IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 4, APRIL 2022

4301

A Self-Learning Strategy for Task Offloading
in UAV Networks

Alessio Sacco
Guido Marchetto

Abstract—The edge computing paradigm has opened new op-
portunities for IoT devices, which can be used in novel applications
involving heavy processing of data. Typical and common examples
of IoT devices are the Unmanned Aerial Vehicles (UAVs), which are
deployed for surveillance and environmental monitoring and are
attracting increasing attention because of their ease deployment.
However, their limited capacity, e.g., battery, forces the design of
an edge-assisted solution, where heavy tasks are offloaded to the
edge cloud. To solve the problem of task offloading from UAYV to the
closest edge computation, many proposals have appeared, mainly
based on a Reinforcement Learning (RL) formulation. While these
solutions successfully learn how to reduce task completion time
in the UAV context, some limitations appear when these models
are applied in real scenarios, given the memory-hungry nature of
RL. To this end, we propose a simple yet effective formalization
that still enables a learning process, but reduces the required
information and the training time. Our evaluation results confirm
our hypothesis, showing a marked improvement when compared
to other RL-based strategies and deep learning-based solutions.

Index Terms—Machine learning, task offloading, time series,
UAV.

1. INTRODUCTION

HE past decade has witnessed an explosive growth
T in mobile internet applications consuming a significant
amount of computational resources, e.g., face recognition, vir-
tual/augmented reality, realtime media streaming, mainly fa-
vored by the development of the Internet of Things (IoT).
A specific area of interest entails vehicles and, in particular,
Unmanned Aerial Vehicle (UAV) systems, that have experienced
aconstantly increasing popularity in the last years, mainly thanks
to their maneuverability, flexibility, and limited deployment
costs. UAVs have been primarily used for military applications,
but they are now expanding into business, science, agriculture,
and civilian fields, where successful examples include supports
of first responders, surveillance, aerial photography to cite a
few [1]. Their constrained resources, however, open the problem

Manuscript received September 8, 2021; revised November 30, 2021; ac-
cepted January 11, 2022. Date of publication January 25, 2022; date of current
version May 2, 2022. This work was supported by NSF under Awards CNS-
1836906 and CNS-1647084. The review of this article was coordinated by Dr.
M. Fouda.

Alessio Sacco, Guido Marchetto, and Paolo Montuschi are with DAUIN,
Politecnico di Torino, 10129 Turin, Italy (e-mail: alessio_sacco@polito.it;
guido.marchetto @polito.it; paolo.montuschi @polito.it).

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, St. Louis, MO 63103 USA (e-mail: flavio.esposito@slu.edu).

Digital Object Identifier 10.1109/TVT.2022.3144654

, Student Member, IEEE, Flavio Esposito
, Senior Member, IEEE, and Paolo Montuschi

, Member, IEEE,
, Fellow, IEEE

of offloading part of their tasks to the close multi-access edge
computing (MEC) in order to speed up the computation.

The problem of task offloading has been extensively stud-
ied in the literature [2]-[6], where recent solutions attempt
to significantly reduce the processing time of mobile vehicle
applications while greatly reducing data processing delays and
energy consumption. With the advent of machine learning (ML)
and, specifically, reinforcement learning (RL), this learning
approach became dominant in solving the offloading decisions in
vehicular scenarios. Compared to traditional approaches based
on heuristics, these solutions have shown the ability to learn
the best strategies adapting to the challenging and highly vary-
ing environments [7]-[10]. Despite the good results of newly
computation offloading techniques, however, RL-based methods
have a severe impact on the memory and processing usage of the
mobile nodes. Moreover, it still remains challenging to develop
a reliable system that can anticipate future demands and take
advisable computation offloading decisions.

In this paper, we present a self-learning strategy that supports
the UAV during the decision of offloading incoming tasks. This
decision is taken on the basis of the predicted behavior of the
agent, suggesting whether edge cloud is beneficial or not to
the incoming tasks. Two alternative methods are designed to
perform a prediction about future device load: amodel belonging
to time-series class, i.e., Vector Autoregressive Moving-Average
(VARMA), and a model belonging to the class of ML regressors,
i.e., Random Forest Regression (RFR). In such a way, not only
the agent learns how to forecast future values, but it can also
learn online what type of model is more accurate, following a
paradigm known as Follow the Perturbed Leader (FPL). Having
chosen two different ways in treating the input metrics, this
approach also provides flexibility and adaptability, resulting in a
learning agent that can select which predictor best fits a particular
environment.

While other RL-based models can be computationally ex-
pensive to run on board of constrained resources devices, our
formulation simplifies the decision process. The results illustrate
clear advantages in the implementation of our approach, which
can shorten the time required to accomplish a task. Besides,
our solution can reduce the energy consumed and the resource
usage, i.e., memory and CPU, compared to other benchmark
algorithms. These benefits are originated by our predictor, which
outperforms alternatives, leading to a small error and a very
accurate decision.

0018-9545 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2835-5455
https://orcid.org/0000-0002-7798-4584
https://orcid.org/0000-0003-3588-9367
https://orcid.org/0000-0003-2563-2250
mailto:alessio_sacco@polito.it
mailto:guido.marchetto@polito.it
mailto:paolo.montuschi@polito.it
mailto:flavio.esposito@slu.edu

4302

The remainder of this article is organized as follows.
In Section IT we discuss the existing literature on the task offload-
ing problem. Section III presents the model of the system and
formulates the specific problem we need to solve. In Section IV
we describe the methods used to predict future behavior and
in Section V we explicit how they are used in our algorithm.
Results are presented in Section VI. Finally, we conclude our
paper in Section VII.

II. RELATED WORK

In the last years, edge computing has been proved to be an
effective method in shortening task completion time for some
latency-critical applications [11]-[13]. This paradigm can be
particularly beneficial for unmanned aerial systems (UASs), e.g.,
self-driving vehicles and UAV swarms, to conduct a computation
offloading scheme with edge computing. UASs are often used
for collecting data and sending them to the close edge for
data-intensive visual and acoustic computing. At network edges,
indeed, there may be present more resources that are not avail-
able over the UAS, and that can thus speed up the processing. For
example, seamless processing of imagery/video at the network
edge is particularly critical in natural or human-made disaster
scenarios, where bandwidth is limited and network conditions
are highly variable. In such a case, the more powerful resources
at the edge cloud are employed for elaborating imagery to
recognize body temperatures or identify bodies under ruins or
massive avalanches.

In general, the goal of performance-based offloading policies
is to enhance the performance of mobile devices in terms of
execution/completion time and throughput by utilizing cloud
resources. Therefore, the resource-intensive computations are
offloaded to the cloud or close edge. In [14], the authors pro-
pose a novel technique based on compiler code analysis that
optimizes the overall execution time by dynamically offloading
part of Android code running on a smartphone to the cloud.
Similarly, [15] presents a framework providing run-time support
for the dynamic computation partitioning and execution of the
application. Such a framework not only allows the dynamic
partitioning for a single user, but also supports the sharing of
computation instances among multiple users in the cloud for an
efficient utilization of the underlying cloud resources.

Other approaches can be found in [16]-[18]. In [16] the
focus is on the mobile-edge computation offloading (MECO)
problem, proposing a two-tier game-theoretical greedy approx-
imation offloading scheme. Considering an ultradense IoT net-
work, the authors formulate the optimal MECO problem as
a constrained optimization problem, which aims to minimize
the overall computation overhead while satisfying the given
wireless channel constraints. An online algorithm is instead
presented in [18], where task offloading decisions are modeled
as a well-known sub-problem called rent/buy problem [19].
Similarly, [20] introduces a joint optimization scheme for the
offloading decision and energy consumption, that is based on
a greedy heuristic algorithm. After having modeled the prob-
lem aiming to minimize the energy, the proposed algorithm
is based on the Reformulation-Linearization-Technique based

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 4, APRIL 2022

Branch-and-Bound method (RLTBB). Via a greedy heuristic,
the system can allocate the radio resource and computational
resource among smart mobile devices of the searching set.

This offloading process can be further optimized via the
application of ML/AI methods, as explained in recent studies
[21]-[23]. One of the most profitable recent trends is the utiliza-
tion of RL for a task offloading solution, given its ability to adapt
to highly dynamic environments [22], [24]. For example, in [7],
the authors proposed a deep reinforcement learning-based online
offloading framework (DROO) to decide whether to offload
tasks to the edge cloud and proportionally allocate wireless
resources. Focusing on the industrial scenario, [25] jointly takes
both the network traffic and computation workload of industrial
traffic into consideration, and finds a trade-off between energy
consumption and service delay. To solve this offloading decision
problem, they propose a dynamic RL scheduling algorithm
combined with a deep dynamic scheduling. Similarly, [26] de-
ployed atask offloading framework using the multi-armed bandit
(MAB) theory, which enables vehicles to learn the potential task
offloading performance of neighboring vehicles. Redesigning
the utility function of the classic MAB algorithm, it can adapt
to the volatile environment and minimize the average offloading
delay.

Besides, although these solutions are sound, there is now an
attempt to distribute the decision logic, in order to improve
the performance while reducing the burden for a single UAV.
To this end, DDLO [27] and a hotbooting Q-learning based
schema [28], are valuable examples of distributed approaches in
task offloading decisions, that use multiple parallel deep neural
networks. In a similar way, but for collaborative offloading
decisions, [10] presents a solution for multiple heterogeneous
agents with potentially distinct policies and rewards, and further
improvements on protocol decisions.

As an alternative or in conjunction with an RL problem,
there is an increment of solutions attempting to predict future
resources utilization in order to take better offloading decisions
and allocate proper network and computation resources [6], [29],
[30]. For example, [6] showed how time-series regressors can
be used in predicting future agent’s loads to efficiently balance
the load over a UAV system. We share with these approaches
the idea of proactively acting to mitigate possible performance
degradation before its occurrence. However, although all these
solutions are effective, they are also computationally and mem-
ory intensive, especially the approaches based on the use of RL
and deep learning. Our proposed self-learning-based methodol-
ogy can reduce the overall resource consumption and thus be
more suitable for UAV execution.

III. SYSTEM MODEL

The considered system consists of a UAV swarm including a
set of agents Ny = {4y,..., Ay}, each of which has a task to
be completed. We consider that the set \V; can change over time
since the agents may suffer failures or running out of power.
However, for simplicity, we often refer to this set as A in the
following. The overall system is then composed of M tasks,
denoted by a set of tasks M = {T7,..., Ty }. We consider that

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SELF-LEARNING STRATEGY FOR TASK OFFLOADING IN UAV NETWORKS

Data
x Processmg Edge
\ Computing
(((-

SDN switch
==
Wireless Base _
x Station -
UAV Fleet Edge Cloud

Fig. 1. System Overview. The mobile devices, e.g., UAVs, interacts with the
edge cloud asking help for the processing of the collected data.

tasks are independent among them. Each task is assigned to a
node, which can decide either to compute the task locally or to
offload the computation to the edge cloud.

To capture real-world scenarios, we consider a limited capac-
ity of nodes. We model this constraint in resources as a finite
queue where to store waiting tasks. Thus, we denote the amount
of tasks of the i-th node as s; within [0, s7"%*], s € IR*.
We also assume that the agent can execute only one task at a
time, and, to avoid burdening the notation, task deadlines have
not been considered.

For each new task arriving to a node, it has to decide where
to perform the computation of such a task. We denote the
computation offloading decision of task m of mobile device
1 by 0; m. Specifically, 0; ,,, = 1 means that the node offloads
the task to the close cloud, while o; ,, = 0 means that the node
executes the task locally.

We summarize the main components of the system in Fig. 1.
The UAV fleet relies on the close edge cloud for shortening
the task completion time via task offloading. In such a case,
the task is sent to the edge, where the appropriate network
and computational infrastructure resides. The sent data is thus
used for extrapolating helpful information by means of AI/ML
algorithms. For clarity, we report in Table I all the symbols used
throughout the paper.

A. Local Execution

When the task is locally executed, the completion time for
a local execution of task m on node ¢ is the sum of the local
computation execution time and the waiting time aboard the
agent,

1 _ mlexec

27

Tim (1)
where Tll o~ and T;"} are the execution time and the waiting
time, respectlvely. Formally, the waiting time of a task is defined
as the time that task m spends on board of 4 before its execution,
and mainly depends on the enqueued tasks.

On the other hand, given Cj ,,, the computing workload, i.e.,
the total number of CPU cycles needed to accomplish task m
of node 7, the local execution time of task m on node 7 is hence
given by:

Ci m
Tl,exec _ s (2)

i,m - ,f ’
i,m

4303

TABLE I
SYMBOLS AND NOTATIONS

Symbol Description
N Set of agents at time ¢
M Set of tasks
il,m Task completion time for local computation
Tf,m Task completion time for offloading computation
sar Maximum amount of possible enqueued tasks in node %
Si Number of enqueued tasks in node @
Tt Observation at timestamp ¢
Yt Prediction for timestamp ¢
0i,m Offloading decision of node
Thevee Local execution time of task m on node 4
Cim Computing workload of task m on node ¢
7“’; Local waiting time of task m on node ¢
T bra4) Transmission time of task m
Te eree Execution time of task m in the edge cloud
T (A) Reception time of task m
wup Wireless uplink channel bandwidth
W down Wireless downlink channel bandwidth
5 (A) Wireless uplink data rate for offloading of task m

y down Ay Wireless downlink data rate for offloading of task m
otP Background noise power in the uplink channel

gdown Background noise power in the downlink channel

G“p Channel gain from node i to the access point
G;’iﬁ:ﬁm Channel gain from the access point to the node @
p”p Transmission power of node 7 to the edge cloud
o o)
pl‘;;f" Transmission power of the edge cloud to the node 7
di,s Distance between node 7 and access point s
TABLE II
PARAMETERS SETTING
Parameter Values
Number of nodes 2,3,5,7, 10, 20, 50
Task arrival rate (Hz) 0.1, 0.2, 0.3, 0.9

Nodes’ Average Distance [m] 1, 2, 3, 5, 10, 20, 30, 40
Computing workload, 109 0.5, 1, 10, 25, 50, 100
Channel bandwidth (Mbps) 5

Noise power (dBm) 50
Number of trials 35
Confidence interval [%] 90

where f; ,, is the computation capability, i.e., the clock fre-
quency of the CPU chip, of node i, on task m. Our model
allows different mobile devices to have different computational
capacities with different clock frequencies per task.

B. Edge Cloud Offloading

In case the mobile node offloads the task to the edge cloud,
the latter executes the computation task and returns the results to
the device. This process entails three phases: (i) the transmission
phase, (ii) the edge computation phase, (iii) the outcome receiv-
ing phase. Before defining the resulting completion time, it must
be noted that this time is affected by the joint action space of all
agents, A, also referred to as global action profile. Therefore,
given the global action profile A, the completion time for the
edge offloading is the sum of these three phases, as such:

Tf,, =T (A)

i,m i,m

FTECLT(A),)

i,m

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

4304

it
where 7717

im (A)refers to the transmission of task mn to the edge
e; T:°¢ i the execution time in the edge, and T (A) is the
reception time.
Analyzing these parts in order, we start defining the transmis-
sion time for task offloading as:
D:n
Te ,tra (A) _ reﬂ%

, 4
,m (A) ()

where D”L denotes the size of computation data sent over the
channel (e g the recorded audio in UAVs swarm) related to
computation task m of node 7, and 75", "(A) is the uplink data
rate.

Then, we consider the data rate affected by both the back-
ground noise power and the channel gain, as in other studies [10],
[16]. Thus, given the global action profile A for any node ¢
and task m, we can obtain the wireless uplink data rate for
computation offloading of task m of mobile device 7 as:

PP GYP
r{a,up(A) — W, log 1+ im - i,m
i,m 2)
’ wp G
a p],k 7.k
J#Eik#FEm, 05, k=1

&)
where p; is the transmission power of node 7 offloading task
m to the edge cloud; G? denotes the channel gain from node

1 to the access point when transmitting task m, mainly affected
by the path loss and shadowing attenuation; o“? indicates the
background noise power, and W "7 is the wireless uplink channel
bandwidth. Clearly, we can observe from the formula that when
many mobile devices offload their tasks to the edge simultane-
ously, the nodes can experience severe interference and low data
rates.

Subsequently, the task arrives to the edge that proceeds with
the execution. Although the offloaded task needs likely to wait
before it is assigned to the proper resource in the cloud for
the execution, in the following we omit this waiting time for
simplicity, as it is negligible with respect to the other quantities
involved. Thus, we can derive the computation execution time
for task m in the edge cloud as:

Ci,m

7. ©
where f, denotes the clock frequency of the edge cloud, assum-
ing that the frequency does not change during the computation
and is constant over time.

Finally, the results of the computation is sent back to the
mobile device, incurring in a reception time defined as:

Te.evec

Dput
Tie;:bec A _ 7,M , (7)
m D e)

where D‘?“t denotes the size of obtained output data sent over
e,down

the channel and r;’,"""(A) is the downlink data rate. Such a
wireless downlink data rate is given by:
rg,down (A) _

i,m

Wdown.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 4, APRIL 2022

pdownGdown
-log, | 1+ , (8
gdown + Z pj kGdoum
JELk#EmM, 05 k=1
where pd"“’” is the transmission power of the edge cloud com-

municating the results of offloaded task m to the node ; GdO“’”
refers to the channel gain from the access point to the node ¢ when
transmitting data of task m; odown denotes the background noise
power, and W®"" indicates the wireless downlink channel
bandwidth.

C. Problem Formulation

We formulate the optimization problem that aims to minimize
the total delay in finishing all devices’ tasks, by optimizing each
node offloading decisions 0; ,,:

{)Illl’l Z Z — 0im) T m + 05, mT)
M ieN meM
N
st Y 0im <1 VmeM, (10)
i=1
M
> 0im < S ViEN, (11)
m=1

where the constraints (10) and (11) force the solution to (i)
mutually choose if offloading task computation or executing the
task locally, and (ii) not to exceed the resources of the mobile
device, respectively.

The given optimization problem (9)—(11) can be solved to
find results of offloading decision variables o; ,,,. However, since
the decision variables are binary, the formulated problem is not
convex. Moreover, we would like to consider realistic scenarios
where the interaction between devices, the communication chan-
nel conditions, and the nodes computation abilities are all dy-
namically changing. Given these considerations, in the following
we propose a online learning method to solve this problem.

IV. REGRESSION PREDICTION METHODS

With the aim of improving offloading decisions, each device
predicts future conditions in order to verify is beneficial circum-
stances hold or not. The node can listen to the advice coming
from two different class of predictors and obtain the best from
both of them. In particular, we select two algorithms belonging
to the class of time-series and to ML supervised regressors.
In the following, we describe how these two methods behave,
explaining why and where they differ.

A. Time-Series Analysis With VARMA

To model the evolution of data over time, we employ
a Vector Autoregressive Moving-Average (VARMA) model.
VARMA models are the multivariate generalization of univari-
ate autoregressive-moving average (ARIMA) models. However,
while ARIMA is used to represent stationary time series in

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SELF-LEARNING STRATEGY FOR TASK OFFLOADING IN UAV NETWORKS

almost all domains where a variable is measured at equidis-
tant times, VARMA can contemplate multiple parallel time
series, for a multivariate evolution. This class of models well
fit problems in econometrics and financial markets, but boasts
a wide exploration even in other fields since the 1970’s [31].
Our solution, then, uses a VARMA model for “real time” model
predictions (hindcasts) that are made within the independent
dataset, using only data up to that date were used. The general
form of VARMA(r, q) is given by the following equation:

ye = Ay + ...+ Apysr + Boey + ...+ By, (12)
where y; denotes an n x 1 vector of observed variables, €, is
ann X 1 vector of unobserved disturbances ~ ITD(O,,«1, I,),
where I,, denotes the n X n identity matrix, r and ¢ denote any
assumed nonnegative integers, such that at least one of 7 or ¢ is
positive.

In our solution, we predict the future values of the series by
means of a forecasting method named minimization of the Mean
Squared Forecast Error (MSFE), which denote the goodness of
the prediction using the cumulative error encountered so far.
The current information from the dataset, which constitutes the
current knowledge, contains the current and past values of the
series. In detail, we are focused on the one-step-ahead prediction,
which just considers the prediction at the next time step, i.e., ¥+
given the last observation at time .

B. ML Regression With RFR

The Random Forest Regression (RFR) is a type of additive
model that predicts by combining decisions from a sequence
of base models. More formally, this class of algorithms can be
written as:

g(x) = folz) + filz) + folz) + ..., (13)
where the final model g is the sum of simple base models f;.
Although each base model f; can be any ML algorithm, the most
common version of RFR considers as f; a simple decision tree. In
this paper, we also consider this setting. This broad technique of
using multiple models to obtain better predictive performance is
also known as model ensembling. Moreover, in RFR, all the tree
base models are constructed and trained independently using a
different subset of data.

Predictions are, then, made by averaging the predictions of
each decision tree. In other words, to extend the analogy—much
like a forest is a collection of trees, the random forest model is
also a collection of decision tree models. This makes random
forests a strong modeling technique that is much more powerful
than a single decision tree. RFR is suitable for regression prob-
lems given its features: (i) it can capture non-linear or complex
relationships between inputs and outputs, (ii) compared to a sin-
gle decision tree, RFR is more robust, with a limited dependence
to the noise in the training set, as it uses a set of uncorrelated
decision trees, (iii) it is able to limit both the variance and the
bias, better addressing the problem of overfitting.

4305

C. State Variables in Our Solution

In our system, the current knowledge Y is modeled as a matrix
of features, with a shape NV x M, where the column j represents
the list of metrics gathered for task 7, given 7 the index of the
row. Such a list of features for task ¢ are three: (i) the number
of enqueued tasks when task ¢ arrived to the node, (ii) time to
complete task ¢, in seconds, (iii) a boolean stating if task ¢ has
been offloaded to the edge cloud.

Features selection is a key topic when dealing with Big Data,
demanding for a trade-off between having a vast knowledge and
time and resource constraints. This imposes to limit the complex-
ity, with little or none effect on the performance. In fact, a smaller
M yields simpler models, but it may be inadequate to represent
the space of possible behaviors. On the other hand, a large
M leads to a more complex model with more parameters, but
may, in turn, lead to overfitting issues. While in time-series this
choice for observed variables is much easier, as it usually entails
the interested variable, in ML features selection is much more
important. Our choice of M = 3 and metrics that are extremely
easy to collect, moves towards this direction. Each node can train
its model without the need to communicate with others, attaining
null communication overhead and modest memory occupation.
Results support this choice, achieving higher accuracy while
reducing noise (Section VI).

However, given the differences in the two models, they also
treat the input data differently. Regarding the VARMA model,
its input y;, y¢—1, - - -, Y1, is modeled with a vector of metrics at
timestamp ¢. This means that the input of the VARMA model
consists of all the values in the matrix. When the number of rows
of Y exceeds a threshold (Z = 1000), the considered temporal
window is limited to a sub-matrix consisting of the last Z rows.
Alternatively, regarding the RFR, since it is agnostic of the time
order, it only considers the last line of the matrix Y, i.e., the
input of the model is composed by all the columns for the last
row of the matrix.

V. AGENT’S DECISION PROCESS

In the following, we first overview the procedure as in the
Follow the Perturbed Leader (FPL) method. Then, we describe
how the IoT agent implements our version of FPL in our system.

A. Follow the Perturbed Leader

Learning from a constant flow of data is considered one of the
central challenges of machine learning. Online learning entails
sequentially decide on actions given the changes in the environ-
ments. In past years, a variety of online learning algorithms have
been devised [32], [33]. Among them, in our work we investigate
Follow the Perturbed Leader algorithm, whose advantage is its
simplicity and computational efficiency.

Such a prediction with expert advice proceeds as follows.
At each time step ¢ the system performs sequential predictions
yr € Y. Attimest = 1,2, ..., we have access to the predictions
(y8)1<i<n of n experts £ = ey, ..., e,. After having made a
prediction, we receive observation x; € X', and the system com-
putes our suffered loss (¢, y;) and each expert’s loss I(x, y!).

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

4306

As our observations entail continuous values, i.e., lie in a regres-
sion problem, the loss is calculated as: I(x¢, y;) = (yr — x¢)°.

Our goal can be summarized in achieving a total loss “not
much worse” than the best expert, after 7' time steps. More
formally, we denote the cumulative loss of expert i by LT =
ZtT: \ (¢, y}) and the cumulative loss of our system by LT =
SO/_, (x4, y¢). Thus, the goal of the system is to minimize the
regret, defined as the difference between the cumulative loss
of the learner and the cumulative loss of the best prediction in
hindsight. The regret over 1" rounds is defined as:

T T
Ry =Y U(wy,) — irg}i“r;Zl(xt,yi) = LT —minLT.
t=1 t=1

(14)
The term min LiT, is often defined as the loss of the best expert
in hindsight (BEH). Moreover, when this regret is sublinear,
namely Ry < o(T'), the learning algorithm is said to be Hannan-
consistent.

One algorithm for achieving Hannan-consistency is Follow
the Perturbed Leader (FPL), as demonstrated by Hannan [34]
and Kalai and Vempala [35]. Let v be some n-dimensional
random variable and 7n; > 0. FPL involves picking the expert
exp that minimizes the perturbed cumulative loss:

exp = argmin(L; + nv;) (15)

Intuitively, if) is small, then we expect exp to be “close” to a
minimizer of the (non-perturbed) cumulative loss. On the other
hand, when 7 is large, we expect £ to be “close” to the uniform
distribution. Namely, 1 controls how similar the algorithm is to
Follow the Leader, the version of the algorithm that always picks
the expert who has minimized the cumulative loss. However, this
version, and any other deterministic learning algorithm, is not
Hannan-consistent [36].

We summarize our version of FPL in Algorithm 1. As demon-
strated by theorems in [36], [37], for all possible sequences of
losses where the loss is bounded and the noise is spread out,
i.e. the noise has a sufficiently high variance, FPL achieves an
expected regret that is bounded by:

E[R:] € O(VT). (16)
Consequently, this result is also valid for our Algorithm 1,
where we consider the random value v sampled from a Gaussian
distribution (0, I).

Furthermore, it can be noted that this problem is similar
to the Multi-Armed Bandit (MAB), in the class of RL meth-
ods. FPL follows the “arm” that is assumed to have the best
performance so far, adding exponential noise to it to provide
exploration. However, while the MAB algorithm offers more
strict bounds to the regret, FPL can drastically simplify the entire
learning process making it suitable for constrained agents as
the UAVs. For example, differently from MAB that may take a
long time to converge, FPL requires a shorter time, and mostly,

is not eager of computation and memory resources as is the
MAB.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 4, APRIL 2022

Algorithm 1: Follow the Perturbed Leader fpl (m:
task, s:state, t: time).

I: n>0,L; <0

2: for every expert ¢ do

3 Compute loss [of last prediction given evidence s
4: Accumulate the loss Lt + LI~ 41
5
6
7

Sample v; ~ N(0,1)
exp < argmin; (L! + ny;)
Predict y; asking to the expert exp given state s and
task m
8: return y,

Algorithm 2: Overall Algorithm.
1: Initialize threshold 7; for all nodes

2: foralli € M do
3 wait new task m
4 Monitor the queue and node state
5: p<+ fpl(m, s, t)
6: if p > T; then
7 Offload task m to the edge cloud
8 else
9 Enqueue task m locally
10 Store states for the future
11 End Wait

B. Our Algorithm

We can now present our algorithm, built upon the Follow
the Perturbed Leader (FPL) formulation, which dictates the
offloading decision process. The overall algorithm running on
each device is defined in Algorithm 2. Each learning agent is
able to monitor and gather statistics required to perform the
prediction, as mentioned in Section IV. Once a new task arrives
at the node, it asks for help from the experts, as in FPL. The
experts that our FPL algorithm can employ are the two regressor
algorithms. This method, however, returns only one value, p,
i.e., the expert’s prediction for the next time step, and this
predicted value is then used to determine whether offloading
the incoming task as follows. If this value exceeds a determined
threshold specific for the agent 4, T}, this implies a long local task
execution, and the task is consequently offloaded. Otherwise, it
is kept local and enqueued for future execution.

From the described algorithm, it appears as the value of the
threshold 7; is a crucial parameter. Clearly, its setting depends
on the environment and the nature of tasks, but, in general,
it should be defined in order to balance the two actions, i.e.,
offloading and local execution. Offloading means diminishing
the waiting time but increasing the transmission time. Keeping
the task locally implies facing the waiting time but avoiding
wireless transmission. Thus, offloading should be selected only
when the expected waiting time is considered “too high”. The
threshold is a numerical definition of the “too high” concept.

Inlight of this self-learning procedure, not only can our agents
progressively enhance the single predictors, but they can learn
the more advisable algorithm to follow given the considered

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SELF-LEARNING STRATEGY FOR TASK OFFLOADING IN UAV NETWORKS

environment. Ideally, the expected behavior of this framework
is that the VARMA is selected in the first place, given its ability to
require a short amount of data (see Section VI). Then, when more
metrics become available, the RFR can outperform the statistical
model and, consequently, becoming the preferred choice of FPL.

It is known, indeed, that Random Forests produce better
results on large datasets and are able to work with missing data
by using estimations of them [38]. However, they pose a major
challenge as they cannot extrapolate outside unseen data. On the
other hand, VARMA has the ability to work well with unseen
data, interpolating the given data to obtain the prediction. In
conclusion — and as confirmed by our results — we can enumerate
the differences as follows: classical models are simpler and more
interpretable, while ML methods are more complex but more
flexible. The choice of VARMA to represent classical models
and RFR for ML is then motivated by the accuracy obtained in
our experimental campaign (see Section VI).

VI. RESULTS

In this section, we report the results of experiments performed
to assess the effectiveness of the proposed approach. First, we
analyze the accuracy of the proposed prediction methods. Then,
we consider the performance of our approach comparing it to
state-of-the-art solutions.

A. Experimental Setup

To evaluate the performance of the proposed task offloading
strategy, we developed a Python event-driven simulator, where
anetworked fleet of drones has to complete incoming tasks. The
edge cloud is replicated by means of a further process emulating
the execution of offloaded tasks. To adopt realistic parameters for
our experimental campaign, we base the choice of their default
values on recent studies addressing the considered scenario,
e.g., [9], [17]. In particular, new tasks are generated according to
a Poisson process with an arrival rate of 0.2 Hz if not otherwise
specified. In terms of computing resources, we assume the CPU
capability of each server in the edge cloud and each UAV to be
fe =20 GHz and f; ,,, = 1 GHz, respectively. The computing
workload is set as defaultto C; ,,, = 1 x 10°. The channel band-
width is set to be Wdown — Jyur — 5 Mbps, the transmitted
data D{%! = 7MB, while D;",, = 1 MB. The background noise

,m
power is set equal for the two technologies, as 0%°%" = g"P =
50 dBm. For the channel gain we have G{ov" = G = dY ,
where d; , is the distance between mobile agent 7 and access
point s, and v = 4 denotes the path loss factor. By default, the
distance d; , is set to 10 m. Finally, we simply set the default
value of the weights defined in Algorithm 1 as n = 1.

The results reported are obtained after 35 trials. This value is
in line with the common practice adopted in studies dealing with
simulations of distributed systems based on similar machine
learning algorithms — e.g., [29], [39], where even less runs
are performed. This leads us to claim how 35 trials represents a
good trade-off between simulation times and proper statistical
accuracy. The resulting graph’s bars refer to a confidence interval
of 90%. We summarize in Table II the configuration parameters
utilized during the following evaluation, where the default values
are reported in bold.

4307

B. Evaluation Metrics

Throughout this section, we make use of metrics and quan-
tities defined in Section III, such as the task completion time.
Besides them, in order to study the efficacy of predictors, we
use the Mean Absolute Percentage Error (MAPE), which is a
simple regression error metric. For every data point, the residual
is computed by taking only its absolute value so that negative and
positive residuals do not cancel out. The error is then converted
into a percentage, providing a clear interpretation that makes the
results easily understandable. The formal equation of MAPE is
given by:

Tt — Yt

Tt

1 n
MAPE = — 100 17
~> 100 % : (17)

t=1

where x; and y; are the real and the predicted observations,
respectively. One key advantage of MAPE is its robustness to
the effects of outliers thanks to the use of the absolute value. In
summary, such a value describes how far the model’s predictions
are off from their corresponding outputs on average.

Similarly, we compute the Mean Absolute Deviation (MAD)
for the predicted values as follows:

BN —
MAD:EEHM—XL

t=1

(18)

where X denotes the mean of the observed values. The MAD
value, as explained in [40], is another key metric during the
evaluation of regressors.

Moreover, even though it is not an explicit objective of the
process, we also consider the energy consumed by agent ¢ during
the execution of task m. Since the node can either compute the
task locally or offload its computation to the edge cloud, we
define two types of energy consumption, Eim and £, for the
local execution and the edge execution, respectively. In the case
of local computation, we use the widely adopted model of the
energy consumption per computing cycle as £ = kC f? [41],
[42], where k is the energy coefficient depending on the chip
architecture, f;,, is the CPU frequency, and C; ,, specifies
the workload, i.e., the amount of computation to accomplish
the task in terms of numbers of cycles. According to some
realistic measurements available in [43], we set the energy
coefficient k£ as 5 x 10711, Moreover, in the other event of
task offloading, F“P = p”gﬁ,w, m, where &; is the power
amplifier efficiency of node 7. Without loss of generality, we
assume that &; = 1 Vi. We also assume the energy consumption
in the edge cloud is negligible since the cloud typically has
enough energy to execute the offloaded tasks. Then, similar to
the energy spent in transmission, we define the energy consumed

during the reception phase, E%°%" = %7 Vi, m. Thus, the
energy spent in offloading the task is the sum of these two
communications, Ef m =B+ Edown

In conclusion, for simplicity, we refer to the energy consump-

tion as F, and is computed as follows:
E=(1=0im)E! ,, + 0imEf .
- (1 - Oi,m) (k(il7m)zci,m,)

+ Oi,m (pi,mTifﬁ +pz,m7-;7:7e—,§) . (19)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

4308

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 4, APRIL 2022

FPL ARIMA SES

Algorithms

(a)

FPL ARIMA SES

Algorithms

(b)

SVR GBR

Fig. 2.

1000

—¥— VARMA 84 — FPL
Z 7504 -=-) 6 online-RFR
£ A Y ---- offline-RFR
@ 500 1 34
£
5] i
g 250 2
04 0 -
T T T T T T T T T T
0 5000 10000 15000 20000 0 10 20 30 40

Training set size

(©)

Steps

(d)

(a) MAPE error and (b) mean absolute deviation (MAD) for different algorithms. (c) Training time of the two class of regressors at varying the training

set sizes. Markers denote the amount of samples required for convergence. (d) Convergence time comparison, i.e., loss evolution, for FPL and RFR methods.

C. Predictor Accuracy

For this first part focusing on the accuracy of the predictors,
we first offline train the considered models on a relatively small
dataset consisting of 5036 samples. In particular, we apply a
walk-forward validation. In such a technique, the dataset is split
into train and test sets by selecting a cut point, and we select a
point to split the dataset as 80% training set and 20% test set.
Then, even over the test set these models are fitted for every new
observation, and the training phase continues online to improve
the accuracy and to fit the specific circumstances on the agent.

Fig. 2(a) shows MAPE for different predictors. Specifically,
we compare against two other time series forecasting methods,
autoregressive-moving average (ARIMA) and Simple Exponen-
tial Smoothing (SES), and two ML-based regressors, Support
Vector Regression (SVR) and Gradient Boosting Regression
(GBR). From the graph, we can observe how results validate
our approach. In particular, by leveraging alternate techniques,
our FPL model provides the lowest error in predicting. Notably,
compared to the second-best regressor, i.e., SES algorithm, our
method can halve the error.

We then compare the MAD error among the same set of
predictors, and we report the results in Fig. 2(b). We can easily
conclude that not only FPL can provide a smaller error, but the
variance is reduced. This result is particularly important since it
assures that our approach leads to fewer outliers in the prediction
task. In fact, a method with high MAD suggests that when it is
wrong, the error could be too high, leading to an inappropriate
conclusion. On the other hand, our FPL is always close to the
real value, so even though the value is not exact, the finding is
likely more accurate.

We then reason about the number of samples required
to the algorithms for the convergence. In this phase, we
also consider an approach based on Reinforcement Learning
(RL) [44], a class of machine learning known for its capability
of solving sequential decision-making problems with unknown
state-transition dynamics. The sequential decision-making
problem is typically formulated as a Markov decision process
(MDP). Hence, using a Markov process, we model the action of
task offloading given the same state space we considered in our
formulation. The action, then, is obtained via the DQN setting
of RL, one of the most popular [45].

Fig. 2(c) shows the training time for different algorithms at
increasing the number of samples in the training set. It also
reports the number of samples required for these algorithms to
converge. This value is reported in the graph as a marker, and
is defined as the value that, when exceeded, the advantage in
the error is marginal, i.e., less than 5%. It is worth noticing

that RL models typically use the episode metric to define the
convergence time. Thus, we convert this metric into the number
of samples in order to use a uniform metric.

We can detect the different behavior of the methodologies.
Time series models, i.e., VARMA and ARIMA, require a
medium amount of training time but are not data hungry, and
can converge even when not much data is present, around 500.
On the other hand, a pure ML model, as RFR, is very fast in
its training phase but requires a considerable amount of data to
converge, around 10,000. As expected, while RL can lead to
excellent results and can model more challenging scenarios, it
takes a long time to converge and is needed for a very large
training set. These results motivate our approach based on FPL,
which can fit the application and network requirements by
leveraging alternatively a method requiring fewer samples to
converge or fast in on-online training. We can thus conclude
that our model can adapt to multiple scenarios and network
conditions/technologies, as well as can better face the dynamic
evolution of the conditions, which evolve over time.

After having studied the diverse amount of samples required
for training, as well as the time elapsed, we now study the time
needed by our FPL-based algorithm to converge. To this end,
we compared the convergence time of FPL to RFR, as it is the
most accurate at regime. We consider two different versions for
the latter: an already trained version (offline-RFR) and an RFR
during its learning phase (online-RFR). Fig. 2(d) displays the
loss (actual value - predicted value) of these alternatives, where
the offline-RFR is constant over time since the model parameters
were already fixed during training. We can notice how our
approach outperforms the offline-RFR after approximately 30
steps, while the online-RFR in the first 20 steps has a too
excessive loss toreportin the figure. Such an online-RFR method
achieves a reasonable still high loss at 30 steps, the number of
steps required by our FPL to stably converge. This observation
validates our hypothesis of using an FPL-based algorithm to
online adapt the prediction and mix online and offline parameter
settings to speed up the learning.

D. Solution Performance Analysis

To study the behavior of our solution at varying environmental
conditions, we consider diverse indicators for increasing fleet
sizes. In Fig. 3(a) we show the cumulative distribution function
(CDF) of task completion time. We can easily observe how
a more significant number of nodes leads to a reduced mean
task completion time. Not only, this also reduces the number
of outliers in the distribution, since the number of congested

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SELF-LEARNING STRATEGY FOR TASK OFFLOADING IN UAV NETWORKS

4309

s — l-agent
08 7 gﬁ --== 3-agents
O s -
i 0.6 Laent p 6 7-agents
8 2 g —-—- 15-agents
0.4 4 ---- 3-agents ‘Z
oL OO » I
02 4.4 7-agents 2
: ——- 15-agents

0.0 -

Task Completion Time (s)

3 4 5 6
Task Completion Time (s)

(a)

7 0.4

Fig. 3.

Task Arrival Rate (Hz)

(b)

Number of Nodes

()

(a) CDF of task completion time and (b) queue agents length at varying the task arrival rate. Both experiments consider an increasing fleet size. (c) Task

completion time of our FPL-based approach compared to a more complex solution as MAB. Our FPL outperforms this alternative.

—— Our Solution
DROO
Hotbooting DQN
——- MARL

Task Completion Time (s)
CDF

=N
S
1

B
S
1

Our Solution

DROO 2 DROO
***** Hotbooting DQN ---=- Hotbooting DQN
——— MARL -—- MARL

Energy Consumed by UAV (mJ)

o

2
Number of Nodes

() (b)

Fig. 4.
our algorithm, our solution can also limit the energy consumed by UAVs.

nodes is reduced as well. This result confirms the goodness of
our model, which can be employed even for multiple IoT nodes.

Similar conclusions can be taken if examining the average
queue length of the agents when increasing the task arrival rate.
In particular, we can observe how, when tasks are introduced in
the system at a higher rate, the growth in the queue size is log-
arithmic. This result suggests that our approach can efficiently
handle the presence of many tasks in the system. Confirmation
of this behavior is presented in Section VI-E, when our solution
is compared against other methods.

We then evaluate how a more elaborated approach, as Multi-
Armed Bandit (MAB), behaves when utilized in this scenario. In
MAB algorithms, the set of possible actions is typically referred
to as “arms”. Unlike the more general class of reinforcement
learning, in bandit problems, MAB only observes the outcome
of a selected action for a given state. We model the arms of this
approach as the two leaders of our FPL: one arm refers to the
VARMA predictor, and the other arm is the SVR regressor. As
shown in Fig. 3(c), our FPL-based algorithm can consistently
provide a lower task completion time. Although FPL does not
provide the same guarantees of MAB and RL, we can observe
that the performance of our formulation resembles the results
obtained using an enhanced model as in MAB.

E. Comparison With State-of-the-Art

To study the effectiveness of our solution, we compare it
against three similar solutions: the DROO framework [7],
which implements a deep neural network that learns the binary
offloading decisions; a solution based on the multi-agent rein-
forcement learning framework [10], that is able to select the best

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Download

Agent queue length

10 15 20
Number of Nodes

(©

3 25

(a) Task completion time, (b) CDF of queue agents length, and (c) energy consumption for various offloading solutions. Despite not as an objective of

radio access technology for the offloading process; a hotbooting
Q-learning scheme for computation offloading [28], herein
referred to as hotbooting DQN, as it uses a fast deep
Q-network (DQN) model to further improve the offloading
performance.

We can first consider Fig. 4(a), showing the impact of the
number of nodes on the task completion time. Our solution
is able to reduce such completion time compared to the other
benchmark algorithms. Even when the number of nodes in-
crease, our method outperforms the alternatives.

We then evaluate the effects of task offloading over the queue
of agents, reporting in Fig. 4(b) the CDF of queue length. The
queue length is considered a key metric in this scenario, as it
clearly impacts the time to complete tasks, but also the com-
putation rate and the energy spent by the node. It can be easily
observed that, with our solution, we can shorten the amount
of tasks waiting in the agent’s queue, while other RL-based
methods are more prone to overload the agent.

Additionally, we investigate the energy consumption that the
solutions lead to, reporting the results in Fig. 4(c). While other
benchmark algorithms consider the minimization of energy
consumption in the problem formulation, our model is unaware
of this aspect. Nevertheless, our solution is able to achieve
comparable results with MARL that has been designed for en-
ergy efficiency purposes. Moreover, we can reduce consumption
with respect to DROO and DQN. Thus we can conclude that,
although our approach is blindfolded concerning power saving,
it can lead to an energy-efficient method. These results confirm
our hypothesis that modeling the device as a queue of tasks
is a simplistic yet effective way of exploiting the edge while
considering the application performance.

ed on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

4310 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 4, APRIL 2022
> i R 2 -1 100 4
35 1009 — oursolution s - — looo 4 — Oursoludon —— Our Solution
£ 754 DROO £ 40 ~ e | - DROO ; . S 801 DROO
5 D Hotbooting DQN 5 - S/]"’ ?a 750 4 - Hotbooting DQN / % 4. ML Hotbooting DQN
3 50—~ MARL = 5 ur Solution 2 s0d — MarL z MARL
: - £ 201 DROO. = ; e | 2 404
S 254 S | e Hotbooting DQN ERETIE R — g 3]
7 % —=- MARL | 20 1
E %
& 00 T T T r & 0- T T T 0= T T T . r
10 20 30 40 0 20 40 60 80 100 0 20 40 0 20 40
Avg. distance (m) Computing Workload, 10° (CPU cycles) Time (s) Time (s)
(a) (b) (c) (d)
Fig. 5. (a) Time spent for the task computation at varying the node-antenna distance. (b) Task completion time for increasing average computing workload. (c)

Memory resources and (d) CPU consumed during the execution of our considered algorithms.

Moreover, we consider the impact of the distance among the
nodes of the system and the close edge cloud (Fig. 5(a)). While
the time to complete the task is clearly increasing as the distance
increases, we can also observe how this increment is attenuated
if compared to other solutions. The ability of our solution to
online learn the best offloading decision, as well as to improve
the prediction, makes it more suitable to handle a variety of
conditions, as in the case of diverse antenna locations. Other
differences may arise when tasks to be performed require dif-
ferent execution times. After having conducted an experimental
analysis to investigate this behavior, we report in Fig. 5(b) the
task completion time for ours and the three considered solutions
while the computing workload changes. It can be seen how our
solution can adapt its prediction and significantly reduce the
task completion time for each task size. In light of these and
previous results, we can conclude that the adaptive property
ensures that our model is able to face multiple circumstances
that are challenging for other approaches.

Finally, we consider the amount of RAM and CPU required to
train and execute these algorithms. As can be seen in Fig. 5(c),
our implementation can drastically reduce the amount of mem-
ory consumed, leading to a significant improvement. While the
deep learning approaches are hungry for RAM, the MARL
model can optimize consumption. However, our regressors can
further shorten the demand for memory. Considering then the
CPU consumption in Fig. 5(d), similar conclusions hold. Sim-
ulating the execution of the learning processes over an Intel(R)
Core(TM) i7-7500 U CPU @ 2.70 GHz, it is observable a reduc-
tion of CPU usage. In conclusion, we can consider our solution
more lightweight than alternatives. This result is extremely im-
portant, especially in the UAV context, where a reduced memory
footprint, along with less computation, is fundamental.

VII. CONCLUSION

This paper presents a learning-based solution to solve the
dilemma of whether a task should be offloaded to the close edge
cloud or not. Our solution lets the devices autonomously learn
the offloading decisions on the basis of the current state. Such a
decision exploits two classes of predictors, i.e., time series and
ML regression, to predict future conditions. By doing so, the
node can determine online the accuracy of these methods. Based
on this value, then, the agent determines where incoming tasks
should be executed. The results validate our model, evidencing
how our implementation outperforms state-of-the-art solutions.

In particular, despite the simplicity of our learning algorithm, its
accuracy is comparable to other RL-based processes.

REFERENCES
[1

—

Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with un-
manned aerial vehicles: Opportunities and challenges,” IEEE Commun.
Mag., vol. 54, no. 5, pp. 36-42, May 2016.

J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for
mobile edge computing in dense networks,” in Proc. IEEE Conf. Comput.
Commun., 2018, pp. 207-215.

A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “An architecture for
adaptive task planning in support of IoT-based machine learning applica-
tions for disaster scenarios,” Comput. Commun., vol. 160, pp. 769-778,
2020.

A. V. Ventrella, F. Esposito, A. Sacco, M. Flocco, G. Marchetto, and
S. Gururajan, “APRON: An architecture for adaptive task planning of
Internet of Things in challenged edge networks,” in Proc. IEEE 8th Int.
Conf. Cloud Netw., 2019, pp. 1-6.

T. K. Rodrigues, J. Liu, and N. Kato, “Offloading decision for mobile multi-
access edge computing in a multi-tiered 6G network,” IEEE Trans. Emerg.
Topics Comput., to be published, doi: 10.1109/TETC.2021.3090061.

A. Sacco, F. Esposito, and G. Marchetto, “Resource inference for sustain-
able and responsive task offloading in challenged edge networks,” IEEE
Trans. Green Commun. Netw., vol. 5, no. 3, pp. 1114-1127, Sep. 2021.
L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for on-
line computation offloading in wireless powered mobile-edge computing
networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11, pp. 2581-2593,
Nov. 2020.

X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,” IEEE Trans. Veh. Technol., vol. 68, no. 8,
pp. 8050-8062, Aug. 2019.

Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11158-11168,
Nov. 2019.

A. Sacco, F. Esposito, G. Marchetto, and P. Montuschi, “Sustainable task
offloading in UAV networks via multi-agent reinforcement learning,” IEEE
Trans. Veh. Technol., vol. 70, no. 5, pp. 5003-5015, May 2021.

Z. Zhang, Z. Hong, W. Chen, Z. Zheng, and X. Chen, “Joint compu-
tation offloading and coin loaning for blockchain-empowered mobile-
edge computing,” IEEE Internet Things J., vol. 6, no. 6, pp. 9934-9950,
Dec. 2019.

B. Liu, W. Zhang, W. Chen, H. Huang, and S. Guo, “Online com-
putation offloading and traffic routing for UAV swarms in edge-cloud
computing,” IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 8777-8791,
Aug. 2020.

T. K. Rodrigues, J. Liu, and N. Kato, “Application of cybertwin for
offloading in mobile multi-access edge computing for 6G networks,” IEEE
Internet Things J., vol. 8, no. 22, pp. 16231-16242, Nov. 2021.

S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek, “Techniques
to minimize state transfer costs for dynamic execution offloading in
mobile cloud computing,” IEEE Trans. Mobile Comput., vol. 13, no. 11,
pp. 2648-2660, Nov. 2014.

L. Yang, J. Cao, Y. Yuan, T. Li, A. Han, and A. Chan, “A framework for
partitioning and execution of data stream applications in mobile cloud
computing,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40, no. 4,
pp. 23-32, 2013.

[2]

3

[t}

(4]

(5]

[6

=

[7

—

[8

—

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TETC.2021.3090061

SACCO et al.: SELF-LEARNING STRATEGY FOR TASK OFFLOADING IN UAV NETWORKS 4311

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]
(32]
[33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge computation
offloading for ultradense IoT networks,” IEEE Internet Things J., vol. 5,
no. 6, pp. 4977-4988, Dec. 2018.

T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856-868, Jan. 2019.

B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “An online
algorithm for task offloading in heterogeneous mobile clouds,” ACM Trans.
Internet Technol., vol. 18, no. 2, pp. 1-25, 2018.

A.R.Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki, “Competitive
randomized algorithms for nonuniform problems,” Algorithmica, vol. 11,
no. 6, pp. 542-571, 1994.

P. Zhao, H. Tian, C. Qin, and G. Nie, “Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge computing,”
IEEE Access, vol. 5, pp. 11255-11268, 2017.

J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944-7956,
Aug. 2019.

H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep reinforcement
learning-based adaptive computation offloading for mec in heteroge-
neous vehicular networks,” IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 79167929, Jul. 2020.

M. Gong and S. Ahn, “Computation offloading-based task scheduling
in the vehicular communication environment for computation-intensive
vehicular tasks,” in Proc. Int. Conf. Artif. Intell. Inf. Commun., 2020,
pp. 534-537.

X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang, “Multi-agent
deep reinforcement learning for vehicular computation offloading in IoT,”
IEEE Internet Things J., vol. 8, no. 12, pp. 9763-9773, Jun. 2021.

Y. Wang, K. Wang, H. Huang, T. Miyazaki, and S. Guo, “C learning in
fog computing for industrial applications,” IEEE Trans. Ind. Informat.,
vol. 15, no. 2, pp. 976-986, Feb. 2019.

Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu, “Learning-based
task offloading for vehicular cloud computing systems,” in Proc. IEEE Int.
Conf. Commun., 2018, pp. 1-7.

L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed deep
learning-based offloading for mobile edge computing networks,” Mobile
Netw. Appl., pp. 1-8, 2018.

M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang,
“Learning-based computation offloading for IoT devices with energy
harvesting,” IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930-1941,
Feb. 2019.

D. Di Paola, M. Gaggero, A. Petitti, and L. Caviglione, “Optimal control
of time instants for task replanning in robotic networks,” in Proc. Amer.
Control Conf., 2016, pp. 1993-1998.

N. K. Ure, G. Chowdhary, J. P. How, M. A. Vavrina, and J. Vian, “Health
aware planning under uncertainty for UAV missions with heterogeneous
teams,” in Proc. Eur. Control Conf., 2013, pp. 3312-3319.

E. Hannan, “The identification of vector mixed autoregressive-moving
average system,” Biometrika, vol. 56, no. 1, pp. 223-225, 1969.

N. Littlestone and M. K. Warmuth, “The weighted majority algorithm,”
Inf. Comput., vol. 108, no. 2, pp. 212-261, 1994.

M. Zinkevich, “Online convex programming and generalized infinitesimal
gradient ascent,” in Proc. 20th Int. Conf. Mach. Learn., 2003, pp. 928-936.
J. Hannan, “Approximation to bayes risk in repeated play,” Contributions
to Theory Games, vol. 3, pp. 97-139, 1957.

A. Kalai and S. Vempala, “Efficient algorithms for online decision prob-
lems,” J. Comput. Syst. Sci., vol. 71, no. 3, pp. 291-307, 2005.

N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cam-
bridge, U.K.:Cambridge Univ. Press, 2006.

A. Cohen and T. Hazan, “Following the perturbed leader for online struc-
tured learning,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1034-1042.
A. Sacco, F. Esposito, and G. Marchetto, “RoPE: An architecture for
adaptive data-driven routing prediction at the edge,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 2, pp. 986-999, Jun. 2020.

S. Abbasloo, C.-Y. Yen, and H. J. Chao, “Classic meets modern: A
pragmatic learning-based congestion control for the internet,” in Proc.
Annu. Conf. ACM Special Int. Group Data Commun., 2020, pp. 632-647.
G. P. Zhang, “Time series forecasting using a hybrid arima and neural
network model,” Neurocomputing, vol. 50, pp. 159-175, 2003.

Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
Proc. IEEE Int. Conf. Comput. Commun., 2012, pp. 2716-2720.

[42] X. Chen, “Decentralized computation offloading game for mobile
cloud computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4,
pp. 974-983, Apr. 2015.

[43] A.P.Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients in
cloud computing,” in Proc. 2nd USENIX Conf. Hot Topics Cloud Comput.,
2010, pp. 1-7.

[44] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA:MIT Press, 2018.

[45] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deepreinforcement learning: A brief survey,” IEEE Signal Process. Mag.,
vol. 34, no. 6, pp. 26-38, Nov. 2017.

Alessio Sacco (Graduate Student Member, IEEE)
received the M.Sc. degree in computer engineering
from the Politecnico di Torino, Turin, Italy, where
he is currently working toward the Ph.D. degree in
computer engineering. His research interests include
architecture and protocols for network management,
implementation and design of cloud computing ap-
plications, algorithms and protocols for service-based
architecture, such as software defined networks, used
in conjunction with machine learning algorithms.

Flavio Esposito (Member, IEEE) received the M.Sc.
degree in telecommunication engineering from the
University of Florence, Florence, Italy, and the Ph.D.
degree in computer science from Boston University,
Boston, MA, USA, in 2013. He is currently an As-
sistant Professor with the Department of Computer
Science, Saint Louis University SLU, St. Louis, MO,
USA. He also has an affiliation with the Parks College
of Engineering, SLU. He worked in the industry for
a few years.

His research interests include network manage-
ment, network virtualization, and distributed systems. He was the recipient of
the several awards, including four National Science Foundation awards and two
best paper awards, one at IEEE NetSoft 2017 and one at IEEE NFV-SDN 2019.

Guido Marchetto (Senior Member, IEEE) received
the Ph.D. degree in computer engineering from the
Politecnico di Torino, Turin, Italy, in 2008. He is
currently an Associate Professor with the Department
of Control and Computer Engineering, Politecnico di
Torino. In 2009, he visited the Department of Com-
puter Science, Boston University, Boston, MA, USA.
His research interests include distributed systems,
formal verification of systems and protocols, network
protocols, and network architectures. He is an Asso-
ciate Editor for IEEE TRANSACTIONS ON VEHICULAR
TECHNOLOGY.

Paolo Montuschi (Fellow, IEEE) is currently a Full
Professor with the Department of Control and Com-
puter Engineering, Rector’s Delegate for Informa-
tion Systems, and a past Member of the Board of
Governors, Politecnico di Torino, Turin, Italy. His
research interests include computer arithmetic, com-
puter graphics, and intelligent systems. He is a Life
Member of the International Academy of Sciences
in Turin, and of HKN, the Honor Society of IEEE.
He is the Editor-in-Chief of IEEE TRANSACTIONS ON
EMERGING TopPICS IN COMPUTING, the 2020-2021
Chair of the IEEE TAB/ARC and the Co-Chair of the 2021 TAB/PSPB Ad
Hoc Committee on Publications Strategy. Previously, he was in a number of
positions, including the Editor-in-Chief of IEEE Transactions on Computers
(2015-2018), the 2017-2020 IEEE Computer Society Awards Committee Chair,
aMember-at-Large of IEEE PSPB (2018-2020), and as the Chair of its Strategic
Planning Committee (2019-2020).

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on April 19,2023 at 19:00:25 UTC from IEEE Xplore. Restrictions apply.

