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EVOLUTION OF SUPEROSCILLATIONS FOR SPINNING

PARTICLES

FABRIZIO COLOMBO, ELODIE POZZI, IRENE SABADINI, AND BRETT D. WICK

(Communicated by Javad Mashreghi)

Abstract. Superoscillating functions are band-limited functions that can os-
cillate faster than their fastest Fourier component. These functions appear in
various fields of science and technology, in particular they were discovered in
quantum mechanics in the context of weak values introduced by Y. Aharonov
and collaborators. The evolution problem of superoscillatory functions as ini-
tial conditions for the Schrödinger equation is intensively studied nowadays

and the supershift property of the solution of Schrödinger equation encodes
the persistence of superoscillatory phenomenon during the evolution. In this
paper, we prove that the evolution of a superoscillatory initial datum for spin-
ning particles in a magnetic field has the supershift property. Our techniques
are based on the exact propagator of spinning particles, the associated infinite
order differential operators and their continuity on suitable spaces of entire
functions with growth conditions.

1. Introduction

In the last decade there has been increasing interest in the theory of superoscil-
latory functions both from mathematical and physical points of view. In quantum
mechanics these functions originated in context of weak values, see [1], while in
antenna theory they first appeared in [36]; for developments in optics and other ap-
plications see the recent overview paper [17] titled Roadmap on Superoscillations,
where some of the leading experts illustrated the various features of superoscilla-
tions and applications. From the mathematical point of view, an introduction to
superoscillatory functions in one variable and some investigations of the Schrödinger
evolution of superoscillatory initial data can be found in [7].

The literature on superoscillations is quite large, and without claiming com-
pleteness some of the most relevant and recent results are contained in the papers
[2]-[7], [12], [15], [25], [31] and [32] where the issue of persistence of superoscilla-
tory behavior when evolved under the Schrödinger equation is considered. The
papers [18]-[20], [26]-[29] and [35] are mostly concerned with the physical nature
of superoscillations, while papers [10], [11], [13]-[14], [21]-[24] develop in depth the
mathematical theory of superoscillations. Recently, [8] introduced a new method
to generate superoscillating functions.
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The results in this paper are addressed to a general audience of mathematicians,
but also physicists and engineers, and our main tools are the theory of infinite order
differential operators acting on spaces of holomorphic functions and the knowledge
of the Green’s functions.

The prototypical superoscillating function, which appears in the theory of weak
values, is

(1.1) Fn(x, a) =
n
∑

j=0

Cj(n, a)e
i(1− 2j

n
)x, x ∈ R,

where a > 1 and the coefficients Cj(n, a) are given by

(1.2) Cj(n, a) =

(

n

j

)(

1 + a

2

)n−j (
1− a

2

)j

.

If we fix x ∈ R and we let n go to infinity, we obtain that

lim
n→∞

Fn(x, a) = eiax,

and the limit is uniform on compact subsets of the real line. The term superoscil-
lations comes from the fact that in the Fourier representation of the function (1.1)

the frequencies 1− 2j
n are bounded by 1, but the limit function eiax has a frequency

a that can be arbitrarily larger than 1.
Inspired by this example we define a generalized Fourier sequence. These are

sequences of the form

(1.3) fn(x) :=
n
∑

j=0

Zj(n, a)e
ihj(n)x, n ∈ N, x ∈ R,

where a ∈ R, Zj(n, a) and hj(n) are complex and real valued functions of the
variables n, a and n, respectively. The sequence (1.3) is said to be a superoscillating

sequence if sup
j,n

|hj(n)| ≤ 1 and there exists a compact subset of R, which is called

a superoscillation set, on which fn(x) converges uniformly to eig(a)x, where g is a
continuous real valued function such that |g(a)| > 1. Superoscillatory functions in
several variables have been rigorously defined and studied in [6] and in [9] where
the theory of supershifts in more than one variable was initiated.

The crucial concept that encodes the persistence of the superoscillatory be-
haviour of the solution of the Schrödinger equation with superoscillatory initial
condition is called the supershift of the solution and is stated in Definition 2.4.
This concept is motivated by the fact that the only known case where the Cauchy
problem for the Schrödinger equation with initial datum given by (1.1) has a so-
lution that is a superoscillatory function in two variables is the case of the free
particle, i.e.,

i
∂ψ(t, x)

∂t
= −

∂2ψ(t, x)

∂x2
ψ(t, x), ψ(0, x) =

n
∑

j=0

Cj(n, a)e
ix(1− 2j

n
).

In this case the solution is

(1.4) ψn(t, x) =
n
∑

j=0

Cj(n, a)e
i(1− 2j

n
)xe−it(1− 2j

n
)2 ,
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and for all t ∈ [−T, T ], where T is any real positive number, we have

lim
n→∞

ψn(t, x) = eiax−ia2t,

when x belongs to the compact sets of R. Also in the case of nonconstant potentials
we do not obtain a superoscillatory function in two or in more variables. This fact
can be seen already with the well known quantum harmonic oscillator where the
Cauchy problem

i
∂ψ(t, x)

∂t
=

1

2

(

−
∂2

∂x2
+ x2

)

ψ(t, x), ψ(0, x) =
n
∑

j=0

Cj(n, a)e
ix(1− 2j

n
)

has the solution

ψn(t, x) = (cos t)−1/2 exp
(

−
i

2
x2 tan t

)

×

n
∑

j=0

Cj(n, a) exp

(

ix(1− 2j
n ))

cos t
−

i

2

(

1−
2j

n

)2

tan t

)

,
(1.5)

which clearly is not of the form (1.4). When we take the limit for n → ∞ we get

lim
n→∞

ψn(t, x) = (cos t)−1/2 exp

(

−
i

2
(x2 + a2) tan t+ i

ax

cos t

)

.

What is preserved in the two cases is the fact that in the limit process the instances
1 − 2j

n ∈ [−1, 1] in the expressions (1.4) and (1.5) tend to a > 1, for more details
see [7]. This leads to the notion of supershift in Definition 2.4 which includes as a
particular case the notion of superoscillation.

The main result of this paper demonstrates the supershift property for the so-
lution of the Schrödinger equation for spinning particles of any spin, subjected to
a magnetic field. To prove our main results we take advantage of the exact form
of the propagator, see [28] and also (2.2) in this paper. The precise formulation of
the problem is as follows although more details are explained in Section 2.

Problem 1.1. Determine if the solution of the Schrödinger equation with the
propagator of the spinning particle given by

K(θ′′, φ′′, θ′, φ′;T ) =
(

cos
(θ′′

2

)

cos
(θ′

2

)

ei(φ
′′
−BT−φ′)/2

+ sin
(θ′′

2

)

sin
(θ′

2

)

e−i(φ′′
−BT−φ′)/2

)2s

and superoscillatory initial datum in two variables

(1.6) ψn(θ, φ) =

n
∑

j=0

Cj(n, a)e
iθ(1− 2j

n
)peiφ(1−

2j
n
)q

has the supershift property, where a > 1, Cj(n, a) are given by (1.2), θ ∈ [0, π],
φ ∈ [0, 2π] and p, q ∈ N.

The strategy to solve Problem 1.1 and prove the supershift property is split into
Steps (I)–(II):

Step (I). We explicitly determine the solution Φa(θ, φ, t) of the Schrödinger equa-
tion using the propagator of the spinning particle given by (2.2) with the initial
condition ψ0(θ, φ) = eia

pθ+iaqφ, for θ ∈ [0, π], φ ∈ [0, 2π], p, q ∈ N and a > 1.
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Step (II). Given the explicit solution Φa(θ, φ, t) obtained in the previous point, we
identify suitable infinite order differential operators associated with the solution.

Step (III). Thanks to the continuity property of our infinite order differential op-
erators on the space of entire functions with exponential bound A1 we then prove
the supershift property.

As we shall see in Section 4, for spinning particles of spin s = m
2 , m ∈ N, the

infinite order differential operators Am,k(Dξ) and Bm,k(Dξ) defined in (4.3) and
(4.4), respectively, act continuously from A1 to A1 for every m, q and p ∈ N, see
Proposition 4.5.

Thus, according to Step (II), we can deduce the supershift property of the so-
lution. Precisely, in Theorem 4.7 we will prove that for a > 1 the solution of the
Schrödinger equation, with the propagator of the spinning particle given by (2.2)
and superoscillatory initial datum (1.6), can be written as

Ψn(θ, φ, t) =
n
∑

j=0

Cj(n, a)Φ1− 2j
n
(θ, φ, t),

where

Φa(θ, φ, t) =

m
∑

k=0

(

m

k

)

ei(−
m
2 +k)Bt cosm−k

(θ

2

)

sink
(θ

2

)

ei(
m
2 −k)φAm,k(a)Bm,k(a)

for explicit functions Am,k(a), Bm,k(a), given in (3.3) and (3.4) depending upon
the p and q from the initial datum, and Cj(n, a) are given by (1.2). Moreover,
Φa(θ, φ, t) has the supershift property, that is,

lim
n→∞

n
∑

j=0

Cj(n, a)Φ1− 2j
n
(θ, φ, t) = Φa(θ, φ, t),

for all θ ∈ [0, π], φ ∈ [0, 2π], t ≥ 0. The results above hold for spin s = m
2 , for every

m ∈ N.
The plan of the paper is as follows: after this introduction, in Section 2 we first

review some basic notions on superoscillating sequences in two variables and the
property of the supershift. Then we recall the propagator for spinning particles
and the procedure to determine it. Section 3 is devoted to determining the explicit
solution of a Cauchy problem for the Schrödinger equation with the propagator for
the spinning particle which is crucial to perform the evolution of a superoscillatory
initial datum done in Section 4.

2. Superoscillations, supershifts and the propagator for spinning

particles

We first recall some preliminary definitions related to superoscillatory functions
in two variables even if they can be extended to the general case of d ≥ 2 variables.
We restrict to two dimensions since our specific evolution problem for spinning
particles is two dimensional, for more details see [6, 9].

Definition 2.1 (Generalized Fourier sequence in two variables). Let (x1, x2) ∈ R2.
For � = 1, 2, let (hj,�(n)), j = 0, . . . , n for n ∈ N0, be real-valued sequences. A
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sequence of the form

Fn(x1, x2) =

n
∑

j=0

cj(n)e
ix1hj,1(n)eix2hj,2(n),

where (cj(n))j,n, j = 0, . . . , n, for n ∈ N0 is a complex-valued sequence will be
called a generalized Fourier sequence in two variables.

Definition 2.2 (Superoscillating sequence). A generalized Fourier sequence in two
variables Fn(x1, x2) is said to be a superoscillating sequence if

sup
j=0,...,n, n∈N0

|hj,�(n)| ≤ 1, for � = 1, 2,

and there exists a compact subset of R2, which will be called a superoscillation set,
on which Fn(x1, x2) converges uniformly to eix1g1eix2g2 , where |g�| > 1 for � = 1, 2.

An important example of a generalized Fourier sequence in two variables that
will be used in the sequel is the following:

Theorem 2.3 (The case of two variables). For p and q ∈ N we define

Fn(x, y) =

n
∑

j=0

Cj(n, a)e
ix1(hj(n))

p

eix2(hj(n))
q

,

where Cj(n, a) are given by (1.2) and hj(n) = 1− 2j
n . Then, we have

lim
n→∞

Fn(x, y) = eix1a
p

eix2a
q

,

and, in particular, Fn(x1, x2) is superoscillating when |a| > 1.

In the case of nonconstant potentials we have to replace the notion of superoscil-
lations with the notion of supershift.

Definition 2.4 (Supershift property). Let λ �→ ϕλ(X) be a continuous complex-
valued function in the variable λ ∈ I, where I ⊆ R is an interval, and X ∈ Ω, where
Ω is a domain. We consider X ∈ Ω as a parameter for the function λ �→ ϕλ(X)
where λ ∈ I. When [−1, 1] is contained into I and a ∈ I, we define the sequence

ψn(X) =
n
∑

j=0

Cj(n, a)ϕ1− 2j
n
(X),

in which ϕλ is computed just at the points 1 − 2j
n which belong to the interval

[−1, 1] and Cj(n, a) are suitable coefficients, for j = 0, . . . , n and n ∈ N. If

lim
n→∞

ψn(X) = ϕa(X)

for |a| > 1 arbitrary large (but belonging to I), we say that the function λ �→ ϕλ(X),
for X fixed, admits the supershift property.

Remark 2.5. If we set ϕλ(x) = eiλx and X = x ∈ R, we obtain the superoscillating
sequence described above as a particular case of the supershift. In fact, in this
case, we have ψn(x) = Fn(x, a), where Fn(x, a) is defined in (1.1). The name
supershift is due to the fact that we are able to obtain ϕa, for |a| > 1 arbitrarily
large, by simply calculating the function λ �→ ϕλ at infinitely many points in the
neighborhood [−1, 1] of the origin.
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The propagator for the spinning particle. The first attempt to determine the
propagator for the spinning particles was done by L. S. Schulman, see [33] and [34],
but the precise propagator was found by E. Ercolessi and co-authors, in [28]. We
briefly describe the ingredients to obtain the propagator because of the particular
structure of the Hamiltonian for spinning particles. In fact, to obtain the exact
expression of the propagator requires a regularization term in the path integral.
In this part of the paper, we will resort to some physics notation to match the
presentation from [28]. We will translate this notation into a more mathematical
one when it is used later to be more consistent with the rest of the paper.

The Hamiltonian for the quantum mechanics of a spinning particle is described
by

Ĥ = B̂ · Ŝ,

where Ŝ = [Ŝ1, Ŝ2, Ŝ3] and the spin operators Ŝj , for j = 1, 2, 3, satisfy the usual
commutation relations (normalizing � = 1):

[Ŝ�, Ŝj ] = iε�jkŜk,

where ε�jk is Levi-Civita symbol. In order to give the precise interpretation of the
Green’s function we summarize a few facts and we refer the reader to the paper
[28] for more details.

We consider the group SU(2) and we recall that the coherent states for a spin s
(2s being an integer) can be constructed as follows

u(θ, φ) = e−iφŜ3e−iθŜ2u0,

where u0 denotes the highest-weight state of the spin-s representation of SU(2) and

moreover we have that s is an eigenvalue of the operator Ŝ3 associated with the
eigenfunction u0:

Ŝ3u0 = su0.

We assume that θ and φ are the two angular coordinates parametrizing S2 where
θ ∈ [0, π] and φ ∈ [0, 2π]. In [30], for example, one can find the relation
(2.1)

〈u(θ′, φ′), u(θ, φ)〉 =
(

cos
(θ′

2

)

cos
(θ

2

)

ei(φ
′
−φ)/2+sin

(θ′

2

)

sin
(θ

2

)

e−i(φ′
−φ)/2

)2s

which plays an important role in what follows. The quantum-mechanical propagator

K(x′′, t′′;x′, t′) = 〈u(x′′), e−
i
�
(t′′−t′)Hu(x′)〉

may be computed using a path integral:

K(x′′, t′′;x′, t′) =

∫ x(t′′)=x′′

x(t′)=x′

exp
( i

�

∫ t′′

t′
L(x(t), ẋ(t))dt

)

Dx(t),

where L(x(t), ẋ(t)) is the Lagrangian of the system and the boundary conditions of
the path integral are given by x(t′) = x′, x(t′′) = x′′. The paths that are summed
over move only forward in time and are integrated with respect to the differential
Dx(t). The kernel K(x′′, t′′;x′, t′) solves the Cauchy problem for the Schrödinger
equation with initial datum ψ0(x

′, t′):

ψ(x′′, t′′) =

∫ ∞

−∞

ψ0(x
′, t′)K(x′′, t′′;x′, t′) dx′, t′′ > t′.

We note that formula (2.1) is of crucial importance to deduce the propagator that
is obtained by a regularization procedure in the Feynman integral. Precisely, based
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on solid physical motivations, see [28], since the Lagrangian (or the Hamiltonian)
for a quantum spinning particle does not have an explicit kinetic term that acts
as a regulator, concentrating the functional measure on the continuous path, the
term 1

4δ((θ̇)
2 + sin2 θ(φ̇2)) has been added for the regularization, where δ > 0 is

a parameter. Then the limit, as δ → 0, has to be taken after evaluating the path
integral with the saddle point approximation. For the case of a spin in a magnetic
field the propagator, denoted in this case by K2s, becomes:

K2s(θ
′′, φ′′, θ′, φ′;T )

= lim
δ→0

∫ Ω(t′′)=Ω′′

Ω(t′)=Ω′

exp
(

is

∫ T

0

cos θφ̇+
1

4
δ((θ̇)2 + sin2 θ(φ̇2))−B cos θ

)

DΩ(t)dt

=
(

cos
(θ′′

2

)

cos
(θ′

2

)

ei(φ
′′
−BT−φ′)/2 + sin

(θ′′

2

)

sin
(θ′

2

)

e−i(φ′′
−BT−φ′)/2

)2s

.

(2.2)

Remark 2.6. Observe that the propagator K2s(θ
′′, φ′′, θ′, φ′;T ) given in (2.2) can

be rewritten using the relation (2.1) as

K2s(θ
′′, φ′′, θ′, φ′;T ) = 〈u(θ′′, φ′′ − μBT ), u(θ′, φ′)〉,

where T = t′′− t′, μ is the Bohr magneton that is assumed equal to 1, and B is the
constant magnetic field in the direction of the z-axis.

Remark 2.7. The nontrivial procedure illustrated above that gives the correct prop-
agator for the spinning particle has the following interpretation: the action in (2.2)
becomes essentially that of a particle of charge s and mass 1/(2sδ) moving on the
two-sphere S2, coupled both with a magnetic monopole of unit strength located at
the centre of the sphere and with a constant electric-type field directed along the
z-axis. In this context, Dirac’s quantization condition, see [27], becomes identi-
cal with the spin quantization condition, i.e., 2s equals an integer. The interested
reader who wants to know more about the nontrivial physical aspects of this prop-
agator can look at [28] and the references therein.

3. Evolution of oscillating functions

This section is preliminary to study the evolution of the superoscillatory initial
datum (1.6) done in Section 4. In order to simplify the notation for the compu-
tations in the propagator K2s(θ

′′, φ′′, θ′, φ′;T ) we change notation as follows: the
final values are denoted by

t′′ = t, θ′′ = θF = θ and φ′′ = φF = φ

and for the initial values we set

t′ = 0, θ′ = θI = u and φ′ = φI = v.

With the above notation the solution of the Cauchy problem for initial datum
ψ0(θ, φ) is given by

(3.1) ψ(θ, φ, t) =

∫ π

u=0

∫ 2π

v=0

ψ0(u, v) K2s(θ, φ, u, v, t)dvdu.

Observe that for the Cauchy problem that we study, the integral exists in the
Lebesgue sense.

We now study the evolution of the oscillating initfial condition ψ0(θ,φ)=eia
pθ+iaqφ

using the propagator of the spinning particle given by (2.2).
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Theorem 3.1. Let 2s := m ∈ N and assume p, q ∈ N. The Cauchy problem for

the Schrödinger equation with the propagator of the spinning particle given by (2.2)
and with initial condition

ψ0(θ, φ) = eia
pθ+iaqφ

has the explicit solution:

(3.2)

Φa(θ, φ, t) =

m
∑

k=0

(

m

k

)

ei(−
m
2 +k)Bt cosm−k

(θ

2

)

sink
(θ

2

)

ei(
m
2 −k)φAm,k(a)Bm,k(a)

for all θ ∈ [0, π], φ ∈ [0, 2π], t ≥ 0, where

(3.3) Am,k(a) :=
π

2mik

m
∑

r=0

cr,m,k

∞
∑

α=0

(

iπ
(

m
2 − r + ap

))α

(α+ 1)!

and

(3.4) Bm,k(a) := 2π

∞
∑

β=0

(2πi)ı

(β + 1)!

(

−
m

2
+ k + aq

)β

with

(3.5) cr,m,k :=
r

∑

l=0

(−1)l
(

k

l

)(

m− k

r − l

)

.

Moreover, the solution Φa = Φa(θ, φ, t) is an entire function with respect to the

variable a ∈ C, for all θ ∈ [0, π], φ ∈ [0, 2π], t ≥ 0.

Proof. Keeping in mind the above positions for the variables and setting 2s = m,
for the sake of simplicity, we write the propagator as

Km(θ, φ, u, v, t) =
(

cos
(θ

2

)

cos
(u

2

)

ei
(φ−Bt−v)

2 +sin
(θ

2

)

sin
(u

2

)

e−i (φ−Bt−v)
2

)m

.

Now expand the kernel using the Binomial Theorem to find

Km(θ, φ, u, v, t)

=

m
∑

k=0

(

m

k

)

(

cos
(θ

2

)

cos
(u

2

)

ei(φ−Bt−v)/2
)m−k

×
(

sin
(θ

2

)

sin
(u

2

)

e−i(φ−Bt−v)/2
)k

=

m
∑

k=0

(

m

k

)

(

cosm−k
(θ

2

)

cosm−k
(u

2

)

ei(m−k) (φ−Bt−v)
2

)

×
(

sink
(θ

2

)

sink
(u

2

)

e−ik
(φ−Bt−v)

2

)

=

m
∑

k=0

(

m

k

)

cosm−k
(u

2

)

sink
(u

2

)

ei(m−k) (−Bt−v)
2 eik

(Bt+v)
2

× cosm−k
(θ

2

)

sink
(θ

2

)

ei
(m−k)φ

2 e−i kφ

2 .

Observe that

(m− k)(−Bt− v)

2
+

k(Bt+ v)

2
=

(

−
m

2
+ k

)

Bt+
(

−
m

2
+ k

)

v
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and
(m− k)φ

2
−

kφ

2
=

m

2
− k

and so we can simplify the formula for the kernel Km(θ, φ, u, v, t) to be:

Km(θ, φ, u, v, t) :=
m
∑

k=0

(

m

k

)

cosm−k
(u

2

)

sink
(u

2

)

× ei(−
m
2 +k)Btei(−

m
2 +k)v cosm−k

(θ

2

)

sink
(θ

2

)

ei(
m
2 −k)φ.

Hence, using (3.1), the solution to the Schrödinger equation we are after is given
by

Φa(θ, φ, t) =

∫ π

0

∫ 2π

0

eia
pueia

qvKm(θ, φ, u, v, t) dudv

=
m
∑

k=0

(

m

k

)

cosm−k
(θ

2

)

sink
(θ

2

)

ei(−
m
2 +k)Btei(

m
2 −k)φAm,k(a)Bm,k(a),

where

Am,k(a) :=

∫ π

0

eia
pu cosm−k

(u

2

)

sink
(u

2

)

du, Bm,k(a) :=

∫ 2π

0

ei(−
m
2 +k+aq)v dv.

This second term can be computed directly:

Bm,k(a) :=

∫ 2π

0

ei(−
m
2 +k+aq)v dv =

ei2π(−
m
2 +k+aq) − 1

i
(

−m
2 + k + aq

)

= 2π

∞
∑

β=0

(2πi)β

(β + 1)!

(

−
m

2
+ k + aq

)β

.

The computation of Am,k(a) is slightly more involved. Using Euler’s identities
we have that

cosm−k(t) sink(t) =
(eit + e−it

2

)m−k(eit − e−it

2i

)k

=
eimt

2mik
(1 + e−2it)m−k(1− e−2it)k.

Substitution of this into the integral in question and an application of the Binomial
Theorem gives:

Am,k(a) :=

∫ π

0

eia
pu cosm−k

(u

2

)

sink
(u

2

)

du

=
1

2mik

∫ π

0

eia
pueim

u
2 (1 + e−iu)m−k(1− e−iu)k du

=
π

2mik

m−k
∑

j1=0

k
∑

j2=0

(

m− k

j1

)(

k

j2

)

(−1)j2
1

π

∫ π

0

eiu(a
p+m

2 −j1−j2) du

=
π

2mik

m−k
∑

j1=0

k
∑

j2=0

(

m− k

j1

)(

k

j2

)

(−1)j2
eiπ(a

p+m
2 −j1−j2) − 1

iπ(ap + m
2 − j1 − j2)

.
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We will sum this expression in a different order to arrive at the answer. Let Jr be
the collection of integers (j1, j2) such that j1 + j2 = r where r = 0, . . . ,m. Then
continuing from above we have:

Am,k(a) =
π

2mik

m−k
∑

j1=0

k
∑

j2=0

(

m− k

j1

)(

k

j2

)

(−1)j2
eiπ(a

p+m
2 −j1−j2) − 1

iπ(ap + m
2 − j1 − j2)

=
π

2mik

m
∑

r=0

⎛

⎝

∑

(j1,j2)∈Jr

(

m− k

j1

)(

k

j2

)

(−1)j2

⎞

⎠

eiπ(a
p+m

2 −r) − 1

iπ(ap + m
2 − r)

=
π

2mik

m
∑

r=0

⎛

⎝

∑

(j1,j2)∈Jr

(

m− k

j1

)(

k

j2

)

(−1)j2

⎞

⎠

(

∞
∑

α=0

(

iπ
(

m
2 − r + ap

))α

(α+ 1)!

)

=
π

2mik

m
∑

r=0

cr,m,k

(

∞
∑

α=0

(

iπ
(

m
2 − r + ap

))α

(α+ 1)!

)

.

Utilize that (j1, j2) ∈ Jr to see that

cr,m,k :=
∑

(j1,j2)∈Jr

(

m− k

j1

)(

k

j2

)

(−1)j2 =

r
∑

l=0

(−1)l
(

k

l

)(

m− k

r − l

)

.

This is the expression claimed in the statement of the theorem, i.e., formula (3.2)
for Φa(θ, φ, t) with coefficients given by (3.3) and (3.4). The fact that the map
a �→ Φa is holomorphic is direct by inspection and the proof of the theorem is
complete. �

Remark 3.2. One can also show that:

cr,m,k =
1

r!

dr

dtr

(

(1− t)k (1 + t)m−k
)∣

∣

∣

t=0
=

r
∑

l=0

(−1)l
(

k

l

)(

m− k

r − l

)

.

The first formula was discovered by computing the examples when m = 1, 2, 3 and
then seeing what the sequence this might be in the Online Encyclopedia of Integer
Sequences. It is a known sequence, Sequence A268533.

4. Infinite order differential operators and the supershift property

For the sequences of entire functions we shall consider a natural notion of con-
vergence is the convergence in the space A1.

Definition 4.1. A1 is the complex algebra of entire functions such that there exists
B > 0 with

(4.1) sup
ξ∈C

(

|f(ξ)| exp(−B|ξ|)
)

< +∞.

The space A1 has a rather complicated topology since it is a linear space obtained
via an inductive limit, see for example [16]. For our purposes, it is enough to
consider, for any fixed B > 0, the set A1,B of functions f satisfying (4.1), and to
observe that

‖f‖B := sup
ξ∈C

(

|f(ξ)| exp(−B|ξ|)
)

defines a norm on A1,B, called the B-norm. One can prove that A1,B is a Banach
space with respect to this norm.
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Moreover, for f and a sequence (fn)n of elements in A1, we say that fn converges
to f in A1 if and only if there exists B such that f, fn ∈ A1,B and

lim
n→∞

sup
ξ∈C

∣

∣fn(ξ)− f(ξ)
∣

∣ exp(−C|ξ|) = 0

for some C ≥ 0. With these notations and definitions we can make the notion of
continuity explicit (see [14] for more details). A linear operator U : A1 → A1 is
continuous if and only if for any B > 0 there exists B′ > 0 and C > 0 such that

(4.2) U(A1,B) ⊂ A1,B′ and ‖U(f)‖B′ ≤ C‖f‖B, for any f ∈ A1,B .

The following result gives a characterization of the functions in A1 via the coef-
ficients appearing in their Taylor series expansion.

Lemma 4.2 ([13, Lemma 4.2]). The entire function

f(ξ) =

∞
∑

j=0

fjξ
j

belongs to A1 if and only if there exists Cf > 0 and b > 0 such that

|fj | ≤ Cf
bj

j!
.

Remark 4.3. We write f ∈ A1 to mean that f ∈ A1,B for some B > 0. The proof
of [13, Lemma 4.2] shows that b = 2eB and Cf = ‖f‖B.

A crucial fact in the proof of [13, Lemma 4.2] depends upon the following. We
define two infinite order differential operators that will be used to study superoscil-
latory functions and supershifts in two variables. Observe that using the auxiliary
complex variable ξ we have

λ� =
1

i�
D�

ξe
iξλ

∣

∣

∣

ξ=0
for λ ∈ C, � ∈ N,

where Dξ is the derivative with respect to ξ and |ξ=0 denotes evaluation at ξ = 0.
Let us consider the infinite order differential operators that will be associated with
the two functions Am,k(a) and Bm,k(a) defined in (3.3) and (3.4), respectively,
where the coefficients cr,m,k are given in (3.5).

Definition 4.4 (Infinite order differential operators for spin s = m
2 ). Let m, q,

p ∈ N and assume that ξ ∈ C is an auxiliary variable. Denote by Dξ the com-
plex derivative with respect to the variable ξ and define the formal infinite order
differential operators

(4.3) Am,k(Dξ) :=
π

2mik

m
∑

r=0

cr,m,k

∞
∑

α=0

(

iπ
(

(m2 − r)I + i−pDp
ξ

))α

(α+ 1)!

and

(4.4) Bm,k(Dξ) := 2π

∞
∑

β=0

(2πi)β

(β + 1)!

(

(−
m

2
+ k)I + i−qDq

ξ

)β

,

where the coefficients cr,m,k are given in (3.5) and I is the identity operator.

Proposition 4.5. Let A1 be the space of entire functions as in Definition 4.4.
Then for every m, q and p ∈ N the operators Am,k(Dξ) and Bm,k(Dξ) defined in

(4.3) and (4.4), respectively, act continuously from A1 to A1.
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Proof. It follows from the fact that the functions Am,k(a) and Bm,k(a) defined
in (3.3) and (3.4), respectively, are entire and from the use of Lemma 4.2. The
computations are a bit involved, but follow the same strategy used in [13] to obtain
the continuity estimate (4.2). Exact details are suppressed. �

Remark 4.6. One may wonder under which conditions one can guarantee that a
function has the supershift property. This is an interesting problem, and a sufficient
condition for the property to hold is given by analyticity, see [9].

We now return to Problem 1.1. We state the main result and we note that, by
Remark 4.6, in the proof we can rely on the fact that the function in (3.2) has the
supershift property.

Theorem 4.7. Let a > 1 and let s := m
2 where m ∈ N. Then the solution of the

Schrödinger equation, with the propagator of the spinning particle given by (2.2)
and superoscillatory initial datum (1.6) can be written as

Ψn(θ, φ, t) =
n
∑

j=0

Cj(n, a)Φ1− 2j
n
(θ, φ, t)

for all θ ∈ [0, π], φ ∈ [0, 2π], t ≥ 0, where Φa(θ, φ, t) is given by (3.2) and Cj(n, a)
are given by (1.2) for p, q ∈ N. Moreover, Φa(θ, φ, t) has the supershift property,

that is,

lim
n→∞

n
∑

j=0

Cj(n, a)Φ1− 2j
n
(θ, φ, t) = Φa(θ, φ, t).

Proof. The solution Φa(θ, φ, t) given in (3.2) can be written in terms of the infi-
nite order differential operators Am,k(Dξ) and Bm,k(Dξ) defined in (4.3) and (4.4),
respectively, as

Φa(θ, φ, t) =
m
∑

k=0

(

m

k

)

ei(−
m
2 +k)Bt cosm−k

(θ

2

)

× sink
(θ

2

)

ei(
m
2 −k)φAm,k(Dξ)Bm,k(Dξ)e

iaξ
∣

∣

∣

ξ=0
.

By linearity of the Schrödinger equation, the evolution of the superoscillatory initial
datum is

Ψn(θ, φ, t) =

n
∑

j=0

Cj(n, a)Φ1− 2j
n
(θ, φ, t).

If we set for simplicity

Λm,k(θ, φ, t) := ei(−
m
2 +k)Bt cosm−k

(θ

2

)

sink
(θ

2

)

ei(
m
2 −k)φ,

we can write

Φa(θ, φ, t) =
m
∑

k=0

(

m

k

)

Λm,k(θ, φ, t)Am,k(Dξ)Bm,k(Dξ)e
iaξ

∣

∣

∣

ξ=0
,
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so we have

Ψn(θ, φ, t) =
n
∑

j=0

Cj(n, a)Φ1− 2j
n
(θ, φ, t)

=

n
∑

j=0

Cj(n, a)

m
∑

k=0

(

m

k

)

Λm,k(θ, φ, t)Am,k(Dξ)Bm,k(Dξ)e
i(1− 2j

n
)ξ
∣

∣

∣

ξ=0

=

m
∑

k=0

(

m

k

)

Λm,k(θ, φ, t)Am,k(Dξ)Bm,k(Dξ)

n
∑

j=0

Cj(n, a)e
i(1− 2j

n
)ξ
∣

∣

∣

ξ=0
.

By the continuity results, in particular Proposition 4.5, it is immediate that

lim
n→∞

Ψn(θ, φ, t) = lim
n→∞

n
∑

j=0

Cj(n, a)Φ1− 2j
n
(θ, φ, t)

=

m
∑

k=0

(

m

k

)

Λm,k(θ, φ, t)Am,k(Dξ)Bm,k(Dξ) lim
n→∞

n
∑

j=0

Cj(n, a)e
i(1− 2j

n
)ξ
∣

∣

∣

ξ=0

=
m
∑

k=0

(

m

k

)

Λm,k(θ, φ, t)Am,k(Dξ)Bm,k(Dξ)e
iaξ

∣

∣

∣

ξ=0

since the sequence
∑n

j=0 Cj(n, a)e
i(1− 2j

n
)ξ converges to eiaξ in A1. One is left to

simply apply the operators Am,k(Dξ)Bm,k(Dξ) to eiaξ and take the restriction to
ξ = 0 to yield the claimed supershift property. �
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