisely, we obtain that the number
of & € F, for which f(§) € O, equals 2r' — 1.

Therefore we have the following proposition.
Proposition 6.14 Condition (B) for case (1I1) holds if and only if

r= %(q — 1), andr’ = %(q +3)
or
1 , 1
r= Z(q—i—?)), andr’ = Z(q -1
Proof Note thatnp = %(q + 3) and that condition (B) holds if and only if half of them is in
M U Mj. The choices of r and r’ are readily seen. ]

Thus, Theorem 6.2 follows.
Since the properties of the plane curve Cy4

Y? = X* — 240X? + 16w?, withw =2

depend only on ¢ = 1 (mod 4), we also get the proof of Theorem 6.1, that is Condition (B)
in case (III) is satisfied if and only if the curve C3

Y2=Xx-X

has ¢ — 1 or g + 3 points. For the details, see [13] at the end of Section 7.
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7 Proof of Theorem 1.1

We are in the position to work out the case ¢ = p when p =1 (mod 4). We write p = w7,
with w € Z[i]. Here, & can be chosen such that 7 = | +iap and @y = 1. From [18, Section
2.2.2], Np(C3) = g + 1 — 20r;. This implies that condition (B) in case (III) is satisfied if and
only if

p=1+4a> and N,(C3) =q— 1.

Therefore, Theorem 1.1 is a corollary of Theorem 4.4, Result 5.1 and Theorem 6.2.
Further computer-aided investigations in the case ¢ = 5 showed that the found hemisystem

is isomorphic to a sporadic case described in [8], whose full automorphism group is 3.A7.

In all other cases, there were not other known examples stabilized by PSL(2, g) x C a1, 80

the above mentioned sporadic hemisystem should be the first known example in our putative
new family.

8 Some applications

In the last section of this chapter we will focus on some applications connected to hemisys-
tems.

8.1 Strongly regular graphs

A strongly regular graph with parameters (v, k, A, w) is a graph with v vertices, each vertex
lies on k edges, any two adjacent vertices have A common neighbors and any two non-
adjacent vertices have 1 common neighbors. Every hemisystem gives rise to a strongly
regular graph where the vertices of I" are the lines lying on the surface but not contained
in S, and two vertices are adjacent if the lines are incident, with the following parameters:
v=73@+ 1@+ Dk = 3¢*+1D(g =1, %= 5(¢g—3), = 3(g — ). The spectrum
of " can be hence computed. The first eigenvalue is k, of multiplicity 1, and the other two
(the restricted eigenvalues) are:

b1 =3[0 =W+ VO — 2 +4k — ] =g -1,
62 =3[ =) = VO = 2 + 4k — ] = 3(=¢7 + 4 - 2),
of multiplicity

m =3|w=1- «/Zf;jrtﬂlﬁ(ki)] =3 ¢’ + 24" ~q + 1.
my = %[(v— 1+ j%] = (@2 + (g —1) =2k,
respectively. See [16, Section 1.4].

The hemisystems on the Hermitian surface s P2 forp=1+ 442, constructed in this
chapter produce strongly regular graphs I with the above parameters for ¢ = p. We point
out that, in the smallest case p = 5, the graph I', arising from the sporadic 3.A7-stabilized
hemisystem, has parameters (378, 52, 1, 8) and spectrum 52, 4273 11104 A comparison
of I' with the Cossidente-Penttila strongly regular graph ([8]) with the same parameters,
shows that they are cospectral, while a compiter aided search shows that they have different
auromorphism groups, so that they are not isomorphic.
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8.2 Two-weight codes from strongly regular graphs

An [n, k]-linear code C over the finite field I, is a k-dimensional subspace of IF,". Vectors in
C are called codewords, and the weight w(v) of v € C is the number of non-zero entries in v.
A two-weight code is an [n, k]-linear code C such that |{w : v € C\ {0} w(v) = w}| = 2.
Here we use a result that allows us to construct two-weight codes from hemisystems of
H@3,4%).

Let Q™ (5, g) be the dual of H(3, qZ). Then a hemisystem of H(3, q2) corresponds to a
set O consisting of %(q + 1)(q3 + 1) points of @~ (5, ¢) such that every line of Q™ (5, ¢g) has
%(q + 1) points in common with O. By [3, Theorem 11], a hyperplane of PG(5, g) meets
O in either %(q + D>+ 1) or %(q3 — g% 4 g + 1) points, i.e. O it is called projective
(3@ + D(g +1),6,3(@*+ D(g + 1), 3(¢> — ¢* + g + 1))-set. Hence by [5], the set O
gives rise to a strongly regular graph and a two-weight code.

Result 8.1 [5, Theorems 3.1 and 3.2] Let Q a subset of F* with @ = —Q and 0 ¢ Q,
and define G(2) to be the graph whose vertices are the vectors of lq‘, and two vertices are
adjacent if and only if their difference is in Q. If ¥ = {(vi) : i = 1,...,n} is a proper
subset of PG(k — 1, q) that spans PG(k — 1, q), then the following are equivalent:

(1) G(2) is a strongly regular graph;
(ii) X is a projective (n, k,n — wi, n — wy)-set for some wy and wy;
(iii) the linear code C = {(X-v1,X-V2,...,X-Vp) : X € ]Fz} (here x - v is the classical
scalar product) is an [n, k]-linear two-weight code with weights w1 and w».

Corollary 8.2 It exists a family Of[% (@3 +1)(g+1), 6]-linear two-weight codes with weights
wi = 1¢%(q> — 1) and wy = 34 (g> + 1.
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Appendix A

We provide a proof of Proposition 6.7. Since our proof relies on cyclotomic fields from
algebraic number theory, we present it in the form of an appendix.

Let Q(¢,) the cyclotomic field of mth roots of unity with &, = e2mi/m ¢ C.In particular,
the cyclotomic field Q(¢16) contains +/2 as an integer. Let b a prime ideal of Q(¢16) such
that b contains p (i.e. b | p). The extension b | p is unramified and Z[{16]/b = F ,4; see [12,
Proposition 13.2.5] and [11, Section 4.5]. Note that h = ++4/2 (mod b). We may assume
h =+/2 (mod b).

Proof of Proposition 6.7 We do the computation for ¢ = 13 (mod 16), the proofs for the
other cases being analogous.
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A+ Th'T =1 +v2)T V2T (mod b)
|
V2
_ qx1 1
=@t )T

—2+2%

-~ 1
= (§16 + 5161)‘14_1%
1
= (Li6 + L) (& + c;ﬁ)\—@ (mod b)
1
= (C16 + £g ) (e + ;136)72 (mod b)

1
=i+ o8+ ok + 41‘6“)—2

7

1
-1
=+ )—==1 o
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