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ABSTRACT. Superoscillating functions are band-limited functions that can os-
cillate faster than their fastest Fourier component. These functions appear in
various fields of science and technology, in particular they were discovered in
quantum mechanics in the context of weak values introduced by Y. Aharonov
and collaborators. The evolution problem of superoscillatory functions as ini-
tial conditions for the Schrédinger equation is intensively studied nowadays
and the supershift property of the solution of Schréodinger equation encodes
the persistence of superoscillatory phenomenon during the evolution. In this
paper, we prove that the evolution of a superoscillatory initial datum for spin-
ning particles in a magnetic field has the supershift property. Our techniques
are based on the exact propagator of spinning particles, the associated infinite
order differential operators and their continuity on suitable spaces of entire
functions with growth conditions.

1. INTRODUCTION

In the last decade there has been increasing interest in the theory of superoscil-
latory functions both from mathematical and physical points of view. In quantum
mechanics these functions originated in context of weak values, see [1], while in
antenna theory they first appeared in [36]; for developments in optics and other ap-
plications see the recent overview paper [17] titled Roadmap on Superoscillations,
where some of the leading experts illustrated the various features of superoscilla-
tions and applications. From the mathematical point of view, an introduction to
superoscillatory functions in one variable and some investigations of the Schrédinger
evolution of superoscillatory initial data can be found in [7].

The literature on superoscillations is quite large, and without claiming com-
pleteness some of the most relevant and recent results are contained in the papers
[2)-[7], [12], [15], [25], [31] and [32] where the issue of persistence of superoscilla-
tory behavior when evolved under the Schrodinger equation is considered. The
papers [18]-[20], [26]-[29] and [35] are mostly concerned with the physical nature
of superoscillations, while papers [10], [11], [13]-[14], [21]-[24] develop in depth the
mathematical theory of superoscillations. Recently, [8] introduced a new method
to generate superoscillating functions.
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The results in this paper are addressed to a general audience of mathematicians,
but also physicists and engineers, and our main tools are the theory of infinite order
differential operators acting on spaces of holomorphic functions and the knowledge
of the Green’s functions.

The prototypical superoscillating function, which appears in the theory of weak
values, is

(1.1) F.(z,a) = ZCj(n,a)ei(l_%)x, r € R,
3=0

where a > 1 and the coefficients C;(n,a) are given by

n 1+a\"7 (1-a)’
o en-()(5) (5
If we fix z € R and we let n go to infinity, we obtain that

lim F,(z,a) = ",
n—oo

and the limit is uniform on compact subsets of the real line. The term superoscil-
lations comes from the fact that in the Fourier representation of the function (1.1)
the frequencies 1 — %J are bounded by 1, but the limit function e?*® has a frequency
a that can be arbitrarily larger than 1.

Inspired by this example we define a generalized Fourier sequence. These are
sequences of the form

(1.3) fol(z) == ZZj(n,a)eihj(”)x, neN, zeR,
7=0
where a € R, Z;(n,a) and hj(n) are complex and real valued functions of the

variables n, a and n, respectively. The sequence (1.3) is said to be a superoscillating

sequence if sup |h;(n)] < 1 and there exists a compact subset of R, which is called
Jn

a superoscillation set, on which f,(z) converges uniformly to 9@ where g is a

continuous real valued function such that |g(a)| > 1. Superoscillatory functions in

several variables have been rigorously defined and studied in [6] and in [9] where

the theory of supershifts in more than one variable was initiated.

The crucial concept that encodes the persistence of the superoscillatory be-
haviour of the solution of the Schrodinger equation with superoscillatory initial
condition is called the supershift of the solution and is stated in Definition 2.4.
This concept is motivated by the fact that the only known case where the Cauchy
problem for the Schrédinger equation with initial datum given by (1.1) has a so-
lution that is a superoscillatory function in two variables is the case of the free
particle, i.e.,

2D TG ), o) = 30 e,
=0

a)z

ot 0z2

In this case the solution is
(1.4) dnt,z) =3 Cy(n, a)el—Fee=it0=30"
j=0
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and for all ¢t € [-T,T], where T is any real positive number, we have

lim ¢, (t,z) = giav—ia’t

n—oo
when x belongs to the compact sets of R. Also in the case of nonconstant potentials
we do not obtain a superoscillatory function in two or in more variables. This fact
can be seen already with the well known quantum harmonic oscillator where the
Cauchy problem

8¢(t7$) . 1 (_ 3_2 + 1‘2)1/)(t,I>, 1/;(0,95) _ ch(,,%a)eim(lf%)
7=0

1

ot 2\ 92

has the solution

n(t,z) = (cost) % exp ( - %x2 tan t)

" iw(1—22)) 25\°
, n// _*(1_%
X ZC’](n,a)exp ( p— ) ( n> tant |,

Jj=0

(1.5)

which clearly is not of the form (1.4). When we take the limit for n — co we get

: _ —1/2 v 2 2 . ax
nl;ngown(t,z)_ (cost) exp< 2(:1: +a )tant+zCOSt> .
What is preserved in the two cases is the fact that in the limit process the instances
1-— 2;] € [—1,1] in the expressions (1.4) and (1.5) tend to a > 1, for more details
see [7]. This leads to the notion of supershift in Definition 2.4 which includes as a
particular case the notion of superoscillation.

The main result of this paper demonstrates the supershift property for the so-
lution of the Schrodinger equation for spinning particles of any spin, subjected to
a magnetic field. To prove our main results we take advantage of the exact form
of the propagator, see [28] and also (2.2) in this paper. The precise formulation of
the problem is as follows although more details are explained in Section 2.

Problem 1.1. Determine if the solution of the Schrédinger equation with the
propagator of the spinning particle given by
9// 0/ o ,
K(©",¢",0',¢';T) = (cos (7) cos (5) @ —BT=¢")/2
1 !/

+sin (%) sin (%) e—i(<i>”—BT—¢>’)/2)2S

and superoscillatory initial datum in two variables

(1.6) Un(8,0) = D Cj(n,a)e? =37 003"

§=0
has the supershift property, where a > 1, C;j(n,a) are given by (1.2), € [0, 7],
¢ €[0,2n] and p, g € N.

The strategy to solve Problem 1.1 and prove the supershift property is split into
Steps (I)—(II):

Step (I). We explicitly determine the solution ®,(6, ¢,t) of the Schréodinger equa-
tion using the propagator of the spinning particle given by (2.2) with the initial
condition (6, ) = " 0+i@’¢ for 6 € [0, 7], € [0,27], p, ¢ € N and a > 1.
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Step (II). Given the explicit solution @, (0, ¢,t) obtained in the previous point, we
identify suitable infinite order differential operators associated with the solution.

Step (III). Thanks to the continuity property of our infinite order differential op-
erators on the space of entire functions with exponential bound A; we then prove
the supershift property.

As we shall see in Section 4, for spinning particles of spin s = 3, m € N, the
infinite order differential operators A,, 1(D¢) and B, (D) defined in (4.3) and
(4.4), respectively, act continuously from A; to A; for every m, ¢ and p € N, see
Proposition 4.5.

Thus, according to Step (IT), we can deduce the supershift property of the so-
lution. Precisely, in Theorem 4.7 we will prove that for a > 1 the solution of the
Schrodinger equation, with the propagator of the spinning particle given by (2.2)
and superoscillatory initial datum (1.6), can be written as

Vo (0,6.) = Y Ci(n,a)®,_2:(0,9,1),
j=0
where
D,(0,0,t) = Z (1:) ¢i(= B +k)Bt cogm—k (g) sin® (g) ei(%—k)¢Am7k(a)Bm7k(a)

k=0

for explicit functions A,, x(a), Bm k(a), given in (3.3) and (3.4) depending upon
the p and ¢ from the initial datum, and Cj(n,a) are given by (1.2). Moreover,
D, (0, ¢, t) has the supershift property, that is,

nh—>H;o Z Cj (na a)cblf%} (97 ¢a t) = @a(gv ¢a t)v
=0

for all 6 € [0, 7], ¢ € [0,27], ¢ > 0. The results above hold for spin s = %, for every
m € N.

The plan of the paper is as follows: after this introduction, in Section 2 we first
review some basic notions on superoscillating sequences in two variables and the
property of the supershift. Then we recall the propagator for spinning particles
and the procedure to determine it. Section 3 is devoted to determining the explicit
solution of a Cauchy problem for the Schrodinger equation with the propagator for
the spinning particle which is crucial to perform the evolution of a superoscillatory
initial datum done in Section 4.

2. SUPEROSCILLATIONS, SUPERSHIFTS AND THE PROPAGATOR FOR SPINNING
PARTICLES

We first recall some preliminary definitions related to superoscillatory functions
in two variables even if they can be extended to the general case of d > 2 variables.
We restrict to two dimensions since our specific evolution problem for spinning
particles is two dimensional, for more details see [6,9].

Definition 2.1 (Generalized Fourier sequence in two variables). Let (z1,22) € R2.
For ¢ = 1,2, let (h;¢(n)), j = 0,...,n for n € Ny, be real-valued sequences. A
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sequence of the form

n
F(x1,22) = Zcj(n)emlhﬂ"l(")ei“h“("),
§=0
where (¢j(n))jm, 7 = 0,...,n, for n € Ny is a complex-valued sequence will be
called a generalized Fourier sequence in two variables.
Definition 2.2 (Superoscillating sequence). A generalized Fourier sequence in two

variables F,(x1,x2) is said to be a superoscillating sequence if

sup |hje(n)| <1, for£=1,2,
7=0,...,n, n€Ng

and there exists a compact subset of R2, which will be called a superoscillation set,
on which F,(z1,x2) converges uniformly to e'*191¢**292 where |g;| > 1 for £ =1, 2.

An important example of a generalized Fourier sequence in two variables that
will be used in the sequel is the following:

Theorem 2.3 (The case of two variables). For p and ¢ € N we define

n
F, (J}, y) = Z Cj (n, a)eizl(hj ("))pei$2(h]‘ (n))q’

§=0
where Cj(n,a) are given by (1.2) and hj(n) =1 — %j Then, we have
lim Fn(x7y) _ eiazlapeiwzaq7
n—oo

and, in particular, F,(x1,22) is superoscillating when |a| > 1.

In the case of nonconstant potentials we have to replace the notion of superoscil-
lations with the notion of supershift.

Definition 2.4 (Supershift property). Let A — ©x(X) be a continuous complex-
valued function in the variable A € Z, where Z C R is an interval, and X € 2, where
2 is a domain. We consider X € Q as a parameter for the function A — ¢ (X)
where A € Z. When [—1, 1] is contained into Z and a € Z, we define the sequence

Ya(X) =) Cjn,a)p, 2 (X),
j=0

in which ¢, is computed just at the points 1 — %j which belong to the interval

[—1,1] and Cj(n,a) are suitable coefficients, for j =0,...,n and n € N. If
lim ¢, (X) = pa(X)
n—oo

for |a| > 1 arbitrary large (but belonging to Z), we say that the function A — ¢ (X),
for X fixed, admits the supershift property.

Remark 2.5. If we set ¢y (z) = e** and X = z € R, we obtain the superoscillating
sequence described above as a particular case of the supershift. In fact, in this
case, we have ¢, (z) = F,(x,a), where F,(z,a) is defined in (1.1). The name
supershift is due to the fact that we are able to obtain ¢,, for |a| > 1 arbitrarily
large, by simply calculating the function A — ¢, at infinitely many points in the
neighborhood [—1, 1] of the origin.
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The propagator for the spinning particle. The first attempt to determine the
propagator for the spinning particles was done by L. S. Schulman, see [33] and [34],
but the precise propagator was found by E. Ercolessi and co-authors, in [28]. We
briefly describe the ingredients to obtain the propagator because of the particular
structure of the Hamiltonian for spinning particles. In fact, to obtain the exact
expression of the propagator requires a regularization term in the path integral.
In this part of the paper, we will resort to some physics notation to match the
presentation from [28]. We will translate this notation into a more mathematical
one when it is used later to be more consistent with the rest of the paper.

The Hamiltonian for the quantum mechanics of a spinning particle is described
by

H=B-85,
where S = [31,32,33] and the spin operators gj, for j = 1,2, 3, satisfy the usual
commutation relations (normalizing i = 1):
[Se, Sj] = i€k Sk,

where €g;, is Levi-Civita symbol. In order to give the precise interpretation of the
Green’s function we summarize a few facts and we refer the reader to the paper
[28] for more details.

We consider the group SU(2) and we recall that the coherent states for a spin s
(2s being an integer) can be constructed as follows

u(f,¢) = e_i¢‘§36_i052u0,
where ug denotes the highest-weight state of the spin-s representation of SU(2) and
moreover we have that s is an eigenvalue of the operator S3 associated with the
eigenfunction ug:
SSUO = SUp.
We assume that # and ¢ are the two angular coordinates parametrizing S where

0 € [0,7] and ¢ € [0, 27]. In [30], for example, one can find the relation
(2.1)

(@ ). (0. 6)) = (cos (%) cos (£) @ =9/2 sin (L) sim (1) emsto-0r2)”

which plays an important role in what follows. The quantum-mechanical propagator
K(l‘”, t”; l‘/, t/) — (u(ac”), ei%(t/lit/)H’U,(J;l)>
may be computed using a path integral:

m(t”):m"
K(I/l7tl/;xl’t/) — /

z(t' )=z’

. ¢!’
exp (% / E(x(t),g‘c(t))dt)D:p(t),
o

where L£(z(t), (t)) is the Lagrangian of the system and the boundary conditions of
the path integral are given by x(t') = 2/, x(¢") = 2. The paths that are summed
over move only forward in time and are integrated with respect to the differential
Dx(t). The kernel K(z”,t";2',t') solves the Cauchy problem for the Schrodinger
equation with initial datum g (2’ t'):

o)
w(l‘”,t”) _ / ’(/J()(:L‘/,t/)K(:L‘H,tN;:L‘/,t/) dﬂ;‘l, st
—o0

We note that formula (2.1) is of crucial importance to deduce the propagator that
is obtained by a regularization procedure in the Feynman integral. Precisely, based
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on solid physical motivations, see [28], since the Lagrangian (or the Hamiltonian)
for a quantum spinning particle does not have an explicit kinetic term that acts
as a regulator, concentrating the functional measure on the continuous path, the
term %5((9)2 + sin? 6(¢?)) has been added for the regularization, where § > 0 is
a parameter. Then the limit, as § — 0, has to be taken after evaluating the path
integral with the saddle point approximation. For the case of a spin in a magnetic
field the propagator, denoted in this case by Ks,, becomes:

(2.2)
K28(0H7 Qsl/a 0/7 (b/’ T)
Q(tll):Q// T . 1 . .
= lim exp (is / cos 0 + ~0((6)2 + sin2 0(¢2)) — B cos G)DQ(t)dt
6—0 Q)= 0 4

0// 9/ . . , 9// 9/ . . , 2s
= (cos (?) cos (5) e =BT=¢)/2 | gin (7) sin (5) e @ —BT—¢ )/2> .
Remark 2.6. Observe that the propagator Kos(0”,¢",60',¢'; T) given in (2.2) can

be rewritten using the relation (2.1) as
K28(0,/a ¢//7 9/, ¢/; T) = <u(0”a ¢// - MBT)a u(0,7 ¢/)>a

where T =t —t/, i is the Bohr magneton that is assumed equal to 1, and B is the
constant magnetic field in the direction of the z-axis.

Remark 2.7. The nontrivial procedure illustrated above that gives the correct prop-
agator for the spinning particle has the following interpretation: the action in (2.2)
becomes essentially that of a particle of charge s and mass 1/(2s§) moving on the
two-sphere S?, coupled both with a magnetic monopole of unit strength located at
the centre of the sphere and with a constant electric-type field directed along the
z-axis. In this context, Dirac’s quantization condition, see [27], becomes identi-
cal with the spin quantization condition, i.e., 2s equals an integer. The interested
reader who wants to know more about the nontrivial physical aspects of this prop-
agator can look at [28] and the references therein.

3. EVOLUTION OF OSCILLATING FUNCTIONS

This section is preliminary to study the evolution of the superoscillatory initial
datum (1.6) done in Section 4. In order to simplify the notation for the compu-
tations in the propagator Ko (6”,¢",0',¢';T) we change notation as follows: the
final values are denoted by

t"=t, 0"=0p=0 and ¢ =¢p=2¢
and for the initial values we set
=0, 0 =0r=u and ¢ =¢; =v.

With the above notation the solution of the Cauchy problem for initial datum
Vo(6, ) is given by

™ 2
(3.1) Y0, 0,t) = / Yo(u,v) Kog(0, @, u,v, t)dvdu.

u=0 Jv=0
Observe that for the Cauchy problem that we study, the integral exists in the
Lebesgue sense.

We now study the evolution of the oscillating initfial condition 1 (6,¢) = e #tia"®
using the propagator of the spinning particle given by (2.2).
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Theorem 3.1. Let 2s :=m € N and assume p, ¢ € N. The Cauchy problem for
the Schradinger equation with the propagator of the spinning particle given by (2.2)
and with imatial condition

Yo(0, 9) = cie”O+ia"s

has the explicit solution:

(3.2)
P4 (0, 0,t) = kzzo (;Z) ¢i(=% k) Bt cogm—k (g) sin® (g) ei(%_k)d)Am,k(a)Bmﬁ(a)
for all § € [0, 7], ¢ € [0,27], t > 0, where

m g —r+a
(3.3) A k(a) == szk Zcrmk Z CH- ol )
and
(3.4) ( L aQ)B
with

. k —k

(35) Crom,k = Z(_l)l (l) (TZ_ I )

=0

Moreover, the solution ®, = ®,(0,6,t) is an entire function with respect to the
variable a € C, for all 0 € [0, 7], ¢ € [0,27], t > 0.

Proof. Keeping in mind the above positions for the variables and setting 2s = m,
for the sake of simplicity, we write the propagator as

0 3 —Bt—wv 0 . —Bt—w m
Km(ev(bau?vat) = (COS (5) Ccos (%) ez% +Sin (5) sin (%) 671%)

Now expand the kernel using the Binomial Theorem to find

Km(07 QS? u? v? t)

-5 () (o) ) o)
=0
X (sm( ) Sln(
—i( )(cosm k (2) cos™ ( ) ei(mfk:)W)
(ot (5) o (5) )
> (7,?) cos 7+ (1) sink () eiln RS i

k=0
0 . 0 (m—k)p ko
x cos™k (—) sin® (—) e’ 2z e 'z,

) —i(¢p—Bt— U)/2>

Observe that
— k)(—Bt — k(Bt
(m=BCBIZw) | HB+w)
2 2
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and

W%%w_ﬁf_@_k
2 2 2

and so we can simplify the formula for the kernel K, (6, ¢, u,v,t) to be:

K (0, ¢,u,v,t) := zm: (TZ) cos™k (g) Gink (g)

k=0

% ei(—%+k)Btei(—%+k)v cos™—k (g) sink (g) ei(%—k)qb_

Hence, using (3.1), the solution to the Schrédinger equation we are after is given
by

2
@a / / l(lp’u. ’La UK ( ,¢,U7'U7t) dudU
o Jo
U 9 k(0N i(—mR)Be (k)
:Z i 5) sin (5)6 2 e'\2 A k(@) B i (a),
k=0
where

™ 2m
A k(a) ::/ el cos™ K (E) sin® (E) du, Bp,k(a) ::/ (= F+k+a®)v g
0 2 2 0
This second term can be computed directly:
ei2w(—%+k+aq) -1

i(—2+k+ad)
B = (27i)? m B
_271-;)(64‘1)! (—5+k+aq)

The computation of A, x(a) is slightly more involved. Using Euler’s identities
we have that

2
B k(a) := / (=B Hhtat)v gy —
0

S ok ez’t + e—it m—k eit _ e—z’t k
o =(—5—) (T
cos™ " (t) sin”(t) 5 57
e

— S (1 4 672it>mfk(1 _ 672it)k:.
Substitution of this into the integral in question and an application of the Binomial
Theorem gives:

A i(a) == /OTr el cos™ R (%) sin® (g) du

_ 1. / ezapueim%(l + e—iu)m—k(l _ e—iu)k du
0

k
T m—k\ [k 1 [r pm
: § ' ‘ ‘ 1 32_/ ezu(a +2 *317]2)du
2mik £ - ( J1 )(Jz)( ) T Jo

J1 Jo in(aP + 5 — j1 — jo)
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We will sum this expression in a different order to arrive at the answer. Let J,. be
the collection of integers (j1,72) such that j; + jo = r where r = 0,...,m. Then
continuing from above we have:

m—k k im(a?+ 3 —j1—j
- m— k k ) ezTr(a +3—j1—j2) _ 1
Am _ —1 J2
k(@) om ik Z Z ( ) ( >( ) im(af + %5 — j1 — j2)

e AN J2
T — m—=k\ [k -\ eimaf o) g
=0 . . —1)72 S
2t z:(:) (jl,j%:ea,, < i > (Jz>( N T
(s (e (3
= — . ) —1)72 2
2mik 7;) (jhj%:e$ g J2 =1) O;J (a+1)!
P 3 (R lr(3rsa)”
= W ;)Cnm,k (z:o Q(Q T 1)' ) .

Utilize that (j1,j2) € J» to see that

1= ) (myz k) (Jk;> -1y = lzj;(_l)l <Il€> <T::lk>

(41,32) €T
This is the expression claimed in the statement of the theorem, i.e., formula (3.2)
for ®,(0,¢,t) with coefficients given by (3.3) and (3.4). The fact that the map
a — P, is holomorphic is direct by inspection and the proof of the theorem is
complete. O

Remark 3.2. One can also show that:

Crome = %% (a=pa+nm") L:O - g(_nl (’;) <”;:f>

The first formula was discovered by computing the examples when m = 1,2, 3 and
then seeing what the sequence this might be in the Online Encyclopedia of Integer
Sequences. It is a known sequence, Sequence A268533.

4. INFINITE ORDER DIFFERENTIAL OPERATORS AND THE SUPERSHIFT PROPERTY

For the sequences of entire functions we shall consider a natural notion of con-
vergence is the convergence in the space A;.

Definition 4.1. A; is the complex algebra of entire functions such that there exists
B > 0 with
(4.1) sup (|f(€)] exp(=BI¢])) < +oc.
£eC

The space A; has a rather complicated topology since it is a linear space obtained
via an inductive limit, see for example [16]. For our purposes, it is enough to
consider, for any fixed B > 0, the set A; p of functions f satisfying (4.1), and to
observe that

£l = sup (|£(&)] exp(—Bl¢]))
£eC

defines a norm on A; g, called the B-norm. One can prove that A; p is a Banach
space with respect to this norm.
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Moreover, for f and a sequence (f,,), of elements in A, we say that f, converges
to f in A; if and only if there exists B such that f, f,, € A; p and

lim_ sup | £,,(€) — /(&) exp(~Cle]) = 0
n—oo EE(C

for some C > 0. With these notations and definitions we can make the notion of
continuity explicit (see [14] for more details). A linear operator U : A; — A; is
continuous if and only if for any B > 0 there exists B’ > 0 and C' > 0 such that

(42) U(AI,B) C AI,B’ and HZ/{(f)HB/ < C||fHB7 for any f S AI,B-

The following result gives a characterization of the functions in Ay via the coef-
ficients appearing in their Taylor series expansion.

Lemma 4.2 ([13, Lemma 4.2]). The entire function
H=> £8
§=0
belongs to Ay if and only if there exists Cy > 0 and b > 0 such that
b
|fil < Cfﬁ~

Remark 4.3. We write f € A; to mean that f € A; g for some B > 0. The proof
of [13, Lemma 4.2] shows that b = 2eB and Cy = | f]| 5.

A crucial fact in the proof of [13, Lemma 4.2] depends upon the following. We
define two infinite order differential operators that will be used to study superoscil-
latory functions and supershifts in two variables. Observe that using the auxiliary
complex variable £ we have

1 .
A = = DieA for AXeC, (€N,
7 =
where D is the derivative with respect to  and |¢=¢ denotes evaluation at £ = 0.
Let us consider the infinite order differential operators that will be associated with
the two functions A, x(a) and B, x(a) defined in (3.3) and (3.4), respectively,
where the coefficients ¢, ., 5 are given in (3.5).

Definition 4.4 (Infinite order differential operators for spin s = ). Let m, g,
p € N and assume that £ € C is an auxiliary variable. Denote by D¢ the com-
plex derivative with respect to the variable £ and define the formal infinite order
differential operators

o0 )I +i "Dy
and
(4.4) Byi(De) = 2 Z 527-?1 ( 7; YR + rqu)ﬁ :

where the coefficients ¢, ., 1 are given in (3.5) and Z is the identity operator.

Proposition 4.5. Let Ay be the space of entire functions as in Definition 4.4.
Then for every m, q and p € N the operators Ay, (De) and By, 1 (De) defined in
(4.3) and (4.4), respectively, act continuously from Ay to A;.
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Proof. Tt follows from the fact that the functions A, x(a) and By, ;(a) defined
n (3.3) and (3.4), respectively, are entire and from the use of Lemma 4.2. The
computations are a bit involved, but follow the same strategy used in [13] to obtain
the continuity estimate (4.2). Exact details are suppressed. |

Remark 4.6. One may wonder under which conditions one can guarantee that a
function has the supershift property. This is an interesting problem, and a sufficient
condition for the property to hold is given by analyticity, see [9].

We now return to Problem 1.1. We state the main result and we note that, by
Remark 4.6, in the proof we can rely on the fact that the function in (3.2) has the
supershift property.

Theorem 4.7. Let a > 1 and let s := 5t where m € N. Then the solution of the
Schrodinger equation, with the propagator of the spinning particle given by (2.2)
and superoscillatory initial datum (1.6) can be written as

t) = Z Cj (nv a)q)lf% (9, ¢a t)
=0

for all 6 € [0,7], ¢ € [0,27], t > 0, where ®,(6, ¢,t) is given by (3.2) and Cj(n,a)
are giwen by (1.2) for p, ¢ € N. Moreover, ®,(0,¢,t) has the supershift property,
that is,

JE&ZO Cj(n,a)®,_2i(0,6,t) = Du(0, ,1).
iz

Proof. The solution ®,(0, ¢,t) given in (3.2) can be written in terms of the infi-
nite order differential operators A,, 1 (D¢) and B, (Dg) defined in (4.3) and (4.4),
respectively, as

m

D,(0,0,t) = Z <”kl> ci(—B+k)Bt ( m—k (g)

k=0

X sink (g) ei(%7k)¢Am,k(D§)Bm7k(Df)eia£

€=0’

By linearity of the Schrodinger equation, the evolution of the superoscillatory initial

datum is
n

7L0¢a ZCJ 1 27( ¢7)

7=0
If we set for simplicity
i(-%+k)Bt , m—k AN i(Z—k)o
A k(0,0,t) =€\ 2 cos (5) sin (§> e'\2 ,

we can write

Z( > mk (0,0,t)An k(DE)an,k(DE)emg

3
=0
k=0 ¢
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so we have

n(0,6.1) ZCna 2 (0,.t)

> G Z( JAnk(6,6,0) A k(DB (|
=0 k=0 -
—Z( ) (0, 0.0) Ay (D) B (D) 3 Oy a)e 30| _

Jj=0

By the continuity results, in particular Proposition 4.5, it is immediate that

since the sequence Y7 Cj(n,a)e

lim ¥, (0,¢,t) = hm ZC (n,a)®,_2i(0,,1)

n—oo

— - . i(1-2¢
-3 :( )Ak(6,6,0) A (B 1(D) Jima > 0y (mae

£=0

:f:( ) 0, 6, t) A1 (De) By 1o (De e

£=0

i(1-32)¢ converges to ¢’ in A;. One is left to

simply apply the operators A, k(Dg)Bm k(D) to € and take the restriction to
& = 0 to yield the claimed supershift property. O

(1]
2]

(3]

(9]

REFERENCES

Y. Aharonov, D. Albert, L. Vaidman, How the result of a measurement of a component of the
spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett., 60 (1988), 1351-1354.
Yakir Aharonov, Jussi Behrndt, Fabrizio Colombo, and Peter Schlosser, Schridinger evolution
of superoscillations with §- and §'-potentials, Quantum Stud. Math. Found. 7 (2020), no. 3,
293-305, DOI 10.1007/s40509-019-00215-4. MR4137232

Yakir Aharonov, Jussi Behrndt, Fabrizio Colombo, and Peter Schlosser, Green’s function
for the Schrodinger equation with a generalized point interaction and stability of super-
oscillations, J. Differential Equations 277 (2021), 153-190, DOI 10.1016/j.jde.2020.12.029.
MR4198208

Yakir Aharonov, Jussi Behrndt, Fabrizio Colombo, and Peter Schlosser, A unified approach
to Schrodinger evolution of superoscillations and supershifts, J. Evol. Equ. 22 (2022), no. 1,
Paper No. 26, 31, DOI 10.1007/s00028-022-00770-1. MR4395133

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, and J. Tollaksen, Ewvolution of su-
peroscillations in the Klein-Gordon field, Milan J. Math. 88 (2020), no. 1, 171-189, DOI
10.1007/s00032-020-00310-x. MR4103434

Y. Aharonov, F. Colombo, I. Sabadini, D. C. Struppa, and J. Tollaksen, Superoscillat-
ing sequences in several variables, J. Fourier Anal. Appl. 22 (2016), no. 4, 751-767, DOI
10.1007/s00041-015-9436-8. MR3528397

Yakir Aharonov, Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa, and Jeff Tollaksen,
The mathematics of superoscillations, Mem. Amer. Math. Soc. 247 (2017), no. 1174, v+107,
DOI 10.1090/memo/1174. MR3633292

Yakir Aharonov, Fabrizio Colombo, Irene Sabadini, Tomer Shushi, Daniele C. Struppa, and
Jeff Tollaksen, A new method to generate superoscillating functions and supershifts, Proc. A.
477 (2021), no. 2249, Paper No. 20210020, 12, DOI 10.1098 /rspa.2021.0020. MR4269868
Y. Aharonov, F. Colombo, A. N. Jordan, I. Sabadini, T. Shushi, D. C. Struppa, and J.
Tollaksen, On superoscillations and supershifts in several variables, Quantum Stud. Math.
Found. 9 (2022), no. 4, 417-433, DOI 10.1007/s40509-022-00277-x. MR4498012



142

(10]

(11]

(12]

13]

(14]

[15]

[16]

[17)
(18]

(19]

20]

21]

22]

(23]

24]

[25]
[26]
27]

(28]

[29]

(30]

(31]

F. COLOMBO, E. POZZI, I. SABADINI, AND B. D. WICK

Y. Aharonov, I. Sabadini, J. Tollaksen, and A. Yger, Classes of superoscillating functions,
Quantum Stud. Math. Found. 5 (2018), no. 3, 439-454, DOI 10.1007/s40509-018-0156-z.
MR3845340

Yakir Aharonov and Tomer Shushi, A new class of superoscillatory functions based on a
generalized polar coordinate system, Quantum Stud. Math. Found. 7 (2020), no. 3, 307-313,
DOI 10.1007/s40509-020-00236-4. MR4137233

D. Alpay, F. Colombo, I. Sabadini, and D. C. Struppa, Aharonov-Berry superoscillations
in the radial harmonic oscillator potential, Quantum Stud. Math. Found. 7 (2020), no. 3,
269-283, DOI 10.1007/s40509-019-00206-5. MR4137230

T. Aoki, F. Colombo, I. Sabadini, and D. C. Struppa, Continuity theorems for a class of
convolution operators and applications to superoscillations, Ann. Mat. Pura Appl. (4) 197
(2018), no. 5, 1533-1545, DOI 10.1007/s10231-018-0736-x. MR3848463

Takashi Aoki, Ryuichi Ishimura, Yasunori Okada, Daniele C. Struppa, and Shofu
Uchida, Characterization of continuous endomorphisms of the space of entire func-
tions of a given order, Complex Var. Elliptic Equ. 66 (2021), no. 9, 1439-1450, DOI
10.1080/17476933.2020.1767086. MR4306794

Jussi Behrndt, Fabrizio Colombo, and Peter Schlosser, Evolution of Aharonov-Berry super-
oscillations in Dirac §-potential, Quantum Stud. Math. Found. 6 (2019), no. 3, 279-293, DOI
10.1007/s40509-019-00188-4. MR4016654

Carlos A. Berenstein and Roger Gay, Complex analysis and special topics in harmonic anal-
ysis, Springer-Verlag, New York, 1995, DOI 10.1007/978-1-4613-8445-8. MR 1344448

M. V. Berry et al., Roadmap on superoscillations, J. Opt. 21 (2019), 053002.

M. V. Berry, Faster than Fourier, Quantum Coherence and Reality, World Scientific, Singa-
pore, 1994, pp. 55-65, In celebration of the 60th birthday of Yakir Aharonov.

M. V. Berry, Representing superoscillations and narrow Gaussians with elementary func-
tions, Milan J. Math. 84 (2016), no. 2, 217-230, DOI 10.1007/s00032-016-0256-3. MR3574594
M. V. Berry and S. Popescu, Evolution of quantum superoscillations and optical superresolu-
tion without evanescent waves, J. Phys. A 39 (2006), no. 22, 69656977, DOI 10.1088/0305-
4470/39/22/011. MR2233265

Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa, and Alain Yger, Gauss sums, super-
oscillations and the Talbot carpet (English, with English and French summaries), J. Math.
Pures Appl. (9) 147 (2021), 163-178, DOI 10.1016/j.matpur.2020.07.011. MR4213681
Fabrizio Colombo, Irene Sabadini, Daniele C. Struppa, and Alain Yger, Superoscillating se-
quences and hyperfunctions, Publ. Res. Inst. Math. Sci. 55 (2019), no. 4, 665-688, DOI
10.4171/PRIMS/55-4-1. MR4024995

F. Colombo, D. C. Struppa, and A. Yger, Superoscillating sequences towards approximation
in S or 8’ -type spaces and extrapolation, J. Fourier Anal. Appl. 25 (2019), no. 1, 242-266,
DOI 10.1007/s00041-018-9592-8. MR3901926

F. Colombo, I. Sabadini, D. C. Struppa, and A. Yger, Superoscillating sequences and super-
shifts for families of generalized functions, Complex Anal. Oper. Theory 16 (2022), no. 3,
Paper No. 34, 37, DOI 10.1007/s11785-022-01211-0. MR4396703

Fabrizio Colombo and Giovanni Valente, Evolution of superoscillations in the Dirac field,
Found. Phys. 50 (2020), no. 11, 1356-1375, DOI 10.1007/s10701-020-00382-0. MR4179738
Achim Kempf and Paulo J. S. G. Ferreira, Unusual properties of superoscillating particles,
J. Phys. A 37 (2004), no. 50, 12067-12076, DOI 10.1088/0305-4470/37/50/009. MR2106626
P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc. Lond. Ser.
A 133 (1931), 60-72.

E. Ercolessi, G. Morandi, F. Napoli, and P. Pieri, Path integrals for spinning particles, sta-
tionary phase and the Duistermaat-Heckmann [Heckman] theorem, J. Math. Phys. 37 (1996),
no. 2, 535-553, DOI 10.1063/1.531428. MR1371026

P. J. S. G. Ferreira, A. Kempf, and M. J. C. S. Reis, Construction of Aharonov-Berry’s su-
peroscillations, J. Phys. A 40 (2007), no. 19, 5141-5147, DOI 10.1088,/1751-8113/40/19/013.
MR2341065

A. Perelomov, Generalized coherent states and their applications, Texts and Monographs in
Physics, Springer-Verlag, Berlin, 1986, DOI 10.1007/978-3-642-61629-7. MR858831

Elodie Pozzi and Brett D. Wick, Persistence of superoscillations under the Schriodinger
equation, Evol. Equ. Control Theory 11 (2022), no. 3, 869-894, DOI 10.3934/eect.2021029.
MR4408109



EVOLUTION OF SUPEROSCILLATIONS: SPINNING PARTICLES 143

[32] Peter Schlosser, Time evolution of superoscillations for the Schréodinger equation on R\ {0},
Quantum Stud. Math. Found. 9 (2022), no. 3, 343-366, DOI 10.1007/s40509-022-00272-2.
MR4450220

[33] Lawrence Schulman, A path integral for spin, Phys. Rev. (2) 176 (1968), 1558-1569.
MR237149

[34] Lawrence S. Schulman, Techniques and applications of path integration, A Wiley-Interscience
Publication, John Wiley & Sons, Inc., New York, 1981. MR601595

[35] Barbara Soda and Achim Kempf, Efficient method to create superoscillations with generic
target behavior, Quantum Stud. Math. Found. 7 (2020), no. 3, 347-353, DOI 10.1007/s40509-
020-00226-6. MR4137236

[36] G. Toraldo di Francia, Super-gain antennas and optical resolving power, Nuovo Cimento
Suppl. 9 (1952), 426-438.

DIPARTIMENTO DI MATEMATICA, POLITECNICO DI MILANO, VIA E. BONARDI, 9, 20133 MILANO,
ITALY

Email address: fabrizio.colombo@polimi.it

DEPARTMENT OF MATHEMATICS AND STATISTICS, SAINT LoOuls UNIVERSITY, 220 N. GRAND
BrLvp, St. Louis, Missourl 63103
Email address: elodie.pozzi@slu.edu

DIPARTIMENTO DI MATEMATICA, POLITECNICO DI MILANO, VIA E. BONARDI, 9, 20133 MILANO,
ItaLy

Email address: irene.sabadini@polimi.it

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY - ST. Louis, ONE BROOKINGS
Drive, St. Louis, MISSOURI 63130-4899
Email address: wick@math.wustl.edu



	1. Introduction
	2. Superoscillations, supershifts and the propagator for spinning particles
	The propagator for the spinning particle

	3. Evolution of oscillating functions
	4. Infinite order differential operators and the supershift property
	References

