
1

AXI-ICRT: Towards a Real-Time
AXI-Interconnect for Highly Integrated SoCs

Zhe Jiang, Kecheng Yang, Nathan Fisher, Ian Gray, Neil Audsley, Zheng Dong§

AbstractÐIn modern real-time heterogeneous System-on-Chips (SoCs), ensuring the predictability of interconnects is becoming

increasingly important. Most of the existing interconnects are mainly designed to achieve high throughput, with their

micro-architectures usually based on FIFO queues. The FIFO-based design prevents transaction prioritization based on importance

and leads to occurrences of physical priority inversion. Such problems lead to difficulties in ensuring transaction predictability,

especially when the system scales to a large number of elements. In this paper, we introduce AXI-InterconnectRT (AXI-ICRT , for short)

± a real-time AXI interconnect for heterogeneous SoCs, which redefines the micro-architecture of interconnects by enabling random

accesses of buffered transactions and organizing transactions through compositional scheduling. This hardware-software co-design

approach provides predictable and scalable real-time performance for highly integrated SoCs.

Index TermsÐReal-time Systems, Many-core Systems, Interconnect, Schedulability, Scalability.

✦

1 INTRODUCTION

In real-time systems, the complexity of SoCs increases dra-
matically, as a result of the diverse functionalities required
by modern embedded computing (e.g., image recognition in
automated driving [1]) and the rapid evolution of manu-
facturing processes in the semiconductor industry (e.g., the
ability to produce 5nm ASICs [2]). Although modern SoCs
from different vendors typically have different architectures,
heterogeneity is always the key to more functionality [3]±
[5]. That is, the SoCs couple processing units with different
architectures, including hardware accelerators (HAs), on the
same chip, e.g., Tesla’s FSD Chip [6] integrates CPUs with
GPUs and a neural processing unit to accelerate image
processing and machine learning related applications.

As ‘bridges’ between different system elements, intercon-
nects become a dominant factor when determining the real-
time performance of heterogeneous SoCs [7]. It is imprac-
tical to manage the traffic flow of an interconnect solely
from the system software level, since the Primaries (e.g.,
processors) in heterogeneous SoCs are usually designed
with different instruction architectures (ISAs). This makes
managing interconnect transactions at the software level un-

• Zhe Jiang is with Central Engineering, ARM, United Kingdom, S1 4LW;
and Computer Science Department, University of Cambridge, CB3 0FD.

• Kecheng Yang is with the Department of Computer Science, Texas State
University, San Marcos, TX 78666.

• Ian Gray is with Computer Science Department, University of York,
United Kingdom, YO10 5GH.

• Neil Audsley is with Department of Computer Science, City, University
of London, EC1V 0HB.

• Zheng Dong and Nathan Fisher are with the Department of Computer
Science, Wayne State University, Detroit, MI, 48202.

This work was supported in part by the U.S. National Science Foundation
under Grants CNS-2103604, CNS-2140346, CNS 2113817, CNS-2038609,
IIS-1724227, CCF-2118202 and CNS-2104181, in part by a start-up Grant
from Wayne State University, in part by start-up and REP grants from Texas
State University.

§. Corresponding author, Zheng Dong (dong@wayne.edu).

reliable, with an extremely high overhead, as frequent inter-
Primary communication and translation are required [7],
[8]. Therefore, it is crucial to guarantee predictability and
throughput of an interconnect at the hardware level.

The ARM Advanced Microcontroller Bus Architecture
Advanced eXtensible Interface (AMBA AXI) [9] is the most
widely used de-facto standard interface for interconnects,
which is used by billions of SoCs each year. A number
of industrial interconnects are based on this protocol, e.g.,
Xilinx’s AXI-InterConnect [10] and AXI-SmartConnect [11].
However, most of these were not designed for real-time
application scenarios. Within the context of real-time sys-
tems, some prototype interconnects have been developed.
These include, Restuccia et al. [12], Pagani et al. [13], and
Gomony et al. [14]. Existing interconnect designs are usually
based on FIFO queues, which prevent transaction prioriti-
zation based on importance and leave the real-time per-
formance of an interconnect entirely to scheduling from
the software level. However, as mentioned above, it is
difficult to ensure the predictability of an interconnect from
the software level, as the system elements in heteroge-
neous SoCs usually execute independently. Moreover, the
FIFO-based design also allows a low-priority transaction
to block a high-priority transaction when both transactions
are buffered in the same FIFO queue and the low-priority
transaction arrives before the high-priority transaction. This
phenomenon is also called physical priority inversion, which
brings additional unpredictability to the interconnect. Even
worse, these problems are further magnified when the
system scales with more hardware elements, since extra
resource contention/blocking is introduced.
Contributions. We present AXI-InterconnectRT (AXI-ICRT)
to provide guaranteed real-time performance in highly inte-
grated SoCs. Specifically, we present

• A novel micro-architecture, enabling random accesses of
buffered transactions and allowing transaction prioriti-
zation based on importance.





3

however, the design details of these interconnects are not
always publicly available. Fig. 2 shows a generalized AXI
interconnect based on the official protocol [9] and existing IP
documentation. Using this diagram, we introduce the essen-
tial elements of an AXI interconnect and AXI transactions.
AXI bus. The AMBA AXI protocol defines a Primary-
Secondary interface, which allows simultaneous, bi-
directional data exchange. The AXI protocol introduces five
independent communication channels: Address Read (AR),
Address Write (AW), Read Data (R), Write Data (W), and
Write Response (B). Each of these channels has a group of
standard-defined signals [9].
AXI transactions. In AMBA AXI, a transaction is always ini-
tialized by a Primary (e.g., a processor). To issue a read/write
transaction, the Primary first sends a header packet con-
taining the information necessary for the transaction (e.g.,
Secondary address) to a Secondary using the AR/AW chan-
nel. In read procedures, response data is transferred back
to the Primary using the R channel. In write procedures,
write data is routed to a Secondary via the W channel,
and the Secondary uses the B channel to acknowledge the
transmission from the Primary. Fig. 3 shows an example of
a write transaction at the hardware level, where the black
lines show the transmissions from Primaries to Secondaries
(i.e., request paths) and the lighter grey lines show the
transmissions from Secondaries to Primaries (i.e., response
paths). Following the AXI protocol [9], we call the data
payload of a transaction a burst, and the packets of a burst
beats. In Fig. 3, the Primary issues a write burst with 3 beats
in a transaction.
AXI port. The AMBA AXI protocol introduces two types of
ports: Primary and Secondary ports. As regulated by AMBA
AXI 5.0 [9], Primary ports connect Secondaries, and the
Secondary ports connect the Primaries. Such connectivity
is established using the AXI bus. Corresponding to the AXI
bus, AXI ports also contain five communication channels.
AXI interconnect. An AXI interconnect has two responsi-
bilities: (i) receiving the requests/responses sent from a Pri-
mary/Secondary and then routing them to the correspond-
ing destinations; (ii) organizing the transaction order when
a Secondary/Primary receives multiple requests/responses.

To this end, an AXI interconnect introduces a group of
FIFO queues and multiplexers for each Secondary port in
the request path. During run-time, the FIFO queues buffer the
requests in the AR, AW, and W channels respectively, and
the multiplexers select the destinations of these requests.
Simultaneously, a group of FIFO queues and arbiters are
connected to each Primary port. These arbiters are entirely
independent of each other, and decide the access order of
requests sent to the connected Secondaries. In most existing
work and commercial IPs (e.g., [3], [8], [9]), a round-robin
scheduling policy is adopted in the arbiters. In the response
path, symmetric structures of the R and B channels are
implemented.

3 RESEARCH CHALLENGES AND RELATED WORK

3.1 Research Challenges and Motivation

Conventional AXI interconnects cannot ensure the time-
predictability of transactions, because they are usually de-
signed using FIFO queues. The FIFO-based design serves

transactions according to their arrival order, preventing the
prioritization of transactions based on their importance and
leaving the predictability of the transactions entirely to the
Primaries and Secondaries. However, Primaries and Sec-
ondaries in heterogeneous SoCs usually execute indepen-
dently, leading to frequent contentions in the interconnect,
and so significantly damaging the system predictability.

Moreover, the FIFO-based design leads to occurrences
of physical priority inversion. That is, a low-priority trans-
action blocks a high-priority transaction when both trans-
actions are buffered in the same FIFO queue and the low-
priority transaction arrives before the high-priority transac-
tion. Such blocking occurs in two scenarios:
Secondary-port blocking. Secondary-port blocking occurs
between requests/responses issued from the same port.
Taking Fig. 1 as an example, tasks executed on the same
processor can cause frequent Secondary-port blocking when
they keep accessing the interconnect concurrently.
Primary-port blocking. Primary-port blocking occurs be-
tween the requests/responses issued from different ports,
but sent to the same destination. Taking Fig. 1 as an example,
the processors in the core subsystem and PEs in the DDN
HA can suffer frequent Primary-port blocking when they
keep reading the same memory bank simultaneously.

As an increasing number of hardware elements are in-
tegrated into the modern heterogeneous SoCs, to solve the
above real-time issues, both dependency and scalability must
be taken into account, as they could further magnify the
issues in the AXI interconnects.
Dependency. As shown in Fig. 2, an AXI interconnect
fully connects the Primaries and Secondaries in the system.
Therefore, blocking which occurs in one transaction path
can cause or magnify blocking in the other paths. More
seriously, such interference usually occurs repetitively and
recursively between the transaction paths, which largely
magnifies the unpredictability of the interconnect [12], [17].
Scalability. With the increase in system complexity, modern
SoCs always introduce additional Primaries and Secon-
daries, creating more transaction paths in the interconnect
and bringing more data transferred between the Primaries
and Secondaries. This adds significantly more resource con-
tention/blocking in the interconnect and further magnifies
the introduced issues [18].

These issues lead to challenges in designing a real-time
AXI interconnect for modern heterogeneous SoCs.

3.2 Related Work

Existing work focusing on interconnect real-time perfor-
mance can be mainly classified as duplicated channels, band-
width reservation, and hierarchical connections. Note that com-
munication protocols are not restricted in the review, as
ideally, all these methods are compatible with AMBA AXI.
Duplicated channels (Fig. 4(a)). A straightforward way to
improve interconnect real-time performance is by dupli-
cating the communication channels. For example, Liao et
al. [19] and Loh et al. [20] implement ªvirtual channelsº for
the interconnect transaction paths. In industrial patents, du-
plicated channels are also created for specific transactions,
e.g., secure messages [21], video processes [22], and I/O
communication [23]. As evidenced in the evaluation [19],













9

where the second ª≥º takes ª=º when t = ℓq+(q−2), ℓ ∈ N.
Therefore,

DBFi(t) ≤ sbfT(Θi,Πi, t)

⇐ (t+Υi)Ui ≤
(

t− 2(q − 1)− 2(Πi −Θi)
)

wi

⇐ Ui < wi ∧ t ≥
ΥiUi + 2(q − 1 + Πi −Θi)wi

wi − Ui

.

The lemma follows.

Lemma 2. Ui < wi is necessary for (4) to be true.

Proof. We let H = lcmτh∈Ti
{Th} denote the hyper-period of

all tasks in Primary i. Then, due to constrained deadlines,
DBFi(H) = H × Ui. On the other hand, by (3) (or, by
observing Figs. 10 and 11), we have ∀t, sbfT(Θi,Πi, t) <
t × wi, which implies sbfT(Θi,Πi, H) < H × wi. Thus,
Ui < wi, or H × Ui < H × wi, is necessary for DBFi(H) ≤
sbfT(Θi,Πi, H), which is necessary for (4).

By Thm. 1 and Lems. 1 and 2, the following theorem
holds, which implies a pseudo-polynomial-time schedula-
bility test.

Theorem 2. All tasks in Primary i must meet their deadlines if
and only if Ui < wi and

∀t < Z,DBFi(t) ≤ sbfT(Θi,Πi, t),

where Z = ΥiUi+2(q−1+Πi−Θi)wi

wi−Ui
and Υi = maxτh∈Ti

{Th −Dh}.

6.2 Selection Range for Feasible Periods

In this subsection, we provide a bounded range for choosing
the resource period Πi for each server task Γi. This is a
basis for our next step to determine the interface for each
Primary i.

Lemma 3. The period of the periodic resource server task Γi for
task set Ti in Primary i must be upper bounded by

q

1−
∑

j ̸=i Uj

≤ Πi ≤
minτh∈Ti

{Dh − Ch}

2
∑

j ̸=i Uj

Proof. It is clear that, for each Primary j, the bandwidth of its
periodic resource server must be at least the total utilization
of the task set in it, i.e., ∀j, wj ≥ Uj . On the other hand,
in order to be feasible, the total system bandwidth of all
periodic resource servers cannot exceed one, i.e.,

∑

j wj ≤ 1.
Therefore, it is necessary that

wi ≤ 1−
∑

j ̸=i

wj ≤ 1−
∑

j ̸=i

Uj .

Then, focusing on Primary i, according to the periodic
resource model, it may have time intervals up to length of
2(Πi − Θi) = 2Πi(1 − wi) that provide no budget to task
set Ti. Therefore, to be schedulable in the worst case, it is
necessary for each task τh ∈ Ti that 2Πi(1− wi) + Ch ≤ Dh,
i.e., 2Πi(1− wi) ≤ minτh∈Ti

{Dh − Ch}. Thus,

Πi ≤
minτh∈Ti

{Dh − Ch}

2(1− wi)
≤

minτh∈Ti
{Dh − Ch}

2
∑

j ̸=i Uj

.

On the other hand, because Θi must be multiple of trans-
actions, i.e., multiple of q, we have Θi ≥ q. Due to
Θi

Πi
= wi ≤ 1 −

∑

j ̸=i Uj as we shown earlier in this proof,
we have

Πi ≥
Θi

1−
∑

j ̸=i Uj

≥
q

1−
∑

j ̸=i Uj

.

Thus, the lemma follows.

Corollary 1. The resource period Πi for Primary i must be
selected as Πi = ℓ × q for some integer ℓ that is within the
following range

⌈

1

1−
∑

j ̸=i Uj

⌉

≤ ℓ ≤

⌊

minτh∈Ti
{Dh − Ch}

q × 2
∑

j ̸=i Uj

⌋

.

Proof. This corollary directly follows from Lem. 3, given that
Πi must be a multiple of q. ⌈a/q⌉×q is the smallest multiple
of q that is greater than or equal to a, and ⌊b/q⌋ × q is the
largest multiple of q that is less than or equal to b.

6.3 Interface Selection

In this subsection, we present our interface selection algo-
rithm that provides the pair of (Πi,Θi) to each Primary i.

An interconnect’s functionality, as we know it, is routing
the requests and responses between the Primaries and the
Secondaries. To ensure the system’s real-time performance,
Algorithms 1-3 are proposed to determine the interface for
each Primary, i.e., the scheduling parameters for each server
task. The pseudo-code is presented in Alg. 1, where the
subroutine MinBudget is described in Alg. 2 in which the
subroutine SchedTest is described in Alg. 3. In particular,

by Lem. 3, it is assigned that Πmin =
⌈

1

1−
∑

j ̸=i Uj

⌉

× q and

Πmax =
⌊

minτh∈Ti
{Dh−Ch}

q×2
∑

j ̸=i Uj

⌋

× q when calling the function

InterfaceSelect for each Primary i.
The goal of Alg. 1 is to find an interface pair (Πi,Θi)

that guarantees the deadlines of all tasks in Primary i to
be met while minimizing the bandwidth wi = Θi/Πi.
Specifically, Lines 2 ± 11 iterate all multiples of q in the range
[Πmin,Πmax] for potential selection of Πi, and Line 4 calls
subroutine MinBudget, as described in Alg. 2, to find the
minimum required (for guaranteeing schedulability) budget
for each given Πi selection in a binary-search manner. Please
note that, the input Πi for MinBudget (Alg. 2) is supposed
to be a multiple of q, and it returns a multiple of q as well.
SchedTest(Ti,Πi,Θi) is the schedulability test as proven in
Thm. 2, for any given task set Ti and interface pair (Πi,Θi).
Time Complexity. Although the range of Πi given by Lem. 3
depends on the total utilization in other Primaries (Uj), we
can further see that this range must be a sub-interval of
[

q,
minτh∈Ti

{Dh−Ch}

2c1

]

if there exists some positive constant

c1 ≤ Uj , ∀j. That is, there are pseudo-polynomial number
of iterations in InterfaceSelect (Alg. 1) for systems with at
least two Primaries and the task utilization in each Primary
is lower-bounded by some constant c1 > 0 (e.g., even
c1 = 0.0001 is fine). Due to the logarithmic complexity of
binary search, MinBudget (Alg. 2) has polynomial number
of iterations. SchedTest (Alg. 3) has a pseudo-polynomial



10

Algorithm 1: InterfaceSelect(Ti,Πmin,Πmax)

1: wi ←∞
2: π ← Πmin

3: repeat
4: θ = MinBudget(Ti, π)
5: if θ/π < wi then
6: wi ← θ/π
7: Πi ← π
8: Θi ← θ
9: end if

10: π ← π + q
11: until π > Πmax

12: if wi ̸=∞ then
13: return (Πi,Θi)
14: else
15: return FAILURE

16: end if

Algorithm 2: MinBudget(Ti,Πi)

1: lo← 1
2: hi← Πi/q
3: if SchedTest(Ti,Πi,Πi) = false then
4: return ∞
5: end if
6: while lo < hi do
7: mid← ⌊(lo+ hi)/2⌋
8: if SchedTest(Ti,Πi,mid× q) = true then
9: hi← mid

10: else
11: lo← mid+ 1
12: end if
13: end while
14: return hi× q

Algorithm 3: SchedTest(Ti,Πi,Θi)

1: if Ui ≥ wi then
2: return false
3: end if
4: Υi ← maxτh∈Ti

{Th −Dh}
5: Z ← (ΥiUi + 2(q − 1 + Πi −Θi)wi)/(wi − Ui)
6: t← minτh∈Ti

{Dh}
7: repeat

8: if DBFi(t) > sbfT(Θi,Πi, t) then
9: return false

10: end if
11: t← t+ 1
12: until t ≥ Z
13: return true

time complexity for any Primary i such that wi−Ui is lower-
bounded by some constant c2 > 0 (e.g., even c2 = 0.0001
is fine). To sum up, the time complexity of the interface
selection algorithm is the product of a pseudo-polynomial,
a polynomial, and a pseudo-polynomial, which is still in
pseudo-polynomial time.

7 EVALUATION

AXI-ICRT is examined through system implementations.

7.1 Experimental Platform

We built a heterogeneous SoC (introduced in Fig. 1) on a
Xilinx VC709 evaluation board. For the core subsystem, we
implemented 16 MicroBlaze processors [34], with FreeRTOS
(v.10.4) as the OS kernel for all processors [35]. At the same
time, we instantiated two DNN HAs, following the IPs’
default settings to present 9 MAC PEs in each DNN HA.

We implemented the AXI interconnect in the SoC using
a traditional design (AXI-TD), duplicated channels (AXI-
DC), reserved bandwidth (AXI-RB), hierarchical connec-
tions (AXI-HC), and AXI-ICRT . For AXI-TD and AXI-ICRT ,
we used the design methods described in Sec. 2.2 and Sec. 5
respectively. In AXI-ICRT , the interface parameters were
obtained using the algorithms provided in Sec. 6. For each of
the other interconnects, different variants are demonstrated
in the literature. Our implementations of the other intercon-
nects looked to find common ground representing their key
characteristics, as follows:

AXI-DC (Fig. 4(a)). A ªvirtual channelº to all the commu-
nication paths was implemented. A transaction was trans-
ferred using the channel with the fewest buffered transac-
tions.

AXI-RB (Fig. 4(b)). Equal importance was assumed for Pri-
maries; identical bandwidths were assigned to each Primary.

AXI-HC (Fig. 4(c)). The Primaries were grouped into four
partitions and connected to a local interconnect. At the
same time, the local interconnects and the Secondaries were
connected to a global interconnect.

All interconnects were implemented using BlueSpec Sys-
tem Verilog [36] and compiled into Verilog. The hardware
in the system was synthesized and deployed using Vivado
(v2020.2) [15], and the software executing on the processors
(OS kernels, drivers and user applications) was compiled
using the Xilinx MicroBlaze GNU tool-chain [34].

7.2 Hardware Overhead

Experimental setup. We first configured the AXI intercon-
nects to support 8/16 outstanding transactions for each
Primary/Secondary and compared the interconnects’ hard-
ware overhead in terms of Look-Up-Tables (LUTs), registers,
DSPs, RAMs, and power. Using this configuration, the traffic
pressure was considered close to practical applications and
able to facilitate overhead observation. We then compared the
AXI-ICRT against other hardware elements in the system,
i.e., general-purpose processors (MicroBlaze and RISC-V)
and the entire SoC, to examine AXI-ICRT’s hardware over-
head from a system perspective. The MicroBlaze was full-
featured, enabling all performance related functionalities
(e.g., pipeline and data cache). The RISC-V was imple-
mented based on [37], supporting all functionalities of the
MicroBlaze, as well as multi-branch, out-of-order processing
and related functionalities (e.g., branch-prediction). The SoC
is introduced in Sec. 2.1, excluding the AXI interconnect.

Obs 1. AXI-ICRT consumed similar hardware resources
compared to existing AXI interconnects.



11

TABLE 1
Hardware overhead (implemented on FPGA)

LUTs Registers DSPs RAMs(KB) Power(mW)
Proposed 4,745 4,184 0 0 44
AXI-TD 3,785 4,839 0 0 39
AXI-DC 4,538 7,588 0 0 58
AXI-RB 4,342 4,795 0 0 47
AXI-HC 9,829 5,593 0 0 68

MicroBlazes 4,908 4,385 6 256 359
RISC-V 7,432 16,321 21 512 583

SoC 141,718 113,627 174 16,384 2,904

This observation is shown by comparing the intercon-
nects’ hardware overhead presented in Table 1. AXI-
ICRT required fewer registers than other AXI-interconnects.
Specifically, it consumed 665 (13.5%) fewer registers than
AXI-TD, 3,404 (44.9%) fewer than AXI-DC, 611 (12.7%)
fewer than AXI-RB, and 1,409 (25.2%) fewer than AXI-HC.
Such improvement benefited from deploying RAQs in AXI-
ICRT . Unlike conventional interconnects implementing FIFO
queues for each Primary and Secondary, AXI-ICRT imple-
ments RAQs for transaction paths. This allows Primaries
and Secondaries to share the RAQs in each transaction
path. We found that AXI-ICRT required slightly more LUTs
than other interconnects, since AXI-ICRT presents new AXI-
decoders and TCUs, which are designed using combina-
tional logic.

Obs 2. From a system perspective, the design of the AXI-
ICRT was resource-efficient.

As shown in Table 1, AXI-ICRT consumed less hardware
compared to the other main system elements. Specifically,
compared to the MicroBlaze processor AXI-ICRT required
163 LUTs, (3.3% of a MicroBlaze), 201 registers (4.6%), and
315 mW (87.7%). It also consumed 2,687 (36.2%) LUTs,
12,137 (74.4%) registers, and 539 (92.5%) mW less than
the RISC-V processor. Over the entire SoC, the hardware
required by AXI-ICRT was less than 4% (for all metrics).

7.3 Synthetic Workloads: Transmission Efficiency and

Real-time Performance

Experimental setup. We deployed 4/8/16 processors as
transaction generators (Primaries) and implemented 4 ded-
icated transaction operators (Secondaries). We then con-
nected them to the same interconnect. During experiments,
a generator randomly generated 2-4 transactions for each
operator and assigned a unique priority to each transaction.
The operators acknowledged the Primaries for transactions
without processing any data. The generator paused until it
had no outstanding transactions and then started to reissue
new transactions. Synthetic transaction workloads such as
this provide traffic patterns close to practical applications
and facilitate behavior observation. We examined intercon-
nect transmission efficiency and real-time performance us-
ing the propagation and blocking latency of transactions. The
propagation latency of a transaction records its response
time from issue to completion. The blocking latency of
a transaction indicates the duration of time it is blocked
by transactions with lower priority. The experiments were
executed 1,000 times.

Obs 3. AXI-ICRT had the best transmission efficiency when
workloads were not intensive. With an increase in workload
intensity, this benefit decreased slightly.

This observation is shown in the comparison between
the propagation latency of three experimental groups in
Fig. 12. In experiments with 4 transaction generators, the
transactions in AXI-ICRT experienced the lowest propaga-
tion latency on average. To transmit a transaction through a
certain communication channel, conventional AXI intercon-
nects have to pass the transaction through the entire FIFO
queue of this channel. The improvements benefited from
employing RAQs in AXI-ICRT , enabling random accesses
of transactions and providing shorter paths for the transac-
tions. However, with increased workload intensity, the FIFO
queues in the conventional AXI interconnects behave like
a ªpipelineº, mitigating the drawbacks of the transmission
efficiency.
Obs 4. AXI-ICRT always achieved the best real-time perfor-
mance when the system was scaled with different numbers
of transaction generators.

This observation is summarized from two perspectives:
(i) transactions in AXI-ICRT always had the shortest block-
ing time. Such benefit was achieved by deploying RAQs
in AXI-ICRT (detailed in Sec. 5.1), which enabled prioriti-
zation of the transactions, avoiding a high-priority trans-
action being blocked by low-priority transactions. (ii) AXI-
ICRT always had the least experimental variance. This is
because AXI-ICRT deploys the real-time scheduler (TCU) at
the hardware level (see Sec. 5.3), ensuring transactions are
managed in a time-predicable manner.

7.4 Case Study

We now use a case study to examine the benefits of applying
AXI-ICRT in a heterogeneous SoC.
System configurations. We integrated the different AXI
interconnects in the SoC (shown in Fig. 1). For each SoC,
we executed real-world task sets using the core subsystem
and DNN inference tasks using DNN HAs.
Task sets. We introduced three sets of real-world tasks for
the core subsystem (20 tasks in each set):

•Safety tasks, selected from the Renesas automotive use
case database [38], e.g., CRC, RSA32, etc.

•Function tasks, selected from the EEMBC bench-
mark [39], e.g., Fourier transform, speed calculation, etc.

•Synthetic workloads, selected from the EEMBC bench-
mark, which could be optionally added into the system to
tune overall system utilization.

We employed a hybrid-measurement approach to obtain
WCETs for all tasks [40]. The raw data processed by the
40 tasks was randomly generated off-chip and sent to the
evaluated systems via two Ethernet controllers (1 Gbps).
The results were sent back via a FlexRay controller (10
Mbps). Each task had a defined period and implicit dead-
line, with overall system utilization approximately 40%.
Note, in practical systems, the execution time of a task is
affected by diverse factors (e.g., cache miss rate); hence,
adding synthetic workloads to a system only gives it a target
utilization.
DNN inference tasks. We used two groups of DNN infer-
ence tasks for the DNN HAs, which were built on LeNet-
5 [41] and AlexNet [42] architectures. Each group contained








