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Abstract—Deep learning (DL) has dramatically evolved and
become one of the most successful machine learning techniques.
A variety of DL-enabled applications have been widely integrated
into software systems, including embedded ones. Although having
achieved very successful results in accuracy, the large size of
deep neural networks could require significant runtime and
computing resource consumption. To overcome these drawbacks,
TensorRT has been developed and may be incorporated into
popular DL frameworks such as PyTorch and Open Neural
Network Exchange (ONNX). In this paper, focusing on inference,
we provide a comprehensive evaluation on the performances of
TensorRT. Specifically, we evaluate inference output validation,
inference time, inference throughput, and GPU memory usage.
Our results demonstrate that TensorRT is able to significantly
improve the inference efficiency metrics without compromising
inference accuracy. Furthermore, TensorRT may be adopted via
several alternative workflows. Our evaluation also shows the pros
and cons of these TensorRT workflows. We analyze that for
each workflow and discuss the workflow selection for different
application scenarios.

Index Terms—deep learning, real-time inference, learning-
enabled embedded systems, TensorRT

I. INTRODUCTION

In the past few years, deep learning (DL) has dramatically
evolved and become one of the most successful machine
learning techniques. A variety of DL-enabled applications,
such as computer vision, natural language processing, au-
tonomous control, efc., have been widely integrated into
software systems, including embedded ones. In contrast to
classical machine learning methods, which are prone to over-
fitting when their size is at a large scale, deep networks
can achieve high accuracy with large and over-parameterized
models. According to the ImageNet classification leader board
provided by the papers with code [1], the parameter number
in the state-of-the-art model for image classification has been
increased from 61 million to 2100 million since 2013. A
similar trend occurs in natural language processing (NLP).
Since 2018, alone, we have seen the emergence of Bidi-
rectional Encoder Representations for Transformers (BERT)
and its variants [2]. The BERT base model, published by
researchers at Google Al Language [6], contains over 109
million parameters, while the BERT large contains 345 million
parameters.
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Although such large, sometimes even huge, deep neural
networks often result in very successful accuracy and preci-
sion, not only their training but also their inference runtime
could become extremely slow and sluggish. Furthermore, such
large model architectures often require significant amount of
computing resources even just to make inferences. However,
many applications and systems, especially embedded ones,
require inference in real-time while utilizing a limited amount
of hardware resources due to size, weight, power, and cost
(SWaP-C). For example, autonomous vehicles need to process
data from different sensors such as cameras and lidars, and
make proper control decisions promptly. Also, a video surveil-
lance system must perform real-time video analysis to detect
abnormal activities such as accidents, burglaries, explosions,
fighting, robberies, and other violent events. On the other hand,
for privacy and reliability reasons, such computation is often
required to be done at the embedded platform with limited
computing resources.

This inference computation barrier opens a massive gap
between the success of neural networks and their applicability
in many real-world scenarios. To mitigate this gap, several
technologies have been proposed and developed, including
low-power, highly efficient SoC chips specialized for deep
learning inference such as Google’s Tensor Processing Unit
(TPU) [9] and Intel’s Vision Processing Unit (VPU) [13],
model compression methods such as quantization [27], the
pruning [33] and neural architecture search (NAS) [15] of
deep learning models for resource-constrained devices, and
lightweight models with reduced weights and parameters such
as MobileNets [11] and SqueezeNet [12].

Despite such efforts and advances, the common, general-
purpose DL framework, such as PyTorch [17], is not particu-
larly optimized for the computing resource and time consump-
tion of inferences. To address this issue, NVIDIA published
the TensorRT, a high-performance DL inference engine for
production deployments of deep learning models. TensorRT
can improve the inference throughput and efficiency, enabling
developers to optimize neural network models trained on
all major frameworks such as PyTorch and TensorFlow, and
deploy them to various devices such as embedded platforms
and automotive product platforms [4].

In this paper, we examine the effectiveness of TensorRT



by comparing it to the vanilla (without TensorRT) PyTorch
framework. In particular, there are three workflows to integrate
the TensorRT engines with PyTorch-compatible models. We
evaluate the performance of these three TensorRT integration
workflows under a variety of workloads. We identify the
performance bottlenecks in the inference using TensorRT. And
we find that there is still room for fully maximizing the deep
learning performance in term of GPU memory utilization.
Contribution. Our main goal is to bring attention to the
emerging TensorRT for learning-enabled real-time embedded
systems. In such systems, the inference often needs to be
performed online and using embedded hardware and there-
fore may be subject to real-time constraints and computing
resource limitations. We provide a comprehensive evaluation
of the inference performances of TensorRT engines which are
converted and deployed from different workflows via vari-
ous software tools. Specifically, we evaluate inference output
validation, inference time, inference throughput, and GPU
memory usage for each workflow. Our results demonstrate
that TensorRT is able to significantly improve the inference
efficiency metrics without compromising inference accuracy.
Nonetheless, TensorRT may be adopted via several alternative
workflows. Our evaluation also shows the pros and cons of
these TensorRT workflows. We analyze that for each workflow
and discuss the workflow selection for different application
scenarios.

Organization. The rest of this paper is organized as follows:
Sec. II provides a background overview of PyTorch, ONNX,
and TensorRT. Sec. III describes the methodology for our
experiments, including evaluated models, workflows, and per-
formance measuring. Experiment results and discussion are
provided in Sec. IV and Sec. V. Sec. VI provided an overview
of exsiting work. We conclude our work in Sec. VIIL.

II. OVERVIEW OF DEEP LEARNING FRAMEWORKS AND
TENSORRT

In this section, we provide an overview of DL framework,
compiler and runtime that we used in this research.

A. PyTorch

PyTorch [17] is an open-source machine learning framework
that accelerates the path from research prototyping to produc-
tion deployment. It is a Python package being primarily used
as a deep learning research platform that aims at providing
maximum flexibility and speed.

PyTorch supports the operation of Tensors (multi-dimension
array) on both CPU and GPU, and this may accelerate the
computation by a significant amount. PyTorch provides a
variety of tensor routines to fit different scientific computation
needs, including mathematical operations and linear algebra.

For most frameworks, the user has to build a neural network
and reuse the same structure repeatedly. PyTorch uses reverse-
mode auto-differentiation, a technique allowing the user to
change the way the network behaves arbitrarily without any
significant overheads.

PyTorch is integrated with acceleration libraries such as
Intel MKL and NVIDIA (cuDNN, NCCL) to maximize speed.
Therefore, it is quite fast to run network of varying sizes. Also,
PyTorch is designed to use memory efficiently compared to
other alternatives, so that it enables the user to train extremely
large deep learning models.

B. ONNX

The Open Neural Network Exchange (ONNX) [8] is an
open-source artificial intelligence ecosystem. It is an open
standard established by many technology companies and re-
search organizations for representing machine learning algo-
rithms and software tools to promote innovation and collabo-
ration in the Al sector.

ONNX targets at interoperability. It defines a common set
of operators — the building blocks of machine learning and
deep learning models — and a common file format, which
make it possible for Al developers to use models with various
frameworks, tools, compilers, and runtimes. ONNX supports
multiples software frameworks such as PyTorch, TensorFlow,
Caffe2 and Apache MXNet.

ONNX also facilitates model optimization on different
hardware devices. Users can deploy an ONNX model using
runtimes designed for particular hardware to accelerate the
inference execution on the device.

C. TensorRT

TensorRT is a Software Development Kit (SDK) for high-
performance deep learning inference. It is a part of NVIDIA
CUDA X AI Kit. It comes with a deep learning inference
optimizer and runtime that delivers low latency and high
throughput for deep learning inference.

TensorRT performs six types of optimizations to reduce
latency and increase the throughput of deep learning models: 1.
Weight and activation precision calibration: maximize through-
put by quantizing model to 8-bit integer while keeping the
same level of accuracy. 2. Layer and tensor fusion: optimizes
the use of GPU memory and bandwidth by fusing nodes in
a kernel vertically or horizontally(or both), which reduces
the overhead and the cost of reading and writing the tensor
data for each layer. 3. Kernel auto-tuning: provides kernel-
specific optimization which selects the best layers, algorithms,
and optimal batch size based on the target GPU platform.
4. Dynamic tensor memory: improves memory re-usage by
allocating memory to the tensor only for the duration of
its usage. This helps in reducing memory consumption and
avoiding allocation overhead for efficient execution. 5. Multi-
stream execution: processes multiple input streams in parallel.
6. Time fusion: optimizes recurrent neural networks (RNN)
over time steps with the dynamically generated kernel.

The ability to take a variety of DL models as input makes
TensorRT applicable to a wide range of artificial intelligence
(AI) based applications such as computer vision, automatic
speech recognition, natural language understanding (BERT),
text-to-speech, and recommender systems. TensorRT can pro-
vide deployment-ready inference engines for multiple com-
puter vision models used in autonomous driving systems. It



can also deliver real-time,low-latency video analytics at scale
for hyper-scale data centers.TensorRT optimizes DL model so
it can achieve accurate and real-time inference on edge devices
and Internet of Things (IoT).

III. METHODOLOGY
A. Neural Network Models to Evaluate

Image classification is a fundamental task in computer
vision. It attempts to comprehend an entire image as a whole,
and the goal of it is to classify the image by assigning it to a
specific label. Convolutional Neural Network (CNN) is a spe-
cial multi-layer neural network designed to recognize visual
patterns directly from pixel images. It has been widely used
for image classification because it can automatically detect
significant features without human supervision. In this paper,
we focus on the TensorRT inference of three types of image
classification CNN models: Residual neural networks [10]
(ResNet) models, MobileNet, and SqueezeNet. The ResNet
model was firstly proposed in “Deep Residual Learning for
Image Recognition”. It uses the skip connection to improve
the performance and the convergence of deep neural networks.
There are many variants of ResNet architectures that run on the
same concept but with different number layers. Our experiment
is tested against five variants of ResNet: ResNet-18, ResNet-
34, ResNet-50, ResNet-101 and ResNet-152.

We also experiment with two network architectures that are
well suited for platform with limited resources: SqueezeNet
and MobileNet. They both apply smart tricks in their archi-
tecture to keep the models small and efficient without sacri-
ficing too much accuracy. Our test includes two versions of
Squeezenet, where SqueezeNet 1.1 has even less computation
and fewer parameters than SqueezeNet 1.0.

B. Workflows

We designed our experiments to evaluate the performance
of all possible workflows to speed up the PyTorch DL model
inference using TensorRT. Fig. 1 provides an overview of our
experiment workflows and the software tools used in each
stage.

Pre-trained model loading. As shown in Fig. 1, all workflows
share this starting step: pre-trained model loading. In this
stage, we load the pre-trained models using the PyTorch
torch.hub. The pre-trained model includes the definition of
the model architecture and pre-trained weights. The model
architecture provides the working parameters, such as the
number, size and type of layers in a neural network. The
pre-trained weight, often trained on an open dataset such as
ImageNet, is downloaded to a cache directory when instancing
a pre-trained model.

Inference implementation. To implement the inference in an
already trained model, there are multiple alternative workflows
to choose. In this work, we compare the conventional, default
workflow in PyTorch that does not involve TensorRT at
all (denoted as W0) with three workflows that do integrate
TensorRT (tagged by W1, W2, W3, respectively). These four

workflows we evaluate in this work are explained in more
details as follows.
WO: PyTorch Default

By default, the pre-trained models are loaded on CPU. We
transfer the models from CPU to GPU to ensure the inference
executes on GPU. The same logic applies to the input data. We
then perform inference through the PyTorch model by running
a Python API [17].

W1: Torch-TensorRT

In this workflow, we accelerate inference using Torch-
TensorRT, an integration of PyTorch with NVIDIA TensorRT.
Torch-TensorRT acts as an extension to TorchScript. It op-
timizes and executes compatible subgraphs, letting PyTorch
execute the remaining graph. The Torch-TensorRT compiler’s
architecture consists of three phases to optimize compatible
subgraphs: 1) reducing the TorchScript module, 2) conversion
and 3) execution.

During the first phase, Torch-TensorRT [20] simplifies im-
plementations of frequent operations to representations that
map more directly to TensorRT. In the conversion phase,
Torch-TensorRT identifies TensorRT compatible portion of
graphs and translates them to TensorRT operations. The re-
maining nodes stay in TorchScripting, forming a hybrid graph
returned as a standard TorchScript module [28]. In the last
phase when executing the compiled module, Torch-TensorRT
sets up the TensorRT engine ready for execution. During
execution, the TorchScript interpreter calls the TensorRT en-
gine, which performs inference with inputs passed from the
interpreter. The engine then returns the running results back
to the interpreter after the inference completed [28].

Torch-TensorRT provides a simple Python API for both
model compilation and optimization. To compile the PyTorch
model with Torch-TensorRT, we only need to provide the
PyTorch model and inputs to Torch-TensorRT API that returns
an optimized TorchScript module to run. Input is a list of
torchtensorrt Input classes which define input’s shape, data
type, and memory format. We specify operating precision
as floating point 32 as our hardware doesn’t support half
precision. After compilation, we save the module as a .ts file
for later use. We then run inference on top of the optimized
TorchScript module [28].

W2: ONNX to TensorRT Conversion

There are three steps in this workflow: 1) exporting the
PyTorch model to the ONNX file, 2)TensorRT engine building
3)TensorRT engine deployment in addition to model loading.

In the first step, We use the torch.onnx.export() function
in PyTorch library exporting the PyTorch model to ONNX
files. The torch.onnx.export() function takes an input tensor
to run the model tracing its execution and then exports the
traced model to an ONNX file. Note that the input size is fixed
in the exported ONNX graph for all inputs’ dimensions by
default. To export an ONNX model that accepts input tensor of
dynamic batch size, we need to specify the first dimension as
dynamic in the dynamic_axes parameter in torch.onnx.export()
function. We export PyTorch models to ONNX files with both
static shape and dynamic shape. We prefer the latter option
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since it has the obvious advantage in GPU memory usage and
we only need to create one ONNX file for multiple input batch
size [19].

We build the TensorRT engine with an ONNX model
using the TensorRT Python API. The building stages involve
operations such as creating a network definition, importing a
model through ONNX parser, and building a TensorRT engine
with a builder [25].

TensorRT engine inference consists of the following six
sub-steps: 1) create an inference execution context, 2) allocate
memory for input and output on CUDA device 3) transfer input
data from host into input memory allocated on CUDA device,
4) perform TensorRT engine inference using the asynchronous
execute API, 5)transfer the output back into host memory and
6)synchronize the stream used for data transfers and inference
execution to make sure all operations are finished [26].

W3: ONNX Runtime with TensorRT Integrated

This workflow also starts with exporting a model from Py-
Torch to ONNX using torch.onnx.export() function in PyTorch
library. After obtaining the ONNX model, we run the model
inference using the ONNX Runtime execution provider(EP).

ONNX Runtime works with various hardware acceleration
libraries through its EP framework that enables flexibility to
deploy ONNX models in different environments and opti-
mize the execution by taking advantage of the computation
capabilities of the platform. ONNX Runtime works with the
EP(s) using an API to allocate specific nodes or sub-graphs
for execution by the EP library in supported hardware [22].
The EP libraries are pre-installed in the execution environment
process and execute the ONNX sub-graph on the hardware.
With the TensorRT EP, the ONNX Runtime delivers better
inference performance on the same hardware in comparison
to normal CUDA acceleration [22].

We load and run the ONNX model in ONNX Runtime
through the InferenceSession class. When initializing the In-
ferenceSession we explicitly register TensorRT EP to it so the
model is executed through TensorRT engine [21].

To reduce memory copy between CPU and devices during
execution, ONNX Runtime introduces the notation of IOBind-
ing. With IOBinding, we can copy the input to the GPU and
pre-allocate the output on the GPU before model execution.
In our experiments, we run the created InferenceSession with
IOBindng [23].

W3: ONNX Runtime with TensorRT Integ.

of experiment workflows.

C. Inference Performance Measuring

Output validation. During the inference, we feed models
with four-dimension Pytorch tensors which can be thought
of as four-dimension arrays filled with random numbers from
a uniform distribution on the interval [0, 1). The shape of
the input tensor is determined by the batch size and model
architecture. For all image classification models, we set the
shape of input tensors as [batch size, 3, 224, 224], where 3
is the number of channels in the input image while last two
numbers represent the width and height of input images. All
image classification models are pre-trained on ImageNet [30]
datasets which span on 1000 object class. Therefore, the
outputs of these model, which contain probability values for
all classes, have a shape of [batch size, 1000].

In the ideal condition, we want the absolute differences

between outputs from each PyTorch model and its TensorRT
engine as minimal as possible. We copy the output Tensors
from GPU to CPU and then convert them into NumPy arrays.
We apply a Numpy function, numpy.isclose() [5] to compare
the output numpy arrays. The input parameters for this func-
tion include two arrays to compare, relative tolerance and
absolute tolerance. The relative difference (rtol * abs(array
2)) and the absolute difference (atol) are added together to
compare against the absolute difference between array 1 and
array 2. In our experiment, we set the relative tolerance (rtol) to
0.0001 and use the default absolute tolerance (atol): 1e-8. The
function numpy.isclose() returns a boolean array where two
arrays are element-wise equal within a tolerance. We report
the percentage of non-equal elements by dividing the number
of non-equal elements by the size of the array.
Execution time measuring. In our experiments, we measured
the end-to-end execution time of the forward inference cycle.
This timing does not include any data retrieval, model initial-
ization, and pre-processing of input. To accurately measure
the inference time of the evaluated model, we ran a few
warm-up operations since the execution speed usually takes
some time to reach the maximum speed. We first run the
model inference for 50 hot runs and track the execution time
following the warm-up steps [31]. The execution time in
each step is measured using ‘time’ [7] function in the ‘time’
module in Python. We record two timestamps using the ‘time’
function; one is just before the inference execution and the
other is when the inference completes. The inference time is
recorded as the difference between these two timestamps.



Model ResNetl8 | ResNet34 | ResNet50 | ResNetlOl | ResNet152 | MobileNet | SqueezeNetl.0 | SqueezeNetl.l
Torch-TensorRT 256 256 128 128 64 256 256 256
ONNX - TensorRT Conv. 256 256 256 256 256 256 256 256
ONNX Runtime w/ TensorRT Integ. 256 256 256 128 128 256 256 256
TABLE I

MAXIMUM BATCH SIZE FOR EACH NETWORK ARCHITECTURE AND WORKFLOW COMBINATION

Throughput measuring. Throughput is used to indicate the
amount of data that can be processed or the number of
executions of a task that can be completed in a given period
such as 1 second. To calculate the throughput, we divide the
number of inference inputs by the processing time.

As described in this paper, ‘Deep Learning at Scale on
NVIDIA V100 Accelerators’ [32], increasing the batch size
may increase throughput. So, we measure the inference
throughput using different batch sizes. We start our testing
with batch size as one and multiplying by 2 until it reaches 256
or the maximum batch size that doesn’t cause GPU memory
errors.

Many PyTorch users have reported converting a PyTorch
model to ONNX using torch.onnx.export function may raise
CUDA out of memory error as the converter may create new
tensors may as copies of the tensors in the PyTorch model [16].
We face similar memory issues if we explicitly set a large
batch size (64 or 128) on an ONNX model during the model
conversion. This issue is solved by setting the batch size, the
first dimension of the input Tensor, as dynamic axes when
exporting a PyTorch to ONNX. Table I lists the maximum
batch size for each inference speeding up workflow.

For Torch-TRT, and TensorRT the inference engine is gen-
erated independently for each batch size as different types
of kernels may be used, while PyTorch and ONNX Runtime
make such decisions at run-time, without hardware probing.
GPU memory usage measuring. We use a Python module
GPUtil [24] to estimate the GPU memory consumption during
the inference. This module acquires the GPU status from
NVIDIA System Management Interface (nvidia-smi) [3], a
command line utility which reports the GPU device states. We
keep the model inference as the only process that are using
GPU memory each time when tracking the GPU utilization
to ensure the GPU utilization estimates are as accurate as
possible.

D. Hardware Specifications

While desktop- and server-level GPUs nowadays, such as
Nvidia GeForce RTX 3090, may be equipped with 24 GB or
more GPU memory, GPUs on portable and embedded devices
are typically subject to more restrictive memory constraints.
Such restrictions could impose limitations on both the com-
plexity of neural networks and the size of the data samples that
can be processed. To this end, we carry out our experiments
on a Dell Precision 3551 mobile workstation laptop equipped
with the NVIDIA Quadro P620 with 4 GB memory.

E. Software Specifications

Each software tool used in this experiment has its support
matrices including the specific version of platforms, features,

and operating systems. For example, TensorRT 8.2.4 is only
compatible with cuDNN 8.2.1 while TensorRT Execution
Provider in ONNX Runtime 1.10 requires CUDA to be 11.4.
We need to verify the compatibility between these libraries
before performing the test. Table II summarizes the software
tools and their versions used in our experiments.

CUDA ONNX | ONNX PyTorch | TensorRT | Torch-
Runtime TensorRT
11.4 1.12.0 1.10.0 1.11.0 8.2.4 1.1.0
TABLE I

SOFTWARE TOOLS AND VERSIONS IN OUR EXPERIMENTS

IV. EXPERIMENT RESULTS

We present our experiments results in the following four
subsections: inference accuracy, inference execution time, in-
ference throughput, and GPU memory usage.

A. Inference Output Validation

We verify the TensorRT engine inference output by com-
paring them with the raw outputs from the PyTorch models.
Table III presents the percentage of non-matching elements
in two output Tensors where a relative threshold 1.0 x 1073
and an absolute threshold 1.0 x 10~ are applied. Three
TensorRT engine workflows show similar performance. They
all achieve the best results on SqueezeNet while the inference
results on MobileNet contain more non-matching elements
than the other network architectures. With the number of
layers in ResNet models increasing, the difference between
the inference outputs from the PyTorch model and TensorRT
engines is reduced.

Observation 1. Adopting TensorRT incurs minimum infer-
ence outputs difference compared to the default PyTorch
framework. In other words, the benefits TensorRT brings in
are not at the cost of noticeable sacrifice in inference accuracy.

B. Inference Execution Time

Minimum forward execution time is often targeted for time-
critical applications, where having minimal latency has more
priority than having higher throughput. For such deployments,
the batch size is often set to minimum.

Our results in Fig. 2 show that ONNX Runtime with
TensorRT Integrated and ONNX - TensorRT Conversion have
comparable execution times on all network architecture. They
both have better performance than the Torch-TensorRT.

In the Table IV, we list the maximum inference speed up
that can be obtained through all workflows. It is observed
that the Resnet variants deployed with the TensorRT engine
perform 1.6-1.7 faster than PyTorch running on the same GPU.



Model ResNetl18 | ResNet34 | ResNet50 | ResNetlOl | ResNetl52 | MobileNet | SqueezeNetl.0 | SqueezeNetl.l
Torch-TensorRT 0.49% 0.48% 0.32% 0.34% 0.26% 0.99% 0.000003% 0.0001%
ONNX - TensorRT Conv. 0.48% 0.43% 0.34% 0.32% 0.25% 1.07% 0.002000% 0.0180%
ONNX Runtime w/ TensorRT Integ. 0.48% 0.45% 0.34% 0.32% 0.25% 1.08% 0.000034% 0.0200%
TABLE III

PERCENTAGE OF ON-EQUAL ELEMENT IN OUTPUT TENSORS
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Fig. 2. Mean inference execution time for all network architectures.

For efficient architectures such as MobileNet and SqueezeNet,
the TensorRT engine can make about 2 times speed up.

Observation 2. Applying TensorRT can significantly improve
the inference time. Light-weighted model architecture, such
as MobileNet and SqueezeNet, can benefit even more from
TensorRT.

C. Inference Throughput

Inference throughput is important for applications that in-
volve multiple inference operations in a single time frame.
In certain instances, delayed batch processing is acceptable.
An application can benefit from increased throughput by
increasing the inference batch size.

Fig. 3 shows maximum achieved throughput using each
workflow with varying batch size. In maximum throughput
calculation, all available batch sizes are considered. As in the
previous execution evaluation, ONNX Runtime with TensorRT
Integrated have similar performance with ONNX to TensorRT
Conversion. Torch-TensorRT has the overall lowest through-
put.

Fig. 4 shows a subset of the resulting throughput-vs-batch
size curves. It is observed that increasing the batch size
increases throughput remarkably until performance converges
at a certain batch size, typically 32. A further increase provides
a limited gain in throughput. This occurs because further
parallelization inside the GPU is not possible.

Observation 3. By applying TensorRT, improvement on in-
ference throughput can be obtained in most cases and may
be very significant for certain network architectures. Inference
throughput increases with batch size increases until reaches
hardware limits.

D. GPU Memory Usage

As the networks go wider and deeper, the limited GPU
memory becomes a bottleneck restricting the size of networks
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Fig. 4. Inference throughput for ResNet152 with varying batch size.

to be inferenced. It is important to track the GPU memory
consumption by these three workflows.

As shown in both Fig. 5 and Fig. 6, the ONNX to TensorRT
Conversion consumes the least GPU memory while ONNX
Runtime with TensorRT Integrated has the largest memory
usage. It is noteworthy there is a positive correlation between
GPU memory usage and batch size for all three workflows
for all models. This is not always the case for PyTorch.
The memory reserved by PyTorch includes memory occupied
by tensors and the cached memory managed by the caching
allocator [18]. While the occupied memory increases with the
increasing batch size, we find that the cached memory may not
be affected as much by the batch size in some cases. In our
experiment, the GPU memory usage remains the same after
the batch size is increased to 4 for ResNet50 with PyTorch.

Observation 4. TensorRT, especially via the workflow W2:
ONNX to TensorRT Conversion, utilizes GPU memory in a
significantly more efficient and scalable manner.

V. DISCUSSION

Due to different requirements and priorities, the use of a
single performance metric for all inference scenarios is not



Model ResNetl18 | ResNet34 | ResNet50 | ResNetl0l | ResNetl52 | MobileNet | SqueezeNetl.0 | SqueezeNetl.1
Speed Up 1.67 1.64 1.61 1.67 1.68 1.83 2.00 2.05
TABLE IV

MAXIMUM SPEED UP FOR EACH MODEL ARCHITECTURE
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Fig. 5. GPU memory usage for ResNet34.
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Fig. 6. GPU memory usage for ResNet50.

feasible. Overall, the ONNX to TensorRT Conversion delivers
the highest throughput and smallest latency, although there
are cases where it is outperformed by others. Its GPU mem-
ory consumption is also less than the other two workflows.
However, to benefits from the TensorRT often involves the
conversion from ONNX model first. The ONNX conversion
is all-or-nothing, meaning all operations in the model must be
supported by TensorRT (or the user must provide custom plug-
ins for unsupported operations). Once the ONNX model got
exported, one had to then write a TensorRT client application,
which would feed the data into the TensorRT engine. This
increases the burden on the user and reduces the likelihood of
reproducibility.

Our results show that ONNXRuntime with TensorRT Inte-
grated can deliver less latency and more throughput on aver-
age, as compared to the Torch-TensorRT. But it consumes most
GPU memory during the inference among three workflows.
The high GPU memory usage can impose an upper limit on
the inference throughput. Since ONNX targets interoperability,
it provides converters for a variety of frameworks such as
Keras, TensorFlow and Apache MXNet. Therefore, the ONNX
Runtime with TensorRT Integrated can be used together with
many other frameworks in addition to PyTorch.

The Torch-TensorRT has the lowest overall throughput but
consumes less GPU than ONNX Runtime with TensorRT
Integrated. It provides a user-friendly API which accelerates
the inference by one line of the code. While the other work-
flows require several sub-stages such as memory allocation and
management of data transferring between host and device, the
workflow for Torch-TensorRT is much simpler. Also, it doesn’t
involve any explicit model conversion. Model conversion may
cause blocking issues if there is no valid mapping between
some operators in different network frameworks.

Considering our results and observations, it is impossible
to conclude that one of the evaluated workflows is superior in
all aspects. Latency and throughput characteristics provided
in Fig. 2 and Fig. 3 show which workflows have better
performance for certain network architectures. However, this
comparative result does not only depend on workflow selec-
tion. Application requirements may require specific function-
ality, which may be supported at various levels with different
frameworks and tools. Furthermore, dependency on additional
software libraries or tools and ease of use also need to be
considered in the workflow selection process. According to
our experience, this decision requires a well-defined scenario,
which includes available hardware and resources, required
capabilities, range of desired throughput and execution time.

VI. RELATED WORK

Xu et al. use quantifies the inference performance us-
ing TensorRT. They compared the TensorRT inference for
Resnet50 with INT8 vs FP32, which shows that INT8 mode
is -3.7x faster than FP32. The experiments that they did also
concluded that INT8 can also achieve the comparable accuracy
with FP32 [32]. Jeong et al. proposed present a TensorRT-
based parallelization method that uses both GPU and NPUs
to maximize the throughput of a single DNN application. They
reported a 81% -391% performance improvement over the
baseline inference that is performed on a GPU [14]. Ulker
et al. presented an evaluation of the inference performance
of deep learning software tools using CNN architectures for
multiple hardware platforms. They benchmark these hardware-
software pairs for a broad range of network architectures,
inference batch sizes, and floating-point precision, focusing on
latency and throughput. Their results reveal that TensorRT de-
livers minimum average execution time and highest throughput
for the network models that can be translated into TensorRT
engines [31]. In Shin and Kim’s recent work, they introduce a
performance inference method that fuses the Jetson monitoring
tool with TensorFlow and TRT source code on the Nvidia
Jetson AGX Xavier platform. The CPU utilization, GPU
utilization, object accuracy, latency, and power consumption
of the deep learning framework were also compared and
analyzed [29].



VII. CONCLUSION

This paper presents an extensive comparative inference
performance evaluation of a set of workflows accelerating
PyTorch models with TensorRT on hardware platforms with
limited resource. We focus on the local computation of CNN
model inference. Based on our evaluation results, we discuss
framework performance in terms of latency, throughput and
GPU memory usage characteristics.

We supplemented our interpretation with an investigation
of weakness and strength in each workflow. Our discussions
include workflow selection for common scenarios in deep
learning inference deployment for computer vision tasks.
Results show that ONNX to TensorRT Conversion has the best
overall performance for improving PyTorch model inference.
ONNX Runtime with TensorRT Integrated can deliver less
latency and more throughput on average, as compared to the
Torch-TensorRT. The Torch-TensorRT provides a user-friendly
API which accelerates the inference by one line of the code.

We conclude that none of these inference workflows as

the best choice in all scenarios. We suggest using ONNX to
TensorRT Conversion if the application requires the high infer-
ence performance with limited computation resource. ONNX
Runtime with TensorRT Integrated can be used to accelerating
inference in system consisted of multiple frameworks such
as PyTorch, TensorFlow and Apache MXNet. We may utilize
Torch-TensorRT for application where the fast development is
first priority.
Future work. In the future work, we will include the inference
performance evaluation with reduced precision such as the half
floating-point precision and 8-bit integer. The lower precision
can reduce the computational load and also speed up the
inference while keep an acceptable accuracy. We will try to
experiment with more model architectures such as Recurrent
Neural Networks (RNN) and generative adversarial network
(GAN) in addition to CNN. We would like to employ multiple
threading to further improve the inference performance of
TensorRT engine. We also interested in improving the GPU
memory consumption during ONNX model conversion.
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