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1. Introduction

Let F, denote the finite field with ¢ elements. A polynomial f(X) € F,[X] is called a
permutation polynomial (PP) of Fy if it induces a permutation of F,. Let r be a positive
integer, d | ¢ — 1, and h(X) € F,[X]. It is well known [10,12,16] that X"h(X(@—1/4)
is a PP of F, if and only if ged(r,(¢ — 1)/d) = 1 and X"h(X)@1/? permutes the
multiplicative group g := {z € Fy : % = 1}. (In general, we use g, to denote a
multiplicative group of order m of a finite field.) Replacing ¢ with ¢ and d with ¢+ 1, we
see that for h(X) € F2[X], X"h(X? ') is a PP of F,2 if and only if ged(r,g—1) = 1 and
X"h(X)4™! permutes p 1. To facilitate the constructions of permutations of 441 of the
form X"h(X )71, the following idea has been used by several authors [1,6,7,11,15]: Let H
be a subgroup of pi441 of small index. Construct a polynomial h(X) € Fg2[X] such that
h(X)?~! induces monomial functions on each coset of H in fig+1. With such a property,
X"h(X)?"! permutes ttq+1 if and only if some simple number theoretic conditions on
the parameters are satisfied. This method has produced many results. However, these
results only deal with specific situations, leaving a unified treatment to be desired.

In the present paper, we take a general approach to the question. The main result
is an algorithm (Algorithm 2.4) that produces all PPs of F,2 of the form X"h(X? 1)
such that h(X)?"! induces monomial functions on the cosets of a subgroup in j44+1. The
order of an element a in a group is denoted by o(a). Let d | ¢ +1 and € € F, be such
that o(e) = d. Define

Ay ={x € pgpy - 2TV =F 0 0<k < d (1.1)
Then Ao = pi(q41)/d, and Ao, ..., Ag_1 are the cosets of i(q41)/q In pig+1, whence
d—1
Hg+1 = I_I Ap. (1.2)
k=0

Since X™(@=1) = Xm2(4=1) (mod X9~ — 1) whenever n; = ny (mod g -+ 1), it suffices
to consider h € Fg2[X] with degh < q. Write

hX)= > agXHath/d (1.3)
0<i<(q+1)/d
0<j<d

The objective is to find conditions on a;; € Fy2 such that for every 0 < k < d,
2 h(z)?! = A\ for all z € Ay, (1.4)
where e € Z and A\ € pgi1, say A\p € Ag(p)-

Theorem 1.1. Assume that (1.4) is satisfied for all 0 < k < d. Then X"h(X)?~! permutes
tg+1 if and only if
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gcd(e;€7 %) =1, 0<k<d,
and
k— w(k) + exk
is a permutation of Z/dZ.

Proof. By (1.4), X"h(X )9~ maps Ay to Az (k)+eyk- This map is one-to-one on Ay if and
only if ged(eg, (¢ + 1)/d) = 1. Hence the conclusion is true. O

Therefore, the crucial question is to determine the polynomials h(X) satisfying (1.4).
In Section 2, we will resolve this question and we will describe an algorithm that pro-
duces all PPs of the form X"h(X771) of F > satisfying (1.4). In Section 3, we determine
all permutation binomials of Fg resulting from this algorithm and it turns out that
these permutation binomials were all known previously. In Section 4, we determine all
permutation trinomials of g resulting from the algorithm. There are four classes such
permutation trinomials, excluding those that were previously known. These four classes,
in their generality, appear to be new, although many special cases have been discovered
by other authors. Additional examples of the algorithm are given in Section 5. Overall,
this approach reveals many PPs that were not known previously.

Remark. In the present paper, we investigate polynomials h(X) € F,2[X] such that
h(X)?~! induces monomial functions on the cosets of a subgroup of p,41 and permutes
lg+1 as a whole. Before this approach became popular in recent years, people had ex-
plored a similar method for PPs of F,. Several authors [2,9,12-14] had studied PPs of
[, which induce monomial functions on the cosets of a subgroup of F,.

2. The construction

For a € F 2, define a = a%; for f(X) =" a;X* € Fp[X] with a, # 0, define

fx) =) ax’
=0

and

FXO)=Xx"f(X"1)=> ax""
=0

Obviously, fz fand f= f.If f = cf for some c € Fr, f is said to be self-dual; in this
case, it is necessary that ¢ € pg41. Self-dual polynomials were first introduced in [4] for
a different purpose; they will also play an important role in the present paper.
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We follow the notation of Section 1. Let h(X) be given in (1.3) and assume that h
has no roots in pg41. For © € Ay, where 0 < k < d, we have

x) = Zaijejkzi = ZMikzi, (2.1)
i i
where
Mik = Zaijejk. (22)
J

Note that the ((¢+1)/d) x d matrices [M;;] and [a;;] are related by the d xd Vandermonde

matrix [ejk]:
[Mi] = lag] [€¥],  ai;] = 7 [Mix] [e™*].

By (2.1), for z € pg41,

" h(x qg—1 _ xrh(x)q
h(x) h(x) ZMM (2.3)
Write
ZMlkX’ X L(X), (2:4)
where L(X) € Fp2[X], L(0) # 0, degL =t, s +t < (¢+1)/d. Then (2.3) becomes
r qg—1 __ xr xislj(z 1) _ x'r‘72sft Z(I’)
2 h(x)? = oL@ T (2.5)

The following lemma is crucial.

Lemma 2.1. Let L(X) € Fp2[X] be such that L(0) # 0, degL =t < (¢ +1)/d, and L(X)
has no roots in Ay.

(i) Assume that there exist 0 < 17 < (¢+1)/d and X € pg1 such that

L(z) = \t7  for all x € Ag. (2.6)

Then either t=0 or (¢+1)/d—t <71 < t.
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(ii) When T =0, (2.6) is satisfied if and only if
L(X) = AL(X). (2.7)
(iii) When (¢+1)/d —t <7 <t, (2.6) is satisfied if and only if
L(X) = P(X) + Xt/ Q(X), (2.8)
where P,Q € F2[X], degP =t —7, P= AP, degQ =7+t —(q+1)/d, Q = \*Q.
Proof. (i) Since deg(L — A\L) <t < (¢4 1)/d = | Ay,
L(z) = ML(z) for all z € Ay, & L(X) — AL(X) = 0.
(iif) (=) We have X (a+D/d _ ¢k | [(X) — AXTL(X), say
L(X) = AXTL(X) = g(X)(F — X(@tD/4), (2.9)
where g(X) € F2[X] with degg =7+t — (¢+1)/d. In (2.9),

L AXTL = X" (L(X~Y) = AX TL(X1)

= X"L -\
=X"L—-\L
=-ML—-\XTL).
Hence
g(X) (e = X/ = 3g(x)(e" — X1/,
ie.,

GO XD/ 1) = Sg(x)(ek — X/,
whence § = \e*g. Therefore, (2.9) becomes
L—MX"L=\j—XtD/dg (2.10)
Let L=ag+ - +aX'and g=by + -+ + b, X", where v =degg =7+t — (¢ +1)/d.
The coefficients of L — AX7L and A\ — X (¢t1)/dg are illustrated in Fig. 1. It follows from

(2.10) and Fig. 1 that a; =0for t — 7 <i <t —w, a;_r # 0, and

L=ay+ +a_ X"+ X(q“)/d_T(at,v +oaXY)
= P(X) + X1 Q(x),
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Fig. 1. The coefficients of —AX"L, L and A§ — X(+1/4g (from top to bottom).

at ap 0 0 —Xaog —Aay
: : : ?
v _ i 1 !
Ab,, Abg E E —bo —by
0 v t T % T+t

Fig. 2. The coefficients of L — AX7 L (top) and A§ — X (4+D/dg (bottom).

where P(X) = ag + - + a;_» X'"7, which satisfies P = \P, and QX)=at_p+ -+
a; XV = —\g(X), which satisfies Q = —\j = —A\eFg = A" Q.

(<) We have

I —AXTL = (P + X@D/A=7Q) _ \X™(P + X(at1/d=7())
= X*(P(X~Y) + X~ (@tD/d=D (X 1)) = AXT(P + X +D/d=7 Q)
= X'P(X 1) + X'Q(X ') — AX7(P + X(0tD/d=7)
=X"P+Q - \XT(P+ XtD/d=70)
= X"AP + Ae*Q — AX7(P 4 XatD)/d=7()
= )\Q(ek _ X(q+1)/d).

Hence

!
—

z)

(z)

(i) Assume 7 > 0. By the proof of (iii) (=), 7+t — (¢ +1)/d = degg > 0, whence
T > (¢+1)/d —t. It remains to show that 7 < ¢. Assume to the contrary that 7 > t.
Then Fig. 1 is replaced by Fig. 2. Then ag = 0, which is a contradiction. O

=Xx" forall z € A;.

~

Definition 2.2. Let 0 < k <d,0<t < (¢+1)/d and X € pig+1. Define
L1(t,0;0) = {L €Fp[X]:deg L =t, L = AL, ged(L, X @V/d by =11 (2.11)

and for (¢ +1)/d —t < 7 < t, define
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Li(t;msA) ={L = P+ X"T7Q: P.Q € FplX], (2.12)
degP=t—71, P=M\P, degQ=7+1t—(¢+1)/d,
O = AFQ, ged(L, X(@HD/d _ by = 1},

It follows from (2.4), (2.5) and Lemma 2.1 that X"h(X)?"! is a monomial function
on Ay, if and only if there exist s,¢ > 0 with s +¢ < (¢ +1)/d, A € pg+1, and integer
7€ {0}U[(g+1)/d—t,t] such that >, M; X' = X*L(X), where L € Lj(t,7;\). When
this happens,

o"h(z)?t = X" BT for all x € Ay (2.13)

Combining the above statement with Theorem 1.1, we obtain the main theorem of the
paper:

Theorem 2.3. Let h(X) be given by (1.3) and [M;;] be given by (2.2). Then X"h(X971)
is a PP of Fg2 such that X"h(X)?™! is a monomial function on Ay, for every 0 <k < d
if and only if the following conditions are satisfied.

(i) For each 0 < k < d, there exist sy, ty, > 0 with s, +t < (¢+1)/d, w(k) € Z/dZ,
Mo € Ariy and 7, € {0} U [(¢ + 1)/d — ti, ti] such that >, M X' = X L(X),
where Ly € Li(tg, Tr; Ak)-

(ii) ged(r,q—1) =1 and ged(ex, (¢+1)/d) =1 for all 0 < k < d, where

e =1 — 28 — tx + Tk-

(iii) The map k — w(k) + exk permutes Z /dZ.

Theorem 2.3 can be stated as an algorithm.
Algorithm 2.4. Let r be a positive integer such that ged(r,q —1) =1 and let d | ¢ + 1.

Input: Sequences sy, tg, Tk, m(k), Ak, 0 < k < d, described below.
Output: A PP of F,2 of the form X"h(X? ') such that X"h(X)?"! is a monomial

function on each Ay, 0 < k < d.
Note: All PPs of F,> with such properties can be produced by this algorithm.

Step 1: Choose integer sequences s, tr, 7 >, 0 < k < d, such that s+t < (¢+1)/d,
e € {0} U [(g+1)/d — tg, tx], and ey 1= r — 255, — t5 + 7 satisfies ged(ex, (¢ +

1)/d) =1.
Step 2: Choose a sequence 7(k) € Z/dZ, 0 < k < d, such that k — 7(k)+erk permutes
Z/dZ.

Step 3: For each 0 < k < d, choose Ay € Ay and Li € Ly (tr, Tr; Ak)-
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Step 4: Compute the ((¢ + 1)/d) x d matrix [M;;] such that

X*rLy =) MyX',

and compute the ((¢+ 1)/d) x d matrix

i) = (Ml [e].

Step 5: Let

h(X) = Z ainiH(q"'l)/d.

,J
Then X"h(X?71) is the output PP of Fe.

Remark 2.5.In Step 3, when choosing Ly € Lg(tx,Tk; k), it is required that
ged(Ly, X(a+1)/d _ k) — 1. However, this condition is automatically satisfied if (X in
Step 5 satisfies ged(h, X7+ —1) = 1. In fact, ged(Lg, X @t/d —eb) = 1 forall 0 < k < d
if and only if ged(h, X9 — 1) = 1.

There are two ways to use this algorithm: forward or backward. In the forward ap-
proach, we simply proceed from Step 1 through Step 5. The advantage of this approach
is that there are few restrictions on the choices of the sequences; the drawback is that
we have little control over the appearance of the resulting PP. A few examples of the
forward approach are given in Section 5. In the backward approach, we first impose
conditions on [a;;]. (For example, we may require h(X) to be a binomial of a trinomial.)
We then compute [M;x] and determine if the sequences Ly, sg, tk, Tk, 7(k), Ap exist.
The benefit of this approach is that we have more control over the appearance of the
resulting PP. However, the conditions for the aforementioned sequences to be existent
could be complicated. In Sections 3 and 4, we use the backward approach to determine
the permutation binomials and trinomials obtainable from the algorithm.

For 0 <t < (¢+1)/d, 7 € {0} U[(¢g+1)/d—1t,t], N € pg+1 and 0 < k < d, write
A =a'"9 where a € IF(;‘Q, and €¥ = blat1)/d where b € Hg+1- Then it is easy to see that
the map

»Ck(taT;A) — 'CO(th; 1)
L(X) —  aL(bX)
is a bijection. Set I(t,7) = [Lo(t, 7;1)]. Then |Lx(t,7; A)| = I(t, ), which is independent

of k and \.
Let

Q={(s,t,7) eN3: s+t < (q+1)/d, € {0}U[(qg+1)/d —t,1],
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ged(r —2s —t+7,(¢+1)/d) =1}.

In Step 2 of Algorithms 2.4, the number of choices for the sequence 7 (k) is d!. In Step 3,
the number of choices for A is (¢ + 1)/d and the number of choices for Ly is I(tg, %)-
Therefore, the total number of PPs produced by the algorithm is

3 d! H (—l tk,Tk)) (2.14)

(80,£0,70)5---1(8a—1,td—1,Ta—1)EQ

_ d!(qzl)d( 3 l(t,T))d

(s,t,7)EQ
q+1 d
!
=== ) (X m(t, 7))
0<t<(q+1)/d
T7€{0}U[(q+1)/d—t,1]
where
mt,7)={(0<s<(¢g+1)/d—t:ged(r —2s—t+7,(q+1)/d) =1}|. (2.15)

When 7 =0, I(t,0) is determined by the following lemma.

Lemma 2.6. For 0 <t < (¢+1)/d,

1(t,0) = (2 — 1 ti <q+1)/d> i i_l+(_1)t(q_1)<(q+t1)/d>.

1=

Proof. Let A; denote the number of monic self-dual polynomials of degree ¢ in F2[X].
It is known that [4]

1 ift =0,
Ay =
(g+1)gt=t ift > 0.

For Y C pgy1, let

Ly = {L € F2[X] monic, self-dual, deg L = t, H (X —v) | L}
yey

and
L = {L € Fg2[X] monic, self-dual, deg L =t, gcd(L, Xlt/d 1) =1},

Then |Ly| = Ay_jy| (which is 0 if ¢ — |Y'| < 0). By inclusion-exclusion,
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zt: ( q+ 1)/d> A,

:0(—1) ((q + 1)/d> (q+1)g =1+ (=1)* ((q + 1)/d>.

7 t

i

On the other hand, we have
(¢® = 1)IL] = (¢ + DI(t,0),

since both sides count the number of self-dual polynomials of degree ¢ in F,2[X] that are
relatively prime to X (@+1/4 —1. Hence I(t,0) = (¢—1)|£| and the conclusion follows. O

However, for 7 > 0, we have not found an explicit formula for I(¢, 7).
Question 2.7. For (¢ +1)/d —t <7 <t < (q+1)/d, determine

I(t,7)=|{L = P4 XD/t . p Qe Fe[X], deg P =t —1,
degQ=7+t—(q+1)/d, P=P, Q=Q, ged(L, X0TV/d _1) =1}/

3. Permutation binomials

We follow the notation of Algorithm 2.4. Assume that the polynomial h(X) resulting
from Algorithm 2.4 is a binomial, i.e., the matrix [a;;] has precisely two nonzero entries.
Without loss of generality, assume that

where a € F2, 0 <u < (g+1)/d, 0 <v <d, (u,v) # (0,0). We remind the reader that
the rows of the matrix [a,;] are labeled by integers 0,...,(¢+1)/d — 1 and the columns
are labeled by O,...,d — 1.

Case 1. Assume that v = 0. Then
XTh(X9Y) = X"(1 + aX V(@ D/,

It is well known, as stated in the introduction, that X" (1 + aX”(qLI)/d) is a PP of Fye
if and only if ged(r, (¢2 — 1)/d) = 1 and X7 (1 4 aX)@ =1/ permutes 4.
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P ; ~ X (a+1)/d=T0) _

0 to—To bl g to

Fig. 3. When P + X(91t1/4=70(Q is a binomial.

Case 2. Assume that v > 0. Then

[Mi] = 00 L gev(d=1)

and
> MyX'=1+ae" X", s, =0, ty=u, 0<k<d.

In particular, Ly = 1 + aX™ € Lo(to, T0; M), where 9 € {0} U [(¢ + 1)/d — %o, to].

First assume that 79 = 0. By the definition of Lo(tg,0; Ag), Lo is self-dual. It follows
that @ € g1 We have X"h(X97!) = X"(1 + aX' @ Y), where | = u + v(q + 1)/d.
Because of the condition a € pg41, such permutation binomials are well known. By
[17, Corollary 5.3], X"(1 + aX'(@=V) permutes F,z if and only if ged(r,q — 1) = 1,
ged(r —1,g+1) =1 and (—a)@tD/ecdla+1.) £ 1,

Next, assume that 79 € [(¢ + 1)/d — to,to]. Since Ly € Lo(to, T0; Ao), we have Ly =
P+ X@tD/d=10Q where P,Q € F2[X], deg P = to — 9, degQ = 79 + to — (¢ + 1)/d,
ged(Lo, X(@tD/d — 1) = 1. Since P + X(@D=70(Q is a binomial, we must have t; = 79
and (¢ +1)/d — 19 = to (see Fig. 3). Hence to = 790 = u = (¢ + 1)/2d. Then h(X) =
1+aXxutvlat/d — 1 4 X (+20)(a+1)/2d Then X7h(X1~1) = Xr(1_|_aX(1+2v)(q2—1)/2d)
is a PP of F,2 if and only if ged(r, (¢> — 1)/2d) = 1 and X" (1 + aX*2¥) permutes paq.

Summary for binomials. From the above two cases, we see that permutation binomials
generated by Algorithm 2.4 were all previously known.

4. Permutation trinomials

Now assume that h(X) in Algorithm 2.4 is a trinomial, i.e., the matrix [a;;] has
precisely three nonzero entries. Without loss of generality, write
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0 J1 J2
o1
i1 a *
[ai]‘] = s a,be ]Fq2.
iz b

4.1. Three cases

Case 1. Assume that i; = i = 0. Then

XTh(X9™Y) = X7(1 4 aX /(@ =0/ 4 px72(a"=1)/d),

Such a trinomial is a PP of 2 if and only if ged(r, (¢*> —1)/d) =1 and X"(1 + a X7 +

ijz)(qz—l)/d permutes fig.

Remark. If iy = i3 # 0, then

th(Xq_l) =X"(1+ aX (@ D@E+i(et)/d) | bX(q—l)(i2+j2(q+1)/d))

= xrHa-DltiatD/d) g 4 px (a=Dit X(q—l)ié) (mod X — X),

where i) =0 (mod (¢ + 1)/d) and i, £ 0 (mod (g + 1)/d). This situation is covered by

the next case (Case 2).

Case 2. Assume that i1 = 0 and 0 < i3 < (¢+ 1)/d. Then

0 1+a€j1'0 1+a€jl(d71)

[Mx] = " beiz0 . bed2(d=1)

and

Z M X" =14 actF 4 pei2k X2,

Case 2.1. Assume that 1 4 ae/** # 0 for all 0 < k < d. Then

Lk(X):l—l—anlk-i-bejsziz, sp =0, tp=1s.

Lemma 4.1. The following statements hold in Case 2.1.
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(i) If i, = 0 for some 0 < k < d, then

(1 + aqe*jlk)(qﬂ)/d _ a®)
b

for some a(k) € Z/dZ. We have

q+1
d

er =1r—iy and w(k)=—jk + a(k).

(ii) If i, = 0 for all0 < k < d, then j1 = d/2, a?* = —1, (1—a)/b € pgi1, e = r —ia,

and
.qg+1 .
w(k) + exk = (_32‘1 . +r—22)k+(5(k)v+u,
where
1 —a\(at1)/d u 14+ a\(atl)/d v
() = ) =
and

5(k) = 0 if k is even,
1 if k is odd.

Proof. (i) Clearly, e = r — is. Since Ly € L (tx,0; \g), we have Li, = M\ Ly, whence

(1 + aelr*)4

A = beizk

Since

)

€7r(k) _ )\(q+1)/d - (1 + aq€7j1k?>(q4!‘1)/d _ G*jzk(Q‘Fl)/d(l + aq€7j1k>(‘Z+1)/d
= AL =\ = _—
bel2 b

we have

(1 + aqe’jlk)(fﬁl)/d _ calk)
b

for some «(k) € Z/dZ and 7(k) = —jok(q+ 1)/d + a(k).

(i) By (4.2),
(1 + a9etkyatl = patt, (4.3)

ie.,
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(1 + ae"*)(1 + a%e k) = pat1,
Hence the quadratic equation (1 + ax)(1 + a?x~!) = b9*! has solutions z = /1%, 0 <
k < d. Since the number of such solutions is < 2 and since 0 < j; < d, we must have
j1 = d/2, whence €/t = —1. It follows from (4.3), with k = 0, 1, that

(1+a?)9 = (1 —a?)7t

This happens if and only if a? = —a. (Note that ¢ is odd since 2 | d.) Then

1-— q+1 1 q+1
() = (1)

b —a
Write
1—a\(etD)/d 1+ a\(etD)/d
( ) =¢e" and ( ) =e".
b 1—a

Then by (4.2),

calk) — (ﬂ)(‘””/d _ (1;&)(q+1)/d(#>(q+l)/d

{e“ if k is even,

et if k is odd.
Thus a(k) = u+ §(k)v, and by (i),

|
(k) + exk = —jak 1L

+u+o0(k)v+ (r—i2k

1
= (—qu—g +r—i2)k‘+6(k)v+u. a

If . € [(¢+1)/d — tg,tg] for some 0 < k < d, applying the argument in the last
paragraph in Case 2 of Section 3 to Ly € Ly (tx, Tk; Ak ), we have t, = 7, = ia = (¢+1)/2d.
Therefore,

X"h(XT 1) = X7(1 4 ax (@ DilatD)/d 4 px(a=1((a+1)/2d+j2(a+1)/d))

= X"(1 + aX (@ D/d 4 px (25A1)(a"~1)/2d)),
This trinomial permutes F,2 if and only if ged(r, (¢ — 1)/2d) = 1 and X" (1 + a X1 +
bX2j2+1)(’12_1)/2d permutes fiog.

Case 2.2. Assume that 1+ ae/1* = 0 for some 0 < k < d. Write ¢¥ = \(@+1/4 for some
AE Hg+1- Then
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h(AX) =1+ a()\X)jl(Q+1)/d + b()\X)iz+j2(q+1)/d
-1— le(q+1)/d + b/\i2€j2kXi2+j2(q+l)/d.

Hence we may assume that a = —1. By (4.1),
bel2k if jik =0 (mod d),
oo [ k=0 meda

1— e + b2 X2 if j1k £ 0 (mod d),
o if j1k=0 dd

sp=q2 TN (mod d), (4.4)
0 if 1k #0 (mod d),
0 if j1k=0 (mod d),

tk — 1 jl (mO ) (45)

Lemma 4.2. If j1k =0 (mod d), then 7, =0, ex, = r — 2ia, and

qg+1
d

(k) = —2j2k + 5,

where b@*=1/d — B

Proof. Clearly, 7, = 0 and e, = 7 — 2iy. Since L, = be2F € Li(t1,0; A1), we have
Ly = MLy, whence Ay = (be2k)91 = pa—1¢=272k  Since

ATED/E _ p(a*=1)/de=252k(a41)/d — (=2j2k(a+1)/d+5
we have w(k) = —2j2k(¢+1)/d+ 5. O

If 7, € [(g+ 1)/d — tg, tg] for some 0 < k < d with j1k #Z 0 (mod d), applying the
argument in the last paragraph in Case 2 of Section 3 to Ly € L (tk, Tk; Ak), we have
ty =T =12 = (¢+1)/2d. Then

X"h(X9Y) = X"(1+ aXi(@=1/d o bX(2j2+1)(q2—1)/2d))’
which permutes Fgp if and only if ged(r,(¢*> — 1)/2d) = 1 and X"(1 + aX?* +
bX2j2+1)(q2_1)/2d permutes pog4. Therefore, we assume that 7, = 0 for all 0 < k < d

with j1k # 0 (mod d). This assumption combined with Lemma 4.2 means that 7, = 0
forall 0 < k < d.

Lemma 4.3. Assume that 7, = 0 for all 0 < k < d in Case 2.2. Then o(¢’t) =2 or 3.
(i) If o(er) = 2, then

io  if k=0 (mod 2),
S =
*710 ifk£0 (mod 2),
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; 0 k=0 (mod2),
k=19, .
io if k#0 (mod 2),

r—2iy if k=0 (mod 2),
€L =
’ r—iz if k#0 (mod 2),

2ok 190 ik =0 (mod 2),
(k) =
1
—jgqu 46 ifk£0 (mod 2),

where (2/b)(a+1)/d = (0,
(ii) If o(e’r) = 3, then

ia if k=0 (mod 3),
T
"*710 ifk#0 (mod 3),

oo 0 k=0 (mod 3),
" i ik #0 (mod 3),
r—2iy ifk=0 (mod 3),
e =
: r—iz ifk#Z0 (mod 3),

qg+1 qg+1

—(252k + 4 2 —— ifk= d
s =
. . g+1 qg+1 .
—(j2k —_— k d
(]2 +j1) d +77+ ng(2,d> Zf %0 (mo 3)7

where

=e.

(1 — €j1 >(q+1)/d
b

Proof. If jik # 0 (mod d), then L, = 1 — el'*F 4+ be2k X2 € L (tr,0,\g). Since Ly =
ALy, we have

(1— ejlk)q

beizk Ak

It follows that

1 ((1_€j1k)q)q+1 (1_6j1k')q+1

beizk o b

ie.,

(1= M) (1 — e 7tF) =prtt, (4.6)
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Therefore, /1% is a root of
(1—2)(1—2™t) =prt! (4.7)

whenever ¢/1¥ =£ 1. Since (4.7) has at most two solutions, we have o(e/!) < 3.

(i) Assume that o(e/1) = 2, i.e., €/t = —1. The formulas for s;, and t;, follow from (4.4)
and (4.5), and the formula for ey is obvious. It remains to prove the formula for 7(k).
For k £ 0 (mod 2),

r () _ \(aD/d _ ( 2 )(q“)/d _ (2)("+”/d6—j2k(q+1)/d _ (—ieh(a+1)/d+0
k )

beizk b

where (2/b)(@+t1)/4 = ¢ Hence

1
(k) = —jgkqjl_ +0.
For k=0 (mod 2), by Lemma 4.2
1
n(k) = 22k 4 5,

where b(@°=1/d — 8 Since

20 _ b(a—1) _ p—(a®~1)/d _ e P,

we have 5 = 26.

(i) Assume that o(e’') = 3 and write €/! = w. Again, we only have to prove the
formula for (k).
For k # 0 (mod 3),

erty = (L) ere_ (Lot (L) D0 g

beizk 1—w b

k
— (1 - )(q+1)/d€—j2k(Q+1)/d+ﬁ
1—w ’

where ((1 —w)/b)@t1)/d = €1 Note that

-1
(1 —w >(q+1)/d = (—w™H@tD/d = (_q)(@tD/d—ir(at1)/d
l-w ’

where

elatD/2 if 4 is even

(_1)(q+1)/d — = ¢la+1)/ged(2,d)
1 if d is odd
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Hence

o q+1 g+1
k) = —(jak + j1) 52 gt

For k=0 (mod 3), by Lemma 4.2,

qg+1
d

m(k) = —2jak + 6,

where b(@°~1D/d — B Since

2 ~1
=21 — nla=1) _ (1 — w)(q L/d _ efﬁ(l v >(q+1)/d

b 1—w

— ¢ BilatD/d(_1)(atD)/d — B (at1)/d+(a+1)/sed(2,d)

we have

.q+1 qg+1
S sk S S b
e A e

Case 3. Assume that 0 < i; < iz < (¢+ 1)/d. Then

o 1 1]
(M) i | a0 ... gen(d=1)
ik] = ;
i | bei20 .. peiz(d—1)

Lp(X) =14 aet* X 4 pel2k X2,

Sk — 0, tk = ig.

Lemma 4.4. If 7, = 0, then i1 = is/2, e, =1 —ia, and

1
q; ta,

m(k) = —2j1k
where a(@=D/d — ca gnd b = gl=1¢(2ir1—j2)k,
Proof. Clearly, e, = r — is. Since Ly, = ALy, i.e.,

belizk 4 etk X270 4 X2 — N\ (14 ael' P X1 4 pel2k X 2),

we have i1 = ip/2 and (bei2¥ aeirth 1) = (1, ae’r* bei2¥). Hence
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A\, = beizk = ple—I2k
and

ack . b2k = gk e, b= ql 92Tk,

We have

(k) _

¢ A5€4+1)/d — (bqe—j2k>(q+1)/d — ((aq—le—@jl—b)k . e—jzk)(q-&-l)/d

(= D/d =2 k(a4 1)/d _ ~2j1k(a+1])/d+e

2
where (@ —1/d = ¢> Hence

g+1

ﬂ(k) = —2j1k‘ d

+a. O

Remark. If 7, = 0 for all 0 < k < d, then by Lemma 4.4, i; = i3/2, 251 —jo =0 (mod d)
and b = a'~9. Consequently,

h(X) =1+ aXttilet)/d 4 pxriz+i2(q+1)/d
=1 4 gXOHiletD)/d o px2(i+ii(a+1)/d) (mod xat+l _ 1)
= h1(X),

where

hi(X)=14+aX"+0X% 1=1i+j1(¢+1)/d
Hence

XTh(X9Y) = X"hy(XTY)  (mod X9 1 —1).

Since b = a' 74, hy(X) is self-dual. In general, when hq(X) is self dual, PPs of F,2 of the
form X"hy(X?7 1) are known; see Example 5.1.

Lemma 4.5. If 7, € [(¢ + 1)/d — ti, tg], then precisely one of the following occurs.

(i)
1/g+1 , lrg+1 . 1/g+1
() Y, em ()
=R =g\ Ty T n=5(g =57y T
a= bqe*(jlﬂl?“)k, e, =r, w(k)=0.

(ii) 1/g+1 1/g+1 1/g+1
L I A
k2(d+ =5\ “ =Ty T
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a = bl=9e@i2=n+Dk, pla®=1)/d _ B e =r—1,
m(k) = —(2j2 + 1)k$ + 3.
Proof. Since
Ly =1+ ae* X 4 bed2k X2 = p 4 x(atD/d=m

is a trinomial, where deg P = t;, — 7, and deg@Q = 7% + t, — (¢ + 1)/d (see Fig. 4), we
have

b =7 =0, e — Tk =1,
g+1
=T RS
or d
. q+1 )
Zl—T—Tk, 11 =1,
i2:tk7 i2:tk7
ie.,
1l/g+1
ho=m= (151 40),
FETEE 5Ty =+
1l/g+1
s - 1)7 4.8
" 2( d (48)
1/g+1
- _Llrg+1 1)7
2 2( a
or
1/g+1
¢ _—(— 1),
k=5 p +
1/g+1
oLy,
2\ d (4.9)
21:1,
l/g+1
_ (4Tt 1)
"2 2( a t

(i) Assume (4.8). First, note that ey = r — t; + 7, = r. In this case,
Lpy=1+ X%(%_l)(aeﬁk + bel2k X)),
where P =1 and Q = ae’'* 4 be/2k X. We have A\, = P/P =1 and

ek Q  beik taehkX
€ = == —"—F-.
F Q  aelk 4 bheizk X

Hence
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P

E(— X(‘H*l)/d*TkQ —)i

0 b —Tk e 12

Fig. 4. When P + X(@t1D/4=7x 3 ig a trinomial.

beizk

aelrk

ie., a = ble" U1tz DE Clearly, (k) = 0.

(ii) Assume (4.9). First, note that ey, = r — ¢ + 7, = 7 — 1. In this case,
Ly =14 ac*X + X305+ . pei2k,
where P =1 + ae/'*X and Q = bei2*. Since P = A\ P and Q = \ye*Q, we have
(ae*F)a = ), and (be2k)a=1 = Nk
It follows that
a= )\gle_jlk = ek(bejzk)l_q ce Ik = plma itk

Since
ATD/E — (gaedrky(atD/d — (pa-1e=Gi=jitDk—jiky(at1)/d

pla®=1)/d —(2j2+1)k(g+1)/d _ ¢~ i Dk(a+1)/d 48

where b(@*—1/d = €?, we have

(k) = —(2js + 1)k%1 +8 O

21

Remark. In Lemma 4.5, if (i) occurs for all 0 < k < d, then j; +j2 +1 =0 (mod d) and

a = b%. We have
B(X) =14 aX 3D 58 4 px 5 (D) +5 55
=14 aXx2(T DH T 4 px et -G DR (nod X9 — 1)

= X (X)  (mod X7 — 1),

where

and
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hi(X) =b+ X'+ aX?.
Since a = b?, h1(X) is self-dual. We have
XTh(XT 1) = XTHat D@D g, (X971 (mod X7 — 1),
and PPs of F2 of this type are known (Example 5.1).
Similarly, if (ii) occurs for all 0 < k < d in Lemma 4.5, then 2jo —j; +1 =0 (mod d)

and a = b'~7. We have

h(X) =1+ a Xt L px s (D4R
=1+ aXQ(%(qftlJrl)Jer%) + bX%(%JFl)JrJé% (mod xa+l _ 1)

= h1(X),

where

1l/g+1 .qg+1
_ ! 2 _ 1
hi(X) =1+bX! +aX?, = 2( . +1)+32 ;
Since a = b9, hy(X) is self-dual. We have
XTh(X9Y) = X"hy(X7Y)  (mod X971 —1),

and PPs of g2 of this type are known.

Lemma 4.6. If (¢ + 1)/d # 3, then either Lemma 4.4 occurs for all 0 < k < d, or
Lemma 4.5 (i) occurs for all 0 < k < d, or Lemma /.5 (i) occurs for all 0 < k < d.

Proof. In Lemma 4.4, Lemma 4.5 (i) and Lemma 4.5 (ii), we have

1 1
== 2\ d and
L= 9 . lrg+1 1 izl(il—i-l)
i =5 (+1), AN ’

respectively. Any two of these three conditions imply that (¢+1)/d=3. O
Partition Z/dZ as
Z)dZ = KoUK, U K, (4.10)

where Lemma 4.4 occurs for k € Ky, Lemma 4.5 (i) occurs for k € K7, and Lemma 4.5
(ii) occurs for k € Ks. Assume that at least two of Ky, K1, K2 are nonempty. Then
(g+1)/d =3, i1 =1 and ix = 2. Since ged(e, 3) = ged(ek, (¢ + 1)/d) = 1, it follows
from Lemmas 4.4 and 4.5 that one of Ky, K7, Ko must be empty:
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if r=0 (mod 3), then K7 = 0;
if r=1 (mod 3), then Ky = 0;
if r=—1 (mod 3), then Ky = 0.

It also follows from Lemmas 4.4 and 4.5 that

if ko - Ko, then b = a17q6(2j1—j2)k0;
if k1 € Ky, then a = bqe—(j1+j2+1)k1; (4.11)

if ko € Ko, then a = b~ %e(Zi2—di+1)kz

Any combination of two of the above three equations allow us to determine a and b up
to a third root of unity.

Lemma 4.7. We have the following equivalences:

b = al=9e(251—d2)ko a3 = ¢—(21—d2)ko—(jr+ija+1)ky
a = ble—Urtiz+1)k: b= g2e(2i1—02)ko (4.12)
b= al~teZn-ik 03 = =222 ko~ (242 —51+ ks
a = bl 1e(i2—i1+1)ks b= q2e(2i—i2)ko (413)
a = bleUrtiztk b3 = e~ Urtiz+D)ki—(2j2—j1+1)k2
a = bl—1e(i2—g1+1)k2 0 = b—le—Urtiat1)ks (4.14)

Proof. We only prove (4.12). (The proofs of (4.13) and (4.14) are similar.)

(=) We have
patl — (al—q€(2j1—j2)ko)q+1 =1,
and hence
adtl — (bq((j1+jz+1)k1)q+1 —1.
Now
b= aleZi—i2)ko — (2 (2i—i2)ko
and

a = ble—Urtiz+Dki (a2€(2j1—j2)k0)qe—(j1+j2+1)k1 — a—26—(2j1—j2)ko—(j1+j2+1)k1’

ie.,
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a3 = ¢~ @i —j2)ko—(1+j2+1)k1

(<) First, since (¢+1)/d = 3, it is clear that 9™ = b9™1 = 1. The rest is obvious. O

Lemma 4.8. Assume that Ko # 0 and K1 # 0 in (4.10) and hence (¢+1)/d =3, i1 =1,
io = 2, and r = 1 (mod 3). Then d is even, and Ky and Ky form the two cosets of
27./dZ in Z.]dZ. Moreover, a® = —1, b = +a?,

. . d
2j1 — jo = 3 (mod d),

p (4.15)
2

jl —|—]2—|—1E (mod d),

and (k) + exk = rk for k € Z/dZ. More precisely, either

¢=11 (mod18) and h(X)=1+aXtV/3 4 px(a+1)/6
or

¢q=5 (mod18) and h(X) =1+ aX?@tD/3 4 px5a+1)/6

Proof. If 2j; — j» = 0 (mod d), then by (4.11), b = a'~9. Moreover, by the proof of
Lemma 4.4, for all k € Z/dZ, Ly € L;(2,0;\;) with Ay = b% 72k, This means that
Lemma 4.4 occurs for all k € Z/dZ, i.e., Ky = Z/dZ, which is a contradiction since
Ky # (). Similarly, if j; + jo + 1 =0 (mod d), then by (4.11), a = b?. Moreover, by the
proof of Lemma 4.5 (i), for all k € Z/dZ, Ly, € L,(2,2;1). This means that Lemma 4.5
(i) occurs for all k € Z/dZ, i.e., K1 = Z/dZ, which is also a contradiction. Hence
2j1 — j2 Z0 (mod d) and j; + j2 +1# 0 (mod d).
By (4.11), there exist u,v € Z/dZ such that

(241 — j2)k =u (mod d) for all k € Ko,
(j1+j2+1k=v (mod d) forall k€ K;.

Since 251 — j2 Z 0 (mod d) and j1 +jo +1 # 0 (mod d) and KoU Ky = Z/dZ, we must
have

(mod d),
d
2

2j1—j2 =

N

jl +_]2 —|— 1= (mod d),
{u,v} ={0,d/2}, and

Koy={k€Z/dZ: (251 — j2)k =u (mod d)},
Ki={keZ/dZ:(j1+j2+1k=v (modd)}.
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It follows from (4.12) that a® = e ¥ = ¢%/? = —1 and b = a?¢* = +a?.
By Lemma 4.4 and Lemma 4.5 (i), we have

(r—2—6j1)k if ke Ko,

(k) + ek =
rk itk e K.

By (4.15), 3j1 + 1 =0 (mod d), hence w(k) + exk = rk for k € Z/dZ.
System (4.15) is equivalent to

14351 =0 (mod d),

2434y = g (mod d).

Since 0 < j1,j2 < d, we have

1+3jl:d7 1+3.71:2d7
. d or . 5d

In the first case, d =4 (mod 6), whence ¢ = 3d —1 = 11 (mod 18), and
MX)=1+aX'3 4 pX2+302 =1 4 aX(atD/3 4 px(a+1)/6,
In the second case, d =2 (mod 6), whence ¢ = 3d — 1 =5 (mod 18), and
R(X) =1+ aX T390 4 pX2F302 = 1 4 o x2@+1)/3 L px5atD/6 o
Lemma 4.9. Assume that Ko # 0 and Ko # 0 in (4.10) and hence (¢ +1)/d =3, i, =1,

ia = 2, and v = 0 (mod 3). Then d is even, and Ky and Ko form the two cosets of
27,/dZ in 7.)dZ. Moreover, a® = +£1, b= —a~1,

(4.16)

and w(k) + exk = rk for k € Z/dZ. More precisely, either
¢=5 (mod18) and h(X)=1+aX+tD/0 4 px5at1)/6
or

¢=11 (mod 18) and h(X) =1+ aX"@+D/6 4 pxla+)/6



26 X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 89 (2023) 102193

Proof. By the same argument in the proof of Lemma 4.8, we have

and

KO = {k’ S Z/dZ : (2]1 7j2)]€ =u (mod d)},
Ko={keZ/dZ:(2ja—j1+1)k=v (modd)},

where {u,v} = {0,d/2}. It follows from (4.13) that a® = €¢* = £1 and b = a?e* =

—a%¢’ = —a® = —a~!. By Lemma 4.4 and Lemma 4.5 (ii), we have
—2—06j1)k if k € K,
(k) +exk = (r ki 0
(7’—4—6j2)]€ if k € Ks.

By (4.16), 671 = —2 (mod d) and 6j2 = —4 (mod d), hence w(k) + exk = rk for k €
Z/dZ.
System (4.16) is equivalent to

1435 = g (mod d),
24 3j2 = g (mod d),
ie.,
143 = o . L=
2+3j2:%, 2+3j2:g.

In the first case, d = 2 (mod 6), whence ¢ =3d — 1 =5 (mod 18), and
B(X) =1 + aX(@+D/6 | px5arD/6
In the second case, d =4 (mod 6), whence ¢ = 3d — 1 =11 (mod 18), and
h(X) =1+ aX?@tD/6 L px(@tD/6
Lemma 4.10. Assume that K1 # 0 and Ko # 0 in (4.10) and hence (¢+1)/d =3, 1, =1,

io = 2, and r = —1 (mod 3). Then d is even, and Ky and Ky form the two cosets of
27./dZ in Z]dZ. Moreover, b> = —1, a = +b™ 1,
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g (mod d),

Jit+je+1=
(4.17)

2jo —j1+1= (mod d),

d
2
and w(k) + exk = rk for k € Z/dZ. More precisely, either

¢=5 (mod18) and h(X)=1+aX@+D/6 4 px(at/3

or

g=11 (mod 18) and h(X)=1+aX>@t1)/6 4 px2a+1)/3,

Proof. Again, by the argument in the proof of Lemma 4.8, we have

ntptl= g (mod d),
2p—n+1= g (mod d),
and
Ky ={keZ/dZ : (j1 +j:+1)k=u (modd)},
Ko={ke€Z/dZ : (2jo—j1+1)k=v (modd)},

where {u,v} = {0,d/2}. It follows from (4.14) that b*> = €“** = —1 and a = b te" =
+b71. By Lemma 4.5 (i) and (ii), we have

k if k€ K,
ak) +ek =14 ' !
(r—4—06j2)k ifke Ks.
By (4.17), 6j2 = —4 (mod d), hence 7 (k) 4+ exk = rk for k € Z/dZ.

System (4.17) is equivalent to

d
1435 = 3 (mod d),
0

2+3j2=0 (mod d),
ie.,
d 5d
14351 == 14351 =—
+3n 9’ or + 9 9
) 24+ 3j2=2d

24352 =

In the first case, d =2 (mod 6), whence ¢ =3d — 1 =5 (mod 18), and
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R(X) =1+ aX@+t/6 L px(a+1)/3,
In the second case, d =4 (mod 6), whence ¢ = 3d — 1 =11 (mod 18), and
h(X) =1+ aXP@tD/6 4 px2@tD/E g
Remark 4.11. In Lemmas 4.8 — 4.10, it is easy to see that the polynomial h(X) satisfies
ged(h(X), X9 —1) = 1.
For example, in Lemma 4.8, with ¢ = 11 (mod 18), we have
X)) =14 aX@tD/3 4 2 x@+D/6

where a® = —1. Assume to the contrary that h(X) and X! — 1 have a common root
x € Fg2. Then a2z(@t1/6 ig a4 common root of 1+ X — X2 and X© — 1. This is impossible
since ged(1 + X — X2, X6 —1) =1.

4.2. Four classes

All permutation trinomials resulting from Algorithm 2.4 have been determined in
Section 4.1. These permutation trinomials, excluding those that were previously known,
can be categorized into four classes. Each class covers a situation described in a lemma
or several lemmas in Section 4.1. Theorem 2.3 is applied to the situation to set the
conditions on the parameters. More precisely, these conditions are

e ged(rg—1)=1;
ged(eg, (g +1)/d) =1for all 0 < k < d;
ged(h(X), X9 — 1) = 1 (cf. Remark 2.5);
the map k — w(k) + exk permutes Z/dZ.

In Class 4, which covers Lemmas 4.8 — 4.10, the condition ged(eg, (¢ +1)/d) =1 (0 <
k < d) is satisfied by the choice of r (mod 3), and the condition ged(h(X), X9t 1) =1
is automatically satisfied by Remark 4.11.

In each class, the permutation trinomial is

X"h(X171),
where
hX) =1+ aX i ti(et)/d | pxriatiz(atl)/d,

Class 1. (Case 2.1, Lemma 4.1 (ii))
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Conditions: i1 = 0 < iy < (¢+1)/d, j1 = d/2,0 < jo < d,a?' = =1, (1—a)/b € pig+1,
ged(1 + aX(@tD)/2 4 pxiatizlet)/d - xa+l _ 1) =1,
ged(r,q— 1) =1, ged(r — i2, (¢ +1)/d) =1, and

qg+1
d

ks (—jg +r—i2)k+5(k)v

permutes Z/dZ, where

(1 + a)(q+1)/d

v
=€
1—a

and

5(k) = 0 if k is even,
1 if k is odd.

PP: X" (1 4 aX (@ ~1/2 4 px(a=Dliatia(a+1)/d)y,
Class 2. (Case 2.2, Lemma 4.3 (i))

Conditions: iy =0 < iy < (¢+1)/d, j1 = d/2,0 < jo < d, a = —1, (2/b)latV/d = ¢
for some 0 € Z/dZ,

ng(l _ X(Q+1)/2 + in2+j2(l1+1)/d’ xatl _ 1) =1,

ged(r,g — 1) =1, ged(r —ig, (¢ + 1)/d) = ged(r — 242, (¢ + 1)/d) = 1, and

1
<f2j2q; +7 =20 )k+20 if k=0 (mod 2),

k— 1
(—qud tr—is)k+0  ifk#0 (mod?2)

permutes Z/dZ.
PP: X" (1 — X(@*=1)/2 4 px(a-D(iztia(a+1)/d))
Class 3. (Case 2.2, Lemma 4.3 (ii))
Conditions: i1 = 0 < iy < (¢+ 1)/d, j1 = d/3 or 2d/3, 0 < jo < d, a = —1,
(1 =€) /b)atD/d = e for some 1) € Z/bZ,
ged(1 — X (atD/d g pxiatia(atD/d ) yatl 1) — 1,

ged(r,g — 1) =1, ged(r —io, (¢ + 1)/d) = ged(r — 2ia, (¢ + 1)/d) = 1, and
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.q+1 . . q+1 q+1 .
-2 -2 — 2 fk=
( j2 +r w)k‘ i + 2cd(2.d) +2n if k=0 (mod 3),
k= q+1 q+1 qg+1
—j —ig )k —7 iftk#£0 d3
( J2 +r 22) h—g+ wed(2.d) +17 if k# 0 (mod 3)

permutes Z/dZ.
PP: X" (1 — le(qul)/d + bX(qfl)(i2+j2(Q+1)/d))_

Remark. All permutation trinomials in [11, §2] are covered by Class 2 up to equiva-
lence. All permutation trinomials in [11, §3] are covered by Class 3 (with even ¢) up to
equivalence.

Class 4. (Case 3, Lemmas 4.8 — 4.10) Conditions on ¢ and r and the expressions of
h(X) in this class are given in Table 1. There are six cases in Table 1 according to ¢
(mod 18) and r (mod 3). However, the resulting PP, X"h(X?7!), modulo Xa-1 o,
has only two cases according to g (mod 18). More precisely, let ¢, r and h(X) be from
Table 1 and let m = (¢ — 1)/6. If ¢ =5 (mod 18), then

XTh(X9Y) = uX*(1 4 cX™ — AX*) (mod X¢ ' —1),
for some s = —1 (mod 3), u € F, and ¢ € pg. If ¢ =11 (mod 18), then
XTh(XT) = uX®(1 4 cX™ — 2X*) (mod X7 ' —1),

for some s =1 (mod 3), u € F, and ¢ € pg.
To verify the above claim, let [ = (¢+1)/6. When ¢ =5 (mod 18) and » =0 (mod 3),

WX)=1+aX'—a "X = —a ' X (1 + X' = X*)  (mod X — 1),
where ¢ = —a € ug. Hence
th(Xq—1> = _a—er+5l(q—1)(1 +eX™m— C2X2m) (mod qu_l B 1>7

where r + 5l(¢ — 1) = —1 (mod 3).
When ¢ =5 (mod 18) and r =1 (mod 3),

MX)=1+aX* £a*X% = aX?(1 + X' - X)) (mod X9 — 1),
where ¢ = +a € ug. Hence
XTh(X7Y) = aX TN (1 4 eX™ — X)) (mod X1 - 1),

where r 4+ 4l(¢g — 1) = —1 (mod 3).
For the remaining cases in Table 1, the claim is verified similarly.
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Table 1
g, r and h(X) in Class 4.
q r h(X)
g =5 (mod 18) r =0 (mod 3) h(X) =1+ ax(@t1/6 _ q=1x5(a+1)/6
ged(r,g—1) =1 a® =41
r =1 (mod 3) R(X) =1+ aX?2@tD)/3 4 g2 x5(a+1)/6
ged(r,g—1)=1 a® = -1
r=—1 (mod 3) hMX)=1%+ p2x(atD)/6 4 px(atl)/3
ged(r,g—1) =1 b= -1
g =11 (mod 18) r =0 (mod 3) h(X) =1+ aXx5@tD/6 _ =1 x(at+1)/6
ged(r,g—1)=1 a® =+1
r=1 (mod 3) h(X)=1+ax@tD/3 4 g2 x(a+D)/6
ng(Taq_l):l a®=-1
r=—1 (mod 3) h(X) =14 b2x5@+t1)/6 4 px2(a+1)/3

3

o
—

god(r,g— 1) = 1

4.8. Examples

We give an example in each of the first three classes in Section 4.2. (Note that Class 4
is already explicit.) These are rather simple examples and their primary purpose is to
show that none of these classes is empty. Interested readers may explore more elaborate
examples as they wish.

Example 4.12 (Class 1). Let ¢ =1 (mod 4), d = 2,43 = 0,42 =1, j1 = 1, jo = 0. Let
a € Fy, be such that a?~' = —1 and

(1 —|—a>(q+1)/2 B
1—a o

To see that such a exists, first choose ag € IF;Q such that agfl = —1 and let a = tay,

t € F;. Since ((1+a)/(1—a))?™ =1, we have ((1+a)/(1 —a))4*D/2 = £1, e,

1 (q+1)/2
(ﬂ) ! —+1
1 7250,0

The equation

(1 +ta0>(q+1)/2 _q
1—t(lo -

has at most (g + 1)/2 solutions for ¢, where (¢ +1)/2 < g — 1. Hence there exists ¢ € F
such that

(1 + tCI,O (q+1)/2 -
17150,0) o
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Let b € F; be such that (1 —a)/b = —1. Assume that ged(r,¢ — 1) = 1 and ged(r —
1,(¢g+1)/2) =1 (¢ =5 and r = 3 satisfy these conditions). We have

R(X) =14 aX0tilatD/2 L pxiztiz(atD)/2 — 1 4 x@HD/2 _ (1 — )X,

We claim that ged(h(X), X9t —1) = 1. Assume to the contrary that h(X) and X497 —1
have a common root . Then x(471/2 = +1. If 2(4+1)/2 = 1, then 2 = (1 4+ a)/(1 — a),
whence z(1+1)/2 = (1 +a)/(1 — a))@*D/2 = —1, which is a contradiction. If z(a+1)/2 =
—1, then x = (1 — a)/(1 — a) = 1, which is also a contradiction.

In the notation of Class 1,

1
ks (—j2q+ +r—z'2)k:+6(k)v:k,

which permutes Z/2Z. Therefore,
XTh(X9 ) = X"(1+aX@D/2 4 (1 - q)XT )
is a PP of [Fe.

Example 4.13 (Class 2). Let ¢ =1 (mod 4), d =2, i3 =0, 0 < iy < (¢ +1)/2, iz even,
Ji=1,Jj2 =0 Let a = —1and b € F; be such that (2/b)(@+1)/2 = 1. Assume that
ged(r,qg—1) =1, ged(r —i2, (¢ +1)/2) = 1 and ged(r — 242, (¢+1)/2) =1 (¢=5,r=3
and iy = 2 satisfy these conditions). We have

h(X)=1—XtD/2 L pxiz,

We claim that ged(h(X), X9t —1) = 1. Assume to the contrary that h(X) and X9t —1
have a common root x. Then z(4t1/2 = £1. If 2(¢+D/2 = 1 then 0 = h(z) = ba'?,
which is a contradiction. If (971)/2 = —1, then x> = —2/b, whence 1 = (2(4t1)/2)i2 =
(z?2)(@+1)/2 = (—2/p)(@*t1)/2 = _1, which is also a contradiction.

In the notation of Class 2,

q+1

(—2j2 +r—2i2)k+29 if k=0 (mod 2)

.q+1
(—]2

:k7

+r—i2>k+0 if k£0 (mod 2)

which permutes Z/2Z. Therefore,
XTh(X97Y) = X7(1 — X@=D/2 4 pxia(a=1))

is a PP of [Fo.
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Example 4.14 (Class 3). Let ¢ = 22"t d = 3,4, = 0,0 < iy < (¢+1)/3, j1 = 1,
jo = 0. Let a = —1 and b € F be such that ((1 — €)/b)l4tV/3 = 1, where € is an
element of F, of order 3. Assume that io # 0,7, (¢ +1)/3 (mod 3), ged(r,q — 1) = 1,
ged(r —ia, (¢+1)/3) = 1 and ged(r —2is, (g+1)/3) =1 (¢ = 23, r = 3 and iy = 1 satisfy
these conditions). We have

h(X)=1—XWtD/3 L pxiz,

We claim that ged(h(X), X971 —1) = 1. Assume to the contrary that h(X) and X9 —1

have a common root z. Then 2(4t1)/3 = 1, ¢ or e~1. If (@+1/3 = 1 then 0 = h(z) =

bz, which is a contradiction. If z(4+1)/3 = ¢ then z2 = (1 — €)/b, whence €2 =

(z2)@+1)/3 = ((1 — €)/b)@+t1)/3 = 1, which is a contradiction. If x(@+1/3 = ¢=1 then

22 = (1—€e')/b=e"(1—¢€)/b, whence e 2 = ¢ (4T1)/3 which is also a contradiction.
In the notation of Class 3,

1 1 1
(—szqJr —|—7‘—2ig)k—j1qJr + at +2n if k=0 (mod 3)
d ged(2,d)
b q+1 qg+1 q+1
(]2 7 +r m)k 17 +gcd(2,d)+n if k£ 0 (mod 3)
1
— (= ik - o

which permutes Z/3Z. Therefore,

XTh(XTY) = X7(1 — X(@ =D/ 4 pxiala-)
is a PP of [Fe.
4.4. Summary for trinomials

The permutation trinomials of Fj> constructed in Section 4 are tabulated in Table 2.

Note. To see that the previous constructions of permutation trinomials are covered by
the classes in Table 2 up to equivalence, simple transformations are usually needed. For
example, [11, Theorem 2.1] gives a permutation trinomial

f=X"(c+ X Datd)/atk) | X(Q*l)((q2+3Q)/4+k+1))

of F,2, where ¢ = 1 (mod 4), (¢/2)0TV/2 = 1, ged(r,q®> — 1) = 1 and ged(2r — 2k —
1,(¢+1)/2) = 1. We have

f = XxrHaDat3)/a+k) (1 4 x(@®=-1/2 4 cX (= Dl2452(a41)/2)y - (mod x4 _ X),

where is+j2(¢+1)/2 = —(¢+3)/4—Fk (mod g+1). Let 6 € Fj2 be such that §@*-1/2 =
—1. Then
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Table 2

Permutation trinomials of Fg> by Algorithm 2.4.
class PP references for special cases
1 XT(1 4 aX(@=D/2 4 px(a=Dlatiz(at1)/d))

See 4.2 Class 1 for the conditions on the parameters.

2 X"(1— x(a*=1)/2 + bX(qfl)(ifrjz(qul)/d)) [5,6,11,15]
See 4.2 Class 2 for the conditions on the parameters.

3 X"(1 ,le(qul)/d+bx(41*1)(‘i2+j2(q4r1)/d)) [7711]
See 4.2 Class 3 for the conditions on the parameters.

4.1 X"(14 aX(@=1D/6 _ =1 x5(a*=1)/6)
¢=5 (mod 18),7 = 0 (mod 3),ged(r,q — 1) = 1,a® = £1.

4.2 X"(1+ aX5(@®-1)/6 _ a—1X(qL1)/s)
¢ =11 (mod 18),r =0 (mod 3), gcd(r,q — 1) = 1,a® = *1.

STTREX) = X7 (1= X@D/2 4 px a2t D/2)y - (nod X — X)

)

where 7 = 7+ (¢ — 1)((¢ + 3)/4 + k) and b = c5@~D02+52(a+1)/2) This trinomial is
covered by Class 2 with d = 2.

5. Additional examples

In this section we give a few examples using the forward approach of Algorithm 2.4.
We continue to follow the notation of Algorithm 2.4.

0 <ty <q+l,79=0,and eg = r—tg be such that ged(eg, g+1) = 1. Let h € Ly(to, 0;
that is, h € F,2[X] is a self-dual polynomial of degree ¢, such that ged(h, X9T! —1)
Then X"h(X? 1) is a PP of F 2. This is the PP in [17, Theorem 5.1].

Example 5.1. Let r and ¢ be such that ged(r,q—1) = 1. Let d = 1, so = 0 (i.e., h(0) # 0),
’)\0)7
=1.

Example 5.2. Let r and ¢ be such that ged(r,q—1) = 1. Let d = 1, 59 = 0 (i.e., h(0) # 0),
0<to<qg+1l,g+1—ty <7 <tpandey=r—ty+ 7 be such that ged(eg,q+1) = 1.
Let h € Lo(to,0;1), that is, h = P4+ X?"1-70Q, where P,Q € F2[X], deg P = to — 70,
P=P,degQ =10+t — (q+1), Q =Q, ged(h, X9T! —1) = 1. Then X"h(X? ') is a
PP of Fg2. This construction does not seem to have appeared in the literature.

As an explicit instance of Example 5.2, let’s consider the following situation: Let ¢ > 5
be odd, to = (¢+5)/2, 70 = (¢+1)/2, ged(r,q — 1) = ged(r —2,q+1) =1, P =1+ X2,
Q = a’+aX?, where a € F; is such that (14a)@=D/2 = (1 —q)@-1/2 = (—1)(@-D/2,
The number of such elements a is (¢*> — 1)/4; see Lemma 5.3 below. Let

h(X) =P(X) + X0T2Q(X) =1+ X% + X@TD/2(q7 4 0 X?).

We claim that ged(h(X), X9t —1) = 1. Assume to the contrary that h(X) and X9t —1
have a common root z. Then
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Jarne _ 1Hat
ad + az?’
whence
1=art = 1427 )2
N  \al4azx?/
Thus
1 2
T
al + ax?
giving
1Fal _
= 1Fa =—(1Fa)t
Therefore,

1 — ($2)(Q+1)/2 — (_(1 :F a)qfl)(qul)/Z _ (_1)(q+1)/2(1 :F a)(q271)/2 _ _1’

which is a contradiction.
Therefore,

XTR(XTY) = XT(14 X270 4 gax(@-D/2 4 g x(a+5)(a-1)

is a PP of Fe.
Lemma 5.3. Let q be odd and

A={aeFh:(1+ @)@ /2 = (1 — g)(@1/2 = (_1)(@-D)/2),
Then |A] = (¢* — 1)/4.
Proof. Choose u € F, such that w@=D/2 = (=1)(@=1)/2 and let

X ={(z,y) €FL : 2® + 4y = 2u}.
By [3, Lemma 6.55] or [8, Lemma 6.24], |X| = ¢> — 1. Note that for a € F 2,
(1+ a)(qz—l)/Q =(1- a)(qz—l)/Q = (=1)laD/2

l1+a= —-1,.2
@{ = for some (z,y) € X.

1—a=u"1y?

If u is a nonsquare of Fg2, then

35



36 X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 89 (2023) 102193

Table 3
Sequences in Example 5.4.
Sk tr Tk e =1 — 28 — tr + Tk erk ﬂ(k) Ak

0 0 0 0 3 0 0 1
1 1 5 5 1 1 2 262
2 2 2 0 -3 0 1 46
3 0 5 3 1 3 1 A6
4 3 0 0 -3 0 2 y406-2
5 0 7 1 -3 3 2 462

1 1
=—|X|==(¢* - 1).
A = 11X = 7"~ 1)
If u is a square of Fy2, partition X as X = A1 U X, L A3, where

X ={(z,y) € X : 2® # 0,u; y* # 0,u},
Xy ={(z,y) € X :2” =y = u},
Xy ={(z,y) e X :2=0o0r y =0}

Then || + | X + |X5] = ¢® — 1, |X2| = 4 and |X3| = 4. Hence

1 1 1 1
=X+ =X ==(¢*—1— 2=—"(¢*-1).
Al = 3]+ ol = (@ - 1-8)+2= 1@~ 1). D
We conclude this section with a random concrete example.
Example 5.4. Let ¢ =47, d = 6, r = 3, so (¢ + 1)/d = 8. Let 7y be a primitive element

of Fy72 with minimal polynomial X2 + X + 13 over Fy; and let e = (4" ~1/d = 4168,
Choose sequences s, tx, i, 7(k), and A\, as shown in Table 3.

Choose

Lo=1¢ £0(0701 1)a
Ll _ ,YZ _|_X3(,y46~38 +X2) c 51(575;74642),
Ly ="+ X? € £5(2,0:7"%),
L3 — ,746'47 + X2 _|_ X5 . 725 c £3(5’3;,Y46)7
Ly =% € £4(0,0,7%97),
L5 _ 746'46 + X6 4 X7 . 742 c £5(77 1;,}/462).

We have

> MpX'=1Lo=1,

> MpX'= XLy =X + 48X+ X6,



X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 89 (2023) 102193
§ MiQXi _ X2L2 _ ,746~47X2 4 )(47
7
3 46-4 2 2
> MizX' = Ly = y*%47 4 X2 + 42 X5,
7
> MuX'= XLy =°X?,
7

ZM'LSXi _ LS — 746‘46 4 X6 +742X7.

Hence
'1 0 0 746»47 0 ,y46~46'
0 72 0 0 0 0
0 0 ~A46-47 1 0 0
5_ 10 0 0 0 72 0
[Ml ] 10 ,74638 1 0 0 0
0 0 0 ~25 0 0
0 1 0 0 0 1
10 0 0 0 0 742 ]
and
1 —46-8kj
laij] = ~[Mix][y ]

[11+37y 11+25y 31+44y 5410y 5422y 32437
37439y 12432y 22440y 10+8y 35415y 2547y
3y 19432y 36412y 3143y 35432y 20412y
37+39y 35+ 15y 22440y 37+39y 35+ 15y 22+ 40y
24 +6y 24418y 9+ 14y 39441y 14+ 27y 31+ 35y
43436y 4411y 43+36y 4411y 43+36y 4+ 11y
16 8 39 31 39 8
142+ 16y 27+24y 3248y 5431y 20+23y 15+ 397

In conclusion,

3 46(14-87
X3 )" a X0t
0<i<8
0<j<6

is a PP of Fyr2.

Data availability

No data was used for the research described in the article.
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