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1. Introduction

Let Fq denote the finite field with q elements. A polynomial f(X) ∈ Fq[X] is called a 
permutation polynomial (PP) of Fq if it induces a permutation of Fq. Let r be a positive 
integer, d | q − 1, and h(X) ∈ Fq[X]. It is well known [10,12,16] that Xrh(X(q−1)/d)
is a PP of Fq if and only if gcd(r, (q − 1)/d) = 1 and Xrh(X)(q−1)/d permutes the 
multiplicative group μd := {x ∈ F∗

q : xd = 1}. (In general, we use μm to denote a 
multiplicative group of order m of a finite field.) Replacing q with q2 and d with q+1, we 
see that for h(X) ∈ Fq2 [X], Xrh(Xq−1) is a PP of Fq2 if and only if gcd(r, q−1) = 1 and 
Xrh(X)q−1 permutes μq+1. To facilitate the constructions of permutations of μq+1 of the 
form Xrh(X)q−1, the following idea has been used by several authors [1,6,7,11,15]: Let H
be a subgroup of μq+1 of small index. Construct a polynomial h(X) ∈ Fq2 [X] such that 
h(X)q−1 induces monomial functions on each coset of H in μq+1. With such a property, 
Xrh(X)q−1 permutes μq+1 if and only if some simple number theoretic conditions on 
the parameters are satisfied. This method has produced many results. However, these 
results only deal with specific situations, leaving a unified treatment to be desired.

In the present paper, we take a general approach to the question. The main result 
is an algorithm (Algorithm 2.4) that produces all PPs of Fq2 of the form Xrh(Xq−1)
such that h(X)q−1 induces monomial functions on the cosets of a subgroup in μq+1. The 
order of an element a in a group is denoted by o(a). Let d | q + 1 and ε ∈ F∗

q2 be such 
that o(ε) = d. Define

Ak = {x ∈ μq+1 : x(q+1)/d = εk}, 0 ≤ k < d. (1.1)

Then A0 = μ(q+1)/d, and A0, . . . , Ad−1 are the cosets of μ(q+1)/d in μq+1, whence

μq+1 =
d−1�
k=0

Ak. (1.2)

Since Xn1(q−1) ≡ Xn2(q−1) (mod Xq2−1 − 1) whenever n1 ≡ n2 (mod q + 1), it suffices 
to consider h ∈ Fq2 [X] with deg h ≤ q. Write

h(X) =
∑

0≤i<(q+1)/d
0≤j<d

aijX
i+j(q+1)/d. (1.3)

The objective is to find conditions on aij ∈ Fq2 such that for every 0 ≤ k < d,

xrh(x)q−1 = λkx
ek for all x ∈ Ak, (1.4)

where ek ∈ Z and λk ∈ μq+1, say λk ∈ Aπ(k).

Theorem 1.1. Assume that (1.4) is satisfied for all 0 ≤ k < d. Then Xrh(X)q−1 permutes 
μq+1 if and only if



X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 89 (2023) 102193 3
gcd
(
ek,

q + 1
d

)
= 1, 0 ≤ k < d,

and

k �→ π(k) + ekk

is a permutation of Z/dZ.

Proof. By (1.4), Xrh(X)q−1 maps Ak to Aπ(k)+ekk. This map is one-to-one on Ak if and 
only if gcd(ek, (q + 1)/d) = 1. Hence the conclusion is true. �

Therefore, the crucial question is to determine the polynomials h(X) satisfying (1.4). 
In Section 2, we will resolve this question and we will describe an algorithm that pro-
duces all PPs of the form Xrh(Xq−1) of Fq2 satisfying (1.4). In Section 3, we determine 
all permutation binomials of Fq2 resulting from this algorithm and it turns out that 
these permutation binomials were all known previously. In Section 4, we determine all 
permutation trinomials of Fq2 resulting from the algorithm. There are four classes such 
permutation trinomials, excluding those that were previously known. These four classes, 
in their generality, appear to be new, although many special cases have been discovered 
by other authors. Additional examples of the algorithm are given in Section 5. Overall, 
this approach reveals many PPs that were not known previously.

Remark. In the present paper, we investigate polynomials h(X) ∈ Fq2 [X] such that 
h(X)q−1 induces monomial functions on the cosets of a subgroup of μq+1 and permutes 
μq+1 as a whole. Before this approach became popular in recent years, people had ex-
plored a similar method for PPs of Fq. Several authors [2,9,12–14] had studied PPs of 
Fq which induce monomial functions on the cosets of a subgroup of F∗

q .

2. The construction

For a ∈ Fq2 , define ā = aq; for f(X) =
∑n

i=0 aiX
i ∈ Fq2 [X] with an �= 0, define

f̄(X) =
n∑

i=0
āiX

i

and

f̃(X) = Xnf̄(X−1) =
n∑

i=0
āiX

n−i.

Obviously, ¯̄f = f and ˜̃f = f . If f̃ = cf for some c ∈ F∗
q2 , f is said to be self-dual; in this 

case, it is necessary that c ∈ μq+1. Self-dual polynomials were first introduced in [4] for 
a different purpose; they will also play an important role in the present paper.
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We follow the notation of Section 1. Let h(X) be given in (1.3) and assume that h
has no roots in μq+1. For x ∈ Ak, where 0 ≤ k < d, we have

h(x) =
∑
i,j

aijε
jkxi =

∑
i

Mikx
i, (2.1)

where

Mik =
∑
j

aijε
jk. (2.2)

Note that the ((q+1)/d) ×d matrices [Mik] and [aij ] are related by the d ×d Vandermonde 
matrix [εjk]:

[Mik] = [aij ] [εjk], [aij ] = 1
d

[Mik] [ε−kj ].

By (2.1), for x ∈ μq+1,

xrh(x)q−1 = xr h(x)q

h(x) = xr

∑
i

M ik x
−i

∑
i

Mik x
i
. (2.3)

Write ∑
i

MikX
i = XsL(X), (2.4)

where L(X) ∈ Fq2 [X], L(0) �= 0, degL = t, s + t < (q + 1)/d. Then (2.3) becomes

xrh(x)q−1 = xr x−sL̄(x−1)
xsL(x) = xr−2s−t L̃(x)

L(x) . (2.5)

The following lemma is crucial.

Lemma 2.1. Let L(X) ∈ Fq2 [X] be such that L(0) �= 0, degL = t < (q + 1)/d, and L(X)
has no roots in Ak.

(i) Assume that there exist 0 ≤ τ < (q + 1)/d and λ ∈ μq+1 such that

L̃(x)
L(x) = λxτ for all x ∈ Ak. (2.6)

Then either τ = 0 or (q + 1)/d − t ≤ τ ≤ t.
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(ii) When τ = 0, (2.6) is satisfied if and only if

L̃(X) = λL(X). (2.7)

(iii) When (q + 1)/d − t ≤ τ ≤ t, (2.6) is satisfied if and only if

L(X) = P (X) + X(q+1)/d−τQ(X), (2.8)

where P, Q ∈ Fq2 [X], degP = t − τ , P̃ = λP , degQ = τ + t − (q+1)/d, Q̃ = λεkQ.

Proof. (ii) Since deg(L̃− λL) ≤ t < (q + 1)/d = |Ak|,

L̃(x) = λL(x) for all x ∈ Ak ⇔ L̃(X) − λL(X) = 0.

(iii) (⇒) We have X(q+1)/d − εk | L̃(X) − λXτL(X), say

L̃(X) − λXτL(X) = g(X)(εk −X(q+1)/d), (2.9)

where g(X) ∈ Fq2 [X] with deg g = τ + t − (q + 1)/d. In (2.9),

L̃− λXτ L̃ = Xτ+t
( ¯̃L(X−1) − λ̄X−τ L̄(X−1)

)
= Xτ ˜̃L− λ̄L̃

= XτL− λ̄L̃

= −λ̄(L̃− λXτL).

Hence

g(X)(εk −X(q+1)/d)̃ = −λ̄g(X)(εk −X(q+1)/d),

i.e.,

g̃(X)(ε−kX(q+1)/d − 1) = −λ̄g(X)(εk −X(q+1)/d),

whence g̃ = λ̄εkg. Therefore, (2.9) becomes

L̃− λXτL = λg̃ −X(q+1)/dg. (2.10)

Let L = a0 + · · · + atX
t and g = b0 + · · · + bvX

v, where v = deg g = τ + t − (q + 1)/d. 
The coefficients of L̃−λXτL and λg̃−X(q+1)/dg are illustrated in Fig. 1. It follows from 
(2.10) and Fig. 1 that ai = 0 for t − τ < i < t − v, at−τ �= 0, and

L = a0 + · · · + at−τX
t−τ + X(q+1)/d−τ (at−v + · · · + atX

v)

= P (X) + X(q+1)/d−τQ(X),
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Fig. 1. The coefficients of −λXτL, L̃ and λg̃ − X(q+1)/dg (from top to bottom).

Fig. 2. The coefficients of L̃ − λXτL (top) and λg̃ − X(q+1)/dg (bottom).

where P (X) = a0 + · · · + at−τX
t−τ , which satisfies P̃ = λP , and Q(X) = at−v + · · · +

atX
v = −λ̄g(X), which satisfies Q̃ = −λg̃ = −λλ̄εkg = λεkQ.

(⇐) We have

L̃− λXτL = (P + X(q+1)/d−τ Q̃) − λXτ (P + X(q+1)/d−τQ)

= Xt
(
P̄ (X−1) + X−((q+1)/d−τ)Q̄(X−1)

)
− λXτ (P + X(q+1)/d−τQ)

= XtP̄ (X−1) + XvQ̄(X−1) − λXτ (P + X(q+1)/d−τQ)

= Xτ P̃ + Q̃− λXτ (P + X(q+1)/d−τQ)

= XτλP + λεkQ− λXτ (P + X(q+1)/d−τQ)

= λQ(εk −X(q+1)/d).

Hence

L̃(x)
L(x) = λxτ for all x ∈ Ak.

(i) Assume τ > 0. By the proof of (iii) (⇒), τ + t − (q + 1)/d = deg g ≥ 0, whence 
τ ≥ (q + 1)/d − t. It remains to show that τ ≤ t. Assume to the contrary that τ > t. 
Then Fig. 1 is replaced by Fig. 2. Then a0 = 0, which is a contradiction. �
Definition 2.2. Let 0 ≤ k < d, 0 ≤ t < (q + 1)/d and λ ∈ μq+1. Define

Lk(t, 0;λ) = {L ∈ Fq2 [X] : degL = t, L̃ = λL, gcd(L,X(q+1)/d − εk) = 1}, (2.11)

and for (q + 1)/d − t ≤ τ ≤ t, define
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Lk(t, τ ;λ) = {L = P + X(q+1)/d−τQ : P,Q ∈ Fq2 [X], (2.12)

degP = t− τ, P̃ = λP, degQ = τ + t− (q + 1)/d,

Q̃ = λεkQ, gcd(L,X(q+1)/d − εk) = 1}.

It follows from (2.4), (2.5) and Lemma 2.1 that Xrh(X)q−1 is a monomial function 
on Ak if and only if there exist s, t ≥ 0 with s + t < (q + 1)/d, λ ∈ μq+1, and integer 
τ ∈ {0} ∪ [(q + 1)/d − t, t] such that 

∑
i MikX

i = XsL(X), where L ∈ Lk(t, τ ; λ). When 
this happens,

xrh(x)q−1 = λxr−2s−t+τ for all x ∈ Ak. (2.13)

Combining the above statement with Theorem 1.1, we obtain the main theorem of the 
paper:

Theorem 2.3. Let h(X) be given by (1.3) and [Mik] be given by (2.2). Then Xrh(Xq−1)
is a PP of Fq2 such that Xrh(X)q−1 is a monomial function on Ak for every 0 ≤ k < d

if and only if the following conditions are satisfied.

(i) For each 0 ≤ k < d, there exist sk, tk ≥ 0 with sk + tk < (q + 1)/d, π(k) ∈ Z/dZ, 
λk ∈ Aπ(k) and τk ∈ {0} ∪ [(q + 1)/d − tk, tk] such that 

∑
i MikX

i = XskLk(X), 
where Lk ∈ Lk(tk, τk; λk).

(ii) gcd(r, q − 1) = 1 and gcd(ek, (q + 1)/d) = 1 for all 0 ≤ k < d, where

ek = r − 2sk − tk + τk.

(iii) The map k �→ π(k) + ekk permutes Z/dZ.

Theorem 2.3 can be stated as an algorithm.

Algorithm 2.4. Let r be a positive integer such that gcd(r, q − 1) = 1 and let d | q + 1.

Input: Sequences sk, tk, τk, π(k), λk, 0 ≤ k < d, described below.
Output: A PP of Fq2 of the form Xrh(Xq−1) such that Xrh(X)q−1 is a monomial 

function on each Ak, 0 ≤ k < d.
Note: All PPs of Fq2 with such properties can be produced by this algorithm.

Step 1: Choose integer sequences sk, tk, τk ≥, 0 ≤ k < d, such that sk + tk < (q + 1)/d, 
τk ∈ {0} ∪ [(q + 1)/d − tk, tk], and ek := r − 2sk − tk + τk satisfies gcd(ek, (q +
1)/d) = 1.

Step 2: Choose a sequence π(k) ∈ Z/dZ, 0 ≤ k < d, such that k �→ π(k) +ekk permutes 
Z/dZ.

Step 3: For each 0 ≤ k < d, choose λk ∈ Aπ(k) and Lk ∈ Lk(tk, τk; λk).
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Step 4: Compute the ((q + 1)/d) × d matrix [Mik] such that

XskLk =
∑
i

MikX
i,

and compute the ((q + 1)/d) × d matrix

[aij ] = 1
d
[Mik][ε−kj ].

Step 5: Let

h(X) =
∑
i,j

aijX
i+j(q+1)/d.

Then Xrh(Xq−1) is the output PP of Fq2 .

Remark 2.5. In Step 3, when choosing Lk ∈ Lk(tk, τk; λk), it is required that 
gcd(Lk, X(q+1)/d − εk) = 1. However, this condition is automatically satisfied if h(X) in 
Step 5 satisfies gcd(h, Xq+1−1) = 1. In fact, gcd(Lk, X(q+1)/d−εk) = 1 for all 0 ≤ k < d

if and only if gcd(h, Xq+1 − 1) = 1.

There are two ways to use this algorithm: forward or backward. In the forward ap-
proach, we simply proceed from Step 1 through Step 5. The advantage of this approach 
is that there are few restrictions on the choices of the sequences; the drawback is that 
we have little control over the appearance of the resulting PP. A few examples of the 
forward approach are given in Section 5. In the backward approach, we first impose 
conditions on [aij ]. (For example, we may require h(X) to be a binomial of a trinomial.) 
We then compute [Mik] and determine if the sequences Lk, sk, tk, τk, π(k), λk exist. 
The benefit of this approach is that we have more control over the appearance of the 
resulting PP. However, the conditions for the aforementioned sequences to be existent 
could be complicated. In Sections 3 and 4, we use the backward approach to determine 
the permutation binomials and trinomials obtainable from the algorithm.

For 0 ≤ t < (q + 1)/d, τ ∈ {0} ∪ [(q + 1)/d − t, t], λ ∈ μq+1 and 0 ≤ k < d, write 
λ = a1−q, where a ∈ F∗

q2 , and εk = b(q+1)/d, where b ∈ μq+1. Then it is easy to see that 
the map

Lk(t, τ ;λ) −→ L0(t, τ ; 1)
L(X) �−→ aL(bX)

is a bijection. Set l(t, τ) = |L0(t, τ ; 1)|. Then |Lk(t, τ ; λ)| = l(t, τ), which is independent 
of k and λ.

Let

Ω = {(s, t, τ) ∈ N3 : s + t < (q + 1)/d, τ ∈ {0} ∪ [(q + 1)/d− t, t],
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gcd(r − 2s− t + τ, (q + 1)/d) = 1}.

In Step 2 of Algorithms 2.4, the number of choices for the sequence π(k) is d!. In Step 3, 
the number of choices for λk is (q + 1)/d and the number of choices for Lk is l(tk, τk). 
Therefore, the total number of PPs produced by the algorithm is

∑
(s0,t0,τ0),...,(sd−1,td−1,τd−1)∈Ω

d!
d−1∏
k=0

(q + 1
d

l(tk, τk)
)

(2.14)

= d!
(q + 1

d

)d( ∑
(s,t,τ)∈Ω

l(t, τ)
)d

= d!
(q + 1

d

)d( ∑
0≤t<(q+1)/d

τ∈{0}∪[(q+1)/d−t,t]

m(t, τ)l(t, τ)
)d

,

where

m(t, τ) = |{(0 ≤ s < (q + 1)/d− t : gcd(r − 2s− t + τ, (q + 1)/d) = 1}|. (2.15)

When τ = 0, l(t, 0) is determined by the following lemma.

Lemma 2.6. For 0 ≤ t < (q + 1)/d,

l(t, 0) = (q2 − 1)
t−1∑
i=0

(−1)i
(

(q + 1)/d
i

)
qt−i−1 + (−1)t(q − 1)

(
(q + 1)/d

t

)
.

Proof. Let Λt denote the number of monic self-dual polynomials of degree t in Fq2 [X]. 
It is known that [4]

Λt =
{

1 if t = 0,
(q + 1)qt−1 if t > 0.

For Y ⊂ μq+1, let

LY =
{
L ∈ Fq2 [X] monic, self-dual, degL = t,

∏
y∈Y

(X − y) | L
}

and

L = {L ∈ Fq2 [X] monic, self-dual, degL = t, gcd(L,X(q+1)/d − 1) = 1}.

Then |LY | = Λt−|Y | (which is 0 if t − |Y | < 0). By inclusion-exclusion,



10 X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 89 (2023) 102193
|L| =
t∑

i=0
(−1)i

(
(q + 1)/d

i

)
Λt−i

=
t−1∑
i=0

(−1)i
(

(q + 1)/d
i

)
(q + 1)qt−i−1 + (−1)t

(
(q + 1)/d

t

)
.

On the other hand, we have

(q2 − 1)|L| = (q + 1)l(t, 0),

since both sides count the number of self-dual polynomials of degree t in Fq2 [X] that are 
relatively prime to X(q+1)/d−1. Hence l(t, 0) = (q−1)|L| and the conclusion follows. �

However, for τ > 0, we have not found an explicit formula for l(t, τ).

Question 2.7. For (q + 1)/d − t ≤ τ ≤ t < (q + 1)/d, determine

l(t, τ) = |{L = P + X(q+1)/d−τQ : P,Q ∈ Fq2 [X], degP = t− τ,

degQ = τ + t− (q + 1)/d, P̃ = P, Q̃ = Q, gcd(L,X(q+1)/d − 1) = 1}|.

3. Permutation binomials

We follow the notation of Algorithm 2.4. Assume that the polynomial h(X) resulting 
from Algorithm 2.4 is a binomial, i.e., the matrix [aij ] has precisely two nonzero entries. 
Without loss of generality, assume that

[aij ] =

⎡⎢⎢⎢⎣
0 v

0 1

u a

⎤⎥⎥⎥⎦,

where a ∈ F∗
q2 , 0 ≤ u < (q + 1)/d, 0 ≤ v < d, (u, v) �= (0, 0). We remind the reader that 

the rows of the matrix [aij ] are labeled by integers 0, . . . , (q + 1)/d − 1 and the columns 
are labeled by 0, . . . , d − 1.

Case 1. Assume that u = 0. Then

Xrh(Xq−1) = Xr(1 + aXv(q2−1)/d).

It is well known, as stated in the introduction, that Xr(1 + aXv(q2−1)/d) is a PP of Fq2

if and only if gcd(r, (q2 − 1)/d) = 1 and Xr(1 + aXv)(q2−1)/d permutes μd.
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Fig. 3. When P + X(q+1)/d−τ0Q is a binomial.

Case 2. Assume that u > 0. Then

[Mik] =

⎡⎢⎢⎢⎣
0 1 · · · 1

u aεv·0 · · · aεv(d−1)

⎤⎥⎥⎥⎦
and

∑
i

MikX
i = 1 + aεvkXu, sk = 0, tk = u, 0 ≤ k < d.

In particular, L0 = 1 + aXu ∈ L0(t0, τ0; λ0), where τ0 ∈ {0} ∪ [(q + 1)/d − t0, t0].
First assume that τ0 = 0. By the definition of L0(t0, 0; λ0), L0 is self-dual. It follows 

that a ∈ μq+1. We have Xrh(Xq−1) = Xr(1 + aX l(q−1)), where l = u + v(q + 1)/d. 
Because of the condition a ∈ μq+1, such permutation binomials are well known. By 
[17, Corollary 5.3], Xr(1 + aX l(q−1)) permutes Fq2 if and only if gcd(r, q − 1) = 1, 
gcd(r − l, q + 1) = 1 and (−a)(q+1)/gcd(q+1,l) �= 1.

Next, assume that τ0 ∈ [(q + 1)/d − t0, t0]. Since L0 ∈ L0(t0, τ0; λ0), we have L0 =
P + X(q+1)/d−τ0Q, where P, Q ∈ Fq2 [X], degP = t0 − τ0, degQ = τ0 + t0 − (q + 1)/d, 
gcd(L0, X(q+1)/d − 1) = 1. Since P + X(q+1)−τ0Q is a binomial, we must have t0 = τ0
and (q + 1)/d − τ0 = t0 (see Fig. 3). Hence t0 = τ0 = u = (q + 1)/2d. Then h(X) =
1 +aXu+v(q+1)/d = 1 +aX(1+2v)(q+1)/2d. Then Xrh(Xq−1) = Xr(1 +aX(1+2v)(q2−1)/2d)
is a PP of Fq2 if and only if gcd(r, (q2 − 1)/2d) = 1 and Xr(1 + aX1+2v) permutes μ2d.

Summary for binomials. From the above two cases, we see that permutation binomials 
generated by Algorithm 2.4 were all previously known.

4. Permutation trinomials

Now assume that h(X) in Algorithm 2.4 is a trinomial, i.e., the matrix [aij ] has 
precisely three nonzero entries. Without loss of generality, write
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[aij ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 j1 j2

0 1

i1 a

i2 b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, a, b ∈ F∗

q2 .

4.1. Three cases

Case 1. Assume that i1 = i2 = 0. Then

Xrh(Xq−1) = Xr(1 + aXj1(q2−1)/d + bXj2(q2−1)/d).

Such a trinomial is a PP of Fq2 if and only if gcd(r, (q2 − 1)/d) = 1 and Xr(1 + aXj1 +
bXj2)(q2−1)/d permutes μd.

Remark. If i1 = i2 �= 0, then

Xrh(Xq−1) = Xr(1 + aX(q−1)(i1+j1(q+1)/d) + bX(q−1)(i2+j2(q+1)/d))

≡ Xr+(q−1)(i1+j1(q+1)/d)(a + bX(q−1)i′1 + X(q−1)i′2) (mod Xq2 −X),

where i′1 ≡ 0 (mod (q + 1)/d) and i′2 �≡ 0 (mod (q + 1)/d). This situation is covered by 
the next case (Case 2).

Case 2. Assume that i1 = 0 and 0 < i2 < (q + 1)/d. Then

[Mik] =

⎡⎢⎢⎢⎣
0 1 + aεj1·0 · · · 1 + aεj1(d−1)

i2 bεj2·0 · · · bεj2(d−1)

⎤⎥⎥⎥⎦
and ∑

i

MikX
i = 1 + aεj1k + bεj2kXi2 . (4.1)

Case 2.1. Assume that 1 + aεj1k �= 0 for all 0 ≤ k < d. Then

Lk(X) = 1 + aεj1k + bεj2kXi2 , sk = 0, tk = i2.

Lemma 4.1. The following statements hold in Case 2.1.
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(i) If τk = 0 for some 0 ≤ k < d, then

(1 + aqε−j1k

b

)(q+1)/d
= εα(k) (4.2)

for some α(k) ∈ Z/dZ. We have

ek = r − i2 and π(k) = −j2k
q + 1
d

+ α(k).

(ii) If τk = 0 for all 0 ≤ k < d, then j1 = d/2, aq−1 = −1, (1 −a)/b ∈ μq+1, ek = r− i2, 
and

π(k) + ekk =
(
−j2

q + 1
d

+ r − i2

)
k + δ(k)v + u,

where (1 − a

b

)(q+1)/d
= εu,

(1 + a

1 − a

)(q+1)/d
= εv,

and

δ(k) =
{

0 if k is even,
1 if k is odd.

Proof. (i) Clearly, ek = r − i2. Since Lk ∈ Lk(tk, 0; λk), we have L̃k = λkLk, whence

λk = (1 + aεj1k)q

bεj2k
.

Since

επ(k) = λ
(q+1)/d
k =

(1 + aqε−j1k

bεj2k

)(q+1)/d
= ε−j2k(q+1)/d

(1 + aqε−j1k

b

)(q+1)/d
,

we have (1 + aqε−j1k

b

)(q+1)/d
= εα(k)

for some α(k) ∈ Z/dZ and π(k) = −j2k(q + 1)/d + α(k).

(ii) By (4.2),

(1 + aqε−j1k)q+1 = bq+1, (4.3)

i.e.,
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(1 + aεj1k)(1 + aqε−j1k) = bq+1.

Hence the quadratic equation (1 + ax)(1 + aqx−1) = bq+1 has solutions x = εj1k, 0 ≤
k < d. Since the number of such solutions is ≤ 2 and since 0 < j1 < d, we must have 
j1 = d/2, whence εj1 = −1. It follows from (4.3), with k = 0, 1, that

(1 + aq)q+1 = (1 − aq)q+1.

This happens if and only if aq = −a. (Note that q is odd since 2 | d.) Then

(1 − a

b

)q+1
= 1 and

(1 + a

1 − a

)q+1
= 1.

Write (1 − a

b

)(q+1)/d
= εu and

(1 + a

1 − a

)(q+1)/d
= εv.

Then by (4.2),

εα(k) =
(1 − a(−1)k

b

)(q+1)/d
=

(1 − a

b

)(q+1)/d(1 − a(−1)k

1 − a

)(q+1)/d

=
{
εu if k is even,
εu+v if k is odd.

Thus α(k) = u + δ(k)v, and by (i),

π(k) + ekk = −j2k
q + 1
d

+ u + δ(k)v + (r − i2)k

=
(
−j2

q + 1
d

+ r − i2

)
k + δ(k)v + u. �

If τk ∈ [(q + 1)/d − tk, tk] for some 0 ≤ k < d, applying the argument in the last 
paragraph in Case 2 of Section 3 to Lk ∈ Lk(tk, τk; λk), we have tk = τk = i2 = (q+1)/2d. 
Therefore,

Xrh(Xq−1) = Xr(1 + aX(q−1)·j1(q+1)/d + bX(q−1)((q+1)/2d+j2(q+1)/d))

= Xr(1 + aXj1(q2−1)/d + bX(2j2+1)(q2−1)/2d)).

This trinomial permutes Fq2 if and only if gcd(r, (q2 − 1)/2d) = 1 and Xr(1 + aX2j1 +
bX2j2+1)(q2−1)/2d permutes μ2d.

Case 2.2. Assume that 1 +aεj1k = 0 for some 0 ≤ k < d. Write εk = λ(q+1)/d for some 
λ ∈ μq+1. Then
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h(λX) = 1 + a(λX)j1(q+1)/d + b(λX)i2+j2(q+1)/d

= 1 −Xj1(q+1)/d + bλi2εj2kXi2+j2(q+1)/d.

Hence we may assume that a = −1. By (4.1),

Lk(X) =
{
bεj2k if j1k ≡ 0 (mod d),
1 − εj1k + bεj2kXi2 if j1k �≡ 0 (mod d),

sk =
{
i2 if j1k ≡ 0 (mod d),
0 if j1k �≡ 0 (mod d),

(4.4)

tk =
{

0 if j1k ≡ 0 (mod d),
i2 if j1k �≡ 0 (mod d).

(4.5)

Lemma 4.2. If j1k ≡ 0 (mod d), then τk = 0, ek = r − 2i2, and

π(k) = −2j2k
q + 1
d

+ β,

where b(q
2−1)/d = εβ.

Proof. Clearly, τk = 0 and ek = r − 2i2. Since Lk = bεj2k ∈ Lk(tk, 0; λk), we have 
L̃k = λkLk, whence λk = (bεj2k)q−1 = bq−1ε−2j2k. Since

λ
(q+1)/d
k = b(q

2−1)/dε−2j2k(q+1)/d = ε−2j2k(q+1)/d+β ,

we have π(k) = −2j2k(q + 1)/d + β. �
If τk ∈ [(q + 1)/d − tk, tk] for some 0 ≤ k < d with j1k �≡ 0 (mod d), applying the 

argument in the last paragraph in Case 2 of Section 3 to Lk ∈ Lk(tk, τk; λk), we have 
tk = τk = i2 = (q + 1)/2d. Then

Xrh(Xq−1) = Xr(1 + aXj1(q2−1)/d + bX(2j2+1)(q2−1)/2d)),

which permutes Fq2 if and only if gcd(r, (q2 − 1)/2d) = 1 and Xr(1 + aX2j1 +
bX2j2+1)(q2−1)/2d permutes μ2d. Therefore, we assume that τk = 0 for all 0 ≤ k < d

with j1k �≡ 0 (mod d). This assumption combined with Lemma 4.2 means that τk = 0
for all 0 ≤ k < d.

Lemma 4.3. Assume that τk = 0 for all 0 ≤ k < d in Case 2.2. Then o(εj1) = 2 or 3.

(i) If o(εj1) = 2, then

sk =
{
i2 if k ≡ 0 (mod 2),
0 if k �≡ 0 (mod 2),
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tk =
{

0 if k ≡ 0 (mod 2),
i2 if k �≡ 0 (mod 2),

ek =
{
r − 2i2 if k ≡ 0 (mod 2),
r − i2 if k �≡ 0 (mod 2),

π(k) =

⎧⎪⎨⎪⎩
−2j2k

q + 1
d

+ 2θ if k ≡ 0 (mod 2),

−j2k
q + 1
d

+ θ if k �≡ 0 (mod 2),

where (2/b)(q+1)/d = εθ.
(ii) If o(εj1) = 3, then

sk =
{
i2 if k ≡ 0 (mod 3),
0 if k �≡ 0 (mod 3),

tk =
{

0 if k ≡ 0 (mod 3),
i2 if k �≡ 0 (mod 3),

ek =
{
r − 2i2 if k ≡ 0 (mod 3),
r − i2 if k �≡ 0 (mod 3),

π(k) =

⎧⎪⎪⎨⎪⎪⎩
−(2j2k + j1)

q + 1
d

+ 2η + q + 1
gcd(2, d) if k ≡ 0 (mod 3),

−(j2k + j1)
q + 1
d

+ η + q + 1
gcd(2, d) if k �≡ 0 (mod 3),

where (1 − εj1

b

)(q+1)/d
= εη.

Proof. If j1k �≡ 0 (mod d), then Lk = 1 − εj1k + bεj2kXi2 ∈ Lk(tk, 0, λk). Since L̃k =
λkLk, we have

(1 − εj1k)q

bεj2k
= λk.

It follows that

1 =
( (1 − εj1k)q

bεj2k

)q+1
=

(1 − εj1k

b

)q+1
,

i.e.,

(1 − εj1k)(1 − ε−j1k) = bq+1. (4.6)
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Therefore, εj1k is a root of

(1 − x)(1 − x−1) = bq+1 (4.7)

whenever εj1k �= 1. Since (4.7) has at most two solutions, we have o(εj1) ≤ 3.

(i) Assume that o(εj1) = 2, i.e., εj1 = −1. The formulas for sk and tk follow from (4.4)
and (4.5), and the formula for ek is obvious. It remains to prove the formula for π(k).

For k �≡ 0 (mod 2),

επ(k) = λ
(q+1)/d
k =

( 2
bεj2k

)(q+1)/d
=

(2
b

)(q+1)/d
ε−j2k(q+1)/d = ε−j2k(q+1)/d+θ,

where (2/b)(q+1)/d = εθ. Hence

π(k) = −j2k
q + 1
d

+ θ.

For k ≡ 0 (mod 2), by Lemma 4.2

π(k) = −2j2k
q + 1
d

+ β,

where b(q
2−1)/d = εβ . Since

ε−2θ = εθ(q−1) = b−(q2−1)/d = ε−β ,

we have β = 2θ.

(ii) Assume that o(εj1) = 3 and write εj1 = ω. Again, we only have to prove the 
formula for π(k).

For k �≡ 0 (mod 3),

επ(k) =
(1 − ωk

bεj2k

)(q+1)/d
=

(1 − ωk

1 − ω

)(q+1)/d(1 − ω

b

)(q+1)/d
ε−j2k(q+1)/d

=
(1 − ωk

1 − ω

)(q+1)/d
ε−j2k(q+1)/d+η,

where ((1 − ω)/b)(q+1)/d = εη. Note that

(1 − ω−1

1 − ω

)(q+1)/d
= (−ω−1)(q+1)/d = (−1)(q+1)/dε−j1(q+1)/d,

where

(−1)(q+1)/d =
{
ε(q+1)/2 if d is even
1 if d is odd

}
= ε(q+1)/gcd(2,d).
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Hence

π(k) = −(j2k + j1)
q + 1
d

+ η + q + 1
gcd(2, d) .

For k ≡ 0 (mod 3), by Lemma 4.2,

π(k) = −2j2k
q + 1
d

+ β,

where b(q
2−1)/d = εβ . Since

ε−2η = εη(q−1) =
(1 − ω

b

)(q2−1)/d
= ε−β

(1 − ω−1

1 − ω

)(q+1)/d

= ε−β−j1(q+1)/d(−1)(q+1)/d = ε−β−j1(q+1)/d+(q+1)/gcd(2,d),

we have

β = −j1
q + 1
d

+ 2η + q + 1
gcd(2, d) . �

Case 3. Assume that 0 < i1 < i2 < (q + 1)/d. Then

[Mik] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 · · · 1

i1 aεj1·0 · · · aεj1(d−1)

i2 bεj2·0 · · · bεj2(d−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Lk(X) = 1 + aεj1kXi1 + bεj2kXi2 ,

sk = 0, tk = i2.

Lemma 4.4. If τk = 0, then i1 = i2/2, ek = r − i2, and

π(k) = −2j1k
q + 1
d

+ α,

where a(q2−1)/d = εα and b = a1−qε(2j1−j2)k.

Proof. Clearly, ek = r − i2. Since L̃k = λkLk, i.e.,

bεj2k + aεj1kXi2−i1 + Xi2 = λk(1 + aεj1kXi1 + bεj2kXi2),

we have i1 = i2/2 and (bεj2k, aεj1k, 1) = λk(1, aεj1k, bεj2k). Hence
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λk = bεj2k = bqε−j2k

and

aεj1k · bεj2k = aεj1k, i.e., b = a1−qε(2j1−j2)k.

We have

επ(k) = λ
(q+1)/d
k = (bqε−j2k)(q+1)/d = ((aq−1ε−(2j1−j2)k · ε−j2k)(q+1)/d

= a(q2−1)/dε−2j1k(q+1)/d = ε−2j1k(q+1)/d+α,

where a(q2−1)/d = εα. Hence

π(k) = −2j1k
q + 1
d

+ α. �
Remark. If τk = 0 for all 0 ≤ k < d, then by Lemma 4.4, i1 = i2/2, 2j1− j2 ≡ 0 (mod d)
and b = a1−q. Consequently,

h(X) = 1 + aXi1+j1(q+1)/d + bXi2+j2(q+1)/d

≡ 1 + aXi1+j1(q+1)/d + bX2(i1+j1(q+1)/d) (mod Xq+1 − 1)

= h1(X),

where

h1(X) = 1 + aX l + bX2l, l = i1 + j1(q + 1)/d.

Hence

Xrh(Xq−1) ≡ Xrh1(Xq−1) (mod Xq2−1 − 1).

Since b = a1−q, h1(X) is self-dual. In general, when h1(X) is self dual, PPs of Fq2 of the 
form Xrh1(Xq−1) are known; see Example 5.1.

Lemma 4.5. If τk ∈ [(q + 1)/d − tk, tk], then precisely one of the following occurs.
(i)

tk = τk = 1
2

(q + 1
d

+ 1
)
, i1 = 1

2

(q + 1
d

− 1
)
, i2 = 1

2

(q + 1
d

+ 1
)
,

a = bqε−(j1+j2+1)k, ek = r, π(k) = 0.

(ii)
tk = 1(q + 1 + 1

)
, τk = 1(q + 1 − 1

)
, i1 = 1, i2 = 1(q + 1 + 1

)
,
2 d 2 d 2 d
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a = b1−qε(2j2−j1+1)k, b(q
2−1)/d = εβ , ek = r − 1,

π(k) = −(2j2 + 1)k q + 1
d

+ β.

Proof. Since

Lk = 1 + aεj1kXi1 + bεj2kXi2 = P + X(q+1)/d−τkQ

is a trinomial, where degP = tk − τk and degQ = τk + tk − (q + 1)/d (see Fig. 4), we 
have ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

tk − τk = 0,

tk = q + 1
d

− τk + 1,

i1 = q + 1
d

− τk,

i2 = tk,

or

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

tk − τk = 1,

tk = q + 1
d

− τk,

i1 = 1,
i2 = tk,

i.e., ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tk = τk = 1

2

(q + 1
d

+ 1
)
,

i1 = 1
2

(q + 1
d

− 1
)
,

i2 = 1
2

(q + 1
d

+ 1
)
,

(4.8)

or ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk = 1
2

(q + 1
d

+ 1
)
,

τk = 1
2

(q + 1
d

− 1
)
,

i1 = 1,

i2 = 1
2

(q + 1
d

+ 1
)
.

(4.9)

(i) Assume (4.8). First, note that ek = r − tk + τk = r. In this case,

Lk = 1 + X
1
2 ( q+1

d −1)(aεj1k + bεj2kX),

where P = 1 and Q = aεj1k + bεj2kX. We have λk = P̃ /P = 1 and

λkε
k = Q̃

Q
= bεj2k + aεj1kX

aεj1k + bεj2kX
.

Hence
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Fig. 4. When P + X(q+1)/d−τkQ is a trinomial.

bεj2k

aεj1k
= εk,

i.e., a = bqε−(j1+j2+1)k. Clearly, π(k) = 0.

(ii) Assume (4.9). First, note that ek = r − tk + τk = r − 1. In this case,

Lk = 1 + aεj1kX + X
1
2 ( q+1

d +1) · bεj2k,

where P = 1 + aεj1kX and Q = bεj2k. Since P̃ = λkP and Q̃ = λkε
kQ, we have

(aεj1k)q = λk and (bεj2k)q−1 = λkε
k.

It follows that

a = λ−1
k ε−j1k = εk(bεj2k)1−q · ε−j1k = b1−qε(2j2−j1+1)k.

Since

λ
(q+1)/d
k = (aqε−j1k)(q+1)/d = (bq−1ε−(2j2−j1+1)kε−j1k)(q+1)/d

= b(q
2−1)/dε−(2j2+1)k(q+1)/d = ε−(2j2+1)k(q+1)/d+β ,

where b(q
2−1)/d = εβ , we have

π(k) = −(2j2 + 1)k q + 1
d

+ β. �
Remark. In Lemma 4.5, if (i) occurs for all 0 ≤ k < d, then j1 + j2 + 1 ≡ 0 (mod d) and 
a = bq. We have

h(X) = 1 + aX
1
2 ( q+1

d −1)+j1
q+1
d + bX

1
2 ( q+1

d +1)+j2
q+1
d

≡ 1 + aX
1
2 ( q+1

d −1)+j1
q+1
d + bXq+1−( 1

2 ( q+1
d −1)+j1

q+1
d ) (mod Xq+1 − 1)

≡ Xq+1−lh1(X) (mod Xq+1 − 1),

where

l = 1
2

(q + 1
d

− 1
)

+ j1
q + 1
d

and
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h1(X) = b + X l + aX2l.

Since a = bq, h1(X) is self-dual. We have

Xrh(Xq−1) ≡ Xr+(q+1−l)(q−1)h1(Xq−1) (mod Xq2−1 − 1),

and PPs of Fq2 of this type are known (Example 5.1).
Similarly, if (ii) occurs for all 0 ≤ k < d in Lemma 4.5, then 2j2 − j1 + 1 ≡ 0 (mod d)

and a = b1−q. We have

h(X) = 1 + aX1+j1
q+1
d + bX

1
2 ( q+1

d +1)+j2
q+1
d

≡ 1 + aX2( 1
2 ( q+1

d +1)+j2
q+1
d ) + bX

1
2 ( q+1

d +1)+j2
q+1
d (mod Xq+1 − 1)

= h1(X),

where

h1(X) = 1 + bX l + aX2l, l = 1
2

(q + 1
d

+ 1
)

+ j2
q + 1
d

.

Since a = b1−q, h1(X) is self-dual. We have

Xrh(Xq−1) ≡ Xrh1(Xq−1) (mod Xq2−1 − 1),

and PPs of Fq2 of this type are known.

Lemma 4.6. If (q + 1)/d �= 3, then either Lemma 4.4 occurs for all 0 ≤ k < d, or 
Lemma 4.5 (i) occurs for all 0 ≤ k < d, or Lemma 4.5 (ii) occurs for all 0 ≤ k < d.

Proof. In Lemma 4.4, Lemma 4.5 (i) and Lemma 4.5 (ii), we have

i1 = i2
2 ,

⎧⎪⎨⎪⎩
i1 = 1

2

(q + 1
d

− 1
)
,

i2 = 1
2

(q + 1
d

+ 1
)
,

and

⎧⎨⎩i1 = 1

i2 = 1
2

(q + 1
d

+ 1
)
,

respectively. Any two of these three conditions imply that (q + 1)/d = 3. �
Partition Z/dZ as

Z/dZ = K0 �K1 �K2, (4.10)

where Lemma 4.4 occurs for k ∈ K0, Lemma 4.5 (i) occurs for k ∈ K1, and Lemma 4.5
(ii) occurs for k ∈ K2. Assume that at least two of K0, K1, K2 are nonempty. Then 
(q + 1)/d = 3, i1 = 1 and i2 = 2. Since gcd(ek, 3) = gcd(ek, (q + 1)/d) = 1, it follows 
from Lemmas 4.4 and 4.5 that one of K0, K1, K2 must be empty:
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⎧⎪⎪⎨⎪⎪⎩
if r ≡ 0 (mod 3), then K1 = ∅;
if r ≡ 1 (mod 3), then K2 = ∅;
if r ≡ −1 (mod 3), then K0 = ∅.

It also follows from Lemmas 4.4 and 4.5 that⎧⎪⎪⎨⎪⎪⎩
if k0 ∈ K0, then b = a1−qε(2j1−j2)k0 ;
if k1 ∈ K1, then a = bqε−(j1+j2+1)k1 ;
if k2 ∈ K2, then a = b1−qε(2j2−j1+1)k2 .

(4.11)

Any combination of two of the above three equations allow us to determine a and b up 
to a third root of unity.

Lemma 4.7. We have the following equivalences:{
b = a1−qε(2j1−j2)k0

a = bqε−(j1+j2+1)k1
⇔

{
a3 = ε−(2j1−j2)k0−(j1+j2+1)k1

b = a2ε(2j1−j2)k0
(4.12)

{
b = a1−qε(2j1−j2)k0

a = b1−qε(2j2−j1+1)k2
⇔

{
a3 = ε−2(2j1−j2)k0−(2j2−j1+1)k2

b = a2ε(2j1−j2)k0
(4.13)

{
a = bqε−(j1+j2+1)k1

a = b1−qε(2j2−j1+1)k2
⇔

{
b3 = ε−(j1+j2+1)k1−(2j2−j1+1)k2

a = b−1ε−(j1+j2+1)k1
(4.14)

Proof. We only prove (4.12). (The proofs of (4.13) and (4.14) are similar.)

(⇒) We have

bq+1 = (a1−qε(2j1−j2)k0)q+1 = 1,

and hence

aq+1 = (bqε−(j1+j2+1)k1)q+1 = 1.

Now

b = a1−qε(2j1−j2)k0 = a2ε(2j1−j2)k0 ,

and

a = bqε−(j1+j2+1)k1 = (a2ε(2j1−j2)k0)qε−(j1+j2+1)k1 = a−2ε−(2j1−j2)k0−(j1+j2+1)k1 ,

i.e.,
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a3 = ε−(2j1−j2)k0−(j1+j2+1)k1 .

(⇐) First, since (q+1)/d = 3, it is clear that aq+1 = bq+1 = 1. The rest is obvious. �
Lemma 4.8. Assume that K0 �= ∅ and K1 �= ∅ in (4.10) and hence (q + 1)/d = 3, i1 = 1, 
i2 = 2, and r ≡ 1 (mod 3). Then d is even, and K0 and K1 form the two cosets of 
2Z/dZ in Z/dZ. Moreover, a3 = −1, b = ±a2,⎧⎪⎨⎪⎩

2j1 − j2 ≡ d

2 (mod d),

j1 + j2 + 1 ≡ d

2 (mod d),
(4.15)

and π(k) + ekk = rk for k ∈ Z/dZ. More precisely, either

q ≡ 11 (mod 18) and h(X) = 1 + aX(q+1)/3 + bX(q+1)/6

or

q ≡ 5 (mod 18) and h(X) = 1 + aX2(q+1)/3 + bX5(q+1)/6.

Proof. If 2j1 − j2 ≡ 0 (mod d), then by (4.11), b = a1−q. Moreover, by the proof of 
Lemma 4.4, for all k ∈ Z/dZ, Lk ∈ Lk(2, 0; λk) with λk = bqε−j2k. This means that 
Lemma 4.4 occurs for all k ∈ Z/dZ, i.e., K0 = Z/dZ, which is a contradiction since 
K1 �= ∅. Similarly, if j1 + j2 + 1 ≡ 0 (mod d), then by (4.11), a = bq. Moreover, by the 
proof of Lemma 4.5 (i), for all k ∈ Z/dZ, Lk ∈ Lk(2, 2; 1). This means that Lemma 4.5
(i) occurs for all k ∈ Z/dZ, i.e., K1 = Z/dZ, which is also a contradiction. Hence 
2j1 − j2 �≡ 0 (mod d) and j1 + j2 + 1 �≡ 0 (mod d).

By (4.11), there exist u, v ∈ Z/dZ such that{
(2j1 − j2)k ≡ u (mod d) for all k ∈ K0,

(j1 + j2 + 1)k ≡ v (mod d) for all k ∈ K1.

Since 2j1 − j2 �≡ 0 (mod d) and j1 + j2 + 1 �≡ 0 (mod d) and K0 ∪K1 = Z/dZ, we must 
have ⎧⎪⎨⎪⎩

2j1 − j2 ≡ d

2 (mod d),

j1 + j2 + 1 ≡ d

2 (mod d),

{u, v} = {0, d/2}, and

K0 = {k ∈ Z/dZ : (2j1 − j2)k ≡ u (mod d)},
K1 = {k ∈ Z/dZ : (j1 + j2 + 1)k ≡ v (mod d)}.
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It follows from (4.12) that a3 = ε−u−v = εd/2 = −1 and b = a2εu = ±a2.
By Lemma 4.4 and Lemma 4.5 (i), we have

π(k) + ekk =
{

(r − 2 − 6j1)k if k ∈ K0,

rk if k ∈ K1.

By (4.15), 3j1 + 1 ≡ 0 (mod d), hence π(k) + ekk = rk for k ∈ Z/dZ.
System (4.15) is equivalent to

⎧⎨⎩1 + 3j1 ≡ 0 (mod d),

2 + 3j2 ≡ d

2 (mod d).

Since 0 ≤ j1, j2 < d, we have

⎧⎨⎩1 + 3j1 = d,

2 + 3j2 = d

2 ,
or

⎧⎨⎩1 + 3j1 = 2d,

2 + 3j2 = 5d
2 .

In the first case, d ≡ 4 (mod 6), whence q = 3d − 1 ≡ 11 (mod 18), and

h(X) = 1 + aX1+3j1 + bX2+3j2 = 1 + aX(q+1)/3 + bX(q+1)/6.

In the second case, d ≡ 2 (mod 6), whence q = 3d − 1 ≡ 5 (mod 18), and

h(X) = 1 + aX1+3j1 + bX2+3j2 = 1 + aX2(q+1)/3 + bX5(q+1)/6. �
Lemma 4.9. Assume that K0 �= ∅ and K2 �= ∅ in (4.10) and hence (q + 1)/d = 3, i1 = 1, 
i2 = 2, and r ≡ 0 (mod 3). Then d is even, and K0 and K2 form the two cosets of 
2Z/dZ in Z/dZ. Moreover, a3 = ±1, b = −a−1,

⎧⎪⎨⎪⎩
2j1 − j2 ≡ d

2 (mod d),

2j2 − j1 + 1 ≡ d

2 (mod d),
(4.16)

and π(k) + ekk = rk for k ∈ Z/dZ. More precisely, either

q ≡ 5 (mod 18) and h(X) = 1 + aX(q+1)/6 + bX5(q+1)/6

or

q ≡ 11 (mod 18) and h(X) = 1 + aX5(q+1)/6 + bX(q+1)/6.
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Proof. By the same argument in the proof of Lemma 4.8, we have⎧⎪⎨⎪⎩
2j1 − j2 ≡ d

2 (mod d),

2j2 − j1 + 1 ≡ d

2 (mod d),

and

K0 = {k ∈ Z/dZ : (2j1 − j2)k ≡ u (mod d)},
K2 = {k ∈ Z/dZ : (2j2 − j1 + 1)k ≡ v (mod d)},

where {u, v} = {0, d/2}. It follows from (4.13) that a3 = εv = ±1 and b = a2εu =
−a2εv = −a5 = −a−1. By Lemma 4.4 and Lemma 4.5 (ii), we have

π(k) + ekk =
{

(r − 2 − 6j1)k if k ∈ K0,

(r − 4 − 6j2)k if k ∈ K2.

By (4.16), 6j1 ≡ −2 (mod d) and 6j2 ≡ −4 (mod d), hence π(k) + ekk = rk for k ∈
Z/dZ.

System (4.16) is equivalent to⎧⎪⎨⎪⎩
1 + 3j1 ≡ d

2 (mod d),

2 + 3j2 ≡ d

2 (mod d),

i.e., ⎧⎪⎨⎪⎩
1 + 3j1 = d

2 ,

2 + 3j2 = 5d
2 ,

or

⎧⎪⎨⎪⎩
1 + 3j1 = 5d

2 ,

2 + 3j2 = d

2 .

In the first case, d ≡ 2 (mod 6), whence q = 3d − 1 ≡ 5 (mod 18), and

h(X) = 1 + aX(q+1)/6 + bX5(q+1)/6.

In the second case, d ≡ 4 (mod 6), whence q = 3d − 1 ≡ 11 (mod 18), and

h(X) = 1 + aX5(q+1)/6 + bX(q+1)/6. �
Lemma 4.10. Assume that K1 �= ∅ and K2 �= ∅ in (4.10) and hence (q+1)/d = 3, i1 = 1, 
i2 = 2, and r ≡ −1 (mod 3). Then d is even, and K1 and K2 form the two cosets of 
2Z/dZ in Z/dZ. Moreover, b3 = −1, a = ±b−1,
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⎧⎪⎨⎪⎩
j1 + j2 + 1 ≡ d

2 (mod d),

2j2 − j1 + 1 ≡ d

2 (mod d),
(4.17)

and π(k) + ekk = rk for k ∈ Z/dZ. More precisely, either

q ≡ 5 (mod 18) and h(X) = 1 + aX(q+1)/6 + bX(q+1)/3

or

q ≡ 11 (mod 18) and h(X) = 1 + aX5(q+1)/6 + bX2(q+1)/3.

Proof. Again, by the argument in the proof of Lemma 4.8, we have⎧⎪⎨⎪⎩
j1 + j2 + 1 ≡ d

2 (mod d),

2j2 − j1 + 1 ≡ d

2 (mod d),

and

K1 = {k ∈ Z/dZ : (j1 + j2 + 1)k ≡ u (mod d)},
K2 = {k ∈ Z/dZ : (2j2 − j1 + 1)k ≡ v (mod d)},

where {u, v} = {0, d/2}. It follows from (4.14) that b3 = εu+v = −1 and a = b−1εu =
±b−1. By Lemma 4.5 (i) and (ii), we have

π(k) + ekk =
{
rk if k ∈ K1,

(r − 4 − 6j2)k if k ∈ K2.

By (4.17), 6j2 ≡ −4 (mod d), hence π(k) + ekk = rk for k ∈ Z/dZ.
System (4.17) is equivalent to⎧⎨⎩1 + 3j1 ≡ d

2 (mod d),

2 + 3j2 ≡ 0 (mod d),

i.e., ⎧⎨⎩1 + 3j1 = d

2 ,

2 + 3j2 = d,

or

⎧⎨⎩1 + 3j1 = 5d
2 ,

2 + 3j2 = 2d.

In the first case, d ≡ 2 (mod 6), whence q = 3d − 1 ≡ 5 (mod 18), and
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h(X) = 1 + aX(q+1)/6 + bX(q+1)/3.

In the second case, d ≡ 4 (mod 6), whence q = 3d − 1 ≡ 11 (mod 18), and

h(X) = 1 + aX5(q+1)/6 + bX2(q+1)/3. �
Remark 4.11. In Lemmas 4.8 – 4.10, it is easy to see that the polynomial h(X) satisfies

gcd(h(X), Xq+1 − 1) = 1.

For example, in Lemma 4.8, with q ≡ 11 (mod 18), we have

h(X) = 1 + aX(q+1)/3 ± a2X(q+1)/6,

where a3 = −1. Assume to the contrary that h(X) and Xq+1 − 1 have a common root 
x ∈ Fq2 . Then a2x(q+1)/6 is a common root of 1 ±X−X2 and X6−1. This is impossible 
since gcd(1 ±X −X2, X6 − 1) = 1.

4.2. Four classes

All permutation trinomials resulting from Algorithm 2.4 have been determined in 
Section 4.1. These permutation trinomials, excluding those that were previously known, 
can be categorized into four classes. Each class covers a situation described in a lemma 
or several lemmas in Section 4.1. Theorem 2.3 is applied to the situation to set the 
conditions on the parameters. More precisely, these conditions are

• gcd(r, q − 1) = 1;
• gcd(ek, (q + 1)/d) = 1 for all 0 ≤ k < d;
• gcd(h(X), Xq+1 − 1) = 1 (cf. Remark 2.5);
• the map k �→ π(k) + ekk permutes Z/dZ.

In Class 4, which covers Lemmas 4.8 – 4.10, the condition gcd(ek, (q + 1)/d) = 1 (0 ≤
k < d) is satisfied by the choice of r (mod 3), and the condition gcd(h(X), Xq+1−1) = 1
is automatically satisfied by Remark 4.11.

In each class, the permutation trinomial is

Xrh(Xq−1),

where

h(X) = 1 + aXi1+j1(q+1)/d + bXi2+j2(q+1)/d.

Class 1. (Case 2.1, Lemma 4.1 (ii))
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Conditions: i1 = 0 < i2 < (q+1)/d, j1 = d/2, 0 ≤ j2 < d, aq−1 = −1, (1 −a)/b ∈ μq+1,

gcd(1 + aX(q+1)/2 + bXi2+j2(q+1)/d, Xq+1 − 1) = 1,

gcd(r, q − 1) = 1, gcd(r − i2, (q + 1)/d) = 1, and

k �→
(
−j2

q + 1
d

+ r − i2

)
k + δ(k)v

permutes Z/dZ, where

(1 + a

1 − a

)(q+1)/d
= εv

and

δ(k) =
{

0 if k is even,
1 if k is odd.

PP: Xr(1 + aX(q2−1)/2 + bX(q−1)(i2+j2(q+1)/d)).

Class 2. (Case 2.2, Lemma 4.3 (i))

Conditions: i1 = 0 < i2 < (q + 1)/d, j1 = d/2, 0 ≤ j2 < d, a = −1, (2/b)(q+1)/d = εθ

for some θ ∈ Z/dZ,

gcd(1 −X(q+1)/2 + bXi2+j2(q+1)/d, Xq+1 − 1) = 1,

gcd(r, q − 1) = 1, gcd(r − i2, (q + 1)/d) = gcd(r − 2i2, (q + 1)/d) = 1, and

k �→

⎧⎪⎨⎪⎩
(
−2j2

q + 1
d

+ r − 2i2
)
k + 2θ if k ≡ 0 (mod 2),(

−j2
q + 1
d

+ r − i2

)
k + θ if k �≡ 0 (mod 2)

permutes Z/dZ.

PP: Xr(1 −X(q2−1)/2 + bX(q−1)(i2+j2(q+1)/d)).

Class 3. (Case 2.2, Lemma 4.3 (ii))

Conditions: i1 = 0 < i2 < (q + 1)/d, j1 = d/3 or 2d/3, 0 ≤ j2 < d, a = −1, 
((1 − εj1)/b)(q+1)/d = εη for some η ∈ Z/bZ,

gcd(1 −Xj1(q+1)/d + bXi2+j2(q+1)/d, Xq+1 − 1) = 1,

gcd(r, q − 1) = 1, gcd(r − i2, (q + 1)/d) = gcd(r − 2i2, (q + 1)/d) = 1, and
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k �→

⎧⎪⎪⎨⎪⎪⎩
(
−2j2

q + 1
d

+ r − 2i2
)
k − j1

q + 1
d

+ q + 1
gcd(2, d) + 2η if k ≡ 0 (mod 3),(

−j2
q + 1
d

+ r − i2

)
k − j1

q + 1
d

+ q + 1
gcd(2, d) + η if k �≡ 0 (mod 3)

permutes Z/dZ.

PP: Xr(1 −Xj1(q2−1)/d + bX(q−1)(i2+j2(q+1)/d)).

Remark. All permutation trinomials in [11, §2] are covered by Class 2 up to equiva-
lence. All permutation trinomials in [11, §3] are covered by Class 3 (with even q) up to 
equivalence.

Class 4. (Case 3, Lemmas 4.8 – 4.10) Conditions on q and r and the expressions of 
h(X) in this class are given in Table 1. There are six cases in Table 1 according to q
(mod 18) and r (mod 3). However, the resulting PP, Xrh(Xq−1), modulo Xq2−1 − 1, 
has only two cases according to q (mod 18). More precisely, let q, r and h(X) be from 
Table 1 and let m = (q2 − 1)/6. If q ≡ 5 (mod 18), then

Xrh(Xq−1) ≡ uXs(1 + cXm − c2X2m) (mod Xq2−1 − 1),

for some s ≡ −1 (mod 3), u ∈ F∗
q2 and c ∈ μ6. If q ≡ 11 (mod 18), then

Xrh(Xq−1) ≡ uXs(1 + cXm − c2X2m) (mod Xq2−1 − 1),

for some s ≡ 1 (mod 3), u ∈ F∗
q2 and c ∈ μ6.

To verify the above claim, let l = (q+1)/6. When q ≡ 5 (mod 18) and r ≡ 0 (mod 3),

h(X) ≡ 1 + aX l − a−1X5l ≡ −a−1X5l(1 + cX l − c2X2l) (mod Xq+1 − 1),

where c = −a ∈ μ6. Hence

Xrh(Xq−1) ≡ −a−1Xr+5l(q−1)(1 + cXm − c2X2m) (mod Xq2−1 − 1),

where r + 5l(q − 1) ≡ −1 (mod 3).
When q ≡ 5 (mod 18) and r ≡ 1 (mod 3),

h(X) ≡ 1 + aX4l ± a2X5l ≡ aX4l(1 + cX l − c2X2l) (mod Xq+1 − 1),

where c = ±a ∈ μ6. Hence

Xrh(Xq−1) ≡ aXr+4l(q−1)(1 + cXm − c2X2m) (mod Xq2−1 − 1),

where r + 4l(q − 1) ≡ −1 (mod 3).
For the remaining cases in Table 1, the claim is verified similarly.
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Table 1
q, r and h(X) in Class 4.

q r h(X)

q ≡ 5 (mod 18) r ≡ 0 (mod 3) h(X) = 1 + aX(q+1)/6 − a−1X5(q+1)/6

gcd(r, q − 1) = 1 a3 = ±1

r ≡ 1 (mod 3) h(X) = 1 + aX2(q+1)/3 ± a2X5(q+1)/6

gcd(r, q − 1) = 1 a3 = −1

r ≡ −1 (mod 3) h(X) = 1 ± b2X(q+1)/6 + bX(q+1)/3

gcd(r, q − 1) = 1 b3 = −1

q ≡ 11 (mod 18) r ≡ 0 (mod 3) h(X) = 1 + aX5(q+1)/6 − a−1X(q+1)/6

gcd(r, q − 1) = 1 a3 = ±1

r ≡ 1 (mod 3) h(X) = 1 + aX(q+1)/3 ± a2X(q+1)/6

gcd(r, q − 1) = 1 a3 = −1

r ≡ −1 (mod 3) h(X) = 1 ± b2X5(q+1)/6 + bX2(q+1)/3

gcd(r, q − 1) = 1 b3 = −1

4.3. Examples

We give an example in each of the first three classes in Section 4.2. (Note that Class 4 
is already explicit.) These are rather simple examples and their primary purpose is to 
show that none of these classes is empty. Interested readers may explore more elaborate 
examples as they wish.

Example 4.12 (Class 1). Let q ≡ 1 (mod 4), d = 2, i1 = 0, i2 = 1, j1 = 1, j2 = 0. Let 
a ∈ F∗

q2 be such that aq−1 = −1 and

(1 + a

1 − a

)(q+1)/2
= −1.

To see that such a exists, first choose a0 ∈ F∗
q2 such that aq−1

0 = −1 and let a = ta0, 
t ∈ F∗

q . Since ((1 + a)/(1 − a))q+1 = 1, we have ((1 + a)/(1 − a))(q+1)/2 = ±1, i.e.,

(1 + ta0

1 − ta0

)(q+1)/2
= ±1.

The equation

(1 + ta0

1 − ta0

)(q+1)/2
= 1

has at most (q + 1)/2 solutions for t, where (q + 1)/2 < q − 1. Hence there exists t ∈ F∗
q

such that

(1 + ta0
)(q+1)/2

= −1.
1 − ta0
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Let b ∈ F∗
q2 be such that (1 − a)/b = −1. Assume that gcd(r, q − 1) = 1 and gcd(r −

1, (q + 1)/2) = 1 (q = 5 and r = 3 satisfy these conditions). We have

h(X) = 1 + aXi1+j1(q+1)/2 + bXi2+j2(q+1)/2 = 1 + aX(q+1)/2 − (1 − a)X.

We claim that gcd(h(X), Xq+1−1) = 1. Assume to the contrary that h(X) and Xq+1−1
have a common root x. Then x(q+1)/2 = ±1. If x(q+1)/2 = 1, then x = (1 + a)/(1 − a), 
whence x(q+1)/2 = ((1 + a)/(1 − a))(q+1)/2 = −1, which is a contradiction. If x(q+1)/2 =
−1, then x = (1 − a)/(1 − a) = 1, which is also a contradiction.

In the notation of Class 1,

k �→
(
−j2

q + 1
d

+ r − i2

)
k + δ(k)v = k,

which permutes Z/2Z. Therefore,

Xrh(Xq−1) = Xr(1 + aX(q2−1)/2 + (1 − a)Xq−1)

is a PP of Fq2 .

Example 4.13 (Class 2). Let q ≡ 1 (mod 4), d = 2, i1 = 0, 0 < i2 < (q + 1)/2, i2 even, 
j1 = 1, j2 = 0. Let a = −1 and b ∈ F∗

q2 be such that (2/b)(q+1)/2 = 1. Assume that 
gcd(r, q− 1) = 1, gcd(r− i2, (q + 1)/2) = 1 and gcd(r− 2i2, (q + 1)/2) = 1 (q = 5, r = 3
and i2 = 2 satisfy these conditions). We have

h(X) = 1 −X(q+1)/2 + bXi2 .

We claim that gcd(h(X), Xq+1−1) = 1. Assume to the contrary that h(X) and Xq+1−1
have a common root x. Then x(q+1)/2 = ±1. If x(q+1)/2 = 1, then 0 = h(x) = bxi2 , 
which is a contradiction. If x(q+1)/2 = −1, then xi2 = −2/b, whence 1 = (x(q+1)/2)i2 =
(xi2)(q+1)/2 = (−2/b)(q+1)/2 = −1, which is also a contradiction.

In the notation of Class 2,

k �→

⎧⎪⎨⎪⎩
(
−2j2

q + 1
d

+ r − 2i2
)
k + 2θ if k ≡ 0 (mod 2)(

−j2
q + 1
d

+ r − i2

)
k + θ if k �≡ 0 (mod 2)

= k,

which permutes Z/2Z. Therefore,

Xrh(Xq−1) = Xr(1 −X(q2−1)/2 + bXi2(q−1))

is a PP of Fq2 .
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Example 4.14 (Class 3). Let q = 22n+1, d = 3, i1 = 0, 0 < i2 < (q + 1)/3, j1 = 1, 
j2 = 0. Let a = −1 and b ∈ F∗

q2 be such that ((1 − ε)/b)(q+1)/3 = 1, where ε is an 
element of F∗

q2 of order 3. Assume that i2 �≡ 0, r, (q + 1)/3 (mod 3), gcd(r, q − 1) = 1, 
gcd(r− i2, (q+1)/3) = 1 and gcd(r−2i2, (q+1)/3) = 1 (q = 23, r = 3 and i2 = 1 satisfy 
these conditions). We have

h(X) = 1 −X(q+1)/3 + bXi2 .

We claim that gcd(h(X), Xq+1−1) = 1. Assume to the contrary that h(X) and Xq+1−1
have a common root x. Then x(q+1)/3 = 1, ε or ε−1. If x(q+1)/3 = 1, then 0 = h(x) =
bxi2 , which is a contradiction. If x(q+1)/3 = ε, then xi2 = (1 − ε)/b, whence εi2 =
(xi2)(q+1)/3 = ((1 − ε)/b)(q+1)/3 = 1, which is a contradiction. If x(q+1)/3 = ε−1, then 
xi2 = (1 − ε−1)/b = ε−1(1 − ε)/b, whence ε−i2 = ε−(q+1)/3, which is also a contradiction.

In the notation of Class 3,

k �→

⎧⎪⎪⎨⎪⎪⎩
(
−2j2

q + 1
d

+ r − 2i2
)
k − j1

q + 1
d

+ q + 1
gcd(2, d) + 2η if k ≡ 0 (mod 3)(

−j2
q + 1
d

+ r − i2

)
k − j1

q + 1
d

+ q + 1
gcd(2, d) + η if k �≡ 0 (mod 3)

= (r − i2)k − j1
q + 1

3 ,

which permutes Z/3Z. Therefore,

Xrh(Xq−1) = Xr(1 −X(q2−1)/3 + bXi2(q−1))

is a PP of Fq2 .

4.4. Summary for trinomials

The permutation trinomials of Fq2 constructed in Section 4 are tabulated in Table 2.

Note. To see that the previous constructions of permutation trinomials are covered by 
the classes in Table 2 up to equivalence, simple transformations are usually needed. For 
example, [11, Theorem 2.1] gives a permutation trinomial

f = Xr(c + X(q−1)((q+3)/4+k) + X(q−1)((q2+3q)/4+k+1))

of Fq2 , where q ≡ 1 (mod 4), (c/2)(q+1)/2 = 1, gcd(r, q2 − 1) = 1 and gcd(2r − 2k −
1, (q + 1)/2) = 1. We have

f ≡ Xr+(q−1)((q+3)/4+k)(1 + X(q2−1)/2 + cX(q−1)(i2+j2(q+1)/2)) (mod Xq2 −X),

where i2 +j2(q+1)/2 ≡ −(q+3)/4 −k (mod q+1). Let δ ∈ Fq2 be such that δ(q2−1)/2 =
−1. Then
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Table 2
Permutation trinomials of Fq2 by Algorithm 2.4.

class PP references for special cases

1 Xr(1 + aX(q2−1)/2 + bX(q−1)(i2+j2(q+1)/d))
See 4.2 Class 1 for the conditions on the parameters.

2 Xr(1 − X(q2−1)/2 + bX(q−1)(i2+j2(q+1)/d)) [5,6,11,15]
See 4.2 Class 2 for the conditions on the parameters.

3 Xr(1 − Xj1(q2−1)/d + bX(q−1)(i2+j2(q+1)/d)) [7,11]
See 4.2 Class 3 for the conditions on the parameters.

4.1 Xr(1 + aX(q2−1)/6 − a−1X5(q2−1)/6)
q ≡ 5 (mod 18), r ≡ 0 (mod 3), gcd(r, q − 1) = 1, a3 = ±1.

4.2 Xr(1 + aX5(q2−1)/6 − a−1X(q2−1)/6)
q ≡ 11 (mod 18), r ≡ 0 (mod 3), gcd(r, q − 1) = 1, a3 = ±1.

δ−r′f(δX) ≡ Xr′(1 −X(q2−1)/2 + bX(q−1)(i2+j2(q+1)/2)) (mod Xq2 −X),

where r′ = r + (q − 1)((q + 3)/4 + k) and b = cδ(q−1)(i2+j2(q+1)/2). This trinomial is 
covered by Class 2 with d = 2.

5. Additional examples

In this section we give a few examples using the forward approach of Algorithm 2.4. 
We continue to follow the notation of Algorithm 2.4.

Example 5.1. Let r and q be such that gcd(r, q−1) = 1. Let d = 1, s0 = 0 (i.e., h(0) �= 0), 
0 ≤ t0 < q+1, τ0 = 0, and e0 = r−t0 be such that gcd(e0, q+1) = 1. Let h ∈ L0(t0, 0; λ0), 
that is, h ∈ Fq2 [X] is a self-dual polynomial of degree t0 such that gcd(h, Xq+1 − 1) = 1. 
Then Xrh(Xq−1) is a PP of Fq2 . This is the PP in [17, Theorem 5.1].

Example 5.2. Let r and q be such that gcd(r, q−1) = 1. Let d = 1, s0 = 0 (i.e., h(0) �= 0), 
0 ≤ t0 < q + 1, q + 1 − t0 ≤ τ0 ≤ t0 and e0 = r− t0 + τ0 be such that gcd(e0, q + 1) = 1. 
Let h ∈ L0(t0, τ0; 1), that is, h = P + Xq+1−τ0Q, where P, Q ∈ Fq2 [X], degP = t0 − τ0, 
P̃ = P , degQ = τ0 + t0 − (q + 1), Q̃ = Q, gcd(h, Xq+1 − 1) = 1. Then Xrh(Xq−1) is a 
PP of Fq2 . This construction does not seem to have appeared in the literature.

As an explicit instance of Example 5.2, let’s consider the following situation: Let q ≥ 5
be odd, t0 = (q + 5)/2, τ0 = (q + 1)/2, gcd(r, q− 1) = gcd(r− 2, q + 1) = 1, P = 1 +X2, 
Q = aq +aX2, where a ∈ F∗

q2 is such that (1 +a)(q2−1)/2 = (1 −a)(q2−1)/2 = (−1)(q−1)/2. 
The number of such elements a is (q2 − 1)/4; see Lemma 5.3 below. Let

h(X) = P (X) + X(q+1)/2Q(X) = 1 + X2 + X(q+1)/2(aq + aX2).

We claim that gcd(h(X), Xq+1−1) = 1. Assume to the contrary that h(X) and Xq+1−1
have a common root x. Then
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x(q+1)/2 = − 1 + x2

aq + ax2 ,

whence

1 = xq+1 =
( 1 + x2

aq + ax2

)2
.

Thus

1 + x2

aq + ax2 = ±1,

giving

x2 = −1 ∓ aq

1 ∓ a
= −(1 ∓ a)q−1.

Therefore,

1 = (x2)(q+1)/2 =
(
−(1 ∓ a)q−1)(q+1)/2 = (−1)(q+1)/2(1 ∓ a)(q

2−1)/2 = −1,

which is a contradiction.
Therefore,

Xrh(Xq−1) = Xr(1 + X2(q−1) + aqX(q2−1)/2 + aX(q+5)(q−1))

is a PP of Fq2 .

Lemma 5.3. Let q be odd and

A = {a ∈ F∗
q2 : (1 + a)(q

2−1)/2 = (1 − a)(q
2−1)/2 = (−1)(q−1)/2}.

Then |A| = (q2 − 1)/4.

Proof. Choose u ∈ F∗
q2 such that u(q2−1)/2 = (−1)(q−1)/2, and let

X = {(x, y) ∈ F2
q2 : x2 + y2 = 2u}.

By [3, Lemma 6.55] or [8, Lemma 6.24], |X | = q2 − 1. Note that for a ∈ Fq2 ,

(1 + a)(q
2−1)/2 = (1 − a)(q

2−1)/2 = (−1)(q−1)/2

⇔
{

1 + a = u−1x2

1 − a = u−1y2
for some (x, y) ∈ X .

If u is a nonsquare of Fq2 , then
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Table 3
Sequences in Example 5.4.

k sk tk τk ek = r − 2sk − tk + τk ekk π(k) λk

0 0 0 0 3 0 0 1
1 1 5 5 1 1 2 γ46·2

2 2 2 0 −3 0 1 γ46

3 0 5 3 1 3 1 γ46

4 3 0 0 −3 0 2 γ46·2

5 0 7 1 −3 3 2 γ46·2

|A| = 1
4 |X | = 1

4(q2 − 1).

If u is a square of Fq2 , partition X as X = X1 � X2 � X3, where

X1 = {(x, y) ∈ X : x2 �= 0, u; y2 �= 0, u},
X2 = {(x, y) ∈ X : x2 = y2 = u},
X3 = {(x, y) ∈ X : x = 0 or y = 0}.

Then |X1| + |X2| + |X3| = q2 − 1, |X2| = 4 and |X3| = 4. Hence

|A| = 1
4 |X1| +

1
2 |X3| = 1

4(q2 − 1 − 8) + 2 = 1
4(q2 − 1). �

We conclude this section with a random concrete example.

Example 5.4. Let q = 47, d = 6, r = 3, so (q + 1)/d = 8. Let γ be a primitive element 
of F472 with minimal polynomial X2 + X + 13 over F47 and let ε = γ(q2−1)/d = γ46·8. 
Choose sequences sk, tk, τk, π(k), and λk as shown in Table 3.

Choose

L0 = 1 ∈ L0(0, 0; 1),

L1 = γ2 + X3(γ46·38 + X2) ∈ L1(5, 5; γ46·2),

L2 = γ46·47 + X2 ∈ L2(2, 0; γ46),

L3 = γ46·47 + X2 + X5 · γ25 ∈ L3(5, 3; γ46),

L4 = γ2 ∈ L4(0, 0; γ46·2),

L5 = γ46·46 + X6 + X7 · γ42 ∈ L5(7, 1; γ46·2).

We have ∑
i

Mi0X
i = L0 = 1,

∑
Mi1X

i = XL1 = γ2X + γ46·38X4 + X6,

i
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∑
i

Mi2X
i = X2L2 = γ46·47X2 + X4,

∑
i

Mi3X
i = L3 = γ46·47 + X2 + γ25X5,

∑
i

Mi4X
i = X3L4 = γ2X3,

∑
i

Mi5X
i = L5 = γ46·46 + X6 + γ42X7.

Hence

[Mik] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 γ46·47 0 γ46·46

0 γ2 0 0 0 0
0 0 γ46·47 1 0 0
0 0 0 0 γ2 0
0 γ46·38 1 0 0 0
0 0 0 γ25 0 0
0 1 0 0 0 1
0 0 0 0 0 γ42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

[aij ] = 1
6 [Mik][γ−46·8kj ]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 + 37γ 11 + 25γ 31 + 44γ 5 + 10γ 5 + 22γ 32 + 3γ
37 + 39γ 12 + 32γ 22 + 40γ 10 + 8γ 35 + 15γ 25 + 7γ

3γ 19 + 32γ 36 + 12γ 31 + 3γ 35 + 32γ 20 + 12γ
37 + 39γ 35 + 15γ 22 + 40γ 37 + 39γ 35 + 15γ 22 + 40γ
24 + 6γ 24 + 18γ 9 + 14γ 39 + 41γ 14 + 27γ 31 + 35γ
43 + 36γ 4 + 11γ 43 + 36γ 4 + 11γ 43 + 36γ 4 + 11γ

16 8 39 31 39 8
42 + 16γ 27 + 24γ 32 + 8γ 5 + 31γ 20 + 23γ 15 + 39γ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In conclusion,

X3
∑

0≤i<8
0≤j<6

aijX
46(i+8j)

is a PP of F472 .

Data availability

No data was used for the research described in the article.
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