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Abstract
Constructing hemisystems of the Hermitian surface is a well known, apparently difficult,
problem in Finite geometry. So far, a few infinite families and some sporadic examples have
been constructed. One of the different approaches relies on the Fuhrmann-Torres maximal
curve and provides a hemisystem in PG(3, p2) for every prime p of the form p = 1+4a2, a
even. Here we show that this approach also works in PG(3, p2) for every prime p = 1+4a2,
a odd. The resulting hemisystem gives rise to two weight linear codes and strongly regular
graphs whose properties are also investigated.
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1 Introduction

TheHermitian surfaceH3,q2 of PG(3, q2) is the set of all self-dual points of a non-degenerate
unitary polarity of PG(3, q2). Generators ofH3,q2 are totally isotropic subspaces ofmaximal
dimension. A generator ofH3,q2 is a totally isotropic line of PG(3, q2). The total number of
generators of H3,q2 is (q3 + 1)(q + 1) and through any point P ∈ H3,q2 there exist exactly
q +1 generators and they are the intersection ofH3,q2 with its tangent plane at P . Therefore,
for any divisorm of q+1, one can ask whether a symmetric point-generator configuration for
a family of generators exists such that each point ofH3,q2 is incident with exactly (q +1)/m
generators from the family.
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In [17] B. Segre proved that such a symmetric point-generator configuration does not exist
for m �= 2, and he introduced the concept of a hemisystem for the case m = 2. Therefore, a
hemisystem ofH3,q2 consists of

1
2 (q

3 + 1)(q + 1) generators ofH3,q2 , exactly
1
2 (q + 1) for

each point on H3,q2 . Segre exhibited a hemisystem for q = 3.
Hemisystems are interesting configurations which are connected with important combi-

natorial objects such as strongly regular graphs, partial quadrangles and 4-class imprimitive
cometric Q-antipodal association schemes that are notmetric; see [4, 6, 8].Nevertheless, find-
ing hemisystems is a challenging problem. The first infinite family was constructed almost 50
years after by Cossidente and Penttila [8] who also found a new sporadic example in H3,25.
Later on, Bamberg, Giudici and Royle [1] and [2, Section 4.1] constructed more sporadic
examples for q = 7, 9, 11, 17, 19, 23, 27. In [1] the authors provide a construction method
of hemisystems for a class of generalized quadrangles which includesH3,q2 . A hemisystem
obtained by this method is left invariant by an elementary abelian group of order q2 and the
Cossidente-Penttila hemisystem can be also obtained in this way. Recently several new infi-
nite families of hemisystems appeared in the literature. Bamberg, Lee, Momihara and Xiang
[4] constructed a new infinite family of hemisystems on H3,q2 for every q ≡ −1 (mod 4)
that generalize one of the previously known sporadic examples. Their construction is based
on cyclotomic classes of F∗

q6
and involves results on characters and Gauss sums. Cossidente

and Pavese [7] constructed, for every odd q , a hemisystem of H3,q2 invariant by a subgroup
of PGU(4, q) of order (q + 1)q2.

The approach introduced in [13] relies on the Fuhrmann-Torres curve over q2 naturally
embedded in H3,q2 . Here the term curve defined over q2 is used for a (projective, geometri-
cally irreducible, non-singular) algebraic curveX of PG(3, q2). Their construction provided
a hemisystem of H3,q whenever q = p is a prime of the form p = 1 + 4a2 for an even
integer a. In this paper we investigate the analogous construction for p = 1 + 4a2 with
an odd integer a, and show that it produces a hemisystem , as well, for every such p. We
mention that a prime number p of the form p = 1+ 4a2 with an integer a is called a Landau
number. Since the famous Landau’s conjecture, dating back to 1904, is still to be proved (or
disproved), it is unknown whether there exists an infinite sequence of such primes, and hence
whether an infinite family of hemisystems is obtained or not. What is known so far is that
37 primes up to 51000 with this property exist, namely 5, 17, 37, 101, 197, 257, 401, 577,
677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101, 8837, 12101, 13457, 14401, 15377,
15877, 16901, 17957, 21317, 22501, 24337, 25601, 28901, 30977, 32401, 33857, 41617,
42437, 44101, 50177, see [15]. Our main result is stated in the following theorem.

Theorem 1.1 Let p be a prime number where p = 1+4a2 with an odd integer a. Then there
exists a hemisystem in the Hermitian surfaceH3,q2 of PG(3, p2) which is left invariant by a
subgroup of PGU(4, p) isomorphic to PSL(2, p) × C p+1

2
.

2 Background on Hermitian surfaces, maximal curves and hemisystems

By algebraic curve defined over Fq2 we mean a projective, geometrically irreducible, non-

singular algebraic curve X of PG(3, q2) viewed as a curve of PG(3,Fq2), where Fq2 is the
algebraic closure of Fq2 . The Hasse-Weil bound gives an upper (and lower) bound for the
number of points a curve can have over a finite field. More precisely, given a curveX defined
over Fq2 one has
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|X (Fq2)| ≤ q2 + 1 + 2g(X )q,

where X (Fq2) is the set of the points whose coordinates are defined over Fq2 and g(X ) is
the genus of X . An algebraic curve X defined over Fq2 is Fq2 -maximal if the number of
its Fq2 -rational points attains the Hasse-Weil upper bound. Our aim is to use the Natural
Embedding Theorem of a maximal curve, [14], to construct new families of hemisystems on
H3,q2 .

A canonical form of H3,q2 is

Xq+1
0 + Xq+1

1 + Xq+1
2 + Xq+1

3 = 0.

The group of projectivities preserving H3,q2 is isomorphic to the projective unitary group
PGU(4, q) and it acts on the points of H3,q2 as a permutation group [10]. The number of

points of H3,q2 is (q2 + 1)(q3 + 1). A hemisystem of H3,q2 consists of
1
2 (q

3 + 1)(q + 1)

generators of H3,q2 , exactly
1
2 (q + 1) of them through each point of H3,q2 . Up to a change

of the projective frame in PG(3, q2), the equation of H3,q2 may also be written in the form

H3,q2 : Xq+1
1 + 2Xq+1

2 − Xq
3 X0 − X3X

q
0 = 0.

In PG(2,Fq) with homogeneous coordinates (X : Y : Z), the Fuhrmann-Torres curve is
the plane curve F+ of genus 1

4 (q − 1)2 with equation

F+ : Yq − Y Zq−1 = X
q+1
2 Z

q−1
2 .

The morphism

ϕ : F+ → PG(3,Fq), (X : Y : Z) �→ (Z2 : X Z : Y Z : Y 2)

defines an embedding (called natural embedding) of F+ which is a q + 1 degree curve X+
whose points (including those defined over Fq ) are contained in H3,q2 . In particular, F+ is
an Fq2 -maximal curve. The twin Fuhrmann-Torres curve is defined by the equation

F− : Yq − Y Zq−1 = −X
q+1
2 Z

q−1
2 .

and the above claims remain valid with respect to the same morphism. For more details see
[9].

Some useful properties of the Fuhrmann-Torres curve, also valid for any Fq2 -maximal
curve X naturally embedded in H3,q2 , can be found in [13, Sections 2,3,4].

In particular,X+ is a q+1 degree curve lying in the Hermitian surfaceH3,q2 . Furthermore
X+(Fq2) is partitioned in � and X+(Fq2) \ � = �+, where � is the set cut out on X+ by

the plane π : X1 = 0. Note that |�| = q + 1 and |�+| = 1
2 (q

3 − q).
Equivalently � is the intersection in π of the conic C with equation X0X3 − X2

2 = 0 and

the Hermitian curve H(2, q2) with equation Xq
0 X3 + X0X

q
3 − 2Xq+1

2 = 0. Moreover, the
above properties hold true when + is replaced by − and X− is the natural embedding of the
plane curveF−. The curvesX+ andX− are isomorphic over Fq2 and� is the set of common
points of X+ and X−.

We use classical terminology regarding maximal curves. In particular, a (real) chord ofX
is a line in PG(3, q2)whichmeetsX (Fq2) in at least two distinct point, whereas an imaginary
chord of X is a line in PG(3, q2) joining a point P ∈ X (Fq4) \X (Fq2) to its conjugate, that
is, its Frobenius image.

The key point of the construction below is the following corollary to the NET.
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Lemma 2.1 [13, Lemma 3.4] Let C be an Fq2 -maximal curve naturally embedded in the
Hermitian surface H3,q2 . Then

(i) No two distinct points in C(Fq2) are conjugate under the unitary polarity associated
with H3,q2 .

(ii) Any imaginary chord of C is a generator of H3,q2 which is disjoint from C.
(iii) For any point P ∈ H3,q2 in PG(3, q2), if P /∈ C(Fq2) and �P is the tangent plane to

H3,q2 at P, then �P ∩ C consists of q + 1 pairwise distinct points which are in C(Fq4).

3 The Fuhrmann-Torres construction

From now on let q be a prime p ≡ 1 (mod 4) and let X be an Fq2 -maximal curve. Denote
by Nq2 the number of Fq2 -rational points of X .

LetH denote the set of all imaginary chords ofX . Furthermore, for a point P ∈ PG(3, q2)
lying inH3,q2 \X (Fq2), let nP (X ) denote the number of generators ofH3,q2 through P which
contain an Fq2 -rational point of X .

Definition 3.1 A set M of generators of H3,q2 is an half-hemisystem on X if the following
properties hold:

(A) Each Fq2 -rational points of X is incident with exactly 1
2 (q + 1) generators in M.

(B) For any point P ∈ H3,q2 \ X (Fq2) lying in PG(3, q2), M has as many as 1
2nP (X )

generators through P which contain an Fq2 -rational point of X .

Note that M consists of 1
2 (q + 1)Nq2 generators and H of 1

2 (q
2 + q)(q2 − q − 2g(X ))

generators of H3,q2 . Therefore M ∪ H has exactly 1
2 (q

3 + 1)(q + 1) generators of H3,q2 .

Result 3.2 [13, Proposition 4.1] M ∪ H is a hemisystem of H3,q2 .

LetG be a subgroup of Aut(X ) and o1, . . . , or be theG-orbits onX (Fq2). Let G be the set
of all generators meetingX+. Moreover, for 1 ≤ j ≤ r , let G j denote the set of all generators
of H3,q2 meeting o j . Note that G leaves each G j invariant.

Result 3.3 [13, Proposition 4.2]With the above notation, assume that the subgroupG fulfills
the hypothesis:

(C) G has a subgroup h of index 2 such that G and h have the same orbits o1, . . . , or on
X (Fq2).

(D) For any 1 ≤ j ≤ r , G acts transitively on G j while h has two orbits on G j .

Let P /∈ X (Fq2) be a point lying on a generator in G, if
(E) there is an element in GP not in hP ,

then P satisfies (B).

From [13, Lemma 5.1] G is also the set of all generators meeting X−. In particular, G
splits into two subset

G = G1 ∪ G2, (3.1)

where G2 is the set of the (q + 1)2 generators meeting �, while G1 is the set of the 1
2 (q

3 −
q)(q + 1) generators meeting both �+ and �−. Thus, the following characterization of G is
very useful.
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Result 3.4 [13, Lemma 5.3] The generator set G1 consists of all the lines gu,v,s,t spanned by
the points Pu,v = (1 : u : v : v2) ∈ �+ and Qs,t = (1 : s : t : t2) ∈ �− such that

F : F(v, t) = (v + t)q+1 − 2(vt + (vt)q) = 0

and

u
q+1
2 = vq − v, −s

q+1
2 = tq − t, uqs = (t − vq)2.

Result 3.5 [13, Lemma 5.4] Aut(F) contains a subgroup� ∼= PGL(2, q) that acts faithfully
on the set F(Fq2) \ F(Fq) as a sharply transitive permutation group.

4 Automorphisms preservingG andX+

In this subsection we recall the main results about the group-theoretic properties involving,
X+, X− and G; see [13, Section 5]. The authors showed that � contains a subgroup � which
acts sharply transitively on G1. Furthermore, � has a unique index 2 subgroup 	 such that

	 ∼= PSL(2, q) × C q+1
2

.

In particular, 	 has two orbits on G1, namely M1 and M2.
In terms of subgroups of PGU(4, q), the following holds.

Result 4.1 [13, Lemma 5.7] The group PGU(4, q) has a subgroup G with the following
properties:

(i) G is an automorphism group of X+ and X−;
(ii) G preserves �+, �−, � and G1;
(iii) G acts faithfully on �+, �− and G1;
(iv) the collineation group induced byG onπ isG/Z(G) ∼= PGL(2, q)with Z(G) ∼= C q+1

2
;

(v) the permutation representation of G on G1 is �; in particular G ∼= �;
(vi) G/Z(G) acts on � as PGL(2, q) in its 3-transitive permutation representation.

Furthermore, G has an index 2 subgroup h isomorphic to PSL(2, q) × C q+1
2
.

With the above notation, in the isomorphism G ∼= �, h and 	 correspond.

Result 4.2 [13, Lemma 5.9] The elements of order 2 in h are skew perspectivities, while those
in G \ h are homologies. Furthermore, the linear collineation w, defined by

W :=

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ ,

interchanges X+ with X− and the linear group generated by G and w is the direct product
G × 〈w〉.
Result 4.3 [13, Lemma 5.11] G acts transitively on G2 while h has two orbits on G2.

From the result of this section, the following theorem follows

Theorem 4.4 [13, Theorem 5.13] Conditions (C) and (D) are fulfilled for X = X+, with
� = G and 	 = h.
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More precisely, G = G1 ∪G2 with G1 = M1 ∪M′
1 and G2 = M2 ∪M′

2, where G1 and G2
are theG-orbits on G whereasM1,M′

1,M2,M′
2 are the h-orbits on G1 and G2 respectively.

This notation fits with [13, Section 5].

5 Points satisfying condition (E)

The plane π : X1 = 0 can be seen as the projective plane PG(2, q2), with homogeneous
coordinates (X0 : X2 : X3). Then C is the conic of equation X0X3 − X2

2 = 0 and � is the
set of points of C lying in the (canonical Baer) subplane PG(2, q).

The points in PG(2, q2)\PG(2, q) are of three types with respect to the lines of PG(2, q),
i.e.

(I) points of a unique line disjoint from � which meets C in two distinct points both in
PG(2, q2) \ PG(2, q);

(II) points of a unique line meeting � in two distinct points;
(III) points of a unique line which is tangent to C with tangency point on �.

Points of type (I) - (II) and points in PG(2, q) satisfy condition (B), as can be readily seen in
the next result.

Result 5.1 [13, Theorem 6.1] If the projection of P ∈ H3,q2 on π is a point P ′ of type (I) -
(II) or P ′ ∈ PG(2, q), then condition (E) is fulfilled for X = X+, � = G and 	 = h.

6 Condition (B) for case (III) and p ≡ 5 (mod 8)

Condition (B) is not always satisfied in Case (III), that is, for points P whose projection from
X∞ = (0, 1, 0, 0) on π is a point P ′ lying on a tangent l to C. Our goal is to show that [13,
Theorem 7.1], proven for p ≡ 1 (mod 8), remains true for p ≡ 5 (mod 8), extending their
results to the case p ≡ 1 (mod 4).

For this reason, from now on, we assume q be a prime p ≡ 5 (mod 8).

Theorem 6.1 Condition (B) for Case (I I I ) is satisfied if and only if the number Nq of Fq -
rational points of the elliptic curve with affine equation Y 2 = X3 − X equals either q − 1,
or q + 3.

We need few steps before to prove Theorem 6.1. To begin with, we have to prove the
following theorem.

Theorem 6.2 Let nq be the number of ξ ∈ Fq for which f (ξ) = ξ4 − 48ξ2 + 64 is a square
in Fq . Condition (B) for Case (I I I ) is satisfied if and only if nq equals either 1

2 (q + 1) or
1
2 (q − 3).

The proof of Theorem 6.2 is carried out by a series of lemmas.
Since q ≡ 5 (mod 8), 2 is not a square in Fq .
Let h and −h be the square roots of 2 in Fq2 . In particular we have that hq + h = 0 and

(±h)q+1 = −2. Moreover h is a non-square in Fq2 .
Moreover h(q−1)/2 = α ∈ Fq , withα2 = −1. Thus,α /∈ �q and (1+α)(1−α) = 2 /∈ �q .
Since G is transitive on �, the point O = (1 : 0 : 0 : 0) may be assumed to be the

tangency point of l. Then l has equation X1 = 0, X3 = 0, and P = (a0 : a1 : a2 : 0) with
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a1 �= 0 and aq+1
1 + 2aq+1

2 = 0. If a0 = 0 then P = (0 : d : 1 : 0) with dq+1 + 2 = 0 and
his projection to π : X1 = 0 is P ′ = (0 : 1 : 0), which is a point in PG(2, q). By Result 5.1
the case a0 = 0 can be dismissed and a0 = 1 may be assumed.

Therefore, after the dehomogenization with respect to X0, consider the affine coordinates
(X , Y , Z) for a point in PG(3, q2).
We may limit ourselves to a point P = (a, b, 0) such that aq+1 + 2bq+1 = 0. The latter
equation holds for a = ±h2 and b = h. Then we may choose

P = (2ε, h, 0), where ε ∈ {−1, 1}
and we can carry out the case ε = 1 and ε = −1 simultaneously.

6.1 Case ofG1

We keep up our notation Pu,v = (u, v, v2) for a point in �+. The following lemmas are
analogous to those in [13, section 7.1].

Lemma 6.3 Let v ∈ Fq2 \ Fq . Then there exists u ∈ Fq2 such that the line joining P at Pu,v

is a generator of H3,q2 if and only if

(v2 + 2hv)
q+1
2 = 2ε(vq − v). (6.1)

If (6.1) holds, then u is uniquely determined by v.

Proof The line l = PPu,v is a generator if and only if Pu,v lies on the tangent plane toH3,q2

at P . This implies

u = v2 + 2hv

2ε
. (6.2)

and since Pu,v ∈ �+ then u
q+1
2 = vq − v and l is a generator. The converse follows from

the proof of [13, Lemma 7.4]. ��
Lemma 6.1 can be extended to Qs,t ∈ �−, providing that u, v are replaced by s, t and

Equations (6.1), (6.2) by

(t2 + 2ht)
q+1
2 = −2ε(tq − t) (6.3)

and

s = t2 + 2ht

2ε
. (6.4)

Furthermore P, Pu,v and Qs,t are collinear if and only if
{
2ε(t2 − v2) = t2u − v2s,

vt − h(v + t) = 0.
(6.5)

Therefore, the following lemma holds.

Lemma 6.4 Let v, t ∈ Fq2 \ Fq with F(v, t) = 0. If the line through Pu,v ∈ �+ and
Qs,t ∈ �− is a generator through P, then

vt − h(v + t) = 0 (6.6)

holds.
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300 V. Pallozzi Lavorante, V. Smaldore

We now count the number of generators in G1 which pass through P .

Lemma 6.5 Equation (6.1) has exactly 1
2 (q + 1) solutions in Fq2 \ Fq .

Proof Let r = vh−1. We obtain:

(r2 + 2r)
q+1
2 = εh(rq + r).

Hence,

(r2 + 2r)
q2−1
2 = −1

and then r2 +2r is a non-square of Fq2 . Thus, there exists z ∈ Fq2
∗ such that r2 +2r = hz2.

Now the system is
{
hz2 = r2 + 2r

αhzq+1 = εh(rq + r)
(6.7)

. Let λ = zr−1, so that
{
hλ2r = r + 2,

α(λr)q+1 = ε(rq + r).
(6.8)

Since r = 2/(hλ2 − 1) we obtain

4αλq+1 − 2ε(hλ2 − 1) − 2ε(hλ2 − 1)q = 0. (6.9)

Now if λ = λ1 + hλ2, with λ1, λ2 ∈ Fq , Equation (6.9) reads

αλ21 − 2αλ22 − 4ελ1λ2 + ε = 0. (6.10)

Since the determinant of the matrix of the quadratic form associated to (6.10) is −2ε, that
quadratic form is the equation of an irreducible conic of PG(2, q). Thus, we have exactly
q + 1 solutions λ of (6.9): if λ is a solution, then −λ is too, hence we have q+1

2 values for
both r and v.

Every solution v of (6.1) is in Fq2 \ Fq . In fact, if (hr)q = hr then rq = −r and λr = 0,
which contradicts the first equation of (6.8). ��

Note that α = h
q−1
2 is a non-square of Fq .

Lemma 6.6 For every solution v = v1 + hv2 of (6.1),

εv2 + α

2
(v1v2 + v1) /∈ �q .

Proof Consider System (6.7) and let z = z1 + hz2 and r = r1 + hr2. Then{
z21 + 2z22 = 2r1r2 + 2r2

αz21 − 2αz22 = 2εr1.
(6.11)

Summing the two equations we have:

αz21 = αr2(r1 + 1) + εr1.

Since α2 = −1 and q ≡ 5 (mod 8), it follows α /∈ �q and then

αr2(r1 + 1) + εr1
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is a non-square of Fq . With v2 = r1 and v1 = 2r2 we obtain

εv2 + α

2
(v1v2 + v1) /∈ �q .

��
Our next step is to characterize the generators of G1 through P .
To begin with, we need some notions of number theory, which would allow us to simplify

the notation we will use. Note that (2 + h)
q+1
2 = λh, where,

λ = (2 + h)
q+1
2 h−1 = [(1 + h)h] q+1

2 h−1 = (1 + h)
q+1
2 h

q−1
2 . (6.12)

Since

λ2 = (1 + h)q+12
q−1
2 = (1 + h)(1 − h)(−1) = 1,

we have λ = ±1. Applying the Frobenius map to (6.12) gives

λ = (1 − h)
q+1
2 (−h)

q−1
2 .

Hence λ is independent of the choice of h as a square root of 2.

Proposition 6.7 We have

λ =
{
1, q ≡ 13 (mod 16)

−1, q ≡ 5 (mod 16)

Proof See Appendix A. ��
Let

χ :=
{

−1, if either ε = 1 and q ≡ 13 (mod 16) or ε = −1 and q ≡ 5 (mod 16)

1, if either ε = 1 and q ≡ 5 (mod 16) or ε = −1 and q ≡ 13 (mod 16)

According to Proposition 6.7, we have λχ = −ε and hence

(2 ± χh)
q+1
2 = ±χλh = ∓εh. (6.13)

Furthermore,

v0 := −2(h − 2χ), u0 := 4

ε
(2 − χh)

and

t0 := −2(h + 2χ), s0 := 4

ε
(2 + χh)

Equation (6.13) implies

v
q
0 − v0 = 4h = u

q+1
2

0 . (6.14)

and

uq0s0 = 16(2 − hχ)2 = (t0 − v
q
0 )2.

Furthermore,

(v0 + t0)
q+1 = −32 = 2(t0v0 + (t0v0)

q)
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Therefore, F(v0, t0) = 0. Thus, from Result 3.4, the line through Pu0,v0 and Qs0,t0 is a
generator g0 ∈ G1. Moreover the following hold:

u0 = v20 + 2hv0

2ε
, s0 = t20 + 2ht0

2ε

showing that g0 passes through P .
We showhoweach generator g passing through P can be obtained from g0. If g = Pu,vQs,t

is a line through P , then, by Lemma 6.4, F(v, t) = 0 and vt = h(v + t). Now for α, β, γ

and δ ∈ Fq , with αδ − βγ �= 0, write

v = αv0 + β

γ v0 + δ
, t = αt0 + β

γ t0 + δ
.

From v0t0 = −8 and v0 + t0 = −4h, we may write Equation (6.6) as

8αγ = 2αβ + βδ,

β2 = 8(α2 − αδ − βγ ).
(6.15)

Our aim is to show that these equations hold if and only if α, β, γ and δ depend on a unique
parameter ξ ∈ Fq ∪ {∞}. To begin with, let δ �= 0. Then α �= 0. The first equation in (6.15)
forces

γ = (2α + 1)β

8α
.

Together with the other equation, we have

8α3 − 3αβ2 − 8α2 − β2 = 0.

Let ξ = βα−1. This implies α2(8α − 3αξ2 − 8 − ξ2) = 0. Therefore

α = ξ2 + 8

8 − ξ2
,

and the assertion follows for δ �= 0. For δ = 0 we may assume β = 1. If α �= 0 then γ = 1/4
and 8α2 = −1, which is impossible as −1 is a square in Fq while 8 is not. When δ = α = 0
and β = 1, then γ = −1

8 .
Therefore,

v = vξ = (ξ2 + 8)v0 + (ξ2 + 8)ξ
ξ
8 (−ξ2 + 24)v0 + 8 − 3ξ2

, v∞ = 1

− 1
8v0

= −2(h + 2χ). (6.16)

Let Aξ and A∞ be two matrices in GL(2,Fq) representing the fractional linear maps vξ

and v∞. Thus,

det(Aξ ) = (ξ2 + 8)(ξ4 − 48ξ2 + 64)

8
, det(A∞) = (8)−1. (6.17)

These equations remain true for t0 and t :

t = tξ = (ξ2 + 8)t0 + (ξ2 + 8)ξ
ξ
8 (−ξ2 + 24)t0 + 8 − 3ξ2

, t∞ = 1

− 1
8 t0

= −2(h − 2X ). (6.18)

Next we show that Lemma 6.6 imposes a condition on ξ in (6.16).

Lemma 6.8 ξ2 + 8 is a square in Fq .
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Proof To use Lemma 6.6 we rewrite εv2+ α
2 (v1v2+v1) in terms of ξ . This requires a certain

amount of straightforward and tedious computations that we omit. From (6.16), we have

v = 4(ξ2 + 8)

χ16 − χ2ξ2 + h(8 − χ8ξ + ξ2)
(6.19)

and

v1 = −4(χ16 − χ2ξ2)(8 + ξ2)

k
, v2 = −4(8 + ξ2)(8 − χ8ξ + ξ2)

k
(6.20)

where k = 128 + χ256ξ − 224ξ2 + χ32ξ3 + 2ξ4.
Then,

εv2 + α

2
(v1v2 + v1) = 2(1 − χεα)(8 + ξ2)((−16 + 16α) + (8 + 32α)ξ + (6 + 10α)ξ2 + ξ3)2

(64 − 128ξ − 112ξ2 − 16ξ3 + ξ4)2

(6.21)

Note that (1+ α)(1− α) = 2 and that 1+ α ∈ �q if and only if q ≡ 13 (mod 16). In fact,

1 + α = ±h
q+3
4 ∈ �q ⇐⇒ h

(q−1)(q+3)
8 = 1

and in this case 1 − α is a non-square in Fq .
Since χε = 1 when q ≡ 5 (mod 16) and χε = −1 when q ≡ 13 (mod 16), we get that

1 − χεα is always a square in Fq . Hence ξ2 + 8 ∈ �q . ��
To state a corollary of Lemmas 6.5, 6.6 and 6.8, the partition of Fq ∪{∞} into two subsets

�1 ∪ {∞} and �2 is useful, where x ∈ �1 ∪ {∞} or x ∈ �2 according as x2 + 8 ∈ �q or
not.

Proposition 6.9 Let P = (2ε, h, 0) ∈ H3,q2 with h
2 = 2. Then the generators in G1 through

the point P which meet X+ are as many as nP = 1
2 (q + 1). They are precisely the lines gξ

joining P to Pu,v = (u, v, v2) with u, v as in equation (6.2) and (6.16), where ξ ranges over
the set �1 ∪ {∞}.

6.2 Case ofG2

This case requires much less effort. The tangent plane πP at P = (2ε : h : 0) meets π in
the line r of equation 2hqY + Z = 0. Since C has equation Z = Y 2 in π , the only common
points of r and C are (0 : 0 : 0) and Q = (0 : 2h : 8), with Q /∈ � as h /∈ Fq . Then we have
the following result.

Proposition 6.10 Let P = (2ε, h, 0) ∈ H3,q2 , with h
2 = 2. Then there is a unique generator

through the point P whichmeets�, namely the line l through P and the origin O = (0 : 0 : 0).
From now on, we denote with �+ and �− the two generators through P when ε = 1 and

ε = −1 respectively.

6.3 Choice ofM1 andM2

In this last subsection, we are going to chooseM1 andM2 such that Condition (B) is fulfilled.
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We have two different generators g0’s, one for ε = 1, the other for ε = −1:

g+
0 passing through P+(2 : h : 0)

and

g−
0 passing through P−(−2 : h : 0)

Lemma 6.11 The generators g+
0 and g−

0 are in different orbits of 	.

Proof The linear collineation associated to the matrixW interchanges the two generators. ��
Let r (resp. r ′) be the number of generators inM1 (resp.M′

1) through the point P
+ that

meet �+. Note that

r + r ′ = 1

2
(q + 1). (6.22)

Similarly,

Lemma 6.12 The generators �+ and �− are in different orbits of 	.

Proof We use the same arguments of [13, Lemma 7.14]. Indeed, we replace (
√−2b, b, 0)

and (−√−2b, b, 0) with P+ and P− and the proof follows. ��
We are ready to choose M1 and M2.

• M1 is the 	-orbit containing g+
0 .• M2 is the 	-orbit containing �+ for r < r ′ and �− for r > r ′.

Remark 6.13 As in [13, Proposition 7.15], r ′ is obtained counting the squares in the value set
of the polynomial f (ξ), defined in Theorem 6.2. More precisely, we obtain that the number
of ξ ∈ Fq for which f (ξ) ∈ �q equals 2r ′ − 1.

Therefore we have the following proposition.

Proposition 6.14 Condition (B) for case (III) holds if and only if

r = 1

4
(q − 1), and r ′ = 1

4
(q + 3)

or

r = 1

4
(q + 3), and r ′ = 1

4
(q − 1)

Proof Note that nP = 1
2 (q + 3) and that condition (B) holds if and only if half of them is in

M1 ∪ M2. The choices of r and r ′ are readily seen. ��
Thus, Theorem 6.2 follows.
Since the properties of the plane curve C4

Y 2 = X4 − 24ωX2 + 16ω2, with ω = 2

depend only on q ≡ 1 (mod 4), we also get the proof of Theorem 6.1, that is Condition (B)
in case (III) is satisfied if and only if the curve C3

Y 2 = X3 − X

has q − 1 or q + 3 points. For the details, see [13] at the end of Section 7.
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7 Proof of Theorem 1.1

We are in the position to work out the case q = p when p ≡ 1 (mod 4). We write p = ππ̄ ,
with π ∈ Z[i]. Here, π can be chosen such that π = α1 + iα2 and α1 = 1. From [18, Section
2.2.2], Np(C3) = q + 1− 2α1. This implies that condition (B) in case (III) is satisfied if and
only if

p = 1 + 4a2 and Np(C3) = q − 1.

Therefore, Theorem 1.1 is a corollary of Theorem 4.4, Result 5.1 and Theorem 6.2.
Further computer-aided investigations in the caseq = 5 showed that the found hemisystem

is isomorphic to a sporadic case described in [8], whose full automorphism group is 3.A7.
In all other cases, there were not other known examples stabilized by PSL(2, q) × C q+1

2
, so

the above mentioned sporadic hemisystem should be the first known example in our putative
new family.

8 Some applications

In the last section of this chapter we will focus on some applications connected to hemisys-
tems.

8.1 Strongly regular graphs

A strongly regular graph with parameters (v, k, λ, μ) is a graph with v vertices, each vertex
lies on k edges, any two adjacent vertices have λ common neighbors and any two non-
adjacent vertices have μ common neighbors. Every hemisystem gives rise to a strongly
regular graph where the vertices of � are the lines lying on the surface but not contained
in S, and two vertices are adjacent if the lines are incident, with the following parameters:
v = 1

2 (q
3 +1)(q +1), k = 1

2 (q
2 +1)(q −1), λ = 1

2 (q −3), μ = 1
2 (q −1)2, . The spectrum

of � can be hence computed. The first eigenvalue is k, of multiplicity 1, and the other two
(the restricted eigenvalues) are:

θ1 = 1
2

[
(λ − μ) + √

(λ − μ)2 + 4(k − μ)
] = q − 1,

θ2 = 1
2

[
(λ − μ) − √

(λ − μ)2 + 4(k − μ)
] = 1

2 (−q2 + q − 2),

of multiplicity

m1 = 1
2

[
(v − 1) − 2k+(v−1)(λ−μ)√

(λ−μ)2+4(k−μ)

]
= 1

2 (q
4 − q3 + 2q2 − q + 1),

m2 = 1
2

[
(v − 1) + 2k+(v−1)(λ−μ)√

(λ−μ)2+4(k−μ)

]
= (q2 + 1)(q − 1) = 2k,

respectively. See [16, Section 1.4].
The hemisystems on the Hermitian surface H3,p2 , for p = 1 + 4a2, constructed in this

chapter produce strongly regular graphs � with the above parameters for q = p. We point
out that, in the smallest case p = 5, the graph �, arising from the sporadic 3.A7-stabilized
hemisystem, has parameters (378, 52, 1, 8) and spectrum 52, 4273,−11104. A comparison
of � with the Cossidente-Penttila strongly regular graph ([8]) with the same parameters,
shows that they are cospectral, while a compiter aided search shows that they have different
auromorphism groups, so that they are not isomorphic.
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8.2 Two-weight codes from strongly regular graphs

An [n, k]-linear codeC over the finite field Fq is a k-dimensional subspace of Fq
n . Vectors in

C are called codewords, and the weightw(v) of v ∈ C is the number of non-zero entries in v.
A two-weight code is an [n, k]-linear code C such that |{w : ∃v ∈ C \ {0} w(v) = w}| = 2.
Here we use a result that allows us to construct two-weight codes from hemisystems of
H(3, q2).

Let Q−(5, q) be the dual of H(3, q2). Then a hemisystem of H(3, q2) corresponds to a
setO consisting of 1

2 (q +1)(q3 +1) points ofQ−(5, q) such that every line ofQ−(5, q) has
1
2 (q + 1) points in common with O. By [3, Theorem 11], a hyperplane of PG(5, q) meets
O in either 1

2 (q + 1)(q2 + 1) or 1
2 (q

3 − q2 + q + 1) points, i.e. O it is called projective
( 12 (q

3 + 1)(q + 1), 6, 1
2 (q

2 + 1)(q + 1), 1
2 (q

3 − q2 + q + 1))-set. Hence by [5], the set O
gives rise to a strongly regular graph and a two-weight code.

Result 8.1 [5, Theorems 3.1 and 3.2] Let � a subset of Fk
q , with � = −� and 0 /∈ �,

and define G(�) to be the graph whose vertices are the vectors of Fk
q , and two vertices are

adjacent if and only if their difference is in �. If � = {〈vi〉 : i = 1, . . . , n} is a proper
subset of PG(k − 1, q) that spans PG(k − 1, q), then the following are equivalent:

(i) G(�) is a strongly regular graph;
(ii) � is a projective (n, k, n − w1, n − w2)-set for some w1 and w2;
(iii) the linear code C = {(x · v1, x · v2, . . . , x · vn) : x ∈ F

k
q} (here x · v is the classical

scalar product) is an [n, k]-linear two-weight code with weights w1 and w2.

Corollary 8.2 It exists a family of [ 12 (q3+1)(q+1), 6]-linear two-weight codes with weights
w1 = 1

2q
2(q2 − 1) and w2 = 1

2q
2(q2 + 1).
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Appendix A

We provide a proof of Proposition 6.7. Since our proof relies on cyclotomic fields from
algebraic number theory, we present it in the form of an appendix.

LetQ(ζm) the cyclotomic field of mth roots of unity with ζm = e2π i/m ∈ C. In particular,
the cyclotomic field Q(ζ16) contains

√
2 as an integer. Let b a prime ideal of Q(ζ16) such

that b contains p (i.e. b | p). The extension b | p is unramified and Z[ζ16]/b ∼= Fp4 ; see [12,

Proposition 13.2.5] and [11, Section 4.5]. Note that h = ±√
2 (mod b). We may assume

h ≡ √
2 (mod b).

Proof of Proposition 6.7 We do the computation for q ≡ 13 (mod 16), the proofs for the
other cases being analogous.
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(1 + h)
q+1
2 h

q−1
2 ≡ (1 + √

2)
q+1
2 (

√
2)

q−1
2 (mod b)

= (
√
2 + 2)

q+1
2

1√
2

= (ζ8 + ζ−1
8 + 2)

q+1
2

1√
2

= (ζ16 + ζ−1
16 )q+1 1√

2

≡ (ζ16 + ζ−1
16 )(ζ 13

16 + ζ−13
16 )

1√
2

(mod b)

≡ (ζ16 + ζ−1
16 )(ζ−3

16 + ζ 3
16)

1√
2

(mod b)

= (ζ 4
16 + ζ−2

16 + ζ 2
16 + ζ−4

16 )
1√
2

= (ζ8 + ζ−1
8 )

1√
2

= 1 ��

References

1. Bamberg J., Giudici M., Royle G.F.: Every flock generalized quadrangle has a hemisystem. Bull. Lond.
Math. Soc. 42(5), 795–810 (2010).

2. Bamberg J., Giudici M., Royle G.F.: Hemisystems of small flock generalized quadrangles. Des. Codes
Crypt. 67(1), 137–157 (2013).

3. Bamberg J., Kelly S., LawM., Penttila T.: Tight sets and m-ovoids of finite polar spaces. J. Comb. Theory
Ser. A 114(7), 1293–1314 (2007).

4. Bamberg J., Lee M., Momihara K., Xiang Q.: A new infinite family of hemisystems of the hermitian
surface. Combinatorica 38(1), 43–66 (2018).

5. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18(2), 97–122
(1986).

6. CossidenteA.: Combinatorial structures in finite classical polar spaces. Surv. Comb. 440, 204–237 (2017).
7. Cossidente A., Pavese F.: Intriguing sets of quadrics in pg (5, q). Adv. Geom. 17(3), 339–345 (2017).
8. Cossidente A., Penttila T.: Hemisystems on the hermitian surface. J. Lond. Math. Soc. 72(3), 731–741

(2005).
9. Fuhrmann R., Torres F.: The genus of curves over finite fields with many rational points. Manuscr. Math.

89(1), 103–106 (1996).
10. Hirschfeld J., Korchmáros G., Torres F.: Algebraic Curves Over a Finite Field. Princeton Series in Applied

Mathematics. Princeton University Press, Princeton (2013).
11. Hou X.D.: Lectures on Finite Fields, Vol. 190. AMS & Graduate Studies in Mathematics (2018).
12. Kenneth I., Michael R.: A classical introduction to modern number theory. Math. Gaz. 76(476), 316–317

(1992).
13. Korchmáros G., Nagy G.P., Speziali P.: Hemisystems of the hermitian surface. J. Comb. Theory Ser. A

165, 408–439 (2019).
14. Korchmáros G., Torres F.: Embedding of a maximal curve in a hermitian variety. Compos. Math. 128(1),

95–113 (2001).
15. OEIS. http://oeis.org/a002496.
16. Pavese F.: Finite classical polar spaces and their geometry (2021).
17. Segre B.: Forme e geometrie hermitiane, con paricolare riguardo al caso finito. Ann. Mat. 70, 1–201

(1965).
18. Serre J.-P.: Lectures on NX (p). CRC Press, Boca Raton (2016).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://oeis.org/a002496

	New hemisystems of the Hermitian surface
	Abstract
	1 Introduction
	2 Background on Hermitian surfaces, maximal curves and hemisystems
	3 The Fuhrmann-Torres construction
	4 Automorphisms preserving mathcalG and mathcalX+
	5 Points satisfying condition (E)
	6 Condition (B) for case (III) and p equiv5 8mu(mod6mu8)
	6.1 Case of mathcalG1
	6.2 Case of mathcalG2
	6.3 Choice of mathcalM1 and mathcalM2

	7 Proof of Theorem 1.1
	8 Some applications
	8.1 Strongly regular graphs
	8.2 Two-weight codes from strongly regular graphs

	Acknowledgements
	Appendix A
	References




