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focus on PBs of F 2 of the form X" (X%4~1) +q), where n and
d are positive integers and a € IF;}. Our contributions include
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X7 (X4~ + q) is not a PB of F 2 under certain additional
conditions. (1) partially confirms a recent conjecture by Tu et
al. (2) is an extension of a previous result with n = 1.
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1. Introduction

Let Iy be the finite field with ¢ elements and [F; be its multiplicative group. A polyno-
mial f € F,[X] is called a permutation polynomial (PP) of F, if it induces a permutation
of ;. A permutation binomial (PB) of F, is a PP of the form a X™+bX", where a,b € Fy,
m#0,n#0and m Zn (mod g — 1). Permutation binomials are an active topic that
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has attracted much attention. We refer the reader to [1] for a survey on PBs and to [2]
for a survey on PPs. Permutation binomials are complex objects; in general, one can not
expect a simple criterion on the parameters ¢, m,n,a,b for aX™ + bX" to be a PB of
F,. In this paper, we focus on PBs of Fge of the form

faemda(X) = X"(XMY +q) € Fe[X], (1.1)

where n,d € Z*, n #0,d(g—1) #0,n+d(q—1) #0 (mod ¢° — 1), and a € F}.. Here
is an overview of our current knowledge on such PBs.

Result 1.1 (/1/, Corollary 5.3]). Assume e = 2 and a%"' = 1. Then fy2nda =
X"(X4a=Y 4 q) is a PB of F,2 if and only if ged(n,¢ — 1) = 1, ged(n — d,qg + 1) = 1
and (—a)(@tD/gedlat1.d) £ 1

Result 1.2 (/3, Theorem A]). Assume e =2,n =1,d =2 and a?"! # 1. Then fy 2124 =
X (X2~ 4 q) is a PB of Fy2 if and only if ¢ is odd and (—a)@t1/2 = 3.

Result 1.3 (/5, Theorem 1.1]). Assume e = 2, n = 1, d > 2, a?! # 1, and ¢ is large
relative to d. Then f, 2140 = X (X% 1 4 ) is not a PB of F..

Result 1.4 (/6,7]). Assume e = 2, n = 3, d = 2 and a?"" # 1. Then fy2324. =
X3(X2@=V 4 q) is a PB of Fp if and only if ¢ is odd, ¢ = —1 (mod 3) and
(—a)latD)/2 = 1/3

Result 1.5 ([11, Theorem 1]). Assume e = 2, ¢ = 2*™ and d = 3. Then f, 2134 =
X(X3@=D 4+ q) is a PB of Fy2 if and only if ged(n,g — 1) =1, n =3 (mod ¢ + 1) and
a?tt #£ 1.

(Note: In the original statement of Result 1.5 in [11], it is assumed that m > 2. However,
the result also holds for m = 1; see Example 2.4.)

Result 1.6 (//, Theorem 4.2]). Assume e = 2 and d = 1. Then fy 2,14 = X" (X! +a)
is a PB of F2 if and only if ged(n,g — 1) =1, n =1 (mod ¢ + 1) and a?™* # 1.

Result 1.7 (/8]). Assume e > 2, d = 1 and n < ¢° — ¢. For the special cases (q,€e) =
(¢,2),(q,3),(q,4), (p,5), (p,6), where p is a prime, the following statement is true: If
Joenta=X" (X1 +a)isaPBof Fepe, then fyen1.4= X" 4 XM (mod X9 — X)
for some integer h > 0. It is conjectured that the statement is true for all q.

(Note: In Result 1.7, when ¢ = 2, faeni1,a = X"(X + a) is never a PB of Fae, so the
statement is vacuously true.)

Through these results, we begin to understand the roles played by the parameters in
the PBs of the form (1.1). At the same time, as more results on PBs gather, one feels



X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 88 (2023) 102179 3

a need for a properly defined notion of equivalence of PBs that allows us to categorize
the existing results and channel future efforts to PBs that are new under equivalence.
Section 2 is included for this purpose. We define the equivalence among all PBs (not just
those of the form (1.1)). We show that every PB can be brought to a canonical form
which is uniquely determined by a triple of invariants. In particular, we see that the PB
in Result 1.4 is equivalent to a PB in Result 1.2 and the PB in Result 1.5 is equivalent
to a PB in Result 1.6.

Regarding Result 1.5, if we assume e = 2, ¢ = 2?m+1 ¢ = 3 and a9t # 1, [11]
conjectured that fy 2,34 = X™(X3@™1 +a) is not a PB of Fy2 and provided strong
evidence for this conjecture. Note that in this case, d | ¢+ 1. As we will see in Section 2,
when the PB in (1.1) is brought to its canonical form, we always have d | (¢°—1)/(¢—1).

Let us further focus on the case e = 2, and we assume d | ¢+ 1 by the above comment.
In this case, if a9t = 1 or d = 1, all PBs are given by Results 1.1 and 1.6. Therefore,
we assume e = 2, 2 < d | ¢+ 1 and a?" # 1. Under these assumptions and up to
equivalence, the PBs in Result 1.2 form the only known class that contains infinitely
many ¢’s. This leads to the following question.

Question 1.8. Fix integers n > 1 and d > 2. If there are infinitely many pairs (g, a) such
that d | ¢+ 1, a € F, a®™ # 1, and f(X) = foomaa(X) = X"(X4"V +a) is a
PB of Fy2, can we conclude that when ¢ is sufficiently large, f is equivalent the PB in
Result 1.27

In this paper, we prove two nonexistence results that support an affirmative answer
to the above question.

Theorem 1.9. Let ¢ = 2™, n > 1 and a € F, be such that ¢ > (2max{n, 6 — n})* and
a®*t £ 1. Then f(X) = fyom3.4(X) = X (X3 4 a) is not a PB of Fpe.

Theorem 1.9 proves the conjecture of [11] when g is large relative to n.

Theorem 1.10. Letn > 1,d > 2 anda € F, be such that d | ¢+1, ¢ > (2max{n, 2d—n})*
and a9t # 1. Then f(X) = fyomda(X) = X( XU~ 1 q) is not a PB of F 2 if one
of the following conditions is satisfied.

(i) d—n > 1 and either d—n is not a power of p (= charF,) or gcd(d,n+1) is a power
of 2.

(ii) d+2 < mn < 2d and either n — d is not a power of p or ged(d,n — 1) is a power of 2.

(iii) n > 2d, ged(n —d,q — 1) =1 and either n — d is not a power of p or ged(d,n — 1)
s a power of 2.

Remark 1.11. In Theorem 1.10, one can replace the assumption that d | ¢ + 1 with
ged(n,d) = 1. If the f in Theorem 1.10 is a PB of F2, then d | ¢+1 implies ged(n, d) = 1.



4 X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 88 (2023) 102179

However, as we will see in Section 4, the proof of Theorem 1.10 only uses ged(n, d) = 1.
Moreover, the assumption that ged(n,d) = 1 causes no loss of generality. If f; 2 .44 i a
PB of F,2 with ged(n,d) = 4, then ged(d,¢* — 1) = 1. Let &' € Z* be such that 6§’ =
(mod ¢* — 1). Then

fq,Z,n,d,a(Xé/) = fq,2,n/5,d/5,a(X) (mOd Xq2 - X)a
where ged(n/d,d/d) = 1.

Result 1.3 is a special case of Theorem 1.10 (i) with n = 1. In fact, the conditions in
Theorem 1.10 are quite general; they cover almost all cases such that |d — n| is not a
power of p.

Theorems 1.9 and 1.10 are proved in Sections 3 and 4, respectively. The method is
similar to that in [5]. Here we recall the basic strategy.

Let

F(X) = fromdaa(X) = X"(XU™D 4 q) € Fo[X], (1.2)

wheren >1,2<d|g+1landa€ ]F(}. The following theorem follows from a well-known
folklore [9,12,13].

Theorem 1.12. The binomial f(X) in (1.2) is PB of Fp2 if and only if

(i) ged(n,d(g—1)) =1 and
(i) X™(X?+a)?"t permutes py1 = {x € Fro: it =1}

Assume that f(X) in (1.2) is a PB of Fj2. Then for « € pig41,

(2% +a?)  z"(a%2? + 1)

n(,.d q—1 _ — _
" (z* + a) P P P G(z),
where
alX" 4 Xn—d
Write
P(X)
G(X)= —=,
X =2
where



X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 88 (2023) 102179 5

P(X)=a%X%+1,
{ (X)=a + ifn <d.

X) = X2d7n+aXd7n
Q( ;

We assume that a9t # 1, which implies that ged(P, Q) = 1. Thus

n if n>d,
deg G =
2d—n ifn<d.

Let

PX)QY) - P(Y)Q(X)

N@) = X-Y

€ Fp[X,Y], (1.4)
which is the numerator of (G(X) — G(Y))/(X —Y). We have

n+d—1 ifn>d,

deg N(G) <
s ()_{3dn1 if n <d.

Theorem 1.13. Assume that f(X) in (1.2) is a PB of F,2, where ¢ > (2max{n,2d—n})*.
Then N(G) in (1.4) is reducible in F ,[X,Y], where F, is the algebraic closure of F,,.

Proof. We only give a sketch of the proof; the omitted details are given in [5, §3].
There exist [1, 12 € Fg2(X) of degree one such that H :=[; o G ol permutes IF,. Since
deg H = deg G < ¢, by [5, Lemma 3.2], H € F,(X). Let A(X,Y) = N(H) € F,[X,Y], the

numerator of (H(X)—H(Y))/(X —Y). Assume to the contrary that N(G) is irreducible
over F,. Then by [5, Lemma 3.1], A(X,Y) is also irreducible over F,. We have

0:=deg A(X,Y) <2degH — 2 =2degG — 2.

By the Hasse-Weil bound, the number of zeros of A(X,Y) in the projective plane P?(F,)
is at least

g+1—(6—1)(6—2)¢"%

Excluding the zeros at infinity of P?(F,) and on the diagonal {(z,z) : z € F,} of the
affine plane IF,?, we have

{(ey) € B2 a1y, Ala,y) =0} > g — (6 — 1)(5 - 2)qg/* - 26.

The right side is positive since ¢ > 6*. Hence there exists (z,y) € IF(? with & # y such
that A(x,y) = 0. Then H(x) = H(y), which is a contradiction. O
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2. Canonical forms of permutation binomials

For our purpose, a binomial over F, is a polynomial of the
f(X) =aX™+bX" € F [X],

where a,b € F¥, m;n >0, m Z0,n Z 0 and m Z n (mod ¢ — 1). We treat f(X) as

q
a function from [, to F,, that is, we identify f(X) with its image in the quotient ring

F,[X]/(X?—X). Let B, denote the set of all such binomials. Two members f, g € B, are
considered equivalent, denoted as f ~ g, if one can be obtained from the other through
a combination of the following transformations of By:

ay By = By, f(X)—uf(X), uG]F;, (2.1)
BBy — By, f(X)— f(X)?, p=charF, (2.2)
Yo, : By = By, f(X) = f(uX?®), veF!, s€Z™, ged(s,g—1)=1. (2.3

q’

If f,g € B, are equivalent, then f permutes F, if and only if g does. It is clear that 7, s
commutes with o, and 3, and 8o a, = aye o 8. Therefore, for f,g € By, f ~ ¢ if and
only if

g(X) = uf(vX®)" (2.4)

for some u,v € Fy, i > 0 and s > 0 with ged(s,q —1) = 1.
For d | ¢ — 1, define

Ng={1<n<qg—1:n=n"}, (2.5)
where
n* =min{l <n' <g—1:n"=tn (mod q—1) for some t € Z_,
witht=1 (mod (¢ —1)/d) or

n' =tn—d (mod ¢ —1) for some t € Z;
with t = =1 (mod (¢ —1)/d)}.
(Here Z ; denotes the multiplicative group of Z, 1.) Let 0 : Z; ; — Z(Xq_l)/d be the

natural homomorphism (which is onto). Then G := 0~!({£1}) acts on Z,_; as follows:
Forte Gandn € Z41,

{tn ifo(t) =1,
~1.

~

S
|

IS8
e
jaris
>

—~
~

~
I
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Write Zg—1 ={1,2,...,q—1}. Then for n € Z,_1, n* is the least element in the G-orbit
of n. Therefore Ny is the set of least elements of the G-orbits in Z4_.

Example 2.1. Let ¢ = 2 and d = 3. We have 0 : Z}5 — Z2, 071(1) = {1,11}, 0~ 1(-1) =
{-1,4} and G = {1,11,—-1,4}. The G-orbits of Z5 are {1,11}, {2,7,10,5}, {3,9},
{4,14,8,13}, {6}, {15}. Hence N = {1,2,3,4,6,15}.

For d|g—1and n € Ng, let

G4,n = the subgroup of Z generated by (2.6)
{p,—1} ifd=-2n (mod (¢ —1)/d) and ged(n,q—1) =1,
{p} otherwise,

where p = charF,. Let G4, act on F;/(F;)d, where (F;)d ={zd:2 ¢ IF;‘}, as follows:
Gan X F;/(F;)d — F;/(F;)d
(s,aF;)Y)  — a*(F)?, aclF;.
Let Agn C F; be such that {a(IF;)d ta € Agp} is a system of representatives of the
G a,n-orbits in / (]F;)d. Equivalently, let G4, act on Z4 through multiplication and let
¢ be a primitive element of F,. Then Aq,, = {¢°: e € E4,}, where Ey,, is a system of
representatives of the G ,-orbits in Zg4.
We now are ready to state and prove the main result of this section.

Theorem 2.2. Assume that f € B, permutes F,. Then there is a unique triple (d,n,a),
where d | ¢g—1, n € Ny and a € Aq,p, such that

f(X) ~ X™"(X%+a). (2.7)
We call the right side of (2.7) the canonical form of f.

Proof. Existence of (d,n,a).
Write f(X) = agX™ + by X", where ag, by € F; and mg > ng. Let d = ged(mo —
ng,q — 1). Let 7 € Z* be such that

Since ged(r, (¢ — 1)/d) = 1, there exists an integer & > 0 such that s :=r + k(¢ —1)/d
is relatively prime to ¢ — 1. (To see this, use Dirichlet’s theorem on primes in arithmetic
progression or the following simple argument: Let pq, ..., p; be the prime divisors of g—1
that do not divide r and let k = py - - - p;.) Then
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f(X) ~ f(Xs) :Xsno(aOXs(mo—no) + bo) :an(aon+b0),

where n; = sny. We now assume f(X) = X" (agX¢ + by).
Let n = n} € N4. We claim that

F(X) ~ XM (a1 X+ by) (2.8)

for some ay, b, € F;. To prove this claim, we consider two cases.
Case 1. Assume that n = tn; (mod ¢ — 1) for some t € Z | with t =1 (mod (q —
1)/d). Then

F(X) ~ f(XY) = X (agX ™ + bg) = X" (ag X + bo).

Case 2. Assume that n = tn; — d (mod ¢ — 1) for some t € Z; ; with t = —1
(mod (¢ — 1)/d). Then

f(X) ~ f(Xt) _ thl (aoXtd +b0) _ aoth1+td +bOth1
= CL()Xn + bQXn+d = Xn<b0Xd + ao).

Hence (2.8) is proved.
By (2.8), we may assume

FX) = XX+ 0),

where ¢ € F. To prove that f(X) ~ X"(X? + a) for some a € Ag,, again, we consider
two cases.

Case 1. Assume that d # —2n (mod (¢ —1)/d) or ged(n,q —1) # 1. By (2.6), Gg,n, =
(p) < Zj. Then by the definition of Ag,, there exist ¢ € N, a € Ay, and b € F;
such that ¢*' = ab®. Write b = b¥', where b, € Fr. Let s € Z* be such that sp’ =1
(mod ¢ — 1). Then

FX) ~ fOLX5Y = (0 X5)™ (5 X% 4 )
~ X0 X+ ) = XX 4 o)
~ XX+ ) = XX ),
Case 2. Assume that d = —2n (mod (¢ —1)/d) and ged(n,q — 1) = 1. Then G, =

(p,—1) < Z. So there exist i € N, a € Ay, and b € F? such that either ' = ab? or

P = ab?. In the former case, the proof is identical to Case 1. In the latter case, write
b= bfl, where by € F. Let k € Z™" be such that kn =1 (mod ¢—1), and let s = 14 kd.
Then
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sn=n+nkd =n+d (modq—1)
=-n (mod (¢—1)/d).

Hence s = —1 (mod (¢ — 1)/d). It follows that ged(s, (¢ — 1)/d) = 1. We also have
ged(s,d) = ged(1 4 kd, d) = 1. Therefore ged(s,q — 1) = 1. We have

FX) ~ f(X®) = XX 4 ¢) = XomHsd 4 eXom,
In the above,
sn=n+nkd=n+d (modgqg—1)
and
sd=1+kd)d=(1+k(—2n))d=—-d (mod g—1).
Hence
FX) ~ X" 4 XM XX+ 7,
where (¢=1)P" = abd. It follows from Case 1 that
X" (X4 ) ~ XX+ a).
Uniqueness of (d,n,a).
Assume that
f(X)=X"(X+a) ~ X" (XM +a), (2.9)

where d | q— 1, n e Nd, a € Ad,na dy | q— 1, ny € Nd17 a) € Ad1,n1-

In general, for bX™ + c¢X! € By, ged(m — 1,q — 1) is invariant under equivalence.
Therefore, in (2.9), we have d = d;.

By (2.9),

XX+ ap) = uf(uX5)P (2.10)
for some u,v € Fy, i > 0 and s > 0 with ged(s,q — 1) = 1. Expanding (2.10) gives
Xn1+d _|_ alx’nl — axt(n+d) _|_ /Bth7

where t = sp’ and «, 8 € F;. It follows that

(2.11)

n +d=tn+d) (mod g —1),
ny =tn (mod ¢ — 1),
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or
ny +d=tn (mod q — 1), (2.12)
ny =t(n+d) (mod g —1). '
Note that (2.11) is equivalent to
t=1 (mod (¢ — 1)/d), (2.13)
ny =tn (mod g — 1),
and (2.12) is equivalent to
t=-1 (mod (¢ —1)/d), (2.14)
ny =tn—d (mod ¢ — 1).

Since n € Ny, it follows from (2.13), (2.14) and the definition of Ny ((2.5)) that n < nj.
By symmetry, n; < n, whence n = n;.
Now (2.10) becomes
Xn+d + aan _ ’LL[(’UXS)H—HI + a(vXS)n]pl
— P (nd) xsp' (n+d) + uaP P X',

Let t = sp’. Then there are two possibilities.
Case 1. (2.13) holds with n = ny and

(uvpi("+d), uapivpi”) =(1,a1). (2.15)
Case 2. (2.14) holds with n = ny and
(uapivpi”, uvpi(””)) = (1,aq). (2.16)

It suffices to show that in both cases, a and a; are in the same Gg ,,-orbit. (Then a = a;.)
First, assume Case 1. We have
ua? vP'" i
= ——n =a v P
uvpl(n“"d)
which is in the G4 ,-orbit of a.
Next, assume Case 2. (2.14) with n = n; gives

n=tn—d (mod g —1).

{t =—1 (mod (q — 1)/d),
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It follows that n = tn —d = —n — d (mod (¢ — 1)/d), i.e., d = —2n (mod (¢ — 1)/d).
Since f(X) permutes F,, we have ged(n,d) = 1. From n = tn —d (mod ¢ — 1), we have
(t—1)n—d=0 (mod g — 1), whence d | t — 1 and

t—1 -1
Tnfle (mod qT)

In particular, ged(n, (g—1)/d) = 1. Combining this with gcd(n, d) = 1, we have ged(n, g—
1) = 1. Therefore G4, = (p,—1). Now by (2.16),

[
uvP (n+d) _pt pid
= ———=a """
uaP vP "

which is in the G4 ,-orbit of a. O
Example 2.3. Assume that n,d € Z* are such that d | ¢+1,n < 2d, ged(n, ¢>—1) = 1 and
ged(2d—n,¢—1) =1, and let a € F . Since ged(dg—n+d,q—1) = ged(2d—n,q—1) =1

and ged(dqg —n+d,q+1) = ged(n, ¢+ 1) = 1, we have ged(dqg —n +d,¢*> — 1) = 1. Then
in By,

X(XND 4 ) = xdaotn=d 4 g xn

~ X (da—n+d)(dgtn—d) | ,x(dg—n+d)n (X s Xda—ntd)
— x@a*=(n=d)* | x(dg—n+d)n
_ Xd"‘f(nfd)2 +aX(dq—n+d)n
= xn(2d-n) 4 ,x(dg—ntd)n
~ X2y g xdamntd (X" — X)
= X2 (1 4 ax 4D
~ X2d-n(xda=1) 4 g1,

In particular, when n =1, d = 2, g is odd and ¢ # 1 (mod 3), we have
X (X270 4 g) ~ X3(X20D 4 g7,

This shows that the PB in Result 1.4 is equivalent to a PB in Result 1.2.

Example 2.4. We show that the PB in Result 1.5 is equivalent to a PB in Result 1.6. Let
e=2q¢q=2""necZt d=3,ac Fr2, and consider f = fg 2,130 = X7(Xx3@=1 4 q).
Let s = (q+2)/3+ k(q+ 1), where

k= 0 ifm=0,1 (mod 3),
1 ifm=-1 (mod 3).
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We claim that ged(s, ¢? — 1) = 1. Clearly, ged(s,q + 1) = 1. We have

. q+2
ged(s,q — 1) —gcd( 3 + 2k, q 1)
1
= ggcd(q + 2+ 6k, 3¢ —3)
1
= ggcd(q + 2+ 6k, 3(—2 — 6k) — 3)
1
= ggcd(q + 2+ 6k, 9(2k + 1)).

In the above, 9(2k + 1) = 32 or 3%, and

q+2+6k =(3-1)>"+2+6k
=1-2m-3+2+6k (mod 3?)
=3+ 6(k —m)
#0 (mod 3?).

So ged(s,g — 1) =1 and the claim is proved.
Now we have

FX) ~ F(X®) = X (X5307Y 4 o) = X*7(X97! 4 q).
By Result 1.6, X*"(X 97! + a) permutes F2 if and only if
ged(sn,g—1)=1, sn=1 (modqg+1), anda?™ #1,
ie.,
ged(n,g—1)=1, n=3 (modqg+1), anda?! #1,
which are precisely the conditions in Result 1.5.
3. Proof of Theorem 1.9

Theorem 1.9. Let ¢ = 2™, n > 1 and a € F* be such that ¢ > (2max{n,6 —n})* and
a®*t £ 1. Then f(X) = fyon3.4(X) = X (X3 4 a) is not a PB of Fpe.

Assume to the contrary that f is a PB of Fg2. If m is even, by Result 1.5, n > ¢ + 4,
which is a contradiction. So m is odd, and 3 | ¢ + 1. By (1.3),

alX" 4+ X8

GX) = X3+a

(3.1)
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Let

GX) + G(Y)

N(X,Y) = the numerator of iy

(3.2)

By Theorem 1.13, N(X,Y) is reducible over F,. However, we will show that N(X,Y) is
irreducible over Fq, a contradiction. We consider two cases, n > 3 and n < 2, separately.

3.1. Case 1.n>3

Since ged(n,3(¢g — 1)) = 1 (Theorem 1.12), we have n > 3. We have

1 ) ) )
<N(X,Y)::ETIE;Ua%¥"4—X“73XY6—+a)+(an"4—Y“7ﬂ(X34—aﬁ
Xn73 +Yn73 xXn + yn" anﬁ +Yn76
- q+1 x3y3 }
X tv + o Xty X+v
Xn—S + Yn—3
qX3y3
ta X+Y
The homogenization of N(X,Y) is
Xn73 +Yn73 xXn +Yn anﬁ + Yn76
NYX,Y.Z)=a—w—— 75 [ atl> -~ X?’Ys—}Z3
XY, 2) a5 Tl Ty T X 1Y
Xn—S + Yn—S
qX3y3
ta X+y
=Q(2%),
where
Xn73+Yn73 Xn+Yn X 76+Yn76
7) = Z2 qg+1 X3 3 :|
Q) =a—x1v Tl Ty T XtY
. Xn73 + Yn73
qXSY{’y
ta X+v

It suffices to show that N*(X,Y, Z) is irreducible over [F,. We first show that N*(X, Y, Z),
as a polynomial in Z over Fq [X,Y], is primitive, i.e., the ged of its coefficients is 1; that
is,

Xn73 Yn73 xXn Yy anﬁ Ynfﬁ
a(—— a2 T xsysd (3.3)

S S R
x+y 'Y Tx+v X+Y )

Since the polynomials in (3.3) are homogeneous, it suffices to prove (3.3) with Y = 1,
ie.,
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X" 341 o X"+1 X3X"—6+1) .

d( , 4
BN X1 'Y X+ X +1 (3.4)

Let ¢ € F, be a root of (X" ™3 +1)/(X +1). If ( # 1, then ("3 + 1 = 0. Thus

(e XL oAy
X+1 X+1 Jlx=c

= 1 (aq+1(C7L+1)+<3(C7L—6+1>)

Y
-+
-

= 1(aq+1(c3 +1)+1+¢%)
1
1

T

—— (@™ +1)(¢3+ 1) £0.

Y

(Note: ¢3 # 1 since ("3 =1 and ged(n,3(¢g — 1)) = 1.) If { = 1, then n must be odd, in
which case,

(aq+1X"+1 X041

X+1 X+1 )‘x-l:“qH”*”—G:”(aq“H)#O.

This proves (3.4) and hence (3.3).

With (3.3), to prove that N*(X,Y, Z) is irreducible in F,[X, Y, Z], it suffices to show
that it is irreducible in F,(X,Y)[Z]. Let w be a root of N*(X,Y,Z) € F,(X,Y)[Z] and
let 2 = w®. Then z is a root of Q(Z). It suffices to show that [F,(X,Y,z2) : F(X,Y)] =2
and [F,(X,Y,w) : F (X,Y,2)] = 3.

F,(X,Y,w)

3

F,(X,Y,z2)

2

=

Q(va)

3.1.1. Proof that [F,(X,Y,2) : Fo(X,Y)] =2
Assume to the contrary that Q(Z) is reducible over F,(X,Y). Then there exists
A/BeF,(X,Y) (A, B eTF,[X,Y], ged(A, B) = 1) such that

Xn—B + Yn—3 2

q+1X3Y3( )

“ X1y
X+Y X+Y

:<A)2+A A(A+ B)
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In the above equation, the numerator and the denominator on the left side are relatively
prime (by (3.3)), so

X"4+Y" Xn76 + Ynfﬁ
B = g1t1 X3y~ - .
“ xyvy X+Y (8:6)
and
A(A+ B) = o™t X7V (Lf3 * YH)Q
- X+Y
Since ged(A, A+ B) = 1, we may assume that
A= X302,
(3.7)
A+ B=Y3V?
for some U,V € F,[X,Y] with UV = (X"73 + Y"73)/(X +Y). Therefore,
B=X3U?+Y3V2 (3.8)

By (3.8), the coefficient of XY"~2 in B is 0. However, by (3.6), the coefficient of XY "2
in B is either a?t! or a?t! + 1, a contradiction.

3.1.2. Proof that [F4(X,Y,w) :Fo(X,Y,2)] =3
Assume the contrary. Then z is a third power in F,(X,Y,2), that is, there exists
A, B € Fy(X,Y) such that

2= (A+ Bz)*,
ie.,
(A+BZ)*-Z=0 (mod Q(Z)). (3.9)
Setting Y = 1 in (3.9) gives
(A1 +B1Z)* —~Z=0 (mod Q1(2)), (3.10)

where A1(X) = A(X, 1), B1(X) = B(X,1) and

Q1(2) =Q(2)ly=1 = (3.11)
X341 X" +1 X" 641 X" 341
L T [ 12 T2 X37}Z ax32 T 7
Xx+1 2T ) X+1 2T X

We find that
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(A +B2)°-Z= az()iog(f)Xn) + a2(£;(f;(n)2z (mod @1(Z));

where

fo(X) =a?A3X? + a1 1A, BIXO + o't 2B3 X% + a1B} X + a* A} X" (3.12)
+a'TIABYXP + 0t BY X 4 oM TR B X O

f1(X) =a?X® +a?A3B, X% + a* 1A, B} X® + 0> B} X% + 0 A, BIX?
+a'B3X? 4 B3X'? + 62X 4 a?A2B X?" + a A\ BI X + BIX?"
+aABEX3T 4 a?T9A B2X3Y 4 a Ay BIXOT 4 o?T1A B X6
4 a2+quBfX3+2" 4 a1+qB%X3+2n 4 a2+2qB’13X6+2n.

Therefore, fo(X) = f1(X) = 0. (We will not need the fact that f1(X) = 0.) From (3.10),
B; #0. Then fo(X) =0 implies A; # 0. Let C = By /A;. Then fy(X) = 0 becomes

(a® +a'TIX3CH(1 + X"73) = a9 X3 (0T + XP 4 X" 3 4 o' TIX™M 3. (3.13)
In the above

ged(1+ X775, a9 4 X3 1 X7 4 gtoxm)
=ged(14 X3 a9+ X3 414 a'H9X3)
=ged(1+X"77, (a1 + 1)(1+ X7))
=1+ X

Let C = D/E, where D, E € F[X], E is monic and ged(D, E) = 1. Then (3.13) becomes

1 an?) 1+4+q XS Xn73 1+an
(a2E® + a1+qX3D2E)J1r+—X —qixips T +1 = ta . (3.14)
It follows that
1 Xn—3 1 Xn—3

(3.14) and (3.15) force D € FZ and n = 4. So
a’E? +a'MD?X3E = D3 X3 (a1 4+ X)? + X (1 + X)).
Then X | E, say E = XF;. Thus

a®E} + a'TID2XE; = a'D*(1 4+ X)(a'9X2 4 X + alt9). (3.16)



X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 88 (2023) 102179 17

It follows that deg Fhy = 1, say Fh1 = X + ¢, € € Fq. Comparing the coefficients of X3
and X in the above gives

a? =a't?1p? (3.17)

a?e® = glt2ap3,

Hence €3 = 1. Then (a!T9X? + X + a'*9)|x=c = a'T9(1 + €?) + € # 0 since a' 77 £ 1. It
follows from (3.16) that Fy | 1 + X, that is, F1 = X + 1. Now (3.16) becomes

a2 (X +1)2 +a'MID%X = D% (a*HIX? + X + ! T9).

Comparing the coefficients of X in the above gives a't9D? = @9D3, ie., D = a. But
then (3.17) gives a'™? = 1, which is a contradiction.

3.2. Case 2. n <2

When n = 1, the absolute irreducibility (irreducibility over F,) of N(X,Y) follows
from [5, §3]. So we assume n = 2. The arguments are similar to those in Case 1. We have

a?lX3+1
X = - .].
G = XX 4 )" (3.18)
N(X,Y)=a’X3Y3 + ™ XY (X +Y)+ (X +Y)? +aq, (3.19)
and
Q(Z)=aZ? + ("' XY (X +Y)+ (X +Y)*)Z +a?X3Y?, (3.20)

When proving [F,(X,Y,2) : F,(X,Y)] = 2, Equations (3.5), (3.6) and (3.7) are replaced
by

att1X3y3 A(A+ B)

(XY (X +Y)+ (X +Y)32 B2 7
B=a""XY(X+Y)+ (X +Y)?, (3.21)

and

A:UX?), — %
u,v €F,.
A+ B =0Y?3,

Then B = uX? + vY3, which contradicts (3.21) since a'™? # 1.
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When proving [F,(X,Y,w) : F4(X,Y,2)] = 3, Equation (3.12) is replaced by

fo(X) =a?A3 +a'T 1A B2X3 + aIB3X3 + aIB3X* + o' T2IB3 X" + B3 X5 (3.22)
+a*™B{ X5 + a1B XE.

Setting E = Ay /By, the equation fy(X) = 0 becomes
A®E* +a'MIXPE + a1 X*(1+ X)(1 +a'T9X + X?) = 0.
It follows that E € F,[X] and X | E. Write E = X E;. Then
a®E} +a'MXE; +a?(1+ X)(1+a' X + X?) = 0. (3.23)

Thus deg B1 = 1, say By = e(X +¢), e € FZ, ¢ € F,. Comparing the coefficients of X3
and X° in the above gives

a’e® +al =0, (3.24)

a’e3e® + a? = 0.

Hence € = 1. Then (1 + a'™9X + X?)|x_, # 0. It follows form (3.23) that F; | 1 + X,
whence F7 = e(X + 1). Then (3.23) becomes

a?e3(X +1)* +a'eX +a?(1 +a'MX + X?) = 0.

Comparing the coefficients of X in the above gives e = a?. But then (3.24) gives a' 7% = 1,
which is a contradiction.

Remark 3.1. Most likely, Theorem 1.9 also holds for odd gq.
4. Proof of Theorem 1.10

Theorem 1.10. Letn > 1,d > 2 and a € F, be such that d | ¢+1, ¢ > (2max{n, 2d—n})*
and a?' # 1. Then f(X) = fy2mda(X) = X( XU~ 1 q) is not a PB of F 2 if one
of the following conditions is satisfied.

(i) d—n>1 and ged(d,n + 1) is a power of 2.
(ii) d4+2 <n < 2d and ged(d,n — 1) is a power of 2.
(iii) n > 2d, ged(d,n — 1) is a power of 2, and ged(n —d,q— 1) = 1.

Assume to the contrary that f(X) is a PB of Fy 2. Recall that

alX" 4+ X4

GX) = Xd+a
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Let

N(X,Y) = the numerator of w

-Y
and
N*(X,Y, Z) = the homogenization of N(X,Y).

Our objective is to show that N*(X,Y, Z) is irreducible over Fq under the conditions in
Theorem 1.10. We consider two cases: the case d —n > 1, which corresponds to (i) in
Theorem 1.10, and the case n—d > 1, which corresponds to (ii) and (iii) in Theorem 1.10.

4.1. The cased —n >1

We have
G(X) = X% 41
o Xd=n(Xd +q)’
Xd—n _ Yd—n Xn _yn X2d—n _ Y2d—n
N(X,Y) = = a5+ [art Xyt - ]
(XY)= o= —~—+][a X_Vv X_v
den _ Ydfn
—qixdyd> -
¢ X-y
N*(X,Y,Z) = Q(Z%),
where
den o Ydfn Xn _yn X2d7n o Y2d7n
Z - _ 722 |: q+1Xd7nyd7’n _ ]Z
Q) =-—a—x—y e X_v X_v
(4.1)
Xd—n _ Yd—n
_gdxdyd -
“ X_v
We claim that
Xd—n _ Yd—n Xn _yn X2d—n _ Y2d—n
d(i, a1 yd-—nyd-n _ ) — 1 42
8¢ x-vy ¢ X_v X_v (42)

Since the polynomials in (4.2) are homogeneous, it suffices to prove (4.2) with Y = 1,
ie.,

d—n n 2d—n
X1 e X1 X 71):1'

e - 4
ng( X—1 ' X1 X -1 (4.3)

Let ¢ be a oot of (X4 —1)/(X — 1). If ( # 1, then (¢~ = 1. It follows that
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en X" =1 X%
(aq“X X-1  X-1 )‘X:(
1 1
= (@@ =) = (1) = @ =D -1 £ 0.

(Note: ¢™ # 1 since ¢4~ = 1 and ged(n,d) = 1.) If { = 1, then d — n = 0 (mod p),
where p = char 'y, whence
X" _1 X2d—n _

1
g+1 yd—n — ,q+1 _ — (911
(a X — - — )’ _, =an (2d —n) = (a 1)n # 0.

This proves (4.3) and hence (4.2). By (4.2), N*(X,Y, Z) is a primitive polynomial in
Z over Fy[X,Y], ie., the ged of its coefficients in F,[X,Y] is 1. Thus, to prove that
N*(X,Y,Z) is irreducible in F,[X,Y, Z], it suffices to show that it is irreducible in
F,(X,Y)[Z]. Let w be a root of N*(X,Y,Z) for Z and let 2 = w?. Then z is a root
of Q(Z), and it suffices to show that [F,(X,Y,2) : F,(X,Y)] = 2 and [F,(X,Y,w) :

F,(X,Y,2)] = d.

Fq(X, Y, w)

d

Fq(X, Y, 2)

2

=

o(X,Y)

4.1.1. Proof that [F4(X,Y,2) : Fy(X,Y)] =2
Assume to the contrary that Q(Z) is reducible over F,(X,Y).
First assume that q is odd. The discriminant of @ is

Xn _yn X2d7n _ Y2d7n

D= q+1Xd7nyd7n _
“ X_v X_v

den _ Ydfn ) 2

2
_4 q+1Xde<
} @ X_v

By assumption, D = A? for some A € F,[X,Y]. Then

Xd—n _ Yd—n 2
4aq+1Xde (ﬁ) = (44)
Xn _yn X2d7n _ Y2d7n

q+1Xd7nyd7n o A:|

P X-Y X-v
Xn _yn X2d7n o Y2d7n

. q+1Xd7nyd7n _ _ A:| )

P X-Y X-Y

Let § be the ged of the two factors on the right side of (4.4). Then
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n n 2d—n 2d—n
5 anrlefnydan -Y" X -Y

X-Y X-Y
and
d—m _ yd—n
5|X Y
X-Y

It follows from (4.2) that § = 1.
Now from (4.4), we have

Xn _yn X2d—n _ Y2d—n

D S e s <~y TA=X,
n n 2d—n 2d—n

for some U,V € F,[X,Y]. It follows that

Xn _yn X2d7n _ Y2d7n
2qatt xd—nyd-n -2 = x¢ Yy, 4.
a Y~V v U+YV (4.5)

The coefficient of X2~ 1Y9=" on the left side of (4.5) is 2(a?"! — 1) # 0, while the
coefficient of the same term on the right side of (4.5) is 0. This is a contradiction.

Next, assume that q is even. Since Q(Z) is assumed to be reducible over F,(X,Y),
we have

den_|_Yd7n 2
q+1 ydy d
XV () (A A A4t
|:GQ+1Xd—nYd—n Xmyn  XZonog Y2d_”} 2 B B B2
X+Y X+Y

where A, B € F,[X,Y], ged(A, B) = 1. By (4.2), the numerator and the denominator on
the left side are relatively prime. Therefore we may assume

Xn4yn X2d—n + Y2d—n
X+Y X+Y ’
den 4 Ydfn 2
X+Y )

B = aq-l—le—nyd—n

(4.6)
A(A+B) = aq“Xde(
Since ged(A, A+ B) = 1, we have

A=X1U?,
A+ B=Y%V?

where U,V € F,[X,Y], UV = (X4 + Y9 ") /(X +Y). Then
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B =XU? +Yv4v2, (4.7)

The coefficient of X471Y4™" in (4.6) is a?t! + 1 # 0. However, the coefficient of
Xd=lyd=n in (4.7) is 0, which is a contradiction.

4.1.2. Proof that [F,(X,Y,w) : F (X,Y,2)] =d

To prove this claim, it suffices to show that for each prime divisor ¢ of d, z is not a
t-th power in F,(X,Y, 2). In (4.1), divide Q(Z) by its leading coefficient and set Y = 1,
the result is

Xn—1 X?2-n_1
X—-1  X-1
Xd-n _1
X -1

anrlefn

Q(2)=2% - Z+at' X, (4.8)

a

which is irreducible in F,(X)[Z]. Let z; be a root of Q1(Z). By [5, §3.3, Claim IT'], it
suffices to show that for each prime divisor t of d, z; is not a t-th power in Fq(X, 21).
Let () denote the nonidentity automorphism in Aut(F (X, 21)/F4(X)). We have

lel :aq_le, (49)
anrlXd_nX”—l _ X2d-n _ 1
- X -1 X -1 4.10
z21+2z1 = Ydn 1 ( )
X1

Let d —n = p™d', where p = charF,, ptd'. Let ¢ € F, be a primitive d’'th root of unity.
Let p be the place of the rational function field F,(X) which is the zero of X — ¢, and
let B be a place of F,(X, 21) such that B | p. Then B is unramified over p ([10, III 7.3
(b) and 7.8 (b)]). From (4.9) and (4.10), we have

I/p(lel) = 0, (411)
) —pm if d > 1,
vp(z1+ 21) = . L (4.12)
—pm+1 ifd =1,

where v, is the valuation of F,(X) at p. Equation (4.12) is derived as follows: First, note
that in (4.10),

Xd-n 1 o ifd > 1,
w(5——) =1" 1 (4.13)
X -1 p™—1 ifd =1.

Next, write
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X" _—1 X2d—n -1 X" _1 nX2(d—n) -1

g+l xd—n _ — (g9t xd—n _q _xnr_ C (414
“ X1 x_1 ) X1 X1 (4.14)
If d’ > 1, the value of (4.14) at X = ( is
"-1
(anrl — 1)C——1 7é O

If d =1, we have m > 0 (since d—n > 1), whence d—n =0 (mod p). Then n # 0 since
ged(n, d) = 1. Therefore, the value of (4.14) at X =¢ (= 1) is

(a1 —1)n —2(d — n) = (a?™* — 1)n # 0.

Hence we always have

X"—1 X%
Vo (aq“Xd’" - —— ) = 0. (4.15)
Combining (4.10), (4.13) and (4.15) gives (4.12).
Write (4.11) and (4.12) as
vp(z1) +vp(21) = 0,
_ —p™ ifd >1,
l/gp(zq +2z) = )
—pm+1 ifd =1,
where vy is the valuation of Fy(X, 21) at 9. It follows that
i {£p™) if d > 1,
vp(21), vp(21)} = 4.16
e = b (416)
p

Assume to the contrary that 21 is a ¢-th power in F (X, 21). Then ¢ | vp(z1). If & > 1,
then by (4.16), ¢ | p™, whence ¢ | d — n. This is impossible since ¢ | d and ged(n, d) = 1.
Therefore, d = 1 and d —n = p™. By (4.16), t | p™ —1 = d —n — 1. Since t |
ged(d,d —n — 1) = ged(d,n + 1) and ged(d,n + 1) is a power of 2, we have t = 2. It
follows that p is odd.

Recall that Q1(z1) = 0, where Q1(Z) is given in (4.8). Using (4.14) and d — n = p™,
the equation @Q1(z1) = 0 can be written as

ur =34

)

where

u==zr—-"7,
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L (@ xPT —1) < 1 — XX 4 1D)P(X -1t
,y - 5 CL(X _ 1)pm_1 )

and
§=~%— al~txr"tn,
By assumption, there exist a, 3 € F,(X) such that
(au+B)? = u+1,
i.e.,

a?6 + B2 4+ 20fu = u + .

Since u is of degree 2 over F,(X), we have

a®d + 32 =1,
{204,8 =1.
Letting 7 = a/ 8, we have
14072 =297 =0 (4.17)
and
T =20’ (4.18)

Fortunately, (4.17) has an explicit solution

1
YF a(q_l)/QX(Pm+n)/2 ’

= Lyt D2 X (") 2)

Sl

In the above,

m

v Fald D2 x " n)/2

1 m
+1
Sa(X — 1 [(aq xr" 1)

X" —1

— XX +1)P" (X —1)P" !
~ 1 (X+1D"( )

F 2q(atD/2x "4 /2 1);7""71]

Since 7 is square in F,(X) (by (4.18)),

m Xn_l
hi=(1—a?ttXP
(1-a )5

m

XX 4+ 1P (X = 1)P" 7 g 2ex @ Hm/2(x - qyp L

9



X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 88 (2028) 102179 25

where € = +a(?1)/2 is a square in Fq(X), say h = g2, where g € Fq[X] is monic of
degree p™ + (n — 1)/2. Note that

X" -1 mo XPT 1 m X" —1 m X" —1
h = <1 + (X" 4 XP +n) _ qitixp 4 2exP /22 T -

X-1 X -1 X-1
_ (1 4ot X2pm+n—1)
_ aq-‘rl(Xpm 4 _|_Xpm+n—1)
+ QC(X(pm-irn)/? NS X(Spm-&-n)/Q—l)7

which is self-reciprocal. Hence g* = +g, where ¢g* is the reciprocal polynomial of g. (In
fact, if g* = g, but we do not need to be precise.) Let

H=(X-1h
=(1—a™XP") X" — 1)+ XX +1)P7 (X —1)P" 4 2ex P H/2(x —1)P",

Then
H =(1—a™XP" X"t X" HX + 1P (X - 1)P" 4 enX@"+m/271(x )P,
(When computing H’, we used the assumption that m > 0.) Let

K=H-n"'XH = —(1—a®'XP") 4 ex®"+m/2(x _1)P"
14 gt x0T/ x0T ) /24

The reciprocal of K is
K* —=¢—eXP" 4 qatix(®™+n)/2 _ x (™ +n)/24+p™
Since g | K and g is self-reciprocal, we also have g = +¢* | K*. Thus g divides
K+ eK* =1+ 4 (—e+ea?™H)XP"+M/2 — (g3t _1)(1 4 X P H7)/2),
This is a contradiction since

) n—1
<p™ 4+ —— =degg.
5 P+ 5 egyg

4.2. The casen —d > 1

In this case,
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and _ Ynfd Xn_yn Xn72d Yn72d
N(X,Y) =a=— e o [0t S 4 XY
XY)=o———+ [0y + X_v
Xn—d _ Yn—d
quyd
ta X—-v
N*(X,Y,Z)=Q(Z%),
where
and o Ynfd X _yn Xn72d _ Yn72d
Z — —Z2 |: q+1— Xde— Z
Q) =a—%x—v vt X_v
Xn—d _ Yn—d
q vdyd
+ a1 XY ——x_v
We claim that
and _ Ynfd Xn _yn Xn72d o Ynf2d
d( ,qtt! Xde—) -1, 4.19
8¢ x-v % x-v T X_v (4.19)
equivalently,
Xn—d -1 X7 _1 Xn—2d -1
d( at1 Xdi) — 1. 4.2
el x—1 % x_-1 7" X1 (4.20)

Let ¢ be a root of (X"~9 —1)/(X —1). If { # 1, then

Xno1 X 1
(T X T ke T - D T - )

:c—iﬂaq“ ~1)(¢" 1) #0.

If { =1, then n —d =0 (mod p), and

Xn -1 xn2d _q
q+1 d
(a x_1 X Tx 1

)‘X 1zaq+1n+n—2d:n(aq+1—1)7é0.

So (4.20) and (4.19) hold. Therefore Q(Z) is a primitive polynomial over F,[X,Y].
Let

and _ Ynfd —1
7)== ——) e, (4.21)
—2d
=77+ _X”*d—l = Z+ a7 X e F (X)[Z2).

X -1

a

Following the arguments in Section 4.1, we only have to prove the following two claims:
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Claim 1. Q(2) is irreducible in F,(X,Y)[Z].

Claim 2. Let z be a root of @1(Z) and t be a prime divisor of d. Then z is not a t¢-th
power in F, (X, 2).

4.2.1. Proof of Claim 1

Assume to the contrary that Q(Z) is reducible in F,(X,Y)[Z].
First, assume that q is odd. The discriminant of Q(Z) is

aq+1(X'fL _ Yn) Xdyd(X'rL—Zd _ Yn—2d> 2 4aq+1Xdyd(Xn—d _ Yn—d)?
{ X-v X-Y } B (X —Y)2

By assumption, D = A? for some A € F,[X,Y]. Then

4gatl xdyd (Xn—d _ Yn—d)2

X" _yn Xn—2d _ Yn—Qd
e G G Y
(X —v)2 (“ X-v X-v
Xn _yn Xn—2d _ Yn—2d
gttt - 4 xdyd2> - A).
(a X-v © X-V

In the above, the two factors on the right side are relatively prime. (This follows from
(4.19).) Therefore, we may assume

X" _yn Xn72d o Yn72d
ST ') 7 —

aq+1 e v < v + A = 2a(q+1)/2XdU2,
B - (4.22)
—2d —2d
aq+1X; - }{" + xdyd X" < - 5{” — A =20tV 2ydy2,
for some U,V € F,[X,Y] with
Xn—d _ Yn—d

Then

adtl (Xn _ Yn) Xxdyd (Xn72d _ Yn72d)
X-Y X-Y

=g V2(XU2 L YIV?). (4.24)
Let L denote the left side of (4.24). We have

L:aqul(Ynfl +Xyn72+.”+Xn71)

xdyn—d-1 4 Xd+lyn—d—2 + -+ Xn—d-lyd if n > 2d,

_|_
—Xn—dyd=1 _ xn—dtlyd=2 ... _ xd-lyn—d jfq4+2<n<2d.



28 X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 88 (2023) 102179

If d4+2 < n < 2d, the coefficient of X4=1Y"~4 in [ is a?t! —1 # 0, while the coefficient of
Xd=1yn=d on the right side of (4.24) is 0, which is a contradiction. Hence Theorem 1.10
(iii) holds. In particular, ged(n —d, g — 1) = 1.

Since

A(Y,X)?=D(Y,X)=D(X,Y) = A(X,Y)?,
we have A(Y, X) = £A(X,Y). If A(Y,X) = A(X,Y), then by (4.22), XU (X,Y)? =

YU (Y, X)2. Then Y | U(X,Y), which is a contradiction to (4.23). Hence A(Y,X) =
—A(X,Y), and by (4.22),

U(Y,X)? =V(X,Y)2 (4.25)
By (4.25) and (4.23), we have
(n—d—1)/2
UXY)? =a [J] X-eaY)? (4.26)
i=1
(n—d—1)/2
V(X,Y)? =a! (X —¢7'Y)% (4.27)
=1

where o, 3 € F, and ¢; € FZ are such that

xn—d _yn—d (n—d-1)/2 B
v = [[ [(K-eaV)(X-¢'Y)].
i=1
We have
a =U(1,0)? (by (4.26))
=V(0,1)? (by (4.25))
(n—d—1)/2
=o' J[ &* (by(127).
=1
It follows that
(n—d—1)/2
= J] &7 (4.28)
=1

On the other hand, comparing the coefficients of X™~1 in (4.24) gives a9! = aa+1)/2.q,
ie., o = al9t1/2 Since the ¢;’s are roots of X"~¢ — 1, we have
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alatn=d) — (2(n=d) — 1 (hy (4.28)).
This, combined with a(?tD(@=1) = 1 and ged(n —d,q — 1) = 1, implies that a4t = 1,
which is a contradiction.

Next, assume that q is even. Since Q(Z) is assumed to be reducible over F,(X,Y),
there are A, B € F,[X, Y], relatively prime, such that

Xn—d+yn—d 2

a+1 ydy-d

XY () C(A) LA AALB
( g X" +Y" +XdeX"’2d+Y"72d>2 B B B2
“ X yy X+Y

In the above, the numerator and the denominator on the left side are relatively prime
(by (4.19)). Thus

Xn 4 yn" Xn72d + Yn72d
B=qai"' " —— 4 Xxdyd— 4.29
X+vy X+vY (4.29)
and
Xn—d + Yn—d 2
A(A+B) = q+1Xde( )
(A+B)=a X+Y
We may assume that
A= X2,
A+B=YV?
for some U,V € F,[X,Y] such that UV = (X"~¢+Y""4)/(X +Y). Then
B = XU? + Y42, (4.30)
By (4.29),
B=a (YY" Xy 244 X (4.31)

Xclyn—d—l + Xd+1yn—d—2 R Xn—d—lyd if n > 2d7

Xn—dyd=1 4 xn—dtlyd=2 4 ... 4 xd=lyn—d jf 42 <n < 2d.
Since we assume d > 1 and n — d > 1, the coefficient of XY"~2 in (4.31) is a?t1 # 0.
(Even if we allowed d = 1 or n — d = 1, the coefficient of XY"~2 in (4.31) would be
a9t + 1, which is still nonzero.) However, the coefficient of XY"~2 in (4.30) is 0, which

is a contradiction.
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4.2.2. Proof of Claim 2

Recall that Q1(Z) is given in (4.21). Let z be a root of Q1(Z) and t be a prime divisor
of d. Assume to the contrary that z is a t-th power in FQ(X, z). Let U be the nonidentity
automorphism in Aut(F (X, 2)/F,(X)). Then

2z = a7 XY (4.32)

X" -1 xXn2d
qg+1 Xd
I S T
x4
X -1
X1-1 Xn—d
(a?*! — 1) 4(attixdy )T
_ X1 X -1 4.33
== = : (4.33)
xn—d 1

X -1

a

a

Write n — d = p™d’, where p t d’, and let { be a primitive d’th root of unity. Let p be
the place of the rational function field Fq(X ) which is the zero of X — ¢, and let P be a
place of F,(X, z) such that B | p. Then 9 is unramified over p ([10, III 7.3 (b) and 7.8
(b)]). From (4.32) and (4.33), we have

vp(22) =0, (4.34)
—p™ ifd >1,

wi+z=4 " 0 (4.35)
—-pm+1 ifd =1.

(The proof of (4.35) is similar to that of (4.12) and uses the assumption n —d > 1 in the
case d’ = 1.) Therefore,

vp(z) +vp(2) =0,

—p™ ifd > 1,
wpz+2) =3 "
—-pm+1 ifd =1,
and it follows that
{£p™} if d > 1,

{ng(Z),V‘,B(E)} = {{:l:(pm -1} ifd =1.

Since z is t-th power in F (X, z), we have ¢ | vy (2). If d’ > 1, then t = p. It follows from
t | dandt | n—d that ged(n,d) # 1, which is a contradiction. So we must have d’ = 1 and
n—d=p™, m>0.Thent|p™—1=n—d—1.Since t | gcd(n—d—1,d) = ged(n—1,d),
where ged(n — 1,d) is a power of 2 (by assumption), we have ¢ = 2. Consequently, p is
odd.
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The equation Q1(z) = 0 can be written as
u? =4,
where
u=z—7,
L (@ — 1)% + (a1 X4 1)(X —1)P"
7T a(X — 11 ’
and
§=~%—at7tX1,
By assumption, there exist o, 3 € F,(X) such that
(ou+pB)? =u+,
ie.,
a?5+ % + 20Bu = u + 7.
So
a5+ % =7,
{2045 =1.
Letting 7 = /3, we have
1462 =297 =0 (4.36)
and
T =20a°. (4.37)

Equation (4.36) has an explicit solution

N 1 —2a(X —1)P" 1
(a-1)/2 xd/2) _ _
(v £a0EXTE) = anexar hX)

T =

| =

X4 -1
X -1

m

h(X) = (a®tt — 1) + (a1 XY+ 1)(X — 1P 42XV (X —1)P" !
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and € = £al@+1)/2, By (4.37), h(X) is a square in F,[X], say h = g* for some g € F,[X]
with deg g = (d + p™ — 1)/2. Note that

X941 X" -1 Xr" -1 X4-1 X" -1
— 9+l d _ d/2
h(X)=a ( _1+X _1)+( — T_1)+26X —

=at (14 XY (X XU p2e(XY2 o xR A2

which is self-reciprocal. It follows that ¢* = +g, where g* is the reciprocal polynomial
of g. Let

m

H=(X—-1h=(a—1)(X? = 1) + (@™ X+ 1)(X — 1)P" +2eX¥3(X —1)P",

Then

m

H = (a®' - 1)dX ! + 0o dX X - 1)P" +edX V271X —1)P".
Let
K=-H+d 'XH =a%*! — XP" X2 _xP"+4/2,
The reciprocal of K is
K* = —e+eXP" — XU2 4 qatixp"+d/2,
Since g | K, we have g = +¢* | K*. Hence g divides
€K + K* = (a%! — 1) (e + X¥/?).
This is a contradiction since

< ———— =degg.

d _d+pm -1
2 2

The proof of Theorem 1.10 is now complete.
4.3. Final remarks

Theorem 1.10 leaves ample room for improvement, by which we mean nonexistence
results of PB under conditions that are weaker than or not covered by (i) — (iii) in The-
orem 1.10. While some improvements may be obtained by fine tuning the techniques
demonstrated in the present paper, breakthroughs may require new methods or substan-
tially new elements in the current approach.

The cases d — n = +1 appear to be special. These are the two cases not covered by
Theorem 1.10 and there are indeed infinite classes of PBs in these two cases with e = 2
(Results 1.2 and 1.4). A natural question is this: When d —n = +1 and e > 2, are there
infinite classes of PBs of the form fy ¢ n.4,0(X) = X7(XUa=1) 4 q) of Fye?
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