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Abstract. An (n+1)-D coefficient inverse problem for the stationary radiative transport equation is considered

for the first time. A globally convergent so-called convexification numerical method is developed

and its convergence analysis is provided. The analysis is based on a Carleman estimate. Extensive
numerical studies in the two-dimensional case are presented.
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1. Introduction. The stationary radiative transfer equation (RTE) governs the propaga-
tion of the radiation field in media with absorbing, emitting, and scattering radiation. RTE
has broad applications in optics, including diffuse optical tomography [16], astrophysics, at-
mospheric science, and other applied disciplines. For example, in single particle emission
tomography the coefficient we reconstruct is the emission coefficient [29, formula (2.1)]. The
RTE we consider here is a more general one since we introduce an integral operator in it.

For the first time, we develop in this paper a globally convergent numerical method for a
coefficient inverse problem (CIP) of the recovery of a spatially distributed coefficient of RTE
in the (n+1)—D case, n > 1. All CIPs are both nonlinear and ill-posed. Numerical methods
for inverse source problems for RTE were developed in [10, 11, 12, 31]. In the case of single
particle emission tomography, i.e., when the kernel of the integral operator in RTE is the
identical zero function, an inversion formula for the inverse source problem was derived in [30]
and tested numerically in [15]. Inverse problems of [10, 11, 12, 15, 30, 31] are linear ones.
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Our CIP is formally determined, i.e., the number of free variables in the data equals the
number of free variables in the unknown coefficient. Our data are incomplete, i.e., the source
runs along an interval of a straight line and the data are measured only at a part of the
boundary 0f2 of the domain of interest §2.

We now comment on some uniqueness and stability results for inverse problems for RTE.
Both our discussion and the number of references to corresponding results are limited since
this topic is outside of the scope of the current paper. In the case when the source function
is unknown in the stationary RTE, we refer to [3, 32], where some uniqueness theorems are
proven. In the case when a coefficient of the stationary RTE is unknown, we refer to [2] for
some stability results. In the case of CIPs for the time dependent RTE, some uniqueness
and stability theorems were proven in [13, 27, 28] using some modifications of the technique
of [7].

The goal of this paper is to construct a globally convergent numerical method for our CIP,
to conduct its convergence analysis, and to confirm our method via numerical experiments.
To achieve this goal, we develop in this paper a new version of the so-called convexification
method [25]. The convexification constructs a least squares cost functional, which is strictly
convex on a bounded convex set in an appropriate Hilbert space. The diameter of this set
is fixed and is an arbitrary number. We prove existence and uniqueness of the minimizer of
that functional on that set and estimate convergence rate of minimizers to the true solution
depending on the level of the noise in the data. As a by-product, we obtain a certain uniqueness
result for our CIP. Also, we establish the global convergence of the gradient descent method
of the minimization of our functional. Recall that only local convergence of this method
can be proven in the nonconvex case. In addition, we present numerical experiments in the
two-dimensional case.

We call a numerical method for a CIP globally convergent if a theorem is proven, which
claims that this method delivers at least one point in a sufficiently small neighborhood of
the solution of this CIP without an advanced knowledge of that neighborhood; also, see [25,
Definition 1.4.2] for a similar statement.

Conventional numerical methods for CIPs are based on the minimization of least squares
cost functionals; see, e.g., [8, 14]. However, these functionals are usually nonconvex, thus they
typically have multiple local minima and ravines. It is well known that this complicates the
problem of their optimization. These considerations prompted the first author to work on the
developments of the convexification technique in previous publications [21, 23].

The convexification uses the idea of the so-called Bukhgeim-Klibanov method (BK), which
is based on Carleman estimates; see, e.g., the books [4, 25] for Carleman estimates. BK was
originally introduced in the field of CIPs in 1981 [7] only for the proofs of uniqueness theorems
for multidimensional CIPs. The work [7] has generated many publications by many authors
since then; see, e.g., the books [4, 25] and references cited therein. The majority of currently
known publications about BK are also dedicated to the issues of uniqueness and stability of
CIPs. Unlike these, it was proposed in [21, 23] to use the idea of BK for the construction
of the above mentioned globally strictly convex cost functionals for CIPs. Starting from the
work [1], which has removed some obstacles for real computations, a number of works have
been published, which combine the theory and computations of convexification; see, e.g., [6,
20, 24, 25, 26] and references cited therein.
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Let B be a Banach space and s > 2 be an integer. Below the space B is defined as

s 1/2
B, = (Z ufin%) :
=1

All functions considered below are real valued ones. In section 2 we pose forward and inverse
problems and prove existence and uniqueness theorems for the solution of the forward prob-
lem. In section 3 we describe our transformation procedure. In section 4 we introduce our
convexification functional and formulate five theorems. These theorems are proven in section
5. In section 6 we present our numerical results.

Bs:{f:(fla"'vfs)vaieri:17"'as}ﬂ||f|

2. Statements of forward and inverse problems. For n > 1, points in R”*! are denoted
below as x = (21,22,...,Tn,y) € R" 1. Let numbers A, a,b,d >0, where

(2.1) l<a<hb.

Define the rectangular prism Q C R™*! and parts 9;Q, 020, 93 of its boundary 9 as

(2.2) Q={x:—A<x,...,2n < Aja<y<b},
(2.3) IQ={x:—A<z,...,xn<Ay=a},
(2.4) MN={x:—A<mx,...,x, <A y=0b},
(2.5) BN={z;=xA,ye(a,b),i=1,...,n,}.

Let I'; be the line where the external sources are
(2.6) Iy={xqa=(,0,...,0):a €[—d,d]}.

Hence, Ty is a part of the xq-axis. It follows from (2.1) and (2.2) that TyNQ = @.
Let the points of external sources x, run along 'y, x, € I'y. Let € > 0 be a sufficiently
small number. To avoid dealing with singularities, we model the §(x)-function as
x| )
(2.7) f(x):ce{ exp (k) <,

0,[x| >,

where the constant C. is chosen such that

|x|? >
2.8 C/ exp( dx=1.
29 e P\ E P

Hence, the function f(x —x,) = f(z1 — a,22,...,2,,y) € C®°(R"!) plays the role of the
source function for the source x,. We choose € so small that

(2.9) f(x—%x4)=0VxeQvx, €Ty
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Let A; =max(A,d). Introduce three domains G C R"*! and G} ,G, C G,
(2.10) G={x:|x1],...,|7n| < A1,y €(0,b)},GI =GN {y>a},G, =G\G.

By (2.2), (2.6), and (2.10) Q C GF. By (2.15), (2.16), and (2.10) a(x) = 0 for x € G\{.
Everywhere below

(2.11) (x,a) € G x (—d,d).

Let u(x,a) denote the steady-state radiance at the point x generated by the source function
f(x — xq). We assume that the function u(x,«) is governed by the stationary RTE of the
following form [16]:

v(x,a) - Vxu(x, o) + a(x)u(x, «)

:#S(X) K(X,O&,ﬁ)u( X,ﬁ)dﬁ‘l’f(X*Xa),XeG,XaGrd.
L

(2.12)

The kernel K (x,«, 3) of the integral operator in (2.12) is called the “phase function,”
(2.13) K(x,a,8) >0,x€G;a, 3 € [—d,d;

see [16]. In addition, we assume that

(2.14) K(x,a,8) € C* (G x [-d,d]).
In (2.12),
(2.15) a(x) = pa(x) + ps(x),

where pq(x) and ps(x) are the absorption and scattering coefficients, respectively, and a(x)
is the emission coefficient [29, formula (2.1)]. We assume that

(2.16) pa (%), pis (%) 2 0, pra(x) = ps(x) =0, x € G\ Q,

(2.17) pa(x). () € C1 ().

For two arbitrary points x,z € R"*! let L(x,z) be the line segment connecting these points
and let ds be the element of the euclidean length on L(x,z). In (2.12) v(x,«) denotes the unit
vector, which is parallel to L(x,X,),

(2.18) V(x,a) = o

Cx— %ol

Forward problem. Let (2.1)-(2.18) hold. Find the function u(x,a) € CY(G x [~d,d))
satisfying (2.12) and the initial condition

(2.19) U(Xq, ) =0 for x, € I'y.
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Coefficient inverse problem. Let (2.1)-(2.18) hold. Let the function u(x,a) € C*(G x
[—d,d]) be the solution of the forward problem. Assume that the coefficient a(x) of (2.12)
is unknown. Determine the function a(x), assuming that the following function g(x,a) is
known:

(2.20) g(x,a) =u(x,a) Vx € 0O\ 01 Wa € (—d,d).

Remark 2.1. This CIP is an ill-posed one, like all other CIPs. However, we are unaware of
any expectations of the nature of the ill-posedness of our specific CIP. This question is outside
of the scope of the current paper and needs to be investigated separately.

First, we formulate and prove an existence and uniqueness theorem for the solution of the
forward problem. Some other existence results for the stationary RTE were proven in [31,
32]. Unlike Theorem 2.1, the positivity of the function u was not discussed in [31, 32]. On
the other hand, we need this property of u for our numerical method.

Theorem 2.1. Assume that (2.1), (2.2), (2.6)—(2.9), and (2.13)—~(2.17) hold. Then there
exists unique solution u(x,a) € CY(G x [—d,d]) of (2.12) with the initial condition (2.19).
Furthermore, the following inequality holds:

(2.21) u(x,a) >m >0 for (x, ) 6@3 x [—d,d],

(2.22) m:éjrxn[i?d,d] [exp (— /L(x’xa)a(x (s))ds> . (/L(X?xa)f(x (s) — Xq) ds)] .

Proof. Recall (2.11). Equation (2.12) can be rewritten as

(2.23) Dyu(x,a) + a(x)u(x, @) = ps(x) g K(x,a,B)u(x,B)dS + f (X — Xq),

where D,, is the operator of the directional derivative in the direction of the vector v(x, ).
We can consider (2.23) as the first order linear ordinary differential operator along the line
segment L(x,X,). Denote

(2.24) p(x,0) = /L ( )a(x(s))ds, c(x, o) = P,

Obviously, L(x,x4) ={2z(t) = (a+t(x1 —a),txe, ..., tz,,ty),t € (0,1)}. Hence, ds = |x— x|dt
in (2.24). We obtain

1
(2.25) p(x,a):|x—xa|/ ala+t(xy —a),te,. .. toy,ty)dt.
0

Since by (2.15) and (2.17) a € C*(G), then (2.18), (2.24), (2.25), and elementary calculations
imply that D, p(x,a) = a(x). Consider now the integration factor ¢(x, «) defined in (2.24). By
(2.24) Dyc(x, o) = a(x)e(x, ). Multiplying both sides of (2.23) by ¢(x,«), we obtain

c(x,a) Dyu(x, o) + e(x, a)a(x)u(x, a)

(2.26) — o(%,00) s (X) /F K(x,a, B)u(x, B)dB + c(x,a) f (x — Xa) .
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We have
(2.27) e¢Dyu+ cau= D, (cu) — uD,c+ cau= D, (cu) — cau + cau = D, (cu) .

Since by (2.7)—(2.9), (2.15), (2.16), and (2.24) ¢(x,«) =1 for all points x where f(x—x,) #0,
then c(x, o) f(x —xq) = f(x—x4). Hence, (2.2), (2.10), (2.11), (2.15), (2.16), and (2.27) imply
that (2.26) is equivalent with

(2.28) D, ((cu) (x,00)) = e(x,a) ps(x) g K(x,a,B)u(x,B)dB + f(x —Xq) -
Integrating (2.28) over the line L(x,X,) and using the initial condition (2.19), we obtain

u(x,a) = up(x,q)
1

(2.29) + x0)

[ et ( K (x(s) 0 Bu(x (s) ,mdﬁ) ds
L( x,xa) Ty

up (X, :; x(s)—x s = e P(0) x(s) —x s.
(230)  wo(x.) /L(m)ﬂ (5) — xa)d / f(x() — xa)d

C(X7 Oé) L(x,xa)

It follows from (2.15), (2.16), (2.24), (2.29), and (2.30) that

(2.31) u(x,a) = up(x,a) :/ f(x(s) —xq)ds, (x,a) e G, X (—d,d).
L(x,x4)

By (2.7) and (2.8) f >0. Hence, (2.24) and (2.30) imply

(2.32) uo(x,a) >m, (x,a) € é; X [—d,d],

where the number m is defined in (2.22). It follows from the above construction that the
problem (2.29), (2.30) is equivalent with the problem (2.12), (2.19).
Similarly with (2.24) and (2.25), for x € G} and for any appropriate function ¢(z)

[ eteds=ix- xa|/ (0 + 01— ) st )
L(x,xq)

‘X Xa|/ ( l_a)z,mz,...,xnz,z)dz
Yy Yy

‘X Xa|/ <a+ ml—a) mz,...,xnz,z>dz
y Yy Yy

|X Xa‘/ ( l_a)z,mz,...,xnz,z>dz.
Y Y

Hence, (2.29) and (2.30) imply

u(w1,22,. .., y,0) = up(X,)

|x —xo| [Y
(2.33) Pl [ xe1.00 ( Kx).08)utx(z). )3 )
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(2.34) x(z) = <a + wz, @z, e x”z,z) )
Y Y Y

where (x,a) € G} x (—d,d). Thus, we have obtained the a-dependent family of integral
equations (2.33), (2.34) of the Volterra type in the bounded domain Gf. Furthermore, any
solution of problem (2.30), (2.31), (2.33), (2.34) satisfies (2.12) with the initial condition
(2.19). Therefore, to solve the forward problem, it is sufficient to solve problem (2.33), (2.34).
It follows from the well-known classical results about Volterra equations that there exists
unique function u(x, o) € C(é: x [—d,d]) satisfying (2.33), (2.34), and this function can be
obtained via the following iterative process:

Un (X, ) = up(x,a)

(2.35) [x = Xa| yc x(z), x(2). . B)u x(z .
* yc(x,a) a (MS)( ( )’ )< FdK( ()7 75) n—l( ( ),5)d,3>d

where (x,a) € GI x (—d,d) and n=1,2,.... It follows from (2.35) that

(2.36) u (xa|<ZMl()>k (x,0) €GF x [~d,d],n=0,1
. n k' ) ) a 9y ) 9y trt
k=0

where the number M; = M;(A,a,b,d, Ha(X)HC@), HK”C(ﬁx[—d,dP)’ I fllc(x|<e)) > 0 depends
only on listed parameters. Next, (2.13), (2.15), (2.16), (2.22), (2.24), (2.30), (2.32), and
(2.35) imply that u,(x,a) >m,n=0,1,... for (x,a) Gé: X [—d,d]. Therefore, (2.36) implies
that estimate (2.21) holds. Next, it follows from (2.14), (2.17), and (2.35) that functions
un (X, ) can be differentiated once with respect to z1,...,x,,y,« and, similarly with (2.36),
the following estimates hold for n=20,1.

(M (y — )"

k! ) (X7 Oé) S é: X [_da d]7

(2.37) |Vt (X, )], | Oatin (%, )| < Z

k=0
Here, the number My = M3(A, a,b,d, [|a(x)|c1@): [ Kl or@x —a,d2): | fllcr(x<e)) > 0 depends
only on listed parameters. Estimates (2.36) and (2.37) combined with (2.31) imply that
we have found the unique function u(x,a) € C1(G x [—d,d]) satisfying (2.12) and the ini-
tial condition (2.19). Furthermore, estimate (2.21) with the number m defined in (2.22) is
proven. |

3. Transformation.

3.1. An integral differential equation without the unknown coefficient a(x). The first
step of the convexification is a transformation of the above CIP to a boundary value problem
for a certain PDE of the second order, in which the unknown coefficient a(x) is not involved.
By (2.21) we can introduce a new function w(x, ),

(3.1) w(x,a) =Inu(x,a), (x,a)€Q x [~d,d.
Substituting (3.1) in (2.12) and (2.20), we obtain
(3.2) v(x,a) - Vxw(x,a) + a(x)

=" ®Vuy(x) | K(x,0,8)e"®Pd8 xeQ ae (-d,d),
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(3.3) w(x,a) lgo=1Ing1(x, ),
 Jo(x,0),x € 00N, a € (—d,d),
(3-4) g%, o) = { up(x,0),x € hQ,a € (—d,d).

Differentiate both sides of (3.3) with respect to a and use Jya(x) = 0. We obtain an
integral differential equation with the derivatives up to the second order,

v(x,0) - Vxwe (X, o) + 0qv(Xx,0) - Vxw(x, o)

3.5
(35) = us(x% [e‘“""“) K(x,a, 6>ew<"ﬁ>dﬁ} x€Qa€(—d,d).

'y

We have v(x,a) = (11 (x,a), v2(X,a), . .., Unt1(Xx,a0)), where by (2.18)

9

-1/2
vi(x,0) = (21— @) (@1 — @) +af + - + a2 + 47|

}—1/2

Vk(x,a):a:k[(ajl—a)2+:v§+~-+x%+y2 , k=2,...,n,

~1/2
Unt1(X,0) =y [(xl - a)2 + ZE% 4+ 4+ x,% + yﬂ

Hence, (2.1)-(2.6) imply that with a constant M3 = M3(A,d) > 0 depending only on numbers
A, d the following estimates are valid:
Ms

<—k=1,...,n,x€Q, a €[—d,d].
a

Vi (x,a0)

Un+1 (Xaa)

aayk(xaa)

I/n+1(X,Oé)

(3.6)

9

3.2. An orthonormal basis in L?(—d,d). We now describe the orthonormal basis in
L?(—d,d) of [22] and [25, section 6.2.3], which was mentioned in section 1. Consider the set of
linearly independent functions {a®e®}° ;. This set is complete in the space L?(—d,d). Apply-
ing the Gram-Schmidt orthonormalization procedure to this set, we obtain the orthonormal
basis {Us(a)}22, in Lo(—d,d). The function ¥4(«r) has the form ¥s(a) = Ps(a)e® for all s > 0,
where Ps(«) is a polynomial of the degree s. Even though the Gram-Schmidt orthonormaliza-
tion procedure is unstable for the infinite number of elements, it is still stable for a nonlarge
number of elements, and this was observed in numerical studies of, e.g., [26], [25, Chapters 7,
10, 12] and references cited therein. Consider the N x N matrix My = (as,k)gk_)ig;))l)
as = [P., U], where [,] is the scalar product in L*(—d,d). It was proven in [22], [25, section
6.2.3] that as, =11if s=Fk, and asx =0, if s <k. Hence, det My = 1. Hence, the matrix My
is invertible.

, where

Remark 3.1. The invertibility of the matrix My is the single most important property
of the orthonormal basis {U,(a)}22,. Consider, for example, any basis of either classical
orthonormal polynomials or orthonormal trigonometric functions in La(—d,d). Since the first
function of such a basis is a constant, then the first row of the analogue My of the matrix
M consists of zeros only. Hence, the matrix My is not invertible.
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3.3. A coupled system of nonlinear integral differential equations. Represent the func-
tion w(x,a) as truncated Fourier series with respect to the above basis {Us(a)}22, and also
assume that the derivative w, (x,a)) can be represented as the sum of the term-by-term deriv-
atives of that series,

N-1 N-1
(3.7) w(x,a) = Z ws(x)Vs(a), we(x,0) = Z ws(x) V().
s=0 s=0

Therefore, we now need to find the vector function W (x) = (wy, ..., wn_1)T (x) of coefficients
ws(x). Dividing (3.5) by v41(x,a) and then substituting (3. ) we obtam

Nl Oy V. X,
Z@wmw®*4ﬂ—fzaw>ww

Un+1(X,0)
N—-1 n

n
+ZZ vilxa) o ey s (L) + Oovi(x a Wy (X))
s=0 i= 1I/n+1XOé s=0 i=1 n+1

39) el D Jemwte
+1(X,Oz)
where the function w(x,a) in the last line of (3.8) has the form (3.7). The new equation (3.8)

does not contain the unknown coefficient a(x). Using (3.3), (3.4), and (3.7), we obtain the
boundary condition for the vector function W (x),

K (x,a, 8)e®P) dﬁ} =0,xeQ,ac(—d,d),
Iy

(3.9) W(x) lag = P(x) = (po,---,pn—1)" (%),
d
(3.10) ps(x) = /dln [91(x, )] ¥ () dar,s=0,...,N — 1.

We need now to solve problem (3.8)—(3.10) with respect to the vector function W (x).
Multiply sequentially (3.8) by functions Wy («),k=0,...,N — 1, and integrate with respect to
€ (—d,d). We obtain

(3.11) (My + Apy1(x +ZA x) + F (W(x),x) =0, x€Q,

where A, 11 € Cn2(Q) and 4; € Cn2(Q),i=1,...,n, are N x N matrices, and the N—D vector
function

(3.12) F(s,z) € C* (RN

is generated by the operator in the last line of (3.8). Here, (3.12) follows from (2.14), (2.15),
(2.17), (3.5), and (3.8). Obviously the vector function F'(W(x),x) is nonlinear with respect
to W(x). By (3.6) and (3.8)

(3.13) 14l () < Ca,

where the number C'= C(A,d, N,b) > 0 depends only on listed parameters.
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Denote
(3.14) Dy (x) = (My + Aps1(x)) = My (I + My'A1(x)) .

Since the matrix My is invertible, then it follows from (2.1) and (3.13) that there exists such
a number ag = ag(A,d, My) > 1 depending only on listed parameters that

(3.15) the matrix Dy'(x) exists for all a > ag and for all x € Q.

3.4. Approximate mathematical model. We discuss in this subsection the truncation of
the Fourier-like series (3.7).

1. We use in this paper an approximate mathematical model, which amounts to the
truncation of the Fourier-like series (3.7). We do not know how to prove convergence
of our method in the case when the number of terms of this series N — oo.

2. Thus, in fact, we work with a version of the Galerkin method. One can also call
this a “projection method” with N unknown functions {ws(x)}Y;'. In both cases
convergence when N — oo is not proven.

3. Truncations of Fourier-like series with respect to the same basis {Us()}32,, as the
one above were done in [20, 26], [25, Chapters 7, 10, 12] for various versions of the
convexification method for a variety of CIPs.

4. We refer to works of some other authors [15, 17, 18, 19], which discuss some other
inverse problems and use truncated Fourier series without proofs of convergence when
N — .

5. The fundamental reason of one’s inability to provide such proofs is the ill-posed nature
of the underlying inverse problems.

6. Therefore, the only way to verify the validity of such approximate mathematical models
is via numerical experiments, as in section 6 as well as in the past works cited in item
4.

7. Conceptually, the issue discussed in this subsection is quite similar to with the well-
known issue of the theory of Huygens and Fresnel of the diffraction in optics since this
model is yet not derived rigorously from the Maxwell’s equations. On the other hand,
since the entire optical industry is based on the theory of Huygens and Fresnel, then
obviously a good performance of this theory is well verified in practice. Somewhat
similarly, we verify our approximate mathematical model numerically in section 6.

8. To support the discussion of item 7, we now cite some statements on pages 412 and 413
of the classical textbook of Nobel prize laureate Max Born and Emil Wolf [5]: “Dif-
fraction problems are amongst most difficult ones encountered in optics. ... Because of
mathematical difficulties, approximate methods must be used in most cases of practical
interest. Of these the theory of Huygens and Fresnel is by far most powerful and is
adequate for the treatment of the majority of problems encountered in instrumental
optics.” Here, the term “approximate methods” has the same meaning as our term
“approximate mathematical model.”

9. We assume below that the derivatives W,,,i =1,...,n, in (3.11) are written in finite
differences with the grid step size h > hg > 0, where the number hg is fixed. On the
other hand, the y-derivative is understood in the conventional sense. The assumption
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h > hyg is a reasonable one since one does not allow the grid step sizes to tend to zero in
practical computations. This assumption is the second element, in addition to (3.7),
of our approximate mathematical model.

3.5. Partial finite differences. Let m > 1 be an integer. Consider n partitions of the
interval (—A, A) (see (2.2)):
(3.16) —A:x@o <Zip <--- <$i,m:A7$z’,j+1 — T :h,j :O,...,m — 1,i: 1,...,77,
We assume that

(3.17) h > hy = const. > 0.

Define the semidiscrete subset Q" of the domain € as

(3.18) {xw} z ,

(3.19) Qh:mxw,m:{m v {x m}éi’j’ oy € Qbye (a,0)}.

We denote x" = {(z; j,y) : 2;; € A,y € (a,b)}. By (2.3)—(2.5) and (3.18), (3.19) the boundary
00" of the domain Q" is

o0 = 5,07 U 5,0 U §;0",

nQ' =0 x {y=a}, BQ" =0 x {y="b},

839h — {(xi,O)y) 3 ('I’i,may) ‘Y S (a,b)vi = ]-a v ,TL} .
Let the vector function Q(x) € C%(22). Denote

() Q(zij,y),i=1,...,n;5=0,...,m;y € (a,b),
Qh(x ):{Qh (xl,jax2,j7"'a$n,j7y)}7y€(avb)‘

Thus, Q"(x") is an N — D vector function of discrete variables z;; € Q" and continuous
variable y € (a,b). Note that the boundary terms at 930" of this vector function, which
correspond to Q(x) |g,qn, are {Qﬁo(y)} U {Qfm(y)},l = 1,...,n. For two vector functions

QW(x) = (QV(x),...,QW (x)" and Q) (x) = (@ (x),....

Qﬁ) (x))T their scalar product
QW (x) - Q¥ (x) is defined as the scalar product in RY and (Q(V)

(x))? = QW (x) - QW (x).

Respectively,
N (3,)=(1,m—1)
(3.20) QWh(x") . Q@h(xh) =% QM (@i, 1) Q" (w14, y),
k=1 (i.§)=(1,1)
2
(3.21) (@) =@ ") @), | ()| = J@rex) - @h ().

We will use formulas (3.20), (3.21) everywhere below without further mention. We exclude
j =0 and j =m here since we work below with finite difference derivatives as defined in the
next paragraph.
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We define finite difference derivatives of Q"(x") with respect to x1,...,z, only at interior
points of the domain Q" with as

(3.22)
9, Q" (x") = Qf, (x") = {Qh (21,5, 2,5, - -- 7=Tn,jay)}x
.
_ {Qh (15 s P gty Tt g oY) = QM (P15 T T 1, Th - .,xn,j,y)}
2h '

The second line of (3.22) should be adjusted in an obvious fashion for k=1 and k =n. Also,
in that line j =1,...,m — 1. We need semidiscrete analogues of spaces Cn(Q), Hx(€2), and
L%(€2). All of them are defined using the same principle; see, e.g., [20] for these definitions. As
an example, we introduce the space H}V’h(Qh) and its subspace H}V’%(Qh) Others are similar.

. QM) | Q M) [
H Qh — (3,9,k)=(n,m—1,n)
EEL ST (e w) @ e+ (0@w) an <o

(i,j-k)=(1,1,1)
HYH(@") = { Q" (x") € HY"(@"): Q" (x") [aa =0}
By the embedding theorem H}V’h(Qh) ccl (Qh) and

(3.23) |@net) vQ" € HY" (),

ex (@) = HQh(Xh)HH}\;"(Q’L)

where the number Cy = Cy(ho, 4,a,b,2) > 0 depends only on listed parameters, and the
number hg is defined in (3.17 ).

Remark 3.2. Since we work with finite difference derivatives (3.22) only at interior
points of the discrete domain Q" then in any differential operator below we use W"( x") =
{H@?(y)}gz;;ig?g_l),y € (a,b), i.e., boundary points x;¢ and x;,, are involved only in finite
difference derivatives I/Vih (x) at xi1 and z; 1. Points x; ¢ and x; y,are not included in (3.20)
for the same reason.

Using (3.16)—(3.22), we now rewrite problem (3.9)—(3.11) in the form of finite differences
with respect to x1,...,z, as

(3.24) D?V(xh)W; <xh> + zn:A?(xh)W;” (x") + Fh (Wh (xh> ,xh) =0,x"eQ",
i=1

(3.25) W (x") Jggn=P"(x").

In (3.24) N x N matrices A?(x") € Cy(Q"), the matrix D (x") € C(Q") is the semidiscrete
analogue of the matrix Dy (x) defined in (3.14). By (3.13) and (3.14)

(3.26) HD?\,‘

<CoVa>ap=ap(A,d,N)>1.
C;t,z(m)_ 2 Va = ap aO( s Wy )>
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The vector function F*(W"(x"),x") is the semidiscrete analogue of the vector function F
n (3.11), and by (3.12) Fr(Wh(x"),x") is twice continuously differentiable with respect to
components of W"(x"). By (3.15) there exists the inverse matrix (D%)~!(x") and

-1
< (Cy Vazaozao(A,d,N)>1

(3.27) H (Df{,) .

Furthermore, (3.13) and (3.27) imply for i=1,...,n

(3.28) H ((D?V) o A?) (x") < Cy Ya>ag=ap(A,d,N) > 1

Cra (@)

Here and everywhere below Cy = C9(A,d, N,a,b, hy, ”KHCI(ﬁx [_dvd]g)) > 0 denotes different
constants depending only on listed parameters.
The following formulas are semidiscrete analogues of (3.7):

N-1 N-1
(3.29) w(x"a) =Y wh(x") (), daw(x"a) =" wl(x")¥,(a)
n=0 n=0
We also denote Wh(x") = (wh,... wh_ 1)T( "). Suppose that we have found this vector.
h

Then, to find the semidiscrete analogue a”(x") of the unknown coefficient a(x), we use (3.2)
and (3.29) as

1 d
a(xM) = —— / v(x"a) Veuw(x", a)do
2 |,

1 d h h d h h
+ 24 <e“’ (x ’a)us(xh)/ K(x", a,B)e”" & ’B)d5> da,x" e QM.
—d

4. Convexification method for problem (3.24), (3.25). Let R > 0 be an arbitrary num-
ber. Define the set B(R, P") as

(4.1) (R Ph) {Wheﬂlh(Qh) Wh(x") [pon= P"(x HWhHHQ <R},

where P"(x") is the boundary condition in (3.25). Consider matrices G?(x") and the vector
function ®"(Wh(x"),x"),

(12 Gl = (D) ) o
(4.3) 2" (W) <) = (D]’"bv(xh)f1 (W) ).

By (3.12), (3.27), (3.28), (4.1)—(4.3), and the multidimensional analogue of Taylor formula
[34]

<CyVa>ag>1,i=1,...,n,

(4.4) |G|

4a()
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(4.5) chh (Wh(xh),xh> ’ < Cy YW" € B(R, Ph),

Ch (o)
(46) @ (Whe),x") =0 (W), x") + @y (W), x") (Wh = W) (x")
+oh (Wlh(xh), th(xh),xh> YWh, Wh e B(R, Ph)vx" € QF,
where the vector function ®;(W7{(x"),x") is independent on W}(x"), the vector function
OL(W(x"), Wh(x"),x") is nonlinear with respect to (W2 —W})(x"), both these vector func-

tions are continuous with respect to their variables for x* € Q" and the following estimates
hold for all W, W € B(R, P") and for all x" € Q" (also see (3.21)):

(4.7) ]@1 (Wlh (xh) ,xh) ‘ < Cy YWh e B(R, Phyvx" € Q"
(4.8) ‘(pg (Wlh(xh), W (xh), xh> ] <Oy (WQh - W{L)Q (x") vx" € Q.

Lemma 4.1. Let A be a k x k matriz which has the inverse A~Y. Then there exists a number
p=pu(A) >0 such that |Az||? > pl|z||? for all z € R¥, where || - || is the euclidean norm.

We omit the proof since this lemma is well known.

Corollary 4.1. The following inequality holds:

n 2
(D]}{,(xh)W;(xh) + A (xm)w (xh)>
i=1
n 2
> Cy (W;(xh) +) Gy (xh)> vxh e Q.
i=1

Proof. Denote

(4.9) Y() =W + 3 GE )W () + (Wh(xh), xh) .
=1
We have
hohyirh (<) NS b (b ik (b : h by (h) )
(4.10) Dy (x")W! (x >+ZAZ- MWk M | = (DN(X )Y (x )) .
=1
The rest of the proof follows immediately from (4.2), (4.3), and Lemma 4.1. [ ]

Introduce the following weighted cost functional Jy(W"):
2

(4.11) IN(Wh) = H (D?VW; + > AWE P (Wh(xh),xh)> e
=1

L3 (@")

Minimization problem. Minimize functional (4.11) on the set B(R, P").
Theorems 4.1-4.5 are our analytical results about the functional Jy(W").
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Theorem 4.1 (Carleman estimate). Assume that the number a > ag, as in (3.27). Then

there exists a sufficiently large number Ag = Ao(A,d, N,a,b,hg) > 1 depending only on listed
parameters such that the following Carleman estimate holds:

H (W;(Xh) + z”: G ("W (xh>> gy
i=1

2

2

(4.12) L3 (Qnr)

2
YW € HH(QM)VA > Ao

2 e

2 e
)

L3 (@ 3@

Theorem 4.2 (the central analytical result). The following three assertions hold:
L. The functional J\(W") in (4.11) has the Fréchet derivative J\(W") € H}V%(Qh) at any

point W" € B(R, Ph) and for any value of the parameter X\ > 0. The Lipschitz condition holds,
5(wE) =24 (w3)]

for all A >0, where the number Cg >0 depends on the same parameters as the ones in Cy as
well as on .

Assume that the number a > ag, as in (3.27). Then,

2. there exists a sufficiently large number Ay

(4.13) ‘ YWh Wk e B (R, Ph)

<t

HYM (@ HY" (")

(4.14) )\1 = )\1 (R,A, d, N,a,b, h(]) > )\0 >1

depending only on listed parameters such that the functional Jy(W") in (4.11) is strictly convex
on the set B(R,P"), i.e., the following inequality holds:

2
(4.15) (W2h> N (Wf) 7, (W{‘) (WQh - W{‘) > Oy || Wi - Wlh( o

(4.16) YA >\ YW, W e B(R, Ph).

3. For each A\ > A\ there exists unique minimizer Wr?lin)\ € B(R,P") of the functional

Jx(W") on the set B(R, P"). Furthermore, the following inequality holds:
(4.17) Jh (ng,A) (Wh - Wl’gm,,\> >0 YW" e B (R, Ph).

Theorem 4.3 follows immediately from (4.15) and (4.16). This is a certain uniqueness
result for our CIP, which is obtained as a by-product. A further discussion of the uniqueness
issue is outside of the scope of this paper.

Theorem 4.3. Assume that the number a > ag, as in (3.27). Then there exists at most one
pair of functions (W",a") € H}\}h(Qh) X L?\}h(Qh) satisfying conditions (3.24), (3.30).

We now estimate the accuracy of the minimizer Wr’fﬁn y depending on the level of the noise
0 > 0 in the data. Following the concept of Tikhonov for ill-posed problems [33], we assume
the existence of the exact solution

(4.18) Wh e B (R, Ph*>
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of problem (3.24)—(3.25) with the exact, i.e., noiseless data P"* i.e., for x" € Q"
(4.19) Dl (xMyw ( ) + ZAh MW (xh) 4+ PP (Wh*(xh),xh> —0,

(4.20) W (xhY | gon = P (x).

Suppose that there exists a vector function S* € H}\;h (Q") such that

(4.21) 5" (") logn= P (x"), HShHme)

Let S™* ¢ H}V’h(Qh) be such a vector function that

(4.22) S (x") |ogn = P""(x ‘Sh* i <
We assume that

(4.23) |5~ s o <O

Theorem 4.4. Assume that the number a > ag, as in (3.27). Suppose that conditions
(4.19)—(4.23) hold. Also, consider the number Az,

(4.24) /\2 :)\1 (2R,A,d, N,a,b, ho) s

where A1 (R, A,d, N,a,b, hg) is the number in (4.14). Let Wé‘lmh be the minimizer of functional
(4.11) on the set B(R,P"), which was found in Theorem 4.2. Let o € (0,R) be a number.
Suppose that (4.18) is replaced with

(4.25) Wh e B (R —a, Ph*) and Cyd < a.

Then the vector function Wrﬁin A, belongs to the open set B(R, P") and the following accuracy
estimate holds:

(4.26) wh < Cd.

HY" (@)

H min,\y

Consider now the gradient descent method of the minimization of functional (4.11) on
the set B(R, Ph). Let W} € B(R/3,P") be an arbitrary point of this set. We treat it as the
starting point of the latter method. The sequence of this method is

(4.27) Wh=wh | —yJ}, (W,f;_1> n=1,2...,

n

where v > 0 is a small number and Ao is the same as in (4.24). Note that since by Theorem
4.2 functions J5 (Wh_)) € H}V%(Qh) then all vector functions W have the same boundary
conditions P".
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Theorem 4.5. Let conditions of Theorem 4.4 hold, except that (4.25) is replaced with
(4.28) wh*e B ((R —a) /3, Ph*) and C20 < a/3.

Then there exists a sufficiently small number v >0 and a number 6 =0(~) € (0,1) such that
in (4.27) all functions W' € B(R, P") and the following convergence estimates hold:

(429) HWT}LL — Wr}rllin,AQ HII\;'L(Q") S 9" W(;L - Wr}rblin)\Q Hllv,h(Qh) ;
h hx h h
(4.30) HW” TV ey S GO TS = Wanina || v )
4.31 o~ < Cos+ 0™ | W — Wi, ,
(4.31) T gy = 2T T el
where ali(x") and al*(x*) are functions which are obtained from Wi and W, respectively,

via (3.29) and (3.30).

Remark 4.1. 1. Estimates (4.29)—(4.31) guarantee the global convergence of the gradient
descent method (4.27) since R > 0 is an arbitrary number and the starting point W is an
arbitrary point of the set B(R/3, P"); see section 1 for our definition of the global convergence.
Note that, for a nonconvex functional, any gradient-like method converges only locally, i.e., it
needs a good first guess about the correct solution.

2. Although the above results are valid only for sufficiently large values of the parameter
A, we have established computationally in section 6 that A\ = 5 works quite well; also, see
Remark 6.1 in section 6. It was computationally established in a number of previous works
on the convexification that values A € [1,3] work well numerically; see, e.g., [20, 24, 26], [25,
Chapters 7-10], and references cited therein. In other words, computationally appropriate
intervals for A were found in these works.

3. Conceptually, the situation, which is somewhat analogous to with the one of item
2, occurs in many asymptotic theories. Typically an asymptotic theory claims that if a
certain parameter X is sufficiently large/small, then a certain formula X, is valid with a
good accuracy. However, for any specific mathematical problem with its specific range of
parameters only computational experiments can establish which values of X; guarantee a
good accuracy of Xo.

5. Proofs. We use in this section (3.20)—(3.22) and Remark 3.2 without further mention.

5.1. Proof of Theorem 4.1. In this proof, W" ¢ H}V’B(Qh) is an arbitrary function. It
follows from (3.17) and (3.22) that

2 2

) o <] .

(5.1) |wike porim SO Y € HRG(O)

By (4.4) and (5.1)

(5.2) GhHxM)W (x") | e §C2HWhe)‘y) . :
izl LM (Qn) Ly™ (@)
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Using the Cauchy—Schwarz inequality and (5.2), we obtain

(W;(xh) +Y Gl (xh)> M
i=1 L% (@n)

2 2
> (91 HW;GM) ‘Whe)‘y‘ .
' LY (@) LY (@)

It makes sense to use two numbers C51,C22 > 0 here; both depend on the same parameters

as the ones in Cy. Consider now the first term in the second line of (5.3). Introduce a new
vector function V(x") = W"(x")e?. Then

Wh(xh) =yh (Xh) e M, W;(Xh) = (Vh( — AV ( ))
(W) e = (Vo) = avh ()= —axv () VA + (Vh( M)’

=, (- () (Vi ()

Integrating the latter inequality with respect to y € (a,b), using the fact that W (x") = V(x")
=0 for y = a,b, and coming back from V"(x") to W"(x"), we obtain

2

(5.3)

— (a2

59 ] e
Ly (@r) — Ly ()
Adding the term ||Wh )‘y||L2 h to both sides of (5.4) and then dividing by 2, we obtain for
all A >0
2 22
& I a2 2 [ i+ [0
(5:5) LM (r) — 2 LM or) 2 LA Qry

Hence, taking A2 > 2C52/C21,A > A and using (5.3) and (5.5), we obtain (4.12).

5.2. Proof of Theorem 4.2. Let W (x"), Wh(x") € B(R, P") be two arbitrary points.
Denote v"(x") = W (x") — W] (x"). By (4 1)

(5.6) e HNO(Qh)
By (4.11)
A (W;) = J\ (Wlh + Uh)
2
(5.7) = (D?V (Wlhy + v;;) + Zz:;A? (W{;i + vmi) + Fh ((Wh + vh) ’xh>>2 By

L3 @)

Consider the expression under the sign of the norm in (5.7) without, however, the term e¥.

By (4.2), (4.3), (4.9), and (4.10)
2
(8 (vt ) 3t (i ) w00 )
_ [D?V ((W{ly + U;;) + ZG? (W{;i + vg’;) + " (W{"b + Uh,xh)>] 2 .

i=1

(5.8)
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Consider the term ®* (W] 4 v",x"). By (4.6)-(4.8) we have for all x" € Q"
(5.9) " (Wlh + vh,xh) =" (Wlh,xh) + @ (Wlh,xh) o' (xh) + oh (Wf, W1h+vh,xh> ,

(5.10) ‘CI)l (Wlh,xh)’ <Cs, |®! (Wlh,Wlh+vh,xh>‘ <4 (Uh(Xh)>2.

It follows from (5.9) and (5.10) that the second line of (5.8) is

[D%((W{Z%—v;})—I—Zn:G?(W{‘xiijgi) h(Wl+v ))]2
DN<W1y+ZGhW1I +<1>h WI, )]

=1

2Dk <W1y+ZGhWM +c1>h Wl, h))
i=1

(5.11) - D <v3+ZG?vg +®y (Wl, )

2Dk, <W1y+ZGth +c1>h Wl, ) DN<I>h Wl,WlJrv x ))
=1

2
n
DY (vg + ZG?U:@L + o (Wlh,xh) o (x") + ®b (W{L,W{L—th,xh))] .
i=1

In (5.11) “” means the scalar product in the appropriate euclidean space. The linear with
respect to v” term in (5.11) is the scalar product of the third and fourth lines of this equality.
We denote the latter as Lin(v"(x"),x"). The sum of the fifth and sixth lines of (5.11) contains
only nonlinear terms with respect to v". We denote this sum as Nonlin(v"(x"),x"). It follows
from Corollary 4.1, (3.26), (4.2)—(4.8), (5.10), the fifth and sixth lines of (5.11), and the
Cauchy—Schwarz inequality that

2
n
2 _
(5.12) ‘Nonlin (vh(xh),xh) ’ >Ca3 (UZ + ZG?U;) —Co4 (Uh(xh)) vxP e Q.
i=1
Just as in the proof of Theorem 4.1, it again makes sense to use two positive constants

C,3,C24 > 0 here, both depending on the same parameters as the ones involved in Cs. Taking
into account (5.7), (5.8), and (5.11), we obtain

(5.13)

A (W{l) (W1 +u ) = (W)
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It follows from (4.4)—(4.6), (5.6), and the third and fourth lines of (5.11), which form Lin(v"(x"),
x), that the first term in the second line of (5.13) is a bounded linear functional with respect
to v mapping H}V%(Qh) in R. We denote this functional as J (W}*)(v"). By the Riesz theorem

there exists unique function J5(W}) € H}V% (") such that
(5.14) A <W1h> (M) - <J; (W{’) ,vh> ol € H (M),

where (,) is the scalar product in HNO(Qh) It follows from (3.27), (3.28), (4.4 )—(4.7), and
the fifth and sixth lines of (5.11) combined with (5.10) that for ||UhHH11V,h(Qh) <1

=(n,m—1)

Z /Nonlm x"),x ) Mdy| < O ||v

[+ sy
Py [

=

Hence, (5.13) implies that

I (Wi o) = I (W) = (3 (W) ") :O<H”hH ) as [ Lo
||’U ||H1,}L(Q,L) H: h(Qh) H: h(Qh)

Thus, J{ (W) : ]{,}S(Qh) — R is the Fréchet derivative of the functional Jy(W") at the point
W{. We omit the proof of estimate (4.13) since this proof is completely similar to the proof
of Theorem 3.1 of [1].

We now prove (4.15), (4.16). Using (5.12)—(5.14), we obtain

(o) o) (3 o) o2
(v +ZG )

Let the number A\g be the one chosen in Theorem 4.1. Recalling (5.6) and using Theorem 4.1,
we estimate the second line of (5.15) for all A > \g as

(5.15)

2
veAy‘

>Cs3 .
7 LY ()

—Coy
LY (")

2

n
2
h hoho | Ay B h Ay
(vy + ZGi vx> e Coy ‘v e ’ L2 ()
(516) =1 LM an) N
2 2
> o ([ gy + 21 ) = 1
Ly" (@) Ly" (@) ’ Ly" (@)

Choosing A1 > )¢ so large that A\2C5/2 > 205 4 and using (5.16), we obtain
n 2
v{f + Z G?vgi e —Cay the)‘y‘
i=1

L2 (an) L3" QM)
> .
Cy < L2 h(m)>

veky‘
Combining (5.15) with (5.17), we obtain (4.15), (4.16).

2

(5.17)
+ A2

2
‘v eky‘ -
Ly ()
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Finally, given (4.15) and (4.16), existence and uniqueness of the minimizer Wr}éim ) of the

functional Jy(W") on the set B(R, P") as well as estimate (4.17) follow immediately from a
combination of Lemma 2.1 with Theorem 2.1 of [1].

5.3. Proof of Theorem 4.4. Denote

(5.18) Bo(2R) = {Vh € Hyh (@) HV}LHme) < 2R} .

Consider the vector functions V* and V",

(5.19) Vhr = whe — gl yh—wh — ghyivh e B (R, Ph) .
By (4.18), (4.21), (4.22), (5.18), and (5.19)

(5.20) V" V"™ e By(2R).

Consider now the functional Iy(V"),

(5.21) L(V"): Bo(2R) = R, [\ (V") = J, (Vh+5h).

An obvious analogue of Theorem 4.2 holds for I(V"). However, it follows from (5.20) that
we need to replace R with 2R in (4.14) in this case, i.e., we need to use now the number Ao
in (4.24). Let Vr‘ﬁin,/\g be the minimizer of Iy,(V") on the set By(2R).

Consider Iy (V") = J,(V7* 4 Sh). By (4.15), (4.16), and (5.21)

Do) = Iy (Vi) = I, (Vi) (V7 = Vilian,) = G [V = v i

min,As

in, Ao

HY"(r)

By (4.17) =14 (VL )(VP* — VIR ) <0. Since —1Iy, (V) < 0 as well, then the latter

min, Ao min, Ao min, Ao
estimate implies
5.22 th* —yh < Col, (V™).
( ) min, Az H}V’h(ﬂh) =~ L2 >\2( )
Next, by (5.19) and (5.21)
(5.23) I, (V) = Jy, (Vh* + Sh) =y, <Wh* + (sh - sh*)) .

By (4.19) the right-hand side of (4.11) equals zero if W" is replaced with W"*. Hence, using
(4.2)-(4.8), (4.23), and (5.19), we obtain Jy,(W" 4 (S" — §")) < C342. Hence, (5.22) and
(5.23) lead to

< (C99.

min,As H}\,’h(Qh)

(5.24) th* —yh

Using again (4.23), (5.19), the triangle inequality, and (5.24 ), we obtain

(5.25) HW’” Wk

min, Az

< Oy
HE" (@)
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Here Wrﬁm,h = Vn’q‘m)\2 — 8" By (4.25), (5.25), and the triangle inequality ”Wr}rﬁin,)\z ||H11V,h(m) <

R. Hence, (4.1), (4.21 ), (5.18), and (5.20) imply that
(5.26) Wi, €B (R, Ph) .

Now, let Wrﬁm’A2 be the minimizer of the functional Jy,(W") on the set B(R, P"), which
is claimed by Theorem 4.2. Let Q" =Wh — 8", Then Qﬁlin’& € Byo(2R). Hence,

min, Ao min, Ao

’ ’ ’ B(R,P")

Hence, by (5.26) /I/I\?I’r‘lin A, 18 also a minimizer of the functional .J %, (W") on the set B(R, Ph).
However, since such a minimizer is unique by Theorem 4.2, then W

—1h h
T min,As Wmin,)\z € B(R7 P )
Hence, estimate (5.25) holds when W%, », 18 replaced with wh. ).+ The latter immediately
implies (4.26).

5.4. Proof of Theorem 4.5. Consider again the minimizer Wr’;in A, Of the functional
Jx,(W") on the set B(R, P"). Then (4.28) and Theorem 4.4 imply that W}, € B(R/3,P").

min,

Estimate (4.29) follows immediately from Theorem 6 of [24]. Next, by the triangle inequality,
(4.26), and (4.29)

|w —we <||Whinn, - W || - Wi
HY" () e HY" () R @)
n h h
< Co0 0" W8 = Wi | 11 g

which proves (4.30). Estimate (4.31) follows immediately from (3.29), (3.30), and (4.30).

6. Numerical studies. In order not to introduce new and complicated notation, we slightly
abuse below some notation of the previous sections. Nevertheless, the substance is always clear
from the context presented below.

6.1. Numerical implementation. We have conducted our numerical studies in the two-
dimensional case. Below x = (z,y) and, according to (2.2) and (2.6),

Q={x:z€(-A,A),yc(a,b)}, A=1/2, a=1, b=2,

(6.1) Iy={xa=(a,0):a€[~d,d}, d=1/2.

As to the kernel K (x,«,[3) of the integral operator in (2.12), we work below with the two-
dimensional Henyey-Greenstein function [16]:

1 1—g? 1

"2 14 g% —2gcos(a—fB)]’ 975

(6.2) K(x,a,8)=H(a,p) 2

Here, ¢ = 1/2 means an anisotropic scattering, which is half ballistic with ¢ = 0 and half
isotropic scattering with ¢ = 1 [10, 11, 12]. We take the same function f(x) as the one in
(2.7), (2.8) with & = 0.05.
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We assume that
(6.3) ps(x) =5, x€Q, ps(x)=0, xcR?\ Q.

We use formula (2.15) for the coefficient function a(x), and we take in this formula

c=const. >0 inside the tested inclusion,
(6.4) )= {

0 outside the tested inclusion.

We perform the numerical tests with a variety of values of the parameter ¢ = 5,10, 15, 20, 30;
see below. Therefore, by (2.15), (6.3), and (6.4)

(6.5) inclusion/background contrast =1+ ¢/5.

From the physics standpoint ps(x) =5 in the domain 2, as in (6.3), means that an average
particle scatters every 1/5 of the unit. Hence, by (6.1) and (6.3) the maximal average number
of scattering events for a particle emitted from a point x, € I'y and entering € is around 5
before this particle leaves €2 [10, 11, 12]. This might happen in optics before the true diffusion
occurs, e.g., in the case of the so-called snake photons [9)].

In computational results below the computed function jig comp(x) does not have a con-
stant value inside of computed shapes of letters, as it should by (6.4). Hence, for computed
inclusion /background contrasts we replace (6.5) with

(6.6) computed inclusion/background contrast =1 + 0.2 max p,(%).
Q

By (2.10) and (6.1) we have in our case G = {x = (z,y) : |z| < 1/2,y € (1,2)}. To
solve the forward problem formulated in section 2, we have solved integral equation (2.33)
with condition (2.34) for (x,a) € G} x (—d,d) and with the function ug(x,a) taken from
(2.30). To do this, we have used the discrete form of (2.30), (2.33) and the trapezoidal rule.
The discretization steps with respect to z,y,a were hy, = hy = ho = 1/40. The discretized
integral equation (2.33) was solved as a linear system using the MATLAB function \. Thus,
the solution of this forward problem has provided us with computationally simulated data for
the inverse problem.

To minimize the convexification functional Jy(W") in (4.11), we have written in the finite
differences form not only the z-derivative as in section 4 but the y-derivative as well. Also,
integrals with respect to a were written in the discrete form using the trapezoidal rule. Then
we have minimized the resulting functional .J A,dis(Wh),

6.7) Tr s (W) = H (D%Wyh + AW 4 P (Wh (xh) ,xh>) eAy‘ 2

L@’
in its fully discrete form with respect to the values of the vector function W" at the grid
points. Vector functions and matrices in (6.7) are full analogues of those in (4.11) with the
only difference that they are fully discrete in the above sense, rather than “partially” discrete
as in sections 4 and 5. The same is true for the norm || - || 2n ).

The mesh sizes were different from ones for the forward problem. They were h, = hy, =
ha = h = 1/20. Hence, by (6.1) we had a total of 20 x 20 x N unknown parameters in our
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minimization procedure. To solve the minimization problem, we have used the MATLAB
built-in function fminunc with the quasi-Newton algorithm. The iterations of the function
fminunc were stopped when the following inequality occurred at the iteration number k:

’J)\,dis(ng)‘ < 10_2.

By (3.8) our technique requires computations of first derivatives with respect to «. Note,
however, that (3.7)-(3.10) imply that it is not necessary to calculate the a-derivative of the
boundary data, which is an advantage, since boundary data are noisy. The derivatives 9, of
functions ¥s(a) and the function K(x,«, ) were calculated via finite differences. We have
introduced the random noise in the boundary data g1 (x,«) in (3.4) on the boundary 02,

(6.8) g1(x,a) = g1(x, ) (14 0G) .

Here (x is the uniformly distributed random variable in the interval [0, 1] depending on the
point x € 92 with o = 0.03 and o = 0.05, which correspond respectively to 3% and 5% noise
level.

To solve the minimization problem, we need to provide the starting Wél(xh) for itera-
tions. Due to the global convergence property of our method, the vector function ng(xh) =
(w&o(xh),wfo(xh),...,wf{,_LO(xh))T should not have any information about the exact so-
lution W"*(x"). On the other hand, due to (4.1), we should have Wl(x") |aqr= P"(x").
Therefore, in all numerical tests below we choose the starting point as the discrete version of
the following vector function:

ws,O(wvy) = % <<A2j41') ws(_Aay) + <m2+AA) ws(A>y)>

#5 (22w + U= Do), s=0 v -1,

b—a ° b—a

(6.9)

Expression (6.9) represents the average of linear interpolations inside of the square Q with
respect to the x-direction and the y-direction of the boundary condition for ws(z,y).

6.2. Numerical results. Recall that we reconstruct the coefficient a(x) = ps(x) + f1q(%),
where true functions ps(x) and p,(x) are given in (6.3) and (6.4), respectively. Our results
for Tests 1-4 are for noiseless data and the results for Test 5 are for noisy data as in (6.8).

To demonstrate a good performance of our technique, we intentionally test it for rather
complicated shapes of inclusions, which are nonconvex and have voids. More precisely, our
inclusions are letters A, €2 and two letters jointly SZ. SZ stands for Shenzhen, the city where
the workplace of the third and fourth authors is located. Thus, in our tests the coefficients
e (x) in (6.4) have shapes of those letters located inside the 1 x 1 square €2 defined in (6.1).

Test 1. We test the letter A with ¢ = 5 in (6.4). This is our reference case. More
precisely, we use this test to figure out optimal values of parameters N and \. As soon as
optimal parameters are selected, we use them then for all other tests.

First, we select an appropriate value of N. To do this, we solve the forward problem
(2.12), (2.19) for the case when the functions ps(x) and p,(x) are given in (6.3) and (6.4),
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Table 1
The L2(Q2)-norms of functions ws(x), s=0,1,...,11, for the reference Test 1 with c=5 in (6.4).

s 0 1 2 3 4 5
llws ()|, 57122 1.6383 01630  0.0118  0.0091  0.0077
s 6 7 8 9 10 11

l|ws (%) 2 0.0067  0.0061 0.0055  0.0057  0.0058  0.0054

respectively, and ¢ =5 in (6.4). Hence, by (6.5) the inclusion/background contrast is 2:1 in
this case. Next, we calculate norms [|ws(x)|[1,(@) and compare them. Recall that functions
ws(x) were defined in (3.7). We have observed that the L2(€2)-norm of the function ws(x)
decreases very rapidly when the number s is growing. More precisely, we have obtained that

11
> Mws(x) 1,0
(6.10) =3 =0.0084,

11
2 l[ws ()l )

which means less than 1%. In addition to (6.10), we display in Table 1 the values of norms
lws(x) ||, () for s = 0,...,11. One can observe that starting from s = 3, these norms are
much less than those for s =0,1,2. We conclude, therefore, that we should take in our tests
N =3.

Next, given the optimal value of N = 3, we select the optimal value of the parameter A
of the Carleman weight function e**¥ in (6.7). To do this, we test the same letter A with
¢ =5 inside of it for values of the parameter A = 0,1,2,3,4,5,6,8,20. Our numerical results
are presented in Figure 1. We observe that the images have a low quality for A =0,1. Then
the quality is improved, and it is stabilized at A = 5; see Remark 6.1 for A = 20. Thus, we treat
A =5 as the optimal value of this parameter. We use this value in all subsequent tests. The
value \ = 5 tells us that even though our Theorems 4.1-4.5 require sufficiently large values
of the parameter A\, the computational practice shows that a reasonable value of A can be
chosen; see items 2 and 3 of Remark 4.1.

Remark 6.1. On the other hand, the quality of the reconstructions deteriorates when A
becomes too large. Indeed, testing A = 10,12, 14,16, 18 (images are not shown), we have com-
putationally established that the quality of the reconstructions “monotonically” deteriorates
starting at A = 10, and the image quality becomes really low at A = 20; see the last image in
Figure 1 for A = 20. This deterioration can be explained by the fact that the Carleman weight
function fi(y) = e*M,y € [a,b], in (6.7) grows very rapidly with respect to y for too large
values of A\. Hence, roughly speaking, if A >> 1, then the values of the integrand in (6.7) have
a noticeable impact in that integral only for values of y near {y = b}. Thus, we have found
a computationally appropriate interval of A € [2,8], for which our numerical technique works
well. We again refer to items 2 and 3 of Remark 4.1. In the future, we plan to investigate this
question in more detail.

Now we want to demonstrate numerically again that N = 3 is indeed a good choice of
N for our optimal value of A = 5. Taking A = 5, we test the same letter A as above with
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10

10 2 A0 10 2
—
5 1
05 05 05
Hm 2- H . H - H
5 1
05 0.5 05

Figure 1. The reconstructed coefficient a(x), where the function pq(x) is given in (6.4) with ¢ =5 inside the
letter A. The goal here is to test different values of the parameter A=0,1,2,3,4,5,6,8,20 for N =3 as in (6.10).
The value of A can be seen on the top side of each square. The images have a low quality for A=0,1. Then the
quality is improved and is stabilized at X\ = 5. Thus, we select A =15 as an optimal value of this parameter for
all follow up tests. On the other hand, the last image is for the case A =20. This image demonstrates that the
quality of the reconstructions deteriorates for too large value of \; see Remark 6.1 for some details.

N=1 N=2 N=3
2~‘ Hw ZE‘ Hm 2. Hm
1 5 1 5 1 5
-0.5 0.5 -0.5 0.5 -0.5 0.5

N=5 N=7 N=12
2. Hm 2. Hm 2. Hm
1 5 1 5 1 5
-0.5 0.5 -0.5 0.5 -0.5 0.5

Figure 2. The reconstructed coefficient a(x), where the function p.(x) is given in (6.4) with ¢ =5 inside
the letter A. We took the optimal value of the parameter A=>5 (see Figure 1) and have tested different values of
the parameter N =1,2,3,5,7,12. A low quality can be observed for N =1,2. The reconstructions are basically
the same for N = 3,5,7,12. However, the computational cost increases very rapidly with the increase of N,
which is explained by (6.10) and Table 1. We conclude, therefore, that to balance between the reconstruction
accuracy and the computational cost, we should use N =3. Thus, we use below A\=15 and N = 3.

1
-0.5

c =5 in it, but for N = 1,2,3,5,7,12. The results are displayed in Figure 2. One can
observe that reconstructions have a low quality for N = 1,2. Next, the reconstructions are
basically the same for N = 3,5,7,12. However, the computational cost increases very rapidly
with the increase of N. Thus, using also Table 1, we conclude that to balance between the
reconstruction accuracy and the computational cost, we should use N = 3. Thus, in all
subsequent computations we use

(6.11) N=3A=5.

Test 2. We test the reconstruction of the coefficient a(x) with the shape of the letter A
where the function p,(x) is given in (6.4) with different values of the parameter ¢ = 15,20, 30
inside the letter A. Thus, by (6.6) the inclusion/background contrasts now are respectively
4:1,5:1, and 6: 1. Our computational results for this test are displayed in Figure 3. One
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2 15 2 20 2 25
15
10 15
10
1 5 1 5 1 5
-0.5 0.5 -0.5 0.5 -0.5 0.5
2 15 2 20 2 25
15 A
10 15
’ 10 ; L
- - e
1 5 1 1 5
-0.5 0.5 -0.5 0.5 -0.5 0.5

Figure 3. Test 2. Ezact (top) and reconstructed (bottom) coefficient a(x) for ¢ =10,15,20,30 inside the
letter A as in (6.4) for N =3, =5; see (6.11). Thus, by (6.6) the inclusion/background contrasts now are
respectively 4 : 1, 5: 1, and 6 : 1. The image quality remains basically the same for all these values of the
parameter ¢, although some deterioration of this quality can be observed for ¢ =20 and ¢ =30. The computed
inclusion/background contrasts (6.6) are accurate.

2 10 2 ( ) 10
1 5 1 5
-0.5 0.5 -0.5 0.5

Figure 4. Test 3. FEzact (left) and reconstructed (right) coefficient a(x) for the case when the function
1a(X) is given in (6.4) with c=>5 inside the letter Q. The reconstruction is accurate.

| . | | . 10
-0.5 0.5 -0.5 0.5

Figure 5. Test 4. Ezact (left) and reconstructed (right) coefficient a(x) for the case when the function
1a(X) is given in (6.4) with c =5 with the shape of two letters SZ. In (6.4) ¢ =5 inside each of these two letters
and pqe(x) =0 outside each of these two letters. Here N =3,A=5 as in (6.11). The image quality is lower than
the one for the case of the single letter Q) in Figure 4. Nevertheless, the quality is still good and the computed
inclusion/background contrasts (6.6) are accurate in both letters.

35

0.5

(4]

-0.5 0.5

can observe that the quality of these images is good for all four cases, although it slightly
deteriorates for ¢ = 20 and ¢ = 30. The computed inclusion/background contrast is accurate;
see (6.6).

Test 3. We test the reconstruction of the coefficient a(x) with the shape of the letter Q
where the function p,(x) is given in (6.4) with ¢ =5 inside the letter 2. Results are presented
in Figure 4. We again observe an accurate reconstruction.

Test 4. We test the reconstruction of the coefficient a(x) with the shape of two letters
SZ where the function p4(x) is given in (6.4) with ¢ =5 inside each of these two letters and
o (x) = 0 outside each of these two letters. In this test, N =3,A=5 as in (6.11). Results are
presented in Figure 5. The image quality is lower than the one for the case of the single letter
Q in Figure 4. Nevertheless, the quality is still good and the computed inclusion/background
contrasts (6.6) are accurate in both letters.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/21/23 to 188.92.139.228 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

62

M. V. KLIBANOV, J. LI, L. H. NGUYEN, AND Z. YANG

o =3% o=5% o =3% o=5%

2 10 2 10 2 10 2 10
, ) 9
1 - -
1 5 1 5 5 1 5
-0.5 0.5 -0.5 0.5 .5 0.5 -0.5 0.5

1
-0

Figure 6. Reconstructed coefficient a(x) with the shape of letters A and Q with ¢ =5 from noise polluted
observation data as in (6.8) with 0 =0.03 and o =0.05, i.e., with 3 and 5 noise level. Here N =3 and A=15 as
in (6.11). One can observe accurate reconstructions in all four cases. In particular, the inclusion/background
contrasts (6.6) are reconstructed accurately.

Test 5. In this test we use noisy data as in (6.8) with 0 =0.03 and o = 0.05, i.e., with 3%
and 5% noise level. We test the reconstruction of the coefficient a(x) with the shape of either
the letter A or the letter €2, where the function p,(x) is given in (6.4) with ¢ =>5 inside each
of these two letters. Again, N =3, A="5 as in (6.11). The results are shown in Figure 6. One
can observe accurate reconstructions in all four cases. In particular, the inclusion/background
contrasts (6.6) are reconstructed accurately.
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