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After a brief review of the existing results on permutation 
binomials of finite fields, we introduce the notion of equivalence 
among permutation binomials (PBs) and describe how to 
bring a PB to its canonical form under equivalence. We then 
focus on PBs of Fq2 of the form Xn(Xd(q−1)+a), where n and 
d are positive integers and a ∈ F∗

q2 . Our contributions include 
two nonexistence results: (1) If q is even and sufficiently large 
and aq+1 �= 1, then Xn(X3(q−1) + a) is not a PB of Fq2 . (2) 
If 2 ≤ d | q + 1, q is sufficiently large and aq+1 �= 1, then 
Xn(Xd(q−1) + a) is not a PB of Fq2 under certain additional 
conditions. (1) partially confirms a recent conjecture by Tu et 
al. (2) is an extension of a previous result with n = 1.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Let Fq be the finite field with q elements and F∗
q be its multiplicative group. A polyno-

mial f ∈ Fq[X] is called a permutation polynomial (PP) of Fq if it induces a permutation 
of Fq. A permutation binomial (PB) of Fq is a PP of the form aXm+bXn, where a, b ∈ F∗

q , 
m �≡ 0, n �≡ 0 and m �≡ n (mod q − 1). Permutation binomials are an active topic that 
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has attracted much attention. We refer the reader to [1] for a survey on PBs and to [2]
for a survey on PPs. Permutation binomials are complex objects; in general, one can not 
expect a simple criterion on the parameters q, m, n, a, b for aXm + bXn to be a PB of 
Fq. In this paper, we focus on PBs of Fqe of the form

fq,e,n,d,a(X) = Xn(Xd(q−1) + a) ∈ Fqe [X], (1.1)

where n, d ∈ Z+, n �≡ 0, d(q − 1) �≡ 0, n + d(q − 1) �≡ 0 (mod qe − 1), and a ∈ F∗
qe . Here 

is an overview of our current knowledge on such PBs.

Result 1.1 ([14, Corollary 5.3]). Assume e = 2 and aq+1 = 1. Then fq,2,n,d,a =
Xn(Xd(q−1) + a) is a PB of Fq2 if and only if gcd(n, q − 1) = 1, gcd(n − d, q + 1) = 1
and (−a)(q+1)/gcd(q+1,d) �= 1.

Result 1.2 ([3, Theorem A]). Assume e = 2, n = 1, d = 2 and aq+1 �= 1. Then fq,2,1,2,a =
X(X2(q−1) + a) is a PB of Fq2 if and only if q is odd and (−a)(q+1)/2 = 3.

Result 1.3 ([5, Theorem 1.1]). Assume e = 2, n = 1, d > 2, aq+1 �= 1, and q is large 
relative to d. Then fq,2,1,d,a = X(Xd(q−1) + a) is not a PB of Fq2 .

Result 1.4 ([6,7]). Assume e = 2, n = 3, d = 2 and aq+1 �= 1. Then fq,2,3,2,a =
X3(X2(q−1) + a) is a PB of Fq2 if and only if q is odd, q ≡ −1 (mod 3) and 
(−a)(q+1)/2 = 1/3.

Result 1.5 ([11, Theorem 1]). Assume e = 2, q = 22m and d = 3. Then fq,2,n,3,a =
Xn(X3(q−1) + a) is a PB of Fq2 if and only if gcd(n, q − 1) = 1, n ≡ 3 (mod q + 1) and 
aq+1 �= 1.

(Note: In the original statement of Result 1.5 in [11], it is assumed that m ≥ 2. However, 
the result also holds for m = 1; see Example 2.4.)

Result 1.6 ([4, Theorem 4.2]). Assume e = 2 and d = 1. Then fq,2,n,1,a = Xn(Xq−1 +a)
is a PB of Fq2 if and only if gcd(n, q − 1) = 1, n ≡ 1 (mod q + 1) and aq+1 �= 1.

Result 1.7 ([8]). Assume e ≥ 2, d = 1 and n < qe − q. For the special cases (q, e) =
(q, 2), (q, 3), (q, 4), (p, 5), (p, 6), where p is a prime, the following statement is true: If 
fq,e,n,1,a = Xn(Xq−1 + a) is a PB of Fqe , then fq,e,n,1,a ≡ Xnqh + aXn (mod Xqe −X)
for some integer h > 0. It is conjectured that the statement is true for all q.

(Note: In Result 1.7, when q = 2, f2,e,n,1,a = Xn(X + a) is never a PB of F2e , so the 
statement is vacuously true.)

Through these results, we begin to understand the roles played by the parameters in 
the PBs of the form (1.1). At the same time, as more results on PBs gather, one feels 



X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 88 (2023) 102179 3

a need for a properly defined notion of equivalence of PBs that allows us to categorize 
the existing results and channel future efforts to PBs that are new under equivalence. 
Section 2 is included for this purpose. We define the equivalence among all PBs (not just 
those of the form (1.1)). We show that every PB can be brought to a canonical form 
which is uniquely determined by a triple of invariants. In particular, we see that the PB 
in Result 1.4 is equivalent to a PB in Result 1.2 and the PB in Result 1.5 is equivalent 
to a PB in Result 1.6.

Regarding Result 1.5, if we assume e = 2, q = 22m+1, d = 3 and aq+1 �= 1, [11]
conjectured that fq,2,n,3,a = Xn(X3(q−1) + a) is not a PB of Fq2 and provided strong 
evidence for this conjecture. Note that in this case, d | q+ 1. As we will see in Section 2, 
when the PB in (1.1) is brought to its canonical form, we always have d | (qe−1)/(q−1).

Let us further focus on the case e = 2, and we assume d | q+1 by the above comment. 
In this case, if aq+1 = 1 or d = 1, all PBs are given by Results 1.1 and 1.6. Therefore, 
we assume e = 2, 2 ≤ d | q + 1 and aq+1 �= 1. Under these assumptions and up to 
equivalence, the PBs in Result 1.2 form the only known class that contains infinitely 
many q’s. This leads to the following question.

Question 1.8. Fix integers n ≥ 1 and d ≥ 2. If there are infinitely many pairs (q, a) such 
that d | q + 1, a ∈ F∗

q2 , aq+1 �= 1, and f(X) = fq,2,n,d,a(X) = Xn(Xd(q−1) + a) is a 
PB of Fq2 , can we conclude that when q is sufficiently large, f is equivalent the PB in 
Result 1.2?

In this paper, we prove two nonexistence results that support an affirmative answer 
to the above question.

Theorem 1.9. Let q = 2m, n ≥ 1 and a ∈ F∗
q2 be such that q ≥ (2 max{n, 6 − n})4 and 

aq+1 �= 1. Then f(X) = fq,2,n,3,a(X) = Xn(X3(q−1) + a) is not a PB of Fq2 .

Theorem 1.9 proves the conjecture of [11] when q is large relative to n.

Theorem 1.10. Let n ≥ 1, d ≥ 2 and a ∈ F∗
q2 be such that d | q+1, q ≥ (2 max{n, 2d −n})4

and aq+1 �= 1. Then f(X) = fq,2,n,d,a(X) = Xn(Xd(q−1) + a) is not a PB of Fq2 if one 
of the following conditions is satisfied.

(i) d −n > 1 and either d −n is not a power of p (= charFq) or gcd(d, n +1) is a power 
of 2.

(ii) d + 2 ≤ n < 2d and either n − d is not a power of p or gcd(d, n − 1) is a power of 2.
(iii) n ≥ 2d, gcd(n − d, q − 1) = 1 and either n − d is not a power of p or gcd(d, n − 1)

is a power of 2.

Remark 1.11. In Theorem 1.10, one can replace the assumption that d | q + 1 with 
gcd(n, d) = 1. If the f in Theorem 1.10 is a PB of Fq2 , then d | q+1 implies gcd(n, d) = 1. 
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However, as we will see in Section 4, the proof of Theorem 1.10 only uses gcd(n, d) = 1. 
Moreover, the assumption that gcd(n, d) = 1 causes no loss of generality. If fq,2,n,d,a is a 
PB of Fq2 with gcd(n, d) = δ, then gcd(δ, q2 − 1) = 1. Let δ′ ∈ Z+ be such that δδ′ ≡ 1
(mod q2 − 1). Then

fq,2,n,d,a(Xδ′) ≡ fq,2,n/δ,d/δ,a(X) (mod Xq2 −X),

where gcd(n/δ, d/δ) = 1.

Result 1.3 is a special case of Theorem 1.10 (i) with n = 1. In fact, the conditions in 
Theorem 1.10 are quite general; they cover almost all cases such that |d − n| is not a 
power of p.

Theorems 1.9 and 1.10 are proved in Sections 3 and 4, respectively. The method is 
similar to that in [5]. Here we recall the basic strategy.

Let

f(X) = fq,2,n,d,a(X) = Xn(Xd(q−1) + a) ∈ Fq2 [X], (1.2)

where n ≥ 1, 2 ≤ d | q+1 and a ∈ F∗
q2 . The following theorem follows from a well-known 

folklore [9,12,13].

Theorem 1.12. The binomial f(X) in (1.2) is PB of Fq2 if and only if

(i) gcd(n, d(q − 1)) = 1 and
(ii) Xn(Xd + a)q−1 permutes μq+1 := {x ∈ F∗

q2 : xq+1 = 1}.

Assume that f(X) in (1.2) is a PB of Fq2 . Then for x ∈ μq+1,

xn(xd + a)q−1 = xn(xdq + aq)
xd + a

= xn(aqxd + 1)
xd(xd + a) = G(x),

where

G(X) = aqXn + Xn−d

Xd + a
. (1.3)

Write

G(X) = P (X)
Q(X) ,

where
{
P (X) = aqXn + Xn−d,

Q(X) = Xd + a,
if n ≥ d,
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{
P (X) = aqXd + 1,
Q(X) = X2d−n + aXd−n,

if n < d.

We assume that aq+1 �= 1, which implies that gcd(P, Q) = 1. Thus

degG =
{
n if n ≥ d,

2d− n if n < d.

Let

N(G) = P (X)Q(Y ) − P (Y )Q(X)
X − Y

∈ Fq2 [X,Y ], (1.4)

which is the numerator of (G(X) −G(Y ))/(X − Y ). We have

degN(G) ≤
{
n + d− 1 if n ≥ d,

3d− n− 1 if n < d.

Theorem 1.13. Assume that f(X) in (1.2) is a PB of Fq2 , where q ≥ (2 max{n, 2d −n})4. 
Then N(G) in (1.4) is reducible in Fq[X, Y ], where Fq is the algebraic closure of Fq.

Proof. We only give a sketch of the proof; the omitted details are given in [5, §3].
There exist l1, l2 ∈ Fq2(X) of degree one such that H := l1 ◦G ◦ l2 permutes Fq. Since 

degH = degG < q, by [5, Lemma 3.2], H ∈ Fq(X). Let A(X, Y ) = N(H) ∈ Fq[X, Y ], the 
numerator of (H(X) −H(Y ))/(X−Y ). Assume to the contrary that N(G) is irreducible 
over Fq. Then by [5, Lemma 3.1], A(X, Y ) is also irreducible over Fq. We have

δ := degA(X,Y ) ≤ 2 degH − 2 = 2 degG− 2.

By the Hasse-Weil bound, the number of zeros of A(X, Y ) in the projective plane P 2(Fq)
is at least

q + 1 − (δ − 1)(δ − 2)q1/2.

Excluding the zeros at infinity of P 2(Fq) and on the diagonal {(x, x) : x ∈ Fq} of the 
affine plane F2

q , we have

|{(x, y) ∈ F2
q : x �= y, A(x, y) = 0}| ≥ q − (δ − 1)(δ − 2)q1/2 − 2δ.

The right side is positive since q ≥ δ4. Hence there exists (x, y) ∈ F2
q with x �= y such 

that A(x, y) = 0. Then H(x) = H(y), which is a contradiction. �
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2. Canonical forms of permutation binomials

For our purpose, a binomial over Fq is a polynomial of the

f(X) = aXm + bXn ∈ Fq[X],

where a, b ∈ F∗
q , m, n > 0, m �≡ 0, n �≡ 0 and m �≡ n (mod q − 1). We treat f(X) as 

a function from Fq to Fq, that is, we identify f(X) with its image in the quotient ring 
Fq[X]/〈Xq−X〉. Let Bq denote the set of all such binomials. Two members f, g ∈ Bq are 
considered equivalent, denoted as f ∼ g, if one can be obtained from the other through 
a combination of the following transformations of Bq:

αu : Bq → Bq, f(X) �→ uf(X), u ∈ F∗
q , (2.1)

β : Bq → Bq, f(X) �→ f(X)p, p = charFq, (2.2)

γv,s : Bq → Bq, f(X) �→ f(vXs), v ∈ F∗
q , s ∈ Z+, gcd(s, q − 1) = 1. (2.3)

If f, g ∈ Bq are equivalent, then f permutes Fq if and only if g does. It is clear that γv,s
commutes with αu and β, and β ◦ αu = αup ◦ β. Therefore, for f, g ∈ Bq, f ∼ g if and 
only if

g(X) = uf(vXs)p
i

(2.4)

for some u, v ∈ F∗
q , i ≥ 0 and s > 0 with gcd(s, q − 1) = 1.

For d | q − 1, define

Nd = {1 ≤ n ≤ q − 1 : n = n∗}, (2.5)

where

n∗ = min
{
1 ≤ n′ ≤ q − 1 : n′ ≡ tn (mod q − 1) for some t ∈ Z×

q−1

with t ≡ 1 (mod (q − 1)/d) or

n′ ≡ tn− d (mod q − 1) for some t ∈ Z×
q−1

with t ≡ −1 (mod (q − 1)/d)
}
.

(Here Z×
q−1 denotes the multiplicative group of Zq−1.) Let θ : Z×

q−1 → Z×
(q−1)/d be the 

natural homomorphism (which is onto). Then G := θ−1({±1}) acts on Zq−1 as follows: 
For t ∈ G and n ∈ Zq−1,

t(n) =
{
tn if θ(t) = 1,
tn− d if θ(t) = −1.
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Write Zq−1 = {1, 2, . . . , q−1}. Then for n ∈ Zq−1, n∗ is the least element in the G-orbit 
of n. Therefore Nd is the set of least elements of the G-orbits in Zq−1.

Example 2.1. Let q = 24 and d = 3. We have θ : Z×
15 → Z×

5 , θ−1(1) = {1, 11}, θ−1(−1) =
{−1, 4} and G = {1, 11, −1, 4}. The G-orbits of Z15 are {1, 11}, {2, 7, 10, 5}, {3, 9}, 
{4, 14, 8, 13}, {6}, {15}. Hence Nd = {1, 2, 3, 4, 6, 15}.

For d | q − 1 and n ∈ Nd, let

Gd,n = the subgroup of Z×
d generated by (2.6){

{p,−1} if d ≡ −2n (mod (q − 1)/d) and gcd(n, q − 1) = 1,
{p} otherwise,

where p = charFq. Let Gd,n act on F∗
q /(F∗

q )d, where (F∗
q )d = {xd : x ∈ F∗

q }, as follows:

Gd,n × F∗
q /(F∗

q )d −→ F∗
q /(F∗

q )d

(s, a(F∗
q )d) �−→ as(F∗

q )d, a ∈ F∗
q .

Let Ad,n ⊂ F∗
q be such that {a(F∗

q )d : a ∈ Ad,n} is a system of representatives of the 
Gd,n-orbits in F∗

q /(F∗
q )d. Equivalently, let Gd,n act on Zd through multiplication and let 

ξ be a primitive element of Fq. Then Ad,n = {ξe : e ∈ Ed,n}, where Ed,n is a system of 
representatives of the Gd,n-orbits in Zd.

We now are ready to state and prove the main result of this section.

Theorem 2.2. Assume that f ∈ Bq permutes Fq. Then there is a unique triple (d, n, a), 
where d | q − 1, n ∈ Nd and a ∈ Ad,n, such that

f(X) ∼ Xn(Xd + a). (2.7)

We call the right side of (2.7) the canonical form of f .

Proof. Existence of (d, n, a).
Write f(X) = a0X

m0 + b0X
n0 , where a0, b0 ∈ F∗

q and m0 > n0. Let d = gcd(m0 −
n0, q − 1). Let r ∈ Z+ be such that

r
m0 − n0

d
≡ 1 (mod q − 1

d
).

Since gcd(r, (q − 1)/d) = 1, there exists an integer k ≥ 0 such that s := r + k(q − 1)/d
is relatively prime to q− 1. (To see this, use Dirichlet’s theorem on primes in arithmetic 
progression or the following simple argument: Let p1, . . . , pl be the prime divisors of q−1
that do not divide r and let k = p1 · · · pl.) Then
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f(X) ∼ f(Xs) = Xsn0(a0X
s(m0−n0) + b0) = Xn1(a0X

d + b0),

where n1 = sn0. We now assume f(X) = Xn1(a0X
d + b0).

Let n = n∗
1 ∈ Nd. We claim that

f(X) ∼ Xn(a1X
d + b1) (2.8)

for some a1, b1 ∈ F∗
q . To prove this claim, we consider two cases.

Case 1. Assume that n ≡ tn1 (mod q − 1) for some t ∈ Z×
q−1 with t ≡ 1 (mod (q −

1)/d). Then

f(X) ∼ f(Xt) = Xtn1(a0X
td + b0) = Xn(a0X

d + b0).

Case 2. Assume that n ≡ tn1 − d (mod q − 1) for some t ∈ Z×
q−1 with t ≡ −1

(mod (q − 1)/d). Then

f(X) ∼ f(Xt) = Xtn1(a0X
td + b0) = a0X

tn1+td + b0X
tn1

= a0X
n + b0X

n+d = Xn(b0Xd + a0).

Hence (2.8) is proved.
By (2.8), we may assume

f(X) = Xn(Xd + c),

where c ∈ F∗
q . To prove that f(X) ∼ Xn(Xd + a) for some a ∈ Ad,n, again, we consider 

two cases.
Case 1. Assume that d �≡ −2n (mod (q− 1)/d) or gcd(n, q− 1) �= 1. By (2.6), Gd,n =

〈p〉 < Z×
d . Then by the definition of Ad,n, there exist i ∈ N, a ∈ Ad,n and b ∈ F∗

q

such that cpi = abd. Write b = bp
i

1 , where b1 ∈ F∗
q . Let s ∈ Z+ be such that spi ≡ 1

(mod q − 1). Then

f(X) ∼ f(b1Xs)p
i

= (b1Xs)np
i

((b1Xs)dp
i

+ cp
i

)

∼ Xn(bdp
i

1 Xd + cp
i

) = Xn(bdXd + cp
i

)

∼ Xn(Xd + cp
i

b−d) = Xn(Xd + a).

Case 2. Assume that d ≡ −2n (mod (q − 1)/d) and gcd(n, q − 1) = 1. Then Gd,n =
〈p, −1〉 < Z×

d . So there exist i ∈ N, a ∈ Ad,n and b ∈ F∗
q such that either cpi = abd or 

c−pi = abd. In the former case, the proof is identical to Case 1. In the latter case, write 
b = bp

i

1 , where b1 ∈ F∗
q . Let k ∈ Z+ be such that kn ≡ 1 (mod q−1), and let s = 1 +kd. 

Then
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sn = n + nkd ≡ n + d (mod q − 1)

≡ −n (mod (q − 1)/d).

Hence s ≡ −1 (mod (q − 1)/d). It follows that gcd(s, (q − 1)/d) = 1. We also have 
gcd(s, d) = gcd(1 + kd, d) = 1. Therefore gcd(s, q − 1) = 1. We have

f(X) ∼ f(Xs) = Xsn(Xsd + c) = Xsn+sd + cXsn.

In the above,

sn = n + nkd ≡ n + d (mod q − 1)

and

sd = (1 + kd)d ≡ (1 + k(−2n))d ≡ −d (mod q − 1).

Hence

f(X) ∼ Xn + cXn+d ∼ Xn(Xd + c−1),

where (c−1)pi = abd. It follows from Case 1 that

Xn(Xd + c−1) ∼ Xn(Xd + a).

Uniqueness of (d, n, a).
Assume that

f(X) = Xn(Xd + a) ∼ Xn1(Xd1 + a1), (2.9)

where d | q − 1, n ∈ Nd, a ∈ Ad,n, d1 | q − 1, n1 ∈ Nd1 , a1 ∈ Ad1,n1 .
In general, for bXm + cX l ∈ Bq, gcd(m − l, q − 1) is invariant under equivalence. 

Therefore, in (2.9), we have d = d1.
By (2.9),

Xn1(Xd + a1) = uf(vXs)p
i

(2.10)

for some u, v ∈ F∗
q , i ≥ 0 and s > 0 with gcd(s, q − 1) = 1. Expanding (2.10) gives

Xn1+d + a1X
n1 = αXt(n+d) + βXtn,

where t = spi and α, β ∈ F∗
q . It follows that

{
n1 + d ≡ t(n + d) (mod q − 1),
n1 ≡ tn (mod q − 1),

(2.11)



10 X.-d. Hou, V. Pallozzi Lavorante / Finite Fields and Their Applications 88 (2023) 102179

or
{
n1 + d ≡ tn (mod q − 1),
n1 ≡ t(n + d) (mod q − 1).

(2.12)

Note that (2.11) is equivalent to

{
t ≡ 1 (mod (q − 1)/d),
n1 ≡ tn (mod q − 1),

(2.13)

and (2.12) is equivalent to

{
t ≡ −1 (mod (q − 1)/d),
n1 ≡ tn− d (mod q − 1).

(2.14)

Since n ∈ Nd, it follows from (2.13), (2.14) and the definition of Nd ((2.5)) that n ≤ n1. 
By symmetry, n1 ≤ n, whence n = n1.

Now (2.10) becomes

Xn+d + a1X
n = u

[
(vXs)n+d + a(vXs)n

]pi

= uvp
i(n+d)Xspi(n+d) + uap

i

vp
inXspin.

Let t = spi. Then there are two possibilities.
Case 1. (2.13) holds with n = n1 and

(uvp
i(n+d), uap

i

vp
in) = (1, a1). (2.15)

Case 2. (2.14) holds with n = n1 and

(uap
i

vp
in, uvp

i(n+d)) = (1, a1). (2.16)

It suffices to show that in both cases, a and a1 are in the same Gd,n-orbit. (Then a = a1.)
First, assume Case 1. We have

a1 = uap
i

vp
in

uvpi(n+d) = ap
i

v−pid,

which is in the Gd,n-orbit of a.
Next, assume Case 2. (2.14) with n = n1 gives

{
t ≡ −1 (mod (q − 1)/d),
n ≡ tn− d (mod q − 1).
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It follows that n ≡ tn − d ≡ −n − d (mod (q − 1)/d), i.e., d ≡ −2n (mod (q − 1)/d). 
Since f(X) permutes Fq, we have gcd(n, d) = 1. From n ≡ tn − d (mod q − 1), we have 
(t − 1)n − d ≡ 0 (mod q − 1), whence d | t − 1 and

t− 1
d

n− 1 ≡ 0 (mod q − 1
d

).

In particular, gcd(n, (q−1)/d) = 1. Combining this with gcd(n, d) = 1, we have gcd(n, q−
1) = 1. Therefore Gd,n = 〈p, −1〉. Now by (2.16),

a1 = uvp
i(n+d)

uapivpin
= a−pi

vp
id,

which is in the Gd,n-orbit of a. �
Example 2.3. Assume that n, d ∈ Z+ are such that d | q+1, n < 2d, gcd(n, q2−1) = 1 and 
gcd(2d −n, q−1) = 1, and let a ∈ F∗

q2 . Since gcd(dq−n +d, q−1) = gcd(2d −n, q−1) = 1
and gcd(dq−n + d, q+1) = gcd(n, q+1) = 1, we have gcd(dq−n + d, q2 − 1) = 1. Then 
in Bq,

Xn(Xd(q−1) + a) = Xdq+n−d + aXn

∼ X(dq−n+d)(dq+n−d) + aX(dq−n+d)n (X �→ Xdq−n+d)

= Xd2q2−(n−d)2 + aX(dq−n+d)n

= Xd2−(n−d)2 + aX(dq−n+d)n

= Xn(2d−n) + aX(dq−n+d)n

∼ X2d−n + aXdq−n+d (Xn �→ X)

= X2d−n(1 + aXd(q−1))

∼ X2d−n(Xd(q−1) + a−1).

In particular, when n = 1, d = 2, q is odd and q �≡ 1 (mod 3), we have

X(X2(q−1) + a) ∼ X3(X2(q−1) + a−1).

This shows that the PB in Result 1.4 is equivalent to a PB in Result 1.2.

Example 2.4. We show that the PB in Result 1.5 is equivalent to a PB in Result 1.6. Let 
e = 2, q = 22m, n ∈ Z+, d = 3, a ∈ F∗

q2 , and consider f = fq,2,n,3,a = Xn(X3(q−1) + a).
Let s = (q + 2)/3 + k(q + 1), where

k =
{

0 if m ≡ 0, 1 (mod 3),
1 if m ≡ −1 (mod 3).
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We claim that gcd(s, q2 − 1) = 1. Clearly, gcd(s, q + 1) = 1. We have

gcd(s, q − 1) = gcd
(q + 2

3 + 2k, q − 1
)

= 1
3gcd(q + 2 + 6k, 3q − 3)

= 1
3gcd(q + 2 + 6k, 3(−2 − 6k) − 3)

= 1
3gcd(q + 2 + 6k, 9(2k + 1)).

In the above, 9(2k + 1) = 32 or 33, and

q + 2 + 6k = (3 − 1)2m + 2 + 6k

≡ 1 − 2m · 3 + 2 + 6k (mod 32)

= 3 + 6(k −m)

�≡ 0 (mod 32).

So gcd(s, q − 1) = 1 and the claim is proved.
Now we have

f(X) ∼ f(Xs) = Xsn(Xs·3(q−1) + a) = Xsn(Xq−1 + a).

By Result 1.6, Xsn(Xq−1 + a) permutes Fq2 if and only if

gcd(sn, q − 1) = 1, sn ≡ 1 (mod q + 1), and aq+1 �= 1,

i.e.,

gcd(n, q − 1) = 1, n ≡ 3 (mod q + 1), and aq+1 �= 1,

which are precisely the conditions in Result 1.5.

3. Proof of Theorem 1.9

Theorem 1.9. Let q = 2m, n ≥ 1 and a ∈ F∗
q2 be such that q ≥ (2 max{n, 6 − n})4 and 

aq+1 �= 1. Then f(X) = fq,2,n,3,a(X) = Xn(X3(q−1) + a) is not a PB of Fq2 .

Assume to the contrary that f is a PB of Fq2 . If m is even, by Result 1.5, n ≥ q + 4, 
which is a contradiction. So m is odd, and 3 | q + 1. By (1.3),

G(X) = aqXn + Xn−3

X3 + a
. (3.1)
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Let

N(X,Y ) = the numerator of G(X) + G(Y )
X + Y

. (3.2)

By Theorem 1.13, N(X, Y ) is reducible over Fq. However, we will show that N(X, Y ) is 
irreducible over Fq, a contradiction. We consider two cases, n ≥ 3 and n ≤ 2, separately.

3.1. Case 1. n ≥ 3

Since gcd(n, 3(q − 1)) = 1 (Theorem 1.12), we have n > 3. We have

N(X,Y ) = 1
X + Y

[
(aqXn + Xn−3)(Y 3 + a) + (aqY n + Y n−3)(X3 + a)

]

= a
Xn−3 + Y n−3

X + Y
+

[
aq+1X

n + Y n

X + Y
+ X3Y 3X

n−6 + Y n−6

X + Y

]

+ aqX3Y 3X
n−3 + Y n−3

X + Y
.

The homogenization of N(X, Y ) is

N∗(X,Y, Z) = a
Xn−3 + Y n−3

X + Y
Z6 +

[
aq+1X

n + Y n

X + Y
+ X3Y 3X

n−6 + Y n−6

X + Y

]
Z3

+ aqX3Y 3X
n−3 + Y n−3

X + Y

=Q(Z3),

where

Q(Z) = a
Xn−3 + Y n−3

X + Y
Z2 +

[
aq+1X

n + Y n

X + Y
+ X3Y 3X

n−6 + Y n−6

X + Y

]
Z

+ aqX3Y 3X
n−3 + Y n−3

X + Y
.

It suffices to show that N∗(X, Y, Z) is irreducible over Fq. We first show that N∗(X, Y, Z), 
as a polynomial in Z over Fq[X, Y ], is primitive, i.e., the gcd of its coefficients is 1; that 
is,

gcd
(Xn−3 + Y n−3

X + Y
, aq+1X

n + Y n

X + Y
+ X3Y 3X

n−6 + Y n−6

X + Y

)
= 1. (3.3)

Since the polynomials in (3.3) are homogeneous, it suffices to prove (3.3) with Y = 1, 
i.e.,
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gcd
(Xn−3 + 1

X + 1 , aq+1X
n + 1

X + 1 + X3X
n−6 + 1
X + 1

)
= 1. (3.4)

Let ζ ∈ Fq be a root of (Xn−3 + 1)/(X + 1). If ζ �= 1, then ζn−3 + 1 = 0. Thus

(
aq+1X

n + 1
X + 1 + X3X

n−6 + 1
X + 1

)∣∣∣
X=ζ

= 1
ζ + 1

(
aq+1(ζn + 1) + ζ3(ζn−6 + 1)

)
= 1

ζ + 1
(
aq+1(ζ3 + 1) + 1 + ζ3)

= 1
ζ + 1(aq+1 + 1)(ζ3 + 1) �= 0.

(Note: ζ3 �= 1 since ζn−3 = 1 and gcd(n, 3(q− 1)) = 1.) If ζ = 1, then n must be odd, in 
which case,

(
aq+1X

n + 1
X + 1 + X3X

n−6 + 1
X + 1

)∣∣∣
X=1

= aq+1n + n− 6 = n(aq+1 + 1) �= 0.

This proves (3.4) and hence (3.3).
With (3.3), to prove that N∗(X, Y, Z) is irreducible in Fq[X, Y, Z], it suffices to show 

that it is irreducible in Fq(X, Y )[Z]. Let w be a root of N∗(X, Y, Z) ∈ Fq(X, Y )[Z] and 
let z = w3. Then z is a root of Q(Z). It suffices to show that [Fq(X, Y, z) : Fq(X, Y )] = 2
and [Fq(X, Y, w) : Fq(X, Y, z)] = 3.

.......

.......

.......

.......

.......

.......

.......

.......

.

.......

.......

.......

.......

.......

.......

.......

.......

.

Fq(X,Y )

Fq(X,Y, z)

Fq(X,Y,w)

2

3

3.1.1. Proof that [Fq(X, Y, z) : Fq(X, Y )] = 2
Assume to the contrary that Q(Z) is reducible over Fq(X, Y ). Then there exists 

A/B ∈ Fq(X, Y ) (A, B ∈ Fq[X, Y ], gcd(A, B) = 1) such that

aq+1X3Y 3
(Xn−3 + Y n−3

X + Y

)2

(
aq+1X

n + Y n

X + Y
+ X3Y 3X

n−6 + Y n−6

X + Y

)2 =
(A
B

)2
+ A

B
= A(A + B)

B2 . (3.5)
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In the above equation, the numerator and the denominator on the left side are relatively 
prime (by (3.3)), so

B = aq+1X
n + Y n

X + Y
+ X3Y 3X

n−6 + Y n−6

X + Y
(3.6)

and

A(A + B) = aq+1X3Y 3
(Xn−3 + Y n−3

X + Y

)2
.

Since gcd(A, A + B) = 1, we may assume that

{
A = X3U2,

A + B = Y 3V 2,
(3.7)

for some U, V ∈ Fq[X, Y ] with UV = (Xn−3 + Y n−3)/(X + Y ). Therefore,

B = X3U2 + Y 3V 2. (3.8)

By (3.8), the coefficient of XY n−2 in B is 0. However, by (3.6), the coefficient of XY n−2

in B is either aq+1 or aq+1 + 1, a contradiction.

3.1.2. Proof that [Fq(X, Y, w) : Fq(X, Y, z)] = 3
Assume the contrary. Then z is a third power in Fq(X, Y, z), that is, there exists 

A, B ∈ Fq(X, Y ) such that

z = (A + Bz)3,

i.e.,

(A + BZ)3 − Z ≡ 0 (mod Q(Z)). (3.9)

Setting Y = 1 in (3.9) gives

(A1 + B1Z)3 − Z ≡ 0 (mod Q1(Z)), (3.10)

where A1(X) = A(X, 1), B1(X) = B(X, 1) and

Q1(Z) = Q(Z)|Y =1 = (3.11)

a
Xn−3 + 1
X + 1 Z2 +

[
aq+1X

n + 1
X + 1 + X3X

n−6 + 1
X + 1

]
Z + aqX3X

n−3 + 1
X + 1 .

We find that
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(A1 + B1Z)3 − Z ≡ f0(X)
a2(X3 + Xn) + f1(X)

a2(X3 + Xn)2Z (mod Q1(Z)),

where

f0(X) = a2A3
1X

3 + a1+qA1B
2
1X

6 + a1+2qB3
1X

6 + aqB3
1X

9 + a2A3
1X

n (3.12)

+ a1+qA1B
2
1X

3+n + aqB3
1X

3+n + a1+2qB3
1X

6+n,

f1(X) = a2X6 + a2A2
1B1X

6 + a2+qA1B
2
1X

6 + a2+2qB3
1X

6 + aA1B
2
1X

9

+ a1+qB3
1X

9 + B3
1X

12 + a2X2n + a2A2
1B1X

2n + aA1B
2
1X

2n + B3
1X

2n

+ aA1B
2
1X

3+n + a2+qA1B
2
1X

3+n + aA1B
2
1X

6+n + a2+qA1B
2
1X

6+n

+ a2+qA1B
2
1X

3+2n + a1+qB3
1X

3+2n + a2+2qB3
1X

6+2n.

Therefore, f0(X) = f1(X) = 0. (We will not need the fact that f1(X) = 0.) From (3.10), 
B1 �= 0. Then f0(X) = 0 implies A1 �= 0. Let C = B1/A1. Then f0(X) = 0 becomes

(a2 + a1+qX3C2)(1 + Xn−3) = aqX3(a1+q + X3 + Xn−3 + a1+qXn)C3. (3.13)

In the above

gcd(1 + Xn−3, a1+q + X3 + Xn−3 + a1+qXn)

= gcd(1 + Xn−3, a1+q + X3 + 1 + a1+qX3)

= gcd(1 + Xn−3, (a1+q + 1)(1 + X3))

= 1 + X.

Let C = D/E, where D, E ∈ Fq[X], E is monic and gcd(D, E) = 1. Then (3.13) becomes

(a2E3 + a1+qX3D2E)1 + Xn−3

1 + X
= aqX3D3 a1+q + X3 + Xn−3 + a1+qXn

1 + X
. (3.14)

It follows that

1 + Xn−3

1 + X

∣∣∣ D and D
∣∣∣ 1 + Xn−3

1 + X
. (3.15)

(3.14) and (3.15) force D ∈ F
∗
q and n = 4. So

a2E3 + a1+qD2X3E = aqD3X3(a1+q(1 + X)3 + X(1 + X)).

Then X | E, say E = XE1. Thus

a2E3
1 + a1+qD2XE1 = aqD3(1 + X)(a1+qX2 + X + a1+q). (3.16)
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It follows that degE1 = 1, say E1 = X + ε, ε ∈ Fq. Comparing the coefficients of X3

and X0 in the above gives

a2 = a1+2qD3, (3.17)

a2ε3 = a1+2qD3.

Hence ε3 = 1. Then (a1+qX2 + X + a1+q)|X=ε = a1+q(1 + ε2) + ε �= 0 since a1+q �= 1. It 
follows from (3.16) that E1 | 1 + X, that is, E1 = X + 1. Now (3.16) becomes

a2(X + 1)2 + a1+qD2X = aqD3(a1+qX2 + X + a1+q).

Comparing the coefficients of X in the above gives a1+qD2 = aqD3, i.e., D = a. But 
then (3.17) gives a1+q = 1, which is a contradiction.

3.2. Case 2. n ≤ 2

When n = 1, the absolute irreducibility (irreducibility over Fq) of N(X, Y ) follows 
from [5, §3]. So we assume n = 2. The arguments are similar to those in Case 1. We have

G(X) = aqX3 + 1
X(X3 + a) , (3.18)

N(X,Y ) = aqX3Y 3 + aq+1XY (X + Y ) + (X + Y )3 + a, (3.19)

and

Q(Z) = aZ2 + (aq+1XY (X + Y ) + (X + Y )3)Z + aqX3Y 3. (3.20)

When proving [Fq(X, Y, z) : Fq(X, Y )] = 2, Equations (3.5), (3.6) and (3.7) are replaced 
by

aq+1X3Y 3

(aq+1XY (X + Y ) + (X + Y )3)2 = A(A + B)
B2 ,

B = aq+1XY (X + Y ) + (X + Y )3, (3.21)

and

{
A = uX3,

A + B = vY 3,
u, v ∈ F

∗
q .

Then B = uX3 + vY 3, which contradicts (3.21) since a1+q �= 1.
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When proving [Fq(X, Y, w) : Fq(X, Y, z)] = 3, Equation (3.12) is replaced by

f0(X) = a2A3
1 + a1+qA1B

2
1X

3 + aqB3
1X

3 + aqB3
1X

4 + a1+2qB3
1X

4 + aqB3
1X

5 (3.22)

+ a1+2qB3
1X

5 + aqB3
1X

6.

Setting E = A1/B1, the equation f0(X) = 0 becomes

a2E3 + a1+qX3E + aqX3(1 + X)(1 + a1+qX + X2) = 0.

It follows that E ∈ Fq[X] and X | E. Write E = XE1. Then

a2E3
1 + a1+qXE1 + aq(1 + X)(1 + a1+qX + X2) = 0. (3.23)

Thus degE1 = 1, say E1 = e(X + ε), e ∈ F
∗
q , ε ∈ Fq. Comparing the coefficients of X3

and X0 in the above gives

a2e3 + aq = 0, (3.24)

a2e3ε3 + aq = 0.

Hence ε3 = 1. Then (1 + a1+qX + X2)|X=ε �= 0. It follows form (3.23) that E1 | 1 + X, 
whence E1 = e(X + 1). Then (3.23) becomes

a2e3(X + 1)2 + a1+qeX + aq(1 + a1+qX + X2) = 0.

Comparing the coefficients of X in the above gives e = aq. But then (3.24) gives a1+q = 1, 
which is a contradiction.

Remark 3.1. Most likely, Theorem 1.9 also holds for odd q.

4. Proof of Theorem 1.10

Theorem 1.10. Let n ≥ 1, d ≥ 2 and a ∈ F∗
q2 be such that d | q+1, q ≥ (2 max{n, 2d −n})4

and aq+1 �= 1. Then f(X) = fq,2,n,d,a(X) = Xn(Xd(q−1) + a) is not a PB of Fq2 if one 
of the following conditions is satisfied.

(i) d − n > 1 and gcd(d, n + 1) is a power of 2.
(ii) d + 2 ≤ n < 2d and gcd(d, n − 1) is a power of 2.
(iii) n ≥ 2d, gcd(d, n − 1) is a power of 2, and gcd(n − d, q − 1) = 1.

Assume to the contrary that f(X) is a PB of Fq2 . Recall that

G(X) = aqXn + Xn−d

Xd + a
.
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Let

N(X,Y ) = the numerator of G(X) −G(Y )
X − Y

and

N∗(X,Y, Z) = the homogenization of N(X,Y ).

Our objective is to show that N∗(X, Y, Z) is irreducible over Fq under the conditions in 
Theorem 1.10. We consider two cases: the case d − n > 1, which corresponds to (i) in 
Theorem 1.10, and the case n −d > 1, which corresponds to (ii) and (iii) in Theorem 1.10.

4.1. The case d − n > 1

We have

G(X) = aqXd + 1
Xd−n(Xd + a) ,

N(X,Y ) = − a
Xd−n − Y d−n

X − Y
+

[
aq+1Xd−nY d−nX

n − Y n

X − Y
− X2d−n − Y 2d−n

X − Y

]

− aqXdY dX
d−n − Y d−n

X − Y
,

N∗(X,Y, Z) = Q(Zd),

where

Q(Z) = − a
Xd−n − Y d−n

X − Y
Z2 +

[
aq+1Xd−nY d−nX

n − Y n

X − Y
− X2d−n − Y 2d−n

X − Y

]
Z

(4.1)

− aqXdY dX
d−n − Y d−n

X − Y
.

We claim that

gcd
(Xd−n − Y d−n

X − Y
, aq+1Xd−nY d−nX

n − Y n

X − Y
− X2d−n − Y 2d−n

X − Y

)
= 1. (4.2)

Since the polynomials in (4.2) are homogeneous, it suffices to prove (4.2) with Y = 1, 
i.e.,

gcd
(Xd−n − 1

X − 1 , aq+1Xd−nX
n − 1

X − 1 − X2d−n − 1
X − 1

)
= 1. (4.3)

Let ζ be a root of (Xd−n − 1)/(X − 1). If ζ �= 1, then ζd−n = 1. It follows that
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(
aq+1Xd−nX

n − 1
X − 1 − X2d−n − 1

X − 1

)∣∣∣
X=ζ

= 1
ζ − 1

(
aq+1(ζn − 1) − (ζn − 1)

)
= 1

ζ − 1(aq+1 − 1)(ζn − 1) �= 0.

(Note: ζn �= 1 since ζd−n = 1 and gcd(n, d) = 1.) If ζ = 1, then d − n ≡ 0 (mod p), 
where p = charFq, whence

(
aq+1Xd−nX

n − 1
X − 1 − X2d−n − 1

X − 1

)∣∣∣
X=1

= aq+1n− (2d− n) = (aq+1 − 1)n �= 0.

This proves (4.3) and hence (4.2). By (4.2), N∗(X, Y, Z) is a primitive polynomial in 
Z over Fq[X, Y ], i.e., the gcd of its coefficients in Fq[X, Y ] is 1. Thus, to prove that 
N∗(X, Y, Z) is irreducible in Fq[X, Y, Z], it suffices to show that it is irreducible in 
Fq(X, Y )[Z]. Let w be a root of N∗(X, Y, Z) for Z and let z = wd. Then z is a root 
of Q(Z), and it suffices to show that [Fq(X, Y, z) : Fq(X, Y )] = 2 and [Fq(X, Y, w) :
Fq(X, Y, z)] = d.

.......

.......

.......

.......

.......

.......

.......

.......

.

.......

.......

.......

.......

.......

.......

.......

.......

.

Fq(X,Y )

Fq(X,Y, z)

Fq(X,Y,w)

2

d

4.1.1. Proof that [Fq(X, Y, z) : Fq(X, Y )] = 2
Assume to the contrary that Q(Z) is reducible over Fq(X, Y ).
First assume that q is odd. The discriminant of Q is

D =
[
aq+1Xd−nY d−nX

n − Y n

X − Y
− X2d−n − Y 2d−n

X − Y

]2
− 4aq+1XdY d

(Xd−n − Y d−n

X − Y

)2
.

By assumption, D = Δ2 for some Δ ∈ Fq[X, Y ]. Then

4aq+1XdY d
(Xd−n − Y d−n

X − Y

)2
= (4.4)

[
aq+1Xd−nY d−nX

n − Y n

X − Y
− X2d−n − Y 2d−n

X − Y
+ Δ

]

·
[
aq+1Xd−nY d−nX

n − Y n

X − Y
− X2d−n − Y 2d−n

X − Y
− Δ

]
.

Let δ be the gcd of the two factors on the right side of (4.4). Then
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δ
∣∣∣ aq+1Xd−nY d−nX

n − Y n

X − Y
− X2d−n − Y 2d−n

X − Y

and

δ
∣∣ Xd−n − Y d−n

X − Y
.

It follows from (4.2) that δ = 1.
Now from (4.4), we have

⎧⎪⎪⎨
⎪⎪⎩
aq+1Xd−nY d−nX

n − Y n

X − Y
− X2d−n − Y 2d−n

X − Y
+ Δ = XdU,

aq+1Xd−nY d−nX
n − Y n

X − Y
− X2d−n − Y 2d−n

X − Y
− Δ = Y dV,

for some U, V ∈ Fq[X, Y ]. It follows that

2aq+1Xd−nY d−nX
n − Y n

X − Y
− 2X

2d−n − Y 2d−n

X − Y
= XdU + Y dV. (4.5)

The coefficient of Xd−1Y d−n on the left side of (4.5) is 2(aq+1 − 1) �= 0, while the 
coefficient of the same term on the right side of (4.5) is 0. This is a contradiction.

Next, assume that q is even. Since Q(Z) is assumed to be reducible over Fq(X, Y ), 
we have

aq+1XdY d
(Xd−n + Y d−n

X + Y

)2

[
aq+1Xd−nY d−nX

n + Y n

X + Y
+ X2d−n + Y 2d−n

X + Y

]2
=

(A
B

)2
+ A

B
= A(A + B)

B2 ,

where A, B ∈ Fq[X, Y ], gcd(A, B) = 1. By (4.2), the numerator and the denominator on 
the left side are relatively prime. Therefore we may assume

B = aq+1Xd−nY d−nX
n + Y n

X + Y
+ X2d−n + Y 2d−n

X + Y
, (4.6)

A(A + B) = aq+1XdY d
(Xd−n + Y d−n

X + Y

)2
.

Since gcd(A, A + B) = 1, we have

{
A = XdU2,

A + B = Y dV 2,

where U, V ∈ Fq[X, Y ], UV = (Xd−n + Y d−n)/(X + Y ). Then
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B = XdU2 + Y dV 2. (4.7)

The coefficient of Xd−1Y d−n in (4.6) is aq+1 + 1 �= 0. However, the coefficient of 
Xd−1Y d−n in (4.7) is 0, which is a contradiction.

4.1.2. Proof that [Fq(X, Y, w) : Fq(X, Y, z)] = d

To prove this claim, it suffices to show that for each prime divisor t of d, z is not a 
t-th power in Fq(X, Y, z). In (4.1), divide Q(Z) by its leading coefficient and set Y = 1, 
the result is

Q1(Z) = Z2 −
aq+1Xd−nX

n − 1
X − 1 − X2d−n − 1

X − 1

a
Xd−n − 1
X − 1

Z + aq−1Xd, (4.8)

which is irreducible in Fq(X)[Z]. Let z1 be a root of Q1(Z). By [5, §3.3, Claim II′], it 
suffices to show that for each prime divisor t of d, z1 is not a t-th power in Fq(X, z1).

Let ( ) denote the nonidentity automorphism in Aut(Fq(X, z1)/Fq(X)). We have

z1z̄1 = aq−1Xd, (4.9)

z1 + z̄1 =
aq+1Xd−nX

n − 1
X − 1 − X2d−n − 1

X − 1

a
Xd−n − 1
X − 1

. (4.10)

Let d − n = pmd′, where p = charFq, p � d′. Let ζ ∈ Fq be a primitive d′th root of unity. 
Let p be the place of the rational function field Fq(X) which is the zero of X − ζ, and 
let P be a place of Fq(X, z1) such that P | p. Then P is unramified over p ([10, III 7.3 
(b) and 7.8 (b)]). From (4.9) and (4.10), we have

νp(z1z̄1) = 0, (4.11)

νp(z1 + z̄1) =
{
−pm if d′ > 1,
−pm + 1 if d′ = 1,

(4.12)

where νp is the valuation of Fq(X) at p. Equation (4.12) is derived as follows: First, note 
that in (4.10),

νp

(Xd−n − 1
X − 1

)
=

{
pm if d′ > 1,
pm − 1 if d′ = 1.

(4.13)

Next, write
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aq+1Xd−nX
n − 1

X − 1 − X2d−n − 1
X − 1 = (aq+1Xd−n − 1)X

n − 1
X − 1 −XnX

2(d−n) − 1
X − 1 . (4.14)

If d′ > 1, the value of (4.14) at X = ζ is

(aq+1 − 1)ζ
n − 1
ζ − 1 �= 0.

If d′ = 1, we have m > 0 (since d −n > 1), whence d −n ≡ 0 (mod p). Then n �≡ 0 since 
gcd(n, d) = 1. Therefore, the value of (4.14) at X = ζ (= 1) is

(aq+1 − 1)n− 2(d− n) = (aq+1 − 1)n �= 0.

Hence we always have

νp

(
aq+1Xd−nX

n − 1
X − 1 − X2d−n − 1

X − 1

)
= 0. (4.15)

Combining (4.10), (4.13) and (4.15) gives (4.12).
Write (4.11) and (4.12) as

νP(z1) + νP(z̄1) = 0,

νP(z1 + z̄1) =
{
−pm if d′ > 1,
−pm + 1 if d′ = 1,

where νP is the valuation of Fq(X, z1) at P. It follows that

{νP(z1), νP(z̄1)} =
{
{±pm} if d′ > 1,
{±(pm − 1)} if d′ = 1.

(4.16)

Assume to the contrary that z1 is a t-th power in Fq(X, z1). Then t | νP(z1). If d′ > 1, 
then by (4.16), t | pm, whence t | d − n. This is impossible since t | d and gcd(n, d) = 1. 
Therefore, d′ = 1 and d − n = pm. By (4.16), t | pm − 1 = d − n − 1. Since t |
gcd(d, d − n − 1) = gcd(d, n + 1) and gcd(d, n + 1) is a power of 2, we have t = 2. It 
follows that p is odd.

Recall that Q1(z1) = 0, where Q1(Z) is given in (4.8). Using (4.14) and d − n = pm, 
the equation Q1(z1) = 0 can be written as

u2 = δ,

where

u = z1 − γ,
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γ = 1
2

(aq+1Xpm − 1)X
n − 1

X − 1 −Xn(X + 1)p
m

(X − 1)p
m−1

a(X − 1)pm−1 ,

and

δ = γ2 − aq−1Xpm+n.

By assumption, there exist α, β ∈ Fq(X) such that

(αu + β)2 = u + γ,

i.e.,

α2δ + β2 + 2αβu = u + γ.

Since u is of degree 2 over Fq(X), we have

{
α2δ + β2 = γ,

2αβ = 1.

Letting τ = α/β, we have

1 + δτ2 − 2γτ = 0 (4.17)

and

τ = 2α2. (4.18)

Fortunately, (4.17) has an explicit solution

τ = 1
δ
(γ ± a(q−1)/2X(pm+n)/2) = 1

γ ∓ a(q−1)/2X(pm+n)/2 .

In the above,

γ ∓ a(q−1)/2X(pm+n)/2 =
1

2a(X − 1)pm−1

[
(aq+1Xpm − 1)X

n − 1
X − 1 −Xn(X + 1)p

m

(X − 1)p
m−1

∓ 2a(q+1)/2X(pm+n)/2(X − 1)p
m−1

]
.

Since τ is square in Fq(X) (by (4.18)),

h := (1 − aq+1Xpm

)X
n − 1

X − 1 + Xn(X + 1)p
m

(X − 1)p
m−1 + 2εX(pm+n)/2(X − 1)p

m−1,
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where ε = ±a(q+1)/2, is a square in Fq(X), say h = g2, where g ∈ Fq[X] is monic of 
degree pm + (n − 1)/2. Note that

h = Xn − 1
X − 1 + (Xn + Xpm+n)X

pm − 1
X − 1 − aq+1Xpm Xn − 1

X − 1 + 2εX(pm+n)/2X
pm − 1
X − 1

= (1 + · · · + X2pm+n−1)

− aq+1(Xpm

+ · · · + Xpm+n−1)

+ 2ε(X(pm+n)/2 + · · · + X(3pm+n)/2−1),

which is self-reciprocal. Hence g∗ = ±g, where g∗ is the reciprocal polynomial of g. (In 
fact, if g∗ = g, but we do not need to be precise.) Let

H = (X − 1)h

= (1 − aq+1Xpm

)(Xn − 1) + Xn(X + 1)p
m

(X − 1)p
m

+ 2εX(pm+n)/2(X − 1)p
m

.

Then

H ′ = (1 − aq+1Xpm

)nXn−1 + nXn−1(X + 1)p
m

(X − 1)p
m

+ εnX(pm+n)/2−1(X − 1)p
m

.

(When computing H ′, we used the assumption that m > 0.) Let

K = H − n−1XH ′ = −(1 − aq+1Xpm

) + εX(pm+n)/2(X − 1)p
m

= −1 + aq+1Xpm − εX(pm+n)/2 + εX(pm+n)/2+pm

.

The reciprocal of K is

K∗ = ε− εXpm

+ aq+1X(pm+n)/2 −X(pm+n)/2+pm

.

Since g | K and g is self-reciprocal, we also have g = ±g∗ | K∗. Thus g divides

K + εK∗ = −1 + ε2 + (−ε + εaq+1)X(pm+n)/2 = (aq+1 − 1)(1 + εX(pm+n)/2).

This is a contradiction since

pm + n

2 < pm + n− 1
2 = deg g.

4.2. The case n − d > 1

In this case,

G(X) = aqXn + Xn−d

Xd + a
,
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N(X,Y ) = a
Xn−d − Y n−d

X − Y
+

[
aq+1X

n − Y n

X − Y
+ XdY dX

n−2d − Y n−2d

X − Y

]

+ aqXdY dX
n−d − Y n−d

X − Y
,

N∗(X,Y, Z) = Q(Zd),

where

Q(Z) = a
Xn−d − Y n−d

X − Y
Z2 +

[
aq+1X

n − Y n

X − Y
+ XdY dX

n−2d − Y n−2d

X − Y

]
Z

+ aqXdY dX
n−d − Y n−d

X − Y
.

We claim that

gcd
(Xn−d − Y n−d

X − Y
, aq+1X

n − Y n

X − Y
+ XdY dX

n−2d − Y n−2d

X − Y

)
= 1, (4.19)

equivalently,

gcd
(Xn−d − 1

X − 1 , aq+1X
n − 1

X − 1 + XdX
n−2d − 1
X − 1

)
= 1. (4.20)

Let ζ be a root of (Xn−d − 1)/(X − 1). If ζ �= 1, then

(
aq+1X

n − 1
X − 1 + XdX

n−2d − 1
X − 1

)∣∣
X=ζ

= 1
ζ − 1

(
aq+1(ζn − 1) + ζd(ζn−2d − 1)

)
= 1

ζ − 1(aq+1 − 1)(ζn − 1) �= 0.

If ζ = 1, then n − d ≡ 0 (mod p), and

(
aq+1X

n − 1
X − 1 + XdX

n−2d − 1
X − 1

)∣∣∣
X=1

= aq+1n + n− 2d = n(aq+1 − 1) �= 0.

So (4.20) and (4.19) hold. Therefore Q(Z) is a primitive polynomial over Fq[X, Y ].
Let

Q1(Z) =
[(

a
Xn−d − Y n−d

X − Y

)−1
Q(Z)

]∣∣∣
Y =1

(4.21)

= Z2 +
aq+1X

n − 1
X − 1 + XdX

n−2d − 1
X − 1

a
Xn−d − 1
X − 1

Z + aq−1Xd ∈ Fq(X)[Z].

Following the arguments in Section 4.1, we only have to prove the following two claims:
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Claim 1. Q(Z) is irreducible in Fq(X, Y )[Z].

Claim 2. Let z be a root of Q1(Z) and t be a prime divisor of d. Then z is not a t-th 
power in Fq(X, z).

4.2.1. Proof of Claim 1
Assume to the contrary that Q(Z) is reducible in Fq(X, Y )[Z].
First, assume that q is odd. The discriminant of Q(Z) is

D =
[aq+1(Xn − Y n)

X − Y
+ XdY d(Xn−2d − Y n−2d)

X − Y

]2
− 4aq+1XdY d(Xn−d − Y n−d)2

(X − Y )2 .

By assumption, D = Δ2 for some Δ ∈ Fq[X, Y ]. Then

4aq+1XdY d
(
Xn−d − Y n−d

)2
(X − Y )2 =

(
aq+1X

n − Y n

X − Y
+ XdY dX

n−2d − Y n−2d

X − Y
+ Δ

)

·
(
aq+1X

n − Y n

X − Y
+ XdY dX

n−2d − Y n−2d

X − Y
− Δ

)
.

In the above, the two factors on the right side are relatively prime. (This follows from 
(4.19).) Therefore, we may assume

⎧⎪⎪⎨
⎪⎪⎩
aq+1X

n − Y n

X − Y
+ XdY dX

n−2d − Y n−2d

X − Y
+ Δ = 2a(q+1)/2XdU2,

aq+1X
n − Y n

X − Y
+ XdY dX

n−2d − Y n−2d

X − Y
− Δ = 2a(q+1)/2Y dV 2,

(4.22)

for some U, V ∈ Fq[X, Y ] with

UV = Xn−d − Y n−d

X − Y
. (4.23)

Then

aq+1 (Xn − Y n)
X − Y

+
XdY d

(
Xn−2d − Y n−2d)
X − Y

= a(q+1)/2(XdU2 + Y dV 2). (4.24)

Let L denote the left side of (4.24). We have

L = aq+1(Y n−1 + XY n−2 + · · · + Xn−1)

+

⎧⎨
⎩XdY n−d−1 + Xd+1Y n−d−2 + · · · + Xn−d−1Y d if n ≥ 2d,

−Xn−dY d−1 −Xn−d+1Y d−2 − · · · −Xd−1Y n−d if d + 2 ≤ n < 2d.
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If d +2 ≤ n < 2d, the coefficient of Xd−1Y n−d in L is aq+1−1 �= 0, while the coefficient of 
Xd−1Y n−d on the right side of (4.24) is 0, which is a contradiction. Hence Theorem 1.10
(iii) holds. In particular, gcd(n − d, q − 1) = 1.

Since

Δ(Y,X)2 = D(Y,X) = D(X,Y ) = Δ(X,Y )2,

we have Δ(Y, X) = ±Δ(X, Y ). If Δ(Y, X) = Δ(X, Y ), then by (4.22), XdU(X, Y )2 =
Y dU(Y, X)2. Then Y | U(X, Y ), which is a contradiction to (4.23). Hence Δ(Y, X) =
−Δ(X, Y ), and by (4.22),

U(Y,X)2 = V (X,Y )2. (4.25)

By (4.25) and (4.23), we have

U(X,Y )2 = α

(n−d−1)/2∏
i=1

(X − εiY )2, (4.26)

V (X,Y )2 = α−1
(n−d−1)/2∏

i=1
(X − ε−1

i Y )2, (4.27)

where α, β ∈ Fq and εi ∈ F
∗
q are such that

Xn−d − Y n−d

X − Y
=

(n−d−1)/2∏
i=1

[
(X − εiY )(X − ε−1

i Y )
]
.

We have

α = U(1, 0)2 (by (4.26))

= V (0, 1)2 (by (4.25))

= α−1
(n−d−1)/2∏

i=1
ε−2
i (by (4.27)).

It follows that

α2 =
(n−d−1)/2∏

i=1
ε−2
i . (4.28)

On the other hand, comparing the coefficients of Xn−1 in (4.24) gives aq+1 = a(q+1)/2 ·α, 
i.e., α = a(q+1)/2. Since the εi’s are roots of Xn−d − 1, we have
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a(q+1)(n−d) = α2(n−d) = 1 (by (4.28)).

This, combined with a(q+1)(q−1) = 1 and gcd(n − d, q − 1) = 1, implies that aq+1 = 1, 
which is a contradiction.

Next, assume that q is even. Since Q(Z) is assumed to be reducible over Fq(X, Y ), 
there are A, B ∈ Fq[X, Y ], relatively prime, such that

aq+1XdY d
(Xn−d + Y n−d

X + Y

)2

(
aq+1X

n + Y n

X + Y
+ XdY dX

n−2d + Y n−2d

X + Y

)2
=

(A
B

)2
+ A

B
= A(A + B)

B2 .

In the above, the numerator and the denominator on the left side are relatively prime 
(by (4.19)). Thus

B = aq+1X
n + Y n

X + Y
+ XdY dX

n−2d + Y n−2d

X + Y
(4.29)

and

A(A + B) = aq+1XdY d
(Xn−d + Y n−d

X + Y

)2
.

We may assume that

{
A = XdU2,

A + B = Y dV 2,

for some U, V ∈ Fq[X, Y ] such that UV = (Xn−d + Y n−d)/(X + Y ). Then

B = XdU2 + Y dV 2. (4.30)

By (4.29),

B = aq+1(Y n−1 + XY n−2 + · · · + Xn−1) (4.31)

+
{
XdY n−d−1 + Xd+1Y n−d−2 + · · · + Xn−d−1Y d if n ≥ 2d,
Xn−dY d−1 + Xn−d+1Y d−2 + · · · + Xd−1Y n−d if d + 2 ≤ n < 2d.

Since we assume d > 1 and n − d > 1, the coefficient of XY n−2 in (4.31) is aq+1 �= 0. 
(Even if we allowed d = 1 or n − d = 1, the coefficient of XY n−2 in (4.31) would be 
aq+1 + 1, which is still nonzero.) However, the coefficient of XY n−2 in (4.30) is 0, which 
is a contradiction.
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4.2.2. Proof of Claim 2
Recall that Q1(Z) is given in (4.21). Let z be a root of Q1(Z) and t be a prime divisor 

of d. Assume to the contrary that z is a t-th power in Fq(X, z). Let ( ) be the nonidentity 
automorphism in Aut(Fq(X, z)/Fq(X)). Then

zz̄ = aq−1Xd, (4.32)

z + z̄ = −
aq+1X

n − 1
X − 1 + XdX

n−2d − 1
X − 1

a
Xn−d − 1
X − 1

= −
(aq+1 − 1)X

d − 1
X − 1 + (aq+1Xd + 1)X

n−d − 1
X − 1

a
Xn−d − 1
X − 1

. (4.33)

Write n − d = pmd′, where p � d′, and let ζ be a primitive d′th root of unity. Let p be 
the place of the rational function field Fq(X) which is the zero of X − ζ, and let P be a 
place of Fq(X, z) such that P | p. Then P is unramified over p ([10, III 7.3 (b) and 7.8 
(b)]). From (4.32) and (4.33), we have

νp(zz̄) = 0, (4.34)

νp(z + z̄) =
{
−pm if d′ > 1,
−pm + 1 if d′ = 1.

(4.35)

(The proof of (4.35) is similar to that of (4.12) and uses the assumption n −d > 1 in the 
case d′ = 1.) Therefore,

νP(z) + νP(z̄) = 0,

νP(z + z̄) =
{
−pm if d′ > 1,
−pm + 1 if d′ = 1,

and it follows that

{νP(z), νP(z̄)} =
{
{±pm} if d′ > 1,
{±(pm − 1)} if d′ = 1.

Since z is t-th power in Fq(X, z), we have t | νP(z). If d′ > 1, then t = p. It follows from 
t | d and t | n −d that gcd(n, d) �= 1, which is a contradiction. So we must have d′ = 1 and 
n −d = pm, m > 0. Then t | pm−1 = n −d −1. Since t | gcd(n −d −1, d) = gcd(n −1, d), 
where gcd(n − 1, d) is a power of 2 (by assumption), we have t = 2. Consequently, p is 
odd.
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The equation Q1(z) = 0 can be written as

u2 = δ,

where

u = z − γ,

γ = −1
2

(aq+1 − 1)X
d − 1

X − 1 + (aq+1Xd + 1)(X − 1)p
m−1

a(X − 1)pm−1 ,

and

δ = γ2 − aq−1Xd.

By assumption, there exist α, β ∈ Fq(X) such that

(αu + β)2 = u + γ,

i.e.,

α2δ + β2 + 2αβu = u + γ.

So
{
α2δ + β2 = γ,

2αβ = 1.

Letting τ = α/β, we have

1 + δτ2 − 2γτ = 0 (4.36)

and

τ = 2α2. (4.37)

Equation (4.36) has an explicit solution

τ = 1
δ
(γ ± a(q−1)/2Xd/2) = 1

γ ∓ a(q−1)/2Xd/2 = −2a(X − 1)pm−1

h(X) ,

where

h(X) = (aq+1 − 1)X
d − 1

X − 1 + (aq+1Xd + 1)(X − 1)p
m−1 + 2εXd/2(X − 1)p

m−1
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and ε = ±a(q+1)/2. By (4.37), h(X) is a square in Fq[X], say h = g2 for some g ∈ Fq[X]
with deg g = (d + pm − 1)/2. Note that

h(X) = aq+1
(Xd − 1
X − 1 + XdX

pm − 1
X − 1

)
+

(Xpm − 1
X − 1 − Xd − 1

X − 1

)
+ 2εXd/2X

pm − 1
X − 1

= aq+1(1 + · · · + Xpm+d−1) + (Xd + · · · + Xpm−1) + 2ε(Xd/2 + · · · + Xpm+d/2−1),

which is self-reciprocal. It follows that g∗ = ±g, where g∗ is the reciprocal polynomial 
of g. Let

H = (X − 1)h = (aq+1 − 1)(Xd − 1) + (aq+1Xd + 1)(X − 1)p
m

+ 2εXd/2(X − 1)p
m

.

Then

H ′ = (aq+1 − 1)dXd−1 + aq+1dXd−1(X − 1)p
m

+ εdXd/2−1(X − 1)p
m

.

Let

K = −H + d−1XH ′ = aq+1 −Xpm

+ εXd/2 − εXpm+d/2.

The reciprocal of K is

K∗ = −ε + εXpm −Xd/2 + aq+1Xpm+d/2.

Since g | K, we have g = ±g∗ | K∗. Hence g divides

εK + K∗ = (aq+1 − 1)(ε + Xd/2).

This is a contradiction since

d

2 <
d + pm − 1

2 = deg g.

The proof of Theorem 1.10 is now complete.

4.3. Final remarks

Theorem 1.10 leaves ample room for improvement, by which we mean nonexistence 
results of PB under conditions that are weaker than or not covered by (i) – (iii) in The-
orem 1.10. While some improvements may be obtained by fine tuning the techniques 
demonstrated in the present paper, breakthroughs may require new methods or substan-
tially new elements in the current approach.

The cases d − n = ±1 appear to be special. These are the two cases not covered by 
Theorem 1.10 and there are indeed infinite classes of PBs in these two cases with e = 2
(Results 1.2 and 1.4). A natural question is this: When d − n = ±1 and e > 2, are there 
infinite classes of PBs of the form fq,e,n,d,a(X) = Xn(Xd(q−1) + a) of Fqe?
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