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THE GENERALIZED DOUBLING METHOD: LOCAL THEORY

Yuanqing Cai, Solomon Friedberg and Eyal Kaplan

Abstract. A fundamental difficulty in the study of automorphic representations,
representations of p-adic groups and the Langlands program is to handle the non-
generic case. In a recent collaboration with David Ginzburg, we presented a new
integral representation for the tensor product L-functions of G × GLk where G is a
classical group, that applies to all cuspidal automorphic representations, generic or
otherwise. In this work we develop the local theory of these integrals, define the local
γ-factors and provide a complete description of their properties. We can then define
L- and ε-factors at all places, and as a consequence obtain the global completed
L-function and its functional equation.
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Introduction

Let A be the ring of adeles of a number field. Let G be either a symplectic group or a
split special orthogonal group, of rank n, or a split general spin group of rank n+1.
The classical doubling method of Piatetski-Shapiro and Rallis [PSR87] produced
an integral representation for the standard L-function of an irreducible cuspidal
automorphic representation of a classical group twisted by a grössencharacter. In
the recent work [CFGK19] their construction was extended to include twists by
arbitrary cuspidal representations of GLk(A), for all k. The purpose of this work is
to develop the local theory of these integrals and characterize the local γ-factors. As
a result, we can define local L- and ε-factors, then obtain the completed L-function
and its functional equation.

Let F be a local field of characteristic 0 and ψ be a nontrivial additive character
of F . Let π and τ be a pair of irreducible admissible representations, π of G(F )
and τ of GLk(F ), and assume τ is generic. Based on the recent uniqueness result of
Gourevitch and the third named author [GK], the local doubling integral satisfies
a functional equation with respect to an intertwining operator. Our main result
concerns the γ-factor arising from this equation:

Theorem A. There exists a γ-factor γ(s, π × τ, ψ) which satisfies the fundamental
list of properties of Shahidi [Sha90, Theorem 3.5].

See Theorem 4.2. In the classical case k = 1, the local theory was fully developed
by Lapid and Rallis [LR05] (and Gan [Gan12] for the metaplectic group). We follow
their formulation of the canonical properties of the γ-factor.

Using standard arguments we can now define local L- and ε-factors. In turn, in
a global context let π and τ be cuspidal representations of G(A) and GLk(A), resp.
(throughout, cuspidal representations are always automorphic and irreducible). We
can define the completed L-function as the Euler product of the local L-functions.
We summarize our global results Theorems 8.2, 8.3 and Corollary 8.5:

Theorem B. The L-function L(s, π × τ) admits meromorphic continuation to the
plane and satisfies a standard functional equation L(s, π × τ) = ε(s, π × τ)L(1 −
s, π∨ × τ∨). Moreover, if L(s, π × τ) and L(s, π∨ × τ∨) are entire, they are bounded
in vertical strips of finite width.

Over the past few decades, local factors and γ-factors in particular have been a
ubiquitous part of the Langlands Program. In the generic case the definitive theory
was developed by Shahidi (e.g., [Sha90]) and the cornerstone of his theory was the
existence and uniqueness of the Whittaker model. Because of this, it was considered
difficult to envision similar results in the non-generic case. Among the few attempts
to attack this problem, we mention the work of the second named author and Gold-
berg [FG99] and the doubling method itself, for k = 1. While we can now define
the local factors using the theory of Arthur, the trace formula does not provide us
with any information on the poles. By contrast, the generalized doubling method
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can be used to study the poles of the local and global L-functions of G×GLk, which
are typically highly interesting. See e.g., the work of Yamana [Yam14] on the global
theta lifting using the doubling integrals for k = 1.

To place our results in context we turn to the global setting and recall the global
construction of the generalized doubling integral, following [CFGK19]. Let now F
be a number field and A = AF . Let G be the split group Sp2n, SO2n or SO2n+1

(minor modifications are needed for general spin groups; these are described below).
Then G(F ) acts naturally on a c-dimensional F -vector space (c = 2n or 2n + 1).
Denote the Borel subgroup of upper triangular invertible matrices in GLkc by BGLkc

,
let P(kc) < GLkc be the standard parabolic subgroup corresponding to the partition
(kc) = (k, . . . , k), and KGLkc

be a maximal compact subgroup of GLkc(A) (chosen
as in, e.g., [MW95, § I.1.4]).

Let τ be a cuspidal representation of GLk(A). Consider the generalized Speh
representation Eτ of Jacquet [Jac84], which is the residual representation attached
to the Eisenstein series E(g; ζ, ξ) associated with a standard KGLkc

-finite section
ξ of the induced representation IndGLkc(A)

P(kc)(A)(| det |ζ1τ ⊗ . . . ⊗ | det |ζcτ) at the point
((c−1)/2, (c−3)/2, . . . , (1−c)/2). The automorphic representation Eτ is irreducible
and when τ is unitary, belongs to the discrete spectrum of the space of square-
integrable automorphic forms of GLkc(A). Jiang and Liu [JL13] studied the Fourier
coefficients of Eτ (elaborating on [Gin06]). In particular, they proved that Eτ admits
a nonzero Fourier coefficient along the unipotent orbit attached to (kc). Fix a non-
trivial additive character ψ of F\A. Then they showed that for some automorphic
form φ in the space of Eτ ,

Wψ(φ) =
∫

V(ck)(F )\V(ck)(A)

φ(v)ψ−1

(
tr

(
k−1∑
i=1

vi,i+1

))
dv �= 0. (0.1)

Here V(ck) is the unipotent radical of P(ck) (note the interchange of c and k) and for
v ∈ V(ck), v = (vi,j)1≤i,j≤k where vi,j are c × c blocks. Call this Fourier coefficient a
global (k, c) functional.

We define an auxiliary group H, on which we construct an Eisenstein series with
inducing data Eτ . Let H be either Sp2kc if G is symplectic or SO2kc if G is orthogonal,
and fix the Borel subgroup BH = H ∩ BGL2kc

. Take a standard maximal parabolic
subgroup P < H with a Levi part isomorphic to GLkc. Define the Eisenstein series

E(h; s, f) =
∑

δ∈P (F )\H(F )

f(s, δh), h ∈ H(A), (0.2)

where s ∈ C and f is a standard KH -finite section of the representation IndH(A)
P (A)

(| det |s−1/2Eτ ), regarded as a complex-valued function. This series converges abso-
lutely for Re(s) � 0 and has meromorphic continuation to C.

We construct the following Fourier coefficient of E(h; s, f). Let Q be a standard
parabolic subgroup of H, whose Levi part MQ is isomorphic to GLc × . . .×GLc ×H0,
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where GLc appears k−1 times and H0 = Sp2c or SO2c. Let U = UQ be the unipotent
radical of Q. We define a character ψU of U(A), which is trivial on U(F ), such that
the direct product G(A) × G(A) can be embedded in the stabilizer of ψU inside
MQ(A).

Now let π be a unitary cuspidal representation of G(A), and let ϕ1 and ϕ2 be
two cusp forms in the space of π. The global integral is defined by

Z(s, ϕ1, ϕ2, f) =
∫

G(F )×G(F )\G(A)×G(A)

ϕ1(g1) ιϕ2(g2)EU,ψU ((g1, g2); s, f) dg1 dg2,

(0.3)

where g �→ ιg = ιgι−1 is an involution of G(A) and ιϕ2(g2) = ϕ2(ιg2); (g1, g2) is the
embedding of G × G in H; and

EU,ψU (h; s, f) =
∫

U(F )\U(A)

E(uh; s, f)ψU (u) du (0.4)

is the Fourier coefficient of E with respect to U and ψU . In particular for k = 1,
H0 = H and U is trivial, and this recovers the doubling integral of Piatetski-Shapiro
and Rallis [PSR87].

Integral (0.3) admits meromorphic continuation to C, which is analytic except
perhaps at the poles of the series. In a right half plane Z(s, ϕ1, ϕ2, f) unfolds to an
adelic integral:∫

G(A)

∫

U0(A)

〈ϕ1, π(g)ϕ2〉fWψ(Eτ )(s, δu0(1, ιg))ψU (u0) du0 dg. (0.5)

Here U0 is a subgroup of U ; 〈, 〉 is the standard inner product

〈ϕ1, ϕ2〉 =
∫

G(F )\G(A)

ϕ1(g0)ϕ2(g0) dg0; (0.6)

fWψ(Eτ ) is the composition of f with the Fourier coefficient (0.1); and δ ∈ G(F ) is a
representative of the open double coset P\H/(G × G)U . For additional details see
§ 2.

By [CFGoK, Theorem 4], for decomposable data (0.5) is Eulerian (in [CFGK19]
we proved (0.5) is “almost Eulerian”). At almost all places ν of F , the local integral
with unramified data equals L(s, πν × τν)/b(s, c, τν), where b(s, c, τν) (a product of
local L-functions) is the local component of the normalizing factor of (0.2). Con-
sequently the integral (0.3) represents the partial L-function LS(s, π × τ), for a
sufficiently large finite set S of places of F .

In [CFGK19] we treated Sp2n and SO2n. To extend the applicability of the dou-
bling method, here we treat several other classes of groups, each of which follows the
model of [CFGK19] but requires modifications. The first class is G = SO2n+1. Here
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the embedding of G × G in H is more involved, and several computations, most
notably the calculation of the integrals with unramified data, are more difficult.
The second class is G = GLn, which appeared briefly in [CFGK19] because it was
needed for the induction step in the unramified calculation. In this case the global
construction involves τ ⊗ τ∨ instead of τ , and in (0.3) we divide the integration
domain by the center of H(A) = GL2kn(A). The third class is the split general spin
group G = GSpinc (in hindsight, [PSR87, § 4.3] hinted at this). The group H is
then GSpin2kc. There are two main differences in the global construction. First, the
inducing data of the series (0.2) is Eτ ⊗χπ, where χπ is the restriction of the central
character of π to the connected component C◦

G(A) of the center of G(A). Second,
we divide the domain of integration of (0.3) by the two copies of C◦

G(A). For more
details see § 2.5.

We mention that the proof of the global unfolding which equates (0.3) and (0.5)
in Re(s) � 0 was only recently completed, in [GK, § 3.2] (a preliminary version was
sketched in [CFGK19]).

Our main application of the local and global theory, which will appear in a follow-
up to this work, is a new proof of global functoriality from G(A) to the appropriate
general linear group, using the Converse Theorem of Cogdell and Piatetski-Shapiro
[CPS94, CPS99]. This result will extend the global result of [CKPSS01, CKPSS04,
AS06] in the sense that it will be applicable to all cuspidal representations of G(A),
i.e., not only the globally generic ones. While global functoriality is now already
included in the work of Arthur on the trace formula (e.g., [Art13]), our proof will
be independent of the trace formula and its prerequisites.

The integrals described here have been recently used by Ginzburg and Soudry
[GS21, GS22] in a global context, to construct the inverse image of the weak func-
torial lift from the classical group to the general linear group, via their method of
global descent. A possible application of the local theory here would be to construct
the local descent.

We expect the local and global theories developed here to have further appli-
cations, due to the role of the doubling method in a wide range of problems. We
mention the studies of [KR94, HKS96, GS12, GI14, Yam14] on the theta corre-
spondence, which is related to the doubling method by the Siegel–Weil formula; the
works of [BS00, HLS05, HLS06, EHLS20] who used the doubling integrals for co-
homological automorphic representations, in the context of p-adic L-functions; and
also [Gar84, KR90, Tak97, Kim00].

The doubling method was originally developed for classical groups of symplec-
tic, orthogonal or unitary type, including non-split cases [PSR87, LR05]. It was
extended to the classical metaplectic group, i.e., the double cover of the symplectic
group, by Gan [Gan12]. These cases, as well as unitary groups of hermitian or skew-
hermitian forms over division algebras, were included in [Yam14]. In this work we
deal with a subset of these groups, but also describe split general spin groups. We
expect that our methods can be extended to the other cases studied, in particular
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quasi-split orthogonal groups, and to quasi-split general spin groups. As opposed to
the aforementioned works, here we deal with connected groups. This is in line with
the theories of Langlands and Shahidi, which were formulated for connected groups,
and with several other works on Rankin–Selberg integrals.

For the extension of the generalized doubling method to arbitrary rank central
extensions of the symplectic group see [Kapa, Kapb].

There are two appendices to this manuscript. Appendix A by Dmitry Gourevitch
contains two results on families of representations depending on a complex parame-
ter: an extension of the Dixmier–Malliavin Theorem ([DM78]), and a precise density
result for smooth sections. Appendix B by the third named author contains the proof
of a uniqueness result underlying the functional equation of the local intertwining
operators.

1 Preliminaries

1.1 Groups and general notions. Let F be a local field of characteristic zero.
If F is p-adic, O denotes its ring of integers, q is the cardinality of its residue field and
� is a uniformizer with |�| = q−1. When referring to unramified representations or
data, we implicitly mean over p-adic fields. Throughout, linear algebraic groups will
be defined and split over F , and for such a group H we usually identify H = H(F ).
We fix a Borel subgroup BH = TH �NH where NH is the unipotent radical, and for a
standard parabolic subgroup P of H denote its Levi decomposition by P = MP �UP ,
with UP < NH . The modulus character of P is δP and the unipotent subgroup
opposite to UP is U−

P . Also W (H) denotes the Weyl group of H. When H is reductive,
fix a maximal compact subgroup KH in H which is the hyperspecial subgroup H(O)
for p-adic fields. The center of H is denoted CH . For x, y ∈ H, xy = xyx−1, and if
Y < H, xY = {xy : y ∈ Y }.

Specifically for GLl, BGLl
is the subgroup of upper triangular invertible matrices,

Pβ = Mβ � Vβ denotes the standard parabolic subgroup corresponding to a d parts
composition β = (β1, . . . , βd) of l, and Vβ < NGLl

. For c ≥ 0, βc = (β1c, . . . , βdc)
is a composition of lc. Let Mata×b be the space of a × b matrices and Mata =
Mata×a. Let wβ be the permutation matrix consisting of blocks of identity matrices
Iβ1 , . . . , Iβd

, with Iβi
∈ Matβi

on its anti-diagonal, beginning with Iβ1 on the top
right, then Iβ2 , etc. In particular Jl = w(1l), the permutation matrix with 1 on the
anti-diagonal. We use τβ to denote a representation of Mβ , where τβ = ⊗d

i=1τi (τi is
then a representation of GLβi

). The transpose of g ∈ Mata×b is denoted tg, and tr is
the trace map. For g ∈ GLl, put g∗ = Jl

tg−1Jl. For a representation τ of GLl which
admits a central character, τ(a) denotes the value of the central character on aIl.

Throughout, representations are assumed to be complex and smooth. Repre-
sentations of reductive groups are in addition assumed to be admissible, and over
archimedean fields they are also Fréchet of moderate growth. Induction is understood
to be normalized and smooth.
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For a representation π of a closed unipotent subgroup U < H on a space V, and
a character ψ of U , the Jacquet module JU,ψ(π) is the quotient of V by the subspace
spanned by {π(u)ξ − ψ(u)ξ : ξ ∈ V, u ∈ U} over non-archimedean fields, and by
the closure of this subspace for archimedean fields. If R < H is a closed subgroup
containing U and π is a representation of R, the normalizer of U and stabilizer of ψ
in R acts on JU,ψ(π), we normalize the action as in [BZ77, 1.8].

When the field is p-adic, an entire function f(s) : C → C will always be an
element of C[q−s, qs], and a meromorphic function will belong to C(q−s) (so, mero-
morphic is actually rational). When a property holds outside a discrete subset of
s, it means for all but finitely many values of q−s. Similarly, f(ζ) : C

k → C is en-
tire (resp., meromorphic) if it belongs to C[q∓ζ1 , . . . , q∓ζk ] (resp., C(q−ζ1 , . . . , q−ζk)),
where ζ = (ζ1, . . . , ζk).

1.2 Representations of type (k, c). We briefly recall the results of [CFGoK]
that will be needed throughout this work. Let k and c be positive integers. Fix a
nontrivial additive character ψ of F and extend it to a generic character of V(ck) by

ψ(v) = ψ

(
k−1∑
i=1

tr(vi,i+1)

)
, v = (vi,j)1≤i,j≤k, vi,j ∈ Matc. (1.1)

Let ρ be a finite length (and admissible) representation of GLkc. We say that ρ
is a (k, c) representation if (kc) is the unique maximal orbit in its wave-front set
and dim HomV(ck)

(ρ, ψ) = 1. See [GK, § 1.4] and [CFGoK, § 2.1] for details and
an equivalent definition in terms of orbits. E.g., ρ is (k, 1) if it affords a unique
Whittaker model, and (1, c) representations are plainly characters of GLc.

For a (k, c) representation ρ, its (k, c) model Wψ(ρ) is the space of functions
g �→ λ(ρ(g)ξ) where g ∈ GLkc and ξ is a vector in the space of ρ, and 0 �= λ ∈
HomV(ck)

(ρ, ψ) is fixed.
In [CFGoK, § 2.2], for an irreducible generic representation τ of GLk we de-

fined a (k, c) representation ρc(τ). If τ is unitary, ρc(τ) is the unique irreducible
subrepresentation of

IndGLkc

P(kc)
((τ ⊗ . . . ⊗ τ)δ−1/(2k)

P(kc)
). (1.2)

In general τ = IndGLk

Pβ
(⊗d

i=1| det |aiτi) where β is a composition of d parts of k,
a1 > . . . > ad and each τi is tempered, then ρc(τ) = IndGLkc

Pβc
(⊗d

i=1| det |aiρc(τi)).
Note that ρc(τ) admits a central character.

For a representation � of GLl let �∗(g) = �(g∗). If � is irreducible, �∗ ∼= �∨. By
[CFGoK, Claim 6], ρc(τ)∨ = ρc(τ∨) when τ is tempered, and ρc(τ)∗ = ρc(τ∨) in
general. Let g �→ g	 denote the diagonal embedding of GLc in GLkc. By [CFGoK,
Lemma 12]:

Lemma 1.1. Let λ ∈ HomV(ck)
(ρc(τ), ψ) and ξ be a vector in the space of ρc(τ). For

any g ∈ GLc, λ(ρc(τ)(g	)ξ) = τ(det(g))λ(ξ).
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We will utilize the following realizations of (k, c) representations.
First assume k > 1 and consider a representation IndGLk

Pβ
(τβ) where β = (β1, . . . ,

βl) is a nontrivial l parts composition and τβ is an irreducible generic representation.
Denote β′ = (βl, . . . , β1). Consider the Jacquet integral∫

Vβ′c

ξ(wβcv)ψ−1(v) dv, (1.3)

where ξ belongs to the space of I = IndGLkc

Pβc
(⊗l

i=1Wψ(ρc(τi))) and ψ is the restriction
of (1.1) to Vβ′c. Note that ξ can be regarded as a complex-valued function. As
explained in [CFGoK, § 3.1] we can twist the inducing data of I by auxiliary complex
parameters ζ ∈ C

l, then (1.3) becomes a meromorphic function which realizes the
(k, c) model of each twisted representation Iζ and in particular, if ρc(τ) is a quotient
of I, of ρc(τ). Note that if F is archimedean, the analytic continuation and continuity
of (1.3) are at present known only when β = (1k), but we can always assume this.

Second, assume 0 < l < c and an unramified twist of τ is unitary. Fix 0 < l < c.
Since now both ρl(τ) and ρc−l(τ) embed in the corresponding spaces (1.2),

ρc(τ) ⊂ IndGLkc

P(kl,k(c−l))
((Wψ(ρl(τ)) ⊗ Wψ(ρc−l(τ)))δ−1/(2k)

P(kl,k(c−l))
). (1.4)

To construct the (k, c) functional we introduce the following notation. For v ∈ V(ck)

set vi,j =
(

v1
i,j v2

i,j

v3
i,j v4

i,j

)
, where v1

i,j ∈ Matl and v4
i,j ∈ Matc−l. For t ∈ {1, . . . , 4}, let

V t < V(ck) be the subgroup obtained by deleting the blocks vt′
i,j for all i < j and

t′ �= t, and V = V 3. Also define

κ = κl,c−l =

⎛
⎜⎜⎜⎜⎜⎝

Il

0 0 Il

0 0 0 0 Il

. . .
Il 0

0 Ic−l

0 0 0 Ic−l

. . .
Ic−l

⎞
⎟⎟⎟⎟⎟⎠

∈ GLkc .

For ξ in the space of ρc(τ) under the embedding (1.4) (and regarded as a complex-
valued function), consider the functional

ξ �→
∫

V

ξ(κv) dv. (1.5)

By [CFGoK, § 3.2, Lemma 9] this integral is absolutely convergent and realizes the
(k, c) functional on ρc(τ).

2 The Integrals

We define the local integral with details for the different groups, starting with clas-
sical groups in § 2.1–2.4, then general spin groups in § 2.5.
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2.1 Classical groups. Let G be either a split classical group of rank n, or
GLn. Fix a nontrivial additive character ψ of F . Given an integer k, introduce the
following group H and auxiliary notation, used in the definition of the integral and
the local factors below:

G Sp2n SO2n SO2n+1 GLn

c 2n 2n 2n + 1 n

H Sp2kc SO2kc SO2kc GL2kc

A I2n

(−In

In

) ( −In

In

0

)
In

Here Sp2n is realized as the subgroup of g ∈ GL2n such that tgJg = J , where
J =

(
Jn

−Jn

)
(tg is the transpose of g and Jn = w(1n)); and SOc consists of all

g ∈ SLc satisfying tgJcg = Jc. Take BH = H ∩ BGL2kc
.

For an integer l ≥ 0, put j2l = I2 and j2l+1 = J2. For m ≥ 1 and h ∈ GL2m, when
we write jlh we identify jl with diag(Im−1, jl, Im−1). Also set ε0 = −1 for G = Sp2n

and ε0 = 1 otherwise.

2.2 The embedding: U ,ψU and G × G. Let Q = MQ � UQ be the following
standard parabolic subgroup of H: if G �= GLn, MQ = GLc × . . . × GLc ×H0 (k − 1
copies of GLc) and H0 is of the type of H with rank c, and for G = GLn, MQ =
M(ck−1,2c,ck−1). Let U = UQ. For k > 1, denote the middle 4c×4c block of an element
in U by (

Ic u v
I2c u′

Ic

)
. (2.1)

Denote by u1,1 ∈ Matn the top left block of u; let u2,2 ∈ Matn be the bottom right
block of u if G �= GLn, and for GLn it denotes the top block of u′; for SO2n+1 also
let (u3, u4) ∈ Mat1×2 be the middle two coordinates of row n + 1 of u.

For G �= GLn, regard V(ck−1) as a subgroup of U by embedding it in the top left
block, and for k > 1, the character ψU restricts to (1.1) on V(ck−1). For G = GLn,
there are two copies of V(ck−1), in the top left and bottom right blocks of U , and ψU

restricts (for k > 1) to the inverse of (1.1) on each copy. The character ψU is given
on (2.1) by

⎧⎪⎨
⎪⎩

ψ(tr(−u1,1 + u2,2)) G = GLn,

ψ(tr(u1,1 + u2,2)) G = Sp2n, SO2n,

ψ(tr(u1,1 + u2,2) + ε1u
3 − ε2u

4) G = SO2n+1,

where ε1 = 1 if k is even and ε1 = 1/2 if k is odd, and ε2 = ε−1
1 /2. For all k ≥ 1 we

describe the embedding (g1, g2) of G × G in MQ, in the stabilizer of ψU :

(g1, g2) =

⎧⎨
⎩

diag(g1, . . . , g1,
( g1,1 g1,2

g2
g1,3 g1,4

)
, g∗

1, . . . , g
∗
1) G = Sp2n, SO2n,

diag(g1, . . . , g1, g1, g2, g1, . . . , g1), G = GLn,
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where g∗
1 appears k − 1 times and is uniquely defined by g1 and H; for G �= GLn,

g1 =
( g1,1 g1,2

g1,3 g1,4

)
, g1,i ∈ Matn; and for GLn, g1 appears k times on the left of g2 and

k − 1 on the right. When we write (g1, 1) or (1, g2), we use 1 to denote the identity
element of G.

For SO2n+1 the embedding is defined as follows. Take column vectors e±i, 1 ≤
i ≤ 2n + 1, whose Gram matrix is J2(2n+1) (i.e., teie−j = δi,j). Let

b = (e1, . . . , e2n, ε1e2n+1 − ε2e−2n−1, ε1e2n+1 + ε2e−2n−1, e−2n, . . . , e−1),
b1 = (e1, . . . , en, ε1e2n+1 − ε2e−2n−1, e−n, . . . , e−1),
b2 = (en+1, . . . , e2n, ε1e2n+1 + ε2e−2n−1, e−2n, . . . , e−n−1),
m = diag(Ic−1, (

ε1 ε1−ε2 ε2 ) , Ic−1).

The Gram matrices of (b, b1, b2) are (J2(2n+1), diag(In, −1, In)J2n+1, J2n+1). Define
the left copy of SO2n+1 using b1, i.e., the group of matrices g1 ∈ SL2n+1 such that

tg1 diag(In, −1, In)J2n+1g1 = diag(In, −1, In)J2n+1,

and the right copy using b2, which is our convention for SO2n+1. For each i, extend
gi by letting it fix the vectors of b3−i, then write this extension as a matrix g′

i ∈
SO2(2n+1) with respect to b. Now mg′

1 and mg′
2 commute and

(g1, g2) = diag(g1, . . . , g1,
mg′

1
mg′

2, g
∗
1, . . . , g

∗
1).

We also mention that over archimedean fields, we can choose KH such that KG ×
KG < KH (under this embedding); over p-adic fields when c is even clearly KG ×
KG < KH (KG = G(O), KH = H(O)), and when c is odd this also holds assuming
|2| = 1.

Example 2.1. Here are a few examples for the embedding in the odd orthogonal
case. We assume k = 2 and n is arbitrary, but the only difference for other values
of k would be in the number of copies of SO2n+1 above the middle 2c × 2c block,
because we keep ε1 and ε2 in the notation (we only assume 2ε1ε2 = 1). We can write
u ∈ U in the form

u =
(

Ic X Y
I2c vX′

Ic

)
,

X =

⎛
⎝z1 b1 a1 a2 b4 z4

z2 b2 a3 a4 b5 z5

z3 b3 a5 a6 b6 z6

⎞
⎠ , z1, b1, z6 ∈ Matn, a3, a4 ∈ Mat1,
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then ψU (u) = ψ(tr(z1) + ε1a3 − ε2a4 + tr(z6)). For the embedding of the left copy of
G in H,((

a
1

a∗

)
, 1
)

= diag
((

a
1

a∗

)
,
( a

I2n+2
a∗

))
, a∗ = Jn

ta−1Jn,((
In x y

1 x′
In

)
, 1
)

= diag

⎛
⎝
⎛
⎝

In x y
1 x′

In

⎞
⎠ ,

⎛
⎜⎝

In ε2x −ε1x y
In

1 ε1x′

1 −ε2x′

In

In

⎞
⎟⎠
⎞
⎟⎠ ,

x′ = txJn
tyJn + Jny = JnxtxJn

,

⎛
⎝
⎛
⎝

In−1
1−1

1
In−1

⎞
⎠ , 1

⎞
⎠

= diag

⎛
⎝
⎛
⎝

In−1
1−1

1
In−1

⎞
⎠ ,

⎛
⎜⎜⎜⎜⎝

In−1
1

In

2ε21
2ε22

In

1
In−1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ .

Here and below we omitted the bottom right c × c block, because it is uniquely
determined by the top left c × c block and H. For the right copy,

(
1,
(

a
1

a∗

))
= diag

(
Ic,

( In
a

I2
a∗

In

))
, a∗ = Jn

ta−1Jn,

(
1,

(
In x y

1 x′
In

))

= diag

⎛
⎜⎝Ic,

⎛
⎜⎝

In
In ε2x ε1x y

1 ε1x′
1 ε2x′

In
In

⎞
⎟⎠
⎞
⎟⎠ ,

x′ = −txJn
tyJn + Jny = −Jnx

txJn
,

⎛
⎝1,

⎛
⎝

In−1
1

−1
1

In−1

⎞
⎠
⎞
⎠ = diag

⎛
⎜⎜⎝Ic,

⎛
⎜⎜⎝

I2n−1
1

−2ε21
−2ε22

1
I2n−1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ .

2.3 Sections. We define the local spaces of sections that we use for the integral.
These are the local analogs of the space on which we constructed the Eisenstein
series (0.2). Let H be one of the groups given in § 2.1, and P be a standard maximal
parabolic subgroup of H with MP = GLkc, or P = P((kc)2) when H = GL2kc. Let ρ be
a finite length representation of MP realized in a space of complex-valued functions.
We assume ρ = ρ1 ⊗ ρ2 if P = P((kc)2). For a complex parameter s, let V (s, ρ) be
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the space of IndH
P (| det |s−1/2ρ), or the space of IndH

P (| det |s−1/2ρ1 ⊗ | det |−s+1/2ρ2)
when H = GL2kc.

Extend the notation also to the case of H = GLkc and P = Pβc for an arbitrary
composition β = (β1, β2) of k, then V (s, ρ) is still the space of the representation
induced from | det |s−1/2ρ1 ⊗ | det |−s+1/2ρ2. This space does not appear in the con-
struction of the integral, but must be considered for multiplicativity arguments.

For m ∈ MP , let am be the projection of m onto GLkc if H is a classical group,
otherwise m = diag(m1, m2) and am = diag(m1, m

−1
2 ). The elements of V (s, ρ) are

smooth functions ε on H, such that for all h ∈ H, m ∈ MP and u ∈ UP , ε(muh) =
δ
1/2
P (m)| det am|s−1/2ε(h), and the mapping m �→ δ

−1/2
P (m)| det am|−s+1/2ε(mh) be-

longs to the space of ρ. In particular h �→ ε(h) is a complex-valued function, namely
the evaluation of a function in the space of ρ at the identity. By virtue of the Iwasawa
decomposition, the spaces V (s, ρ) where s varies are all isomorphic as representations
of KH .

A function f on C × H is called an entire section of V (ρ) if for all s ∈ C,
f(s, ·) ∈ V (s, ρ), and for each h ∈ H, the function s �→ f(s, h) is entire. A standard
section is then an entire section whose restriction to KH is independent of s. A
meromorphic section of V (ρ) is a function f on C × H, such that for some entire
function ϕ : C → C not identically zero, ϕ(s)f(s, h) is an entire section (see e.g.,
[Yam14, § 3.1]). Away from the zeros of ϕ, f(s, ·) ∈ V (s, ρ). The group H acts
by right translations in the second parameter of sections, we denote this action by
h · f . Also if a group H ′ acts on H by conjugation, fh′

is the section given by
fh′

(s, h) = f(s, h′
h).

Recall that when the field is p-adic, an entire section f satisfies, for all h, s �→
f(s, h) ∈ C[q−s, qs], and if f is meromorphic, s �→ f(s, h) ∈ C(q−s) (see § 1.1). If
the representation ρ is unramified, the normalized unramified section of V (ρ) is the
unique element f such that f(s, ·) is the normalized unramified vector for all s.

Over archimedean fields, f is called smooth if f(s, ·) is smooth for all s (similarly
for KH -finite). If s is fixed, this is the usual notion of smooth or KH -finite vectors
of V (s, ρ). For any smooth section f we can find a sequence of KH -finite sections
converging uniformly to f on each compact subset of C. See [Cas89, Jac09] for the
topological considerations, and also Appendix A. The Dixmier–Malliavin Theorem
[DM78] can be applied separately to each V (s, ρ), i.e., once s is fixed. Several argu-
ments involving sections require us to treat s as a parameter (e.g., for the purpose of
meromorphic continuation, or computations of integrals). The extension of [DM78]
to this general setup is established in Appendix A, Theorem A.1 and Corollary A.3.

2.4 The integral. Let π be an irreducible representation of G. If G �= GLn, let
τ be an irreducible generic representation of GLk, and P be the standard maximal
parabolic subgroup of H such that MP = {( a

a∗ ) : a ∈ GLkc}. For GLn, τ =
τ0 ⊗ χ−1τ∨

0 for an irreducible generic representation τ0 of GLk, a quasi-character χ
of F ∗ (implicitly lifted to GLk using det), and P = P((kc)2).
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Let ω be a matrix coefficient of π∨ and f be a meromorphic section of
V (Wψ(ρc(τ))), where for GLn, Wψ(ρc(τ)) = Wψ(ρc(τ0))⊗χ−1Wψ(ρc(τ∨

0 )). The local
integral takes the form

Z(s, ω, f) =
∫

G

∫

U0

ω(g)f(s, δu0(1, ιg))ψU (u0) du0 dg.

Here δ = δ0δ1,

δ0 =
(

Ikc

ε0Ikc

)
(G �= SO2n+1), δ1 =

(
I(k−1)c

Ic A
Ic

I(k−1)c

)
,

jkcU0 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

I(k−1)c X Z
Ic Y

Ic

I(k−1)c

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

and for G = SO2n+1,

δ0 =
(

Ikc

Ikc

)
diag(I(k−1)c,

(
In

(−1)k

In

)
,

(
In

(−1)k

In

)
, I(k−1)c)jkc; (2.2)

ι =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
In

−ε0In

)
G = Sp2n, SO2n,

In G = GLn,(
In

I2
In

)
G = SO2n+1, odd k,

(
In

−2ε21
−2ε22

In

)
G = SO2n+1, even k;

for Sp2n and SO2n, g �→ ιg(= ιgι−1) is an involution; for SO2n+1, note that ι = mι0
′

with

ι0 =
(

In

(−1)k+1

In

)
∈ O2n+1

(written with respect to the basis b2) and ιg = m(ι0g)′ (g �→ ι0g is an inner or outer
involution of G, depending on the parities of k and n); and when we write the middle
block of u0 ∈ U0 as in (2.1),

ψU (u0) =

⎧⎪⎨
⎪⎩

ψ(tr(u2,2)) G �= SO2n+1,

ψ(tr(u2,2) − 1
2u4) G = SO2n+1, even k,

ψ(tr(u2,2) + 1
2u3) G = SO2n+1, odd k.

When G = SO2n+1 and k is odd we need a similar version of the integral above,
when the section belongs to the representation induced from jkcP and jkcWψ(ρc(τ)).
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This is because when we apply an intertwining operator to the section, the Weyl
element

(
Ikc

Ikc

)
is not in H. We still denote the integral by Z(s, ω, f), but the

notation changes as follows:

δ0 = jkc

(
Ikc

Ikc

)
diag(I(k−1)c,

(
In

2
In

)
,

(
In

1/2
In

)
, I(k−1)c),

δ1 =

(
I(k−1)c

Ic A
Ic

I(k−1)c

)
diag(I(k−1)c+n, −In, I2, −In, I(k−1)c+n), (2.3)

U0 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

I(k−1)c X Z
Ic Y

Ic

I(k−1)c

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

,

ψU (u0) = ψ(tr(u2,2) − u4) (the middle block of u0 is given by (2.1)).

The integrals are absolutely convergent in a right half plane, which for entire
sections depends only on the representations (see Proposition 2.5 below). Over p-adic
fields they can be made constant (Proposition 2.6), and over archimedean fields they
can be made nonvanishing and finite in a neighborhood of a given s (Proposition 2.6,
and Corollary 6.9 with a KH -finite section). Furthermore, they admit meromorphic
continuation: over p-adic fields this continuation belongs to C(q−s) (see § 4), over
archimedean fields the continuation is continuous in the input data—more precisely
continuous as a trilinear map (see § 6.10). For similar assertions in the literature
see, e.g., [GJ72, JPSS83, GPSR87, JS90, KR90, BG92, Sou93, Sou95, GRS98, LR05,
RS05, Jac09, Kap13b, Kap13c, FK19].

We explain how to obtain the form of the local integral from the global. The local
integral is defined once we prove that (0.3) unfolds to (0.5). We describe this proce-
dure briefly, complete details for all groups can be obtained from the comprehensive
local treatment in [GK], see [GK, § 3.2] (see also [CFGK19, § 2.3] for Sp2n).

Assume G �= GLn. The global integral defined by (0.3) is

Z(s, ϕ1, ϕ2, f) =
∫

G(F )×G(F )\G(A)×G(A)

ϕ1(g1) ιϕ2(g2)EU,ψU ((g1, g2); s, f) dg1 dg2,

with the notation of the introduction. For Re(s) � 0, after unfolding the Eisenstein
series (0.2), Z(s, ϕ1, ϕ2, f) =

∑
γ I(γ) where γ ∈ H(F ) varies over the representatives

of P\H/L, L = (G × G)U , and

I(γ) =
∫

Lγ(F )\L(A)

ϕ1(g1) ιϕ2(g2) f(s, γu(g1, g2))ψU (u) du dg1 dg2.

Here Lγ = γ−1
P ∩ L. All but one summand vanish. This is proved by arguments

utilizing the character ψU , the cuspidality of π or the “smallness” of the represen-
tation Eτ in the inducing data of the series, namely its Fourier coefficients attached
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to orbits greater than or not comparable with (kc) vanish (it is globally (k, c)). For
the remaining summand I(γ), we see that Lγ ∩ UP is trivial, V(ck) < γLγ and if we
factor through Lγ(A), the integration over V(ck)(F )\V(ck)(A) together with ψU form
a global (k, c) functional, namely a Fourier coefficient along V(ck) and a character
in the orbit of (1.1). We can modify γ using left multiplication by an element of
MP (F ), to obtain the character (1.1) and coefficient (0.1). Denote the new repre-
sentative by δ. We then see that the reductive part of Lδ is {(g0,

ιg0) : g0 ∈ G} and
δLδ = G � V(ck) < MP , where G is embedded in the stabilizer of (1.1), in the diago-
nal embedding of SLc. In [CFGK19, Claim 8] we proved that (0.1) is invariant with
respect to the diagonal embedding of SLc(A), which implies in particular invariance
under G(A). Therefore I(δ) becomes

∫

G�(A)\G(A)×G(A)

∫

U0(A)

∫

G(F )\G(A)

ϕ1(g0g1) ιϕ2(ιg0g2)fWψ(Eτ )(s, δu0(g1, g2))

× ψU (u0) dg0 du0 dg1 dg2. (2.4)

Here G	 is the diagonal embedding in G × G, U0 = jkcUP ∩ U , and fW (Eτ ) is the
composition of the section with (0.1): for any s ∈ C and h ∈ H(A),

fWψ(Eτ )(s, h) =
∫

V(ck)(F )\V(ck)(A)

f(s, vh)ψ−1

(
tr

(
k−1∑
i=1

vi,i+1

))
dv. (2.5)

It remains to apply ι to g2 and use (0.6) to obtain (0.5).
Returning to the local context, at a place ν of F , ρc(τν) is the local component

of Eτ (τ is now global) and for a decomposable f , f =
∏

ν fν where for all ν, fν is a
section of V (Wψν

(ρc(τν))), which is normalized and unramified for almost all ν.
For G = GLn the definition of (0.3) is modified to handle the center. We take

ϕ1 in the space of χkπ where χ is a continuous character of F ∗\A
∗, ϕ2 in the space

of π∨ (if π is unitary, π∨ = π) and the representation of MP (A) is | det |s−1/2Eτ0 ⊗
| det |−s+1/2χ−1Eτ∨

0
, where τ0 is a cuspidal representation of GLk(A). The modified

version of (0.3) is given by

Z(s, ϕ1, ϕ2, f, �l) =
∫

(CH(A)G(F )×G(F ))\(G(A)×G(A))

ϕ1(g1)ϕ2(g2)

EU,ψU ((g1, g2); s, f)�l(| det(g2g
−1
1 )|) dg1 dg2,

where �l is a compactly supported Schwartz function on R
∗
>0, introduced to ensure

convergence as in [PSR87, § 4.2] (they used this to extend their construction from
PGLn to GLn). Note that the integrand is indeed invariant under CH(A).

In the unfolding of Z(s, ϕ1, ϕ2, f, �l) we obtain two (k, c) functionals: one on Eτ0 ,
the other on χ−1Eτ∨

0
. By Lemma 1.1, at any place ν, the local (k, c) functional on
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ρc((τ0)ν) transforms under G	(Fν) with respect to g	 �→ (τ0)ν(det(g)). Using this
we reach an integral similar to (2.4),

∫

G�(A)\G(A)×G(A)

∫

U0(A)

∫

CG(A)G(F )\G(A)

χk(det g1)ϕ1(g0g1)ϕ2(g0g2)

fWψ(Eτ )(s, δu0(g1, g2))�l(| det(g2g
−1
1 )|)ψU (u0) dg0 du0 dg1 dg2

=
∫

G(A)

∫

U0(A)

〈ϕ1, π(g)ϕ2〉fWψ(Eτ )(s, δu0(1, g))�l(| det g|)ψU (u0) du0 dg. (2.6)

Note that CH < G	, Wψ(Eτ ) is defined to be Wψ(Eτ0) ⊗ χ−1Wψ(Eτ∨
0
), and in the

integral defining the inner product the domain is divided by CG(A). As explained
in [PSR87, § 4.2], the convergence of (2.6) for Re(s) � 0 is independent of �l, and
an application of the Monotone Convergence Theorem implies we can define, for
Re(s) � 0,

Z(s, ϕ1, ϕ2, f) = lim
l→∞

Z(s, ϕ1, ϕ2, f, �l)

=
∫

G(A)

∫

U0(A)

〈ϕ1, π(g)ϕ2〉fWψ(Eτ )(s, δu0(1, g))ψU (u0) du dg.

Here {�l}l is an arbitrary monotonic increasing sequence such that �l → 1 (the limit
of the integrals is independent of the choice of sequence), but is not used for the
local integral.

The reason for introducing the character χ is to study the GLn integral arising
from the integral for general spin groups, then χ will essentially be the central
character of the representation of GSpinc.

2.5 Split general spin groups. For any integer c ≥ 2, the group Spinc is the
simple split simply connected algebraic group of type Dn if c is even, or Bn if it is
odd, where n = �c/2�. It is also the algebraic double cover of SOc. We fix the Borel
subgroup BSpinc

< Spinc to be the preimage of BSOc
. Denote the pullback of the i-th

coordinate function of TSOc
to TSpinc

by εi, 0 ≤ i ≤ n − 1. Then define ε∨
j such that

〈εi, ε
∨
j 〉 = δi,j , where 〈, 〉 is the standard pairing. The set of simple roots of Spinc is

Δc = {α0, . . . , αn−1}, where αi = εi − εi+1 if 0 ≤ i < n − 1, αn−1 = εn−2 + εn−1 for
even c, αn−1 = εn−1 otherwise. For convenience, we include the cases c = 0, 1 in the
notation, then n = 0 and Spinc is the trivial group.

Identify the split general spin group G = GSpinc with the Levi subgroup of
Spinc+2 obtained by removing α0 from Δc+2. In particular, this fixes a Borel sub-
group BG. Note that Spinc is the derived group of GSpinc, GSpin0 = GSpin1 = GL1

and GSpin2 = GL1 × GL1. Define a “canonical” character Υ of GSpinc as the lift of
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−ε0 (see [Kap17, § 1.2]). Let

C◦
G = {r∨c (t) : t ∈ F ∗}, rc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α0 c = 0,

α0 + α1 c = 2,

2
∑n−2

i=0 αi + αn−1 + αn c = 2n > 2,

2
∑n−1

i=0 αi + αn c = 2n + 1, n ≥ 0.

For odd c or c = 0, C◦
G = CG; for even c > 2, C◦

G is the connected component of CG,

CG = C◦
G

∐
iGC◦

G, iG =
n−2∏
i=0

α∨
i ((−1)n−2−i)α∨

n−1(1)α∨
n(−1).

We use this definition of iG also for c = 2, and for c = 0 put iG = −1. For the compu-
tation of CG and in particular iG, note that a general element t ∈ TG can be written
uniquely in the form t =

∏n
i=0 α∨

i (ti), then t ∈ CG if and only if
∏n

i=0 t〈αj ,α∨
i 〉 = 1

for all 1 ≤ j ≤ n (iG is e∗
0(−1)ζ0 in the notation of [AS06, Proposition 2.3]; for even

n, r∨c (−1)iG is the image of z of [AS06, Remark 2.4] in Spinc+2).

For a detailed definition of general spin groups using based root datum refer
to [Asg02, AS06, HS16]. We work directly with the coroots of Spinc+2 to describe
torus elements of GSpinc (in those works the coroots of GSpinc were used). See also
[Mat09].

Let R = Rl,c < G be a standard parabolic subgroup, obtained by removing one
of the roots αl, 1 ≤ l ≤ n. The Levi part MR is isomorphic to GLl × GSpinc−2l.
We describe an isomorphism explicitly. First assume c is odd or l < n − 1. The
derived group of GLl is the group generated by the root subgroups of α1, . . . , αl−1

(if l > 1, otherwise it is trivial) and if θ∨
i (t) = diag(Ii−1, t, Il−i) is the i-th standard

coordinate of TGLl
, θ∨

i �→ ε∨
i −ε∨

0 . It follows that Υ|GLl
= det. The copy of Spinc−2l+2

is identified with the roots
∑l

i=0 αi, αl+1, . . . , αn, then GSpinc−2l is obtained by
removing

∑l
i=0 αi. Under this embedding, the first coordinate map of TSpinc−2l+2

is
mapped to ε0 and Υ restricts to the same character on GSpinc−2l. In the remaining
cases c is even, define GLl as above and identify Spinc−2l+2 with

∑n−1
i=0 αi,

∑n−2
i=0 αi+

αn when l = n − 1, and GSpin0 with r∨c for l = n. Then Υ|GSpinc−2l
= det−1 when

l = n − 1 or l = n = 1, and det−2 if l = n > 1. Under this identification, in all
cases C◦

G = C◦
GSpinc−2l

and if c is even, iG = [−Il, iGSpinc−2l
] ∈ GLl × GSpinc−2l. The

image of [
∏l

i=1 θ∨
i (ti),

∏n−l
i=0 β∨

i (xi)] ∈ TGLl
× TGSpinc−2l

(β∨
i - the cocharacters of
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Spinc−2l+2) in MR is
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−2∏
i=0

α∨
i (

n−1∏
j=i+1

t−1
j )

n−2∏
i=0

α∨
i (x0x1)α∨

n−1(x0)α∨
n(x1) even c, l = n − 1,

n−1∏
i=0

α∨
i (

n∏
j=i+1

t−1
j )

n−2∏
i=0

α∨
i (x2

0)α
∨
n−1(x0)α∨

n(x0) even c, l = n,

n−1∏
i=0

α∨
i (x2

0

l∏
j=i+1

t−1
j )α∨

n(x0) odd c, l = n,

l−1∏
i=0

α∨
i (

l∏
j=i+1

t−1
j )

l∏
i=0

α∨
i (x0)

n∏
i=l+1

α∨
i (xi−l) otherwise.

When considering a ∈ GLn as an element of G, we implicitly use the identification
above of GLn with a direct factor of Rn,c. The same applies to t ∈ TSOc

, since t =
diag(a, a∗) or diag(a, 1, a∗). The Weyl group W (G) of G is canonically isomorphic to
W (SOc). Given a permutation matrix w0 ∈ SOc, the preimage of w0 in Spinc consists
of 2 elements, which differ by an element in CSpinc

. Choosing one representative w,
we then regard it as an element in G. In this manner we identify each w0 with w ∈ H
(this is not a homomorphism). To compute the action of W (G) on TG we appeal to
the formulas from [HS16] (our choice of representatives eliminates the need for the
implicit inner automorphisms in [HS16]).

Let k be given. Define H = GSpin2kc. If kc ≤ 1, G = GL1 and we already
constructed this integral, so assume kc > 1. Since the unipotent subgroups of H are
isomorphic to those of SO2kc (as algebraic groups), we can define the data (A, U, ψU )
exactly as we did above, for the corresponding orthogonal group.

We turn to the embedding of the two copies of G in the stabilizer of ψU in MQ.
This stabilizer contains two commuting copies of G, but they intersect in C◦

H (it
cannot contain the direct product G × G, e.g., for k = 1 and c = 2n, the rank of
H is 2n + 1 but the rank of G × G is 2n + 2). Adapting the convention (g1, g2),
we describe the mapping (, ) : G × G → H, which is an embedding in each of the
variables separately, and also injective on the product of derived groups. We have a
left copy and a right copy.

Starting with the derived groups, the embedding described above for the orthog-
onal groups extends to an embedding of the direct product of derived groups, since
it identifies each root subgroup of a copy of G with a unipotent subgroup in H.
Also identify the first coordinate map of the left copy with −ε0, and the right copy
with ε0. This completes the definition for c �= 2. If c = 2, regard GSpin2 as MR1,2 ,
then since we already identified the first coordinate map of each copy (with ∓ε0),
it remains to embed the GL1 part of each copy, which is done using the embedding
SO2 × SO2 < TSO4k

. Observe that for even c, the right copy of G is the natural
subgroup of MRkc−c/2,2kc

.



GAFA THE GENERALIZED DOUBLING METHOD: LOCAL THEORY

To deduce that both copies of G are subgroups of MQ which fix ψU , it remains to
consider the image of C◦

G. The definition implies that if z ∈ C◦
G, (z, 1) = (1, z−1) ∈

C◦
H . Hence (G, 1) and (1, G) belong to the stabilizer of ψU in MQ. Moreover,

(G, 1) ∩ (1, G) = (C◦
G, 1) ∩ (1, C◦

G) = C◦
H ,

and (z, z) is the identity element.
For the global construction, π is cuspidal (unitary or not), ϕ1 and ϕ2 are cusp

forms in the spaces of π and π∨, and in the integration domain of (0.3) we re-
place G(F )\G(A) with C◦

G(A)G(F )\G(A) (on both copies). Put P = Rkc,2kc < H.
Since C◦

G = GL1, the restriction of π to C◦
G is a continuous character χπ of F ∗\A

∗.
The inducing data for the Eisenstein series is the representation | det |s−1/2Eτ ⊗
χπ of MP (A). Since ϕ1 (resp., ϕ2) transforms under C◦

G by χπ (resp., χ−1
π ) and

χπ((z1, z2)) = χ−1
π (z1)χπ(z2) for all z1, z2 ∈ C◦

G,

ϕ1(z1g1)ϕ2(z2g2)EU,ψU ((z1g1, z2g2); s, f) = ϕ1(g1)ϕ2(g2)EU,ψU ((g1, g2); s, f).

Thus the global integral is well defined. There are no additional convergence issues,
because we divided by the centers (analogous to the case of PGLn in [PSR87]). The
unfolding process is carried out as in the orthogonal cases: the choice of represen-
tatives of P\H/(G, G)U is similar because these are either Weyl group elements or
unipotent elements. Then the arguments showing I(γ) = 0 are the same, since they
only involve unipotent subgroups. For details see [GK].

The remaining summand is I(δ). First note that for c ≥ 3, ι lifts uniquely to an
involution of Spinc, because Spinc is the universal cover of SOc. When c = 2 (ι was
defined for c ≥ 2), ι can be replaced with j1, then ι acts on Spinc by conjugation,
when regarded as an element of the algebraic double cover Pinc of Oc. Since in all
cases ι fixes CSOc

, it also fixes CSpinc
, hence can be extended to an involution of G

which fixes CG. Now we may compute the reductive part of Lδ, and it is again the
group {(g0,

ιg0) : g0 ∈ G}: in terms of unipotent subgroups and the torus element
[t, 1] with t ∈ GLn, the computation is similar to the computation for the orthogonal
group, and C◦

G is embedded in C◦
H .

To compute ιg we may regard ι (for odd c) or
(

In

In

)
(even c), as a Weyl element

of a higher rank special orthogonal group (non-uniquely), thereby a Weyl element in
the corresponding spin group. When c is even, ι = d

(
In

In

)
with d = diag(In, −In).

The element d acts trivially on the Levi subgroup {( a
a∗ ) : a ∈ GLn} of SOc, hence

on its preimage in Spinc. Since d belongs to the similitude group GSOc, it also acts
trivially on TG, and therefore can be ignored when computing ιMRn,c

. If g = [a, x] ∈
MRn,c

with a ∈ GLn and x ∈ GL1, for c > 2 we have ιg = r∨c (det a−1)[a∗, x] =
[a∗, xdet a−1] ∈ MRn,c

and for c = 2, ιg = [a∗, xa−2].
For g0 ∈ G, denote e(g0) = δ(g0,

ιg0) ∈ MP . We show the (k, c) functional
transforms under e(G(A)) with respect to the trivial character. We start with the
torus. For g0 ∈ TG, write g0 = [t0, x0] with t0 ∈ TGLn

and x0 ∈ GL1. The image of
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x0 in G is then r∨c (x0). We see that

(g0, 1) = r∨2kc(x
−1
0 det t0)[diag(diag(t0, t∗0), . . . ,diag(t0, t∗0) diag(t0, I�c/2�)), 1] (2.7)

(k − 1 copies of diag(t0, t∗0)), and note that r∨2kc(det t0) appears because the leftmost
coordinate map of the left copy of G is mapped to −ε0. Then

e(g0) = δ
(
[t0, x0], [t∗0, x0 det t−1

0 ]
)

= δ[diag(diag(t0, t∗0), . . . ,diag(t0, t∗0)), 1],

and since det(diag(t0, t∗0)) = 1, the last conjugation belongs to the diagonal em-
bedding of SLc in GLkc. (For example, when c is even iG = [−In, −1], ιiG =
[−In, (−1)n+1] and δ(iG, ιiG) = δ[−Ikc, 1] = [−Ikc, 1], by a direct verification.) Thus
for g0 ∈ TG(A) the (k, c) functional transforms under e(g0) with respect to the triv-
ial character. Regarding Spinc(A), it suffices to check that e(Spinc) < SLkc, i.e.,
the projection of e(Spinc) on the GL1 part of MP is trivial. This follows because
otherwise we would obtain a nontrivial character of Spinc, which is perfect. In more
detail, put e(x) = [�(x), ζx] ∈ MP , where �(x) ∈ SLkc. Since x ∈ Spinc, ζx belongs to
the projection C ′ of CSpin2kc

into the GL1 part of MP , and we claim ζx is identically
1. Suppose otherwise. The structure of CSpin2kc

depends on the parity of kc, but C ′

is a nontrivial finite abelian group, namely r∨2kc(−1) ∈ C ′ (r∨
2kc(−1) is c of [Asg02,

Proposition 2.2]). Then since e is a homomorphism,

[�(xy), ζxy] = e(xy) = e(x)e(y) = [�(x), ζx][�(y), ζy] = [�(xy), ζxζy].

Hence x �→ ζx is a homomorphism and composing it with a character of C ′ we obtain
a nontrivial character of Spinc, which is a contradiction.

We conclude that the du-integral in I(δ) is invariant under the reductive part of
Lδ(A). Factor I(δ) through G(A). The dg0-integral in (2.4) becomes

∫

C◦
G(A)G(F )\G(A)

ϕ1(g0g1) ιϕ2(ιg0g2) dg0 = 〈π(g1)ϕ1, π(ιg2)ϕ2〉 (2.8)

and the global integral analogous to (0.5) is
∫

C◦
G(A)\G(A)

∫

U0(A)

〈ϕ1, π(g)ϕ2〉fWψ(Eτ )⊗χπ
(s, δu0(1, ιg))ψU (u0) du0 dg.

The definition of a local space V (s, ρ) from § 2.3 changes, taking into account the
fact that MP = GLkc × GL1. Now ρ = ρ1 ⊗ρ2, where ρ1 is a representation of GLkc,
and V (s, ρ) is the space of IndH

P (| det |s−1/2ρ1 ⊗ ρ2). The only changes to the local
integral are that f is a meromorphic section of V (Wψ(ρc(τ)) ⊗ χπ), where χπ is the
restriction of the central character of π to C◦

G regarded as a character of F ∗, and the
domain is C◦

G\G (δ and ι are defined as explained above, e.g., δ0 ∈ H is obtained
from the matrix in SO2kc).
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2.6 Basic properties of the integrals. First we establish two formal proper-
ties of the integrals, which can be regarded as immediate consequences of the global
construction, then turn to prove convergence and show that the integrals can be
made nonzero.

Consider the space

Hom(G,G)(JU,ψ−1
U

(V (s, Wψ(ρc(τ)) ⊗ χπ)), π∨ ⊗ πι). (2.9)

Here JU,ψ−1
U

(· · · ) is considered as a representation of (G, G); χπ is omitted unless
G = GSpinc; πι is the representation of G acting on the same space as π, where the
action is defined by πι(g) = π(ιg); and when G = GLn, π∨ ⊗ πι is replaced with
(χkπ)∨ ⊗ π (for GLn, ι = Ic).

Proposition 2.2. The integral can be regarded, at least formally, as a morphism
in (2.9).

Proof. Given ω, by definition there are vectors ϕ and ϕ∨ in the spaces of π and π∨,
such that ω(g) = ωϕ,ϕ∨(g) = ϕ∨(π(g−1)ϕ) for g ∈ G. Regarding the integral as a
trilinear form on

V (s, Wψ(ρc(τ)) ⊗ χπ) × (χkπ) × (πι)∨,

where χ = 1 unless G = GLn, we can show the equivalent statement

Z(s, ωχkπ(g1)ϕ,(πι)∨(g2)ϕ∨ , (g1, g2)u · f) = ψ−1
U (u)Z(s, ω, f), ∀g1, g2 ∈ G, u ∈ U.

It is straightforward to show the equivariance property for u, using the definition of
the embedding and Wψ(ρc(τ)). Regarding g1 and g2, since

ωχkπ(g1)ϕ,(πι)∨(g2)ϕ∨(g) = χk(det g1)(πι)∨(g2)ϕ∨(π(g−1)π(g1)ϕ)

= χk(det g1)ϕ∨(π(ιg−1
2 g−1g1)ϕ) = χk(det g1)ω(g−1

1 g(ιg2)),

Z(s, ωχkπ(g1)ϕ,(πι)∨(g2)ϕ∨ , (g1, g2) · f)

= χk(det g1)
∫

G

∫

U0

ω(g−1
1 g(ιg2))f(s, δu0(1, ιg)(g1, g2))ψU (u0) du0 dg.

Changing variables g �→ g1g(ιg2)−1, we obtain

χk(det g1)
∫

G

∫

U0

ω(g)f(s, δu0(g1,
ιg1)(1, ιg))ψU (u0) du0 dg.

It remains to conjugate (g1,
ιg1) to the left. Note that δ(g1,

ιg1)∈P and by Lemma 1.1,
f(s, δ(g1,

ιg1)h) = χ−k(det g1)f(s, h) for any h ∈ H (for G = GLn see the definition
of Wψ(ρc(τ))). Also (g1,ιg1)−1

u0 ∈ U and when we change variables in u0 and use ψU

and the equivariance properties of Wψ(ρc(τ)) on U ∩ MP , we obtain Z(s, ω, f). ��
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As a corollary of the computation, we have the following result:

Corollary 2.3. For any section f of V (Wψ(ρc(τ)) ⊗ χπ), g0 ∈ G and h ∈ H,

∫

U0

f(s, δu0(g0,
ιg0)h)ψU (u0) du0 = χ−k(det g0)

∫

U0

f(s, δu0h)ψU (u0) du0.

Remark 2.4. Note that (2.9) was slightly different in the work of [PSR87] for k = 1
(see [LR05, (10)]). This difference is caused by a different choice of embedding for
G × G in H. E.g., the local integral of [PSR87, LR05] does not contain δ; and the
global and local invariance with respect to (g, ιg) was with respect to (g, g) in loc.
cit.

Proposition 2.5. The integrals with entire sections are absolutely convergent in
a right half plane depending only on the representations. Over archimedean fields,
in the domain of absolute convergence they are continuous in the input data (as
trilinear forms, see (2.9)).

Proof. For k = 1 this was already proved in [LR05, Theorem 3], albeit for Oc instead
of SOc, and GSpinc was not included. The only ingredient in their proof which is
not straightforward to extend to SOc and GSpinc is the multiplicative property
[LR05, Proposition 2], but we prove this here in § 5.3.1–§ 5.3.4 (the proofs apply in
particular when k = 1).

Assume k ≥ 1 but if G = GLn, k > 1. We can prove the stronger statement,
∫

G

∫

UP

|ω(g)f(s, δ0u(1, ιg))| du dg < ∞. (2.10)

If G = GSpinc, the domain G is replaced by C◦
G\G. (For G = GLn and k = 1 (2.10)

does not hold, the element δ1 is used.) Assume F is p-adic. We may assume that ω
is bi-KG-invariant and f is right KH -invariant, because we may introduce auxiliary
integrations over KG and KH . Using Corollary 2.3, the integral (2.10) reduces to an
integral over the cone T−

G , which is the subset of t ∈ TG such that |α(t)| ≤ 1 for all
the simple roots α of TG. We need to bound

∑
t∈(C◦

G(TG∩KG))\T −
G

∫

UP

|ω(t)f(s, δ0tu)|m(t) du.

Here and below C◦
G is omitted unless G = GSpinc, and m is a modulus character

multiplied by |χ−k(det t)| if G = GLn. If W is a function in Wψ(ρc(τ)) and k > 1,
its restriction to torus elements of the form diag(t, I(k−1)c) can be bounded using a
gauge ξ (see [Sou93, § 2] for the definition and method of proof, and also [Cas80b,
§ 6]). Here in particular ξ vanishes unless all coordinates of t are small, and also
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note that ξ is non-negative. If k = 1, ξ(t) is taken to be a power of | det t|. Then as
in [Sou93, § 4], for each t, the integral over UP is bounded by

ξ(t)| det t|Re(s)d+d′
∫

UP

|f(s, δ0u)| du,

where d and d′ are constants depending only on τ and H, and d > 0. This integral
is finite for Re(s) � 0, as an integral defining an intertwining operator, and we are
left with

∑
t∈(C◦

G(TG∩KG))\T −
G

|ω(t)| ξ(t) | det t|Re(s)d+d′
.

We can bound the matrix coefficient on T−
G using the exponents of π∨, and since the

coordinates of t are small, this integral is finite for Re(s) � 0, depending only on π∨

and τ . Over archimedean fields the proof is similar, one uses the bound from [Wal92,
Theorem 15.2.4] (see also [FK19, Theorem 1.1] for an asymptotic expansion of matrix
coefficients), and [Sou93, § 3 and § 5]. Continuity in the domain of convergence can
be shown as in [Sou95, § 6, Lemma 1]. ��
Proposition 2.6. Assume F is p-adic. There is a choice of data (ω, f) where f is
an entire section, such that Z(s, ω, f) is absolutely convergent and equals 1, for all s.
Over an archimedean field, for any given s, there is data (ω, f) where f is a smooth
entire section (but not KH -finite), such that the integral is absolutely convergent
and nonzero.

Proof. The proof is similar to [Sou93, § 6], [GRS98, Proposition 6.6], [Kap13a,
Lemma 4.1]. For the doubling method with k = 1 this was proved in [RS05, p. 298]
(p-adic fields) and [KR90, Theorem 3.2.2] (archimedean fields), for Sp2n and Oc; the
arguments can be easily adapted to SOc, and GSpinc is proved along the same lines.
At any rate assume k ≥ 1.

Consider the p-adic case first. Briefly, let N be a small compact open neighbor-
hood of the identity in H, which is normalized by δ0δ1. Take an entire section f
which is right-invariant by N , and such that δ0 · f is supported in P (δ0δ1)N . Using
Corollary 2.3 (or directly when G = GLn) we obtain

∫

U0

f(s, δu0(1, ιg))ψU (u0) du0 =
∫

U0

δ0 · f(s, p(g) δ0(u0δg))ψU (u0) du0,

where p(g) ∈ P and δg is obtained from δ1 by multiplying the block A in δ1 by
coordinates of g. Moreover, when δ0(u0δg) ∈ P (δ0δ1)N , g varies in a small compact
open subgroup of G, f is left invariant by p(g) (e.g., δP (p(g)) = 1) and the coor-
dinates of u0 are small. For a sufficiently small N , with respect to ω and ψU , the
integral reduces to a nonzero measure constant multiplied by ω(1), and thus can be
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chosen to be nonzero, independently of s. The argument on the support also implies
absolute convergence.

Over archimedean fields we can define an entire section f such that δ0 · f is
supported in PU−

P and δ0 · f(s, mu) = φ(u)δ0 · f(s, m) for u ∈ U−
P and m ∈ MP ,

where φ is a Schwartz function on U−
P . Choosing φ with compact support near δ0δ1

we obtain ∫

U0

φ′(u0)ψU (u0) du0

∫

G

ω(g)δ0 · f(s, p(g))φ′′(g) dg,

where φ′ and φ′′ are Schwartz functions on U0 and G, obtained from φ. The support
of φ′ (resp., φ′′) can be taken arbitrarily small (resp., near the identity of G). Thus
the du0-integral can be made nonzero, and for a given s, the dg-integral can also be
made nonzero (even in a small neighborhood of s). ��

3 The Normalized Intertwining Operator

We define the intertwining operators that we apply to the spaces of sections defined
in § 2.3, and introduce their normalized versions, to be used for the definition of the
γ-factor in § 4. Let k and c be integers. Let H, τ and P be given by § 2 (see § 2.1,
§ 2.4 and § 2.5), or H = GLkc, P = Pβc for a 2 parts composition β of k, and τ = τβ

is irreducible and generic. Consider the intertwining operators

M(s, Wψ(ρc(τ)), wP ) : V (s, Wψ(ρc(τ))) → V (1 − s, Wψ(ρc(τ ′))), (3.1)
M(1 − s, Wψ(ρc(τ ′)), wP ′) : V (1 − s, Wψ(ρc(τ ′))) → V (s, Wψ(ρc(τ))).

Here wP , τ ′, P ′, and wP ′ are given as follows.

(1) For a classical group H, P ′ = jkcP , wP = jkc

(
ε0Ikc

Ikc

)
dk,c where dk,c ∈ TGLkc

is the matrix diag(−Ic, Ic, . . . , (−1)kIc) regarded as an element in MP , τ ′ = τ∨,
and wP ′ = jkcwP . The representation on V (1−s, Wψ(ρc(τ ′))) is induced from P ′

and jkc(| det |1/2−sWψ(ρc(τ ′))).
The image of M(s, Wψ(ρc(τ)), wP ) is a priori contained in V (1 − s, Wψ(ρc(τ))∗)
(g∗ = Jkc

tg−1Jkc). Since the application of the intertwining operator commutes
with the application of the (k, c) functional, we may assume the intertwining
operator is into V (1 − s, Wψ(ρc(τ)∗)), and then by [CFGoK, Claim 6], ρc(τ)∗ =
ρc(τ∨).

(2) For H = GSpin2kc, the representation Wψ(ρc(τ)) is twisted by a quasi-character
χ to form a representation of MP . Then M(s, Wψ(ρc(τ)) ⊗ χ, wP ) is into V (1 −
s, Wψ(ρc(τ ′)) ⊗ χ) with τ ′ = χ−1τ∨. The remaining definitions are similar to
SO2kc, but wP is a representative in H.

(3) For H = GLkc, β′ = (β2, β1), P ′ = Pβ′c, wP = wβ′c, τ ′ = τ2 ⊗ τ1 and wP ′ = wβc.
Further denote Wψ(ρc(τβ)) = Wψ(ρc(τ1)) ⊗ Wψ(ρc(τ2)). In particular for H =
GL2kc and β = (k2), we usually take τ = τ0 ⊗ χ−1τ∨

0 and then τ ′ = χ−1τ∨. If
β �= (k2), also set δ0 = w−1

P .



GAFA THE GENERALIZED DOUBLING METHOD: LOCAL THEORY

Remark 3.1. The purpose of dk,c is to preserve the character ψ in the model, i.e.,
for τ∨ we still use the (k, c) model with respect to ψ (instead of ψ−1). Globally,
we then use (0.1) with the same character on both sides of the global functional
equation. This is simpler because we may then keep the same representative δ in
the unfolding argument. Note that this symmetry breaks down when kc is odd, as
explained above; see (2.3).

To avoid burdensome notation, we exclude general spin groups until the end of
the section. For a meromorphic section f of V (Wψ(ρc(τ))) (induction from P ), the
operator M(s, Wψ(ρc(τ)), wP ) is defined for Re(s) � 0 by the absolutely convergent
integral

M(s, Wψ(ρc(τ)), wP )f(s, h) =
∫

UP ′

f(s, w−1
P uh) du, (3.2)

then by meromorphic continuation to C. By definition, when M(s, Wψ(ρc(τ)), wP )
is holomorphic

M(s, Wψ(ρc(τ)), wP ) : V (s, Wψ(ρc(τ))) → V (1 − s, Wψ(ρc(τ ′))).

The picture is similar for M(1 − s, Wψ(ρc(τ ′)), wP ′).
We further define

λ(s, c, τ, ψ)f =
∫

UP ′
f(s, δ0u)ψ−1(u) du. (3.3)

Here if H = SO2kc and c is odd, δ0 is given by (2.2). The character ψ is defined as
follows. If H is a classical group, ψ is the character of UP ′ given by jkc

(
Ikc u

Ikc

) �→
ψ(tr(tAx)), where x is the bottom left c × c block of u (tA = A unless kc is odd). In
this case we also put Yk,c = jkcV(ck)�UP ′ and define a character ψk,c of Yk,c by taking
the product of characters (1.1) (of jkcV(ck)) and ψ of UP ′ . For GLkc (k = β1 + β2), ψ
is the character (1.1) of V(ck) restricted to UP ′ , Yk,c = V(ck) and ψk,c is again (1.1).

The integral defining λ(s, c, τ, ψ) is absolutely convergent for Re(s) � 0 (sim-
ilarly to an intertwining operator), and can be made nonzero for a given s. Over
p-adic fields, there is an entire section f such that for all s, λ(s, c, τ, ψ) is absolutely
convergent and equals a constant (independent of s).

Theorem 3.2. For all s, the space HomYk,c
(V (s, ρc(τ)), ψk,c) is at most one dimen-

sional.

Proof. For H = GLkc the dimension is precisely 1, this follows from [CFGoK, Propo-
sition 2]. The proof for H �= GLkc for all k ≥ 1 appears in Appendix B. We note that
the case of k = 1 and non-archimedean fields was already proved by Karel [Kar79]
(see also [Wal88, LR05]). ��
Corollary 3.3. The functional λ(s, c, τ, ψ) admits meromorphic continuation,
which is continuous in f over archimedean fields.
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Proof. For p-adic fields this follows from Bernstein’s continuation principle (in
[Ban98]), since we have uniqueness by Theorem 3.2 and the integral can be made
constant. Over archimedean fields we prove this using a multiplicativity argument
in § 6.10 below. ��

By virtue of Theorem 3.2 and its corollary, there is a meromorphic function C(s, c, τ,
ψ) satisfying the following functional equation for all f : if kc is even,

λ(s, c, τ, ψ)f = C(s, c, τ, ψ)λ(1 − s, c, τ ′, ψ)M(s, Wψ(ρc(τ)), wP )f. (3.4)

For odd kc (i.e., H = SO2kc and both k and c are odd), we modify this equa-
tion by replacing M(s, Wψ(ρc(τ)), wP )f with (t0 · M(s, Wψ(ρc(τ)), wP )f)jkc , t0 =
diag(Ikc−1, −2, −1/2, Ikc−1), and note that on both sides of the equation λ is de-
fined with δ0 given by (2.2).

Equation (3.4) depends on the choice of measures on UP ′ , but we may choose the
measures for λ on both sides in the same way, and then C(s, c, τ, ψ) depends only on
the measure chosen for the intertwining operator. Specifically, let dψx be the additive
measure of F which is self-dual with respect to ψ. When H is a classical group, each
root subgroup of UP ′ is identified with F by choosing the nontrivial coordinate above
or on the anti-diagonal (the identification is clear when H = GLkc). The measure
on UP ′ is then the product of measures dψx over each of these root subgroups. This
measure is chosen for all integrations over subgroups of UP ′ . Changing ψ affects the
measure.

Following (3.4) we define the normalized version of the intertwining operator,

M∗(s, c, τ, ψ) = C(s, c, τ, ψ)M(s, Wψ(ρc(τ)), wP ). (3.5)

Outside a discrete subset of s, the product

M(1 − s, Wψ(ρc(τ ′)), wP ′)M(s, Wψ(ρc(τ)), wP )

is a scalar, because by the construction of ρc(τ) (see § 1.2), we can use the mul-
tiplicative properties of intertwining operators to write M(s, Wψ(ρc(τ)), wP ) as a
product of operators on spaces V (s, ρ) with irreducible generic representations ρ.
Therefore

M∗(1 − s, c, τ ′, ψ)M∗(s, c, τ, ψ) = 1. (3.6)

We fix notation for certain products of L-functions, which appear below in the
normalizing factors of the intertwining operators (and globally, Eisenstein series).
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Put

a0(s, c, τ) =
�c/2�∏
j=1

L(2s − c + 2j − 1, τ, ∨2)
�c/2�∏
j=1

L(2s − c + 2j − 2, τ, ∧2),

b0(s, c, τ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c/2∏
j=1

L(2s + 2j − 2, τ, ∨2)L(2s + 2j − 1, τ, ∧2) even c,

�c/2�∏
j=1

L(2s + 2j − 1, τ, ∨2)
�c/2�∏
j=1

L(2s + 2j − 2, τ, ∧2) odd c.

Also for H = GL2kc and β = (k2), set τ = τ1 ⊗ τ2. Define:

H a(s, c, τ) b(s, c, τ)
Sp2kc L(s − c/2, τ)a0(s, c, τ) L(s + c/2, τ)b0(s, c, τ)
SO2kc a0(s, c, τ) b0(s, c, τ)
GL2kc

∏
1≤j≤c L(2s + j − c − 1, τ1 × τ2

∨)
∏

1≤j≤c L(2s + j − 1, τ1 × τ2
∨)

These L-functions were defined by Shahidi [Sha90] for any (generic) τ , although we
only use the definition for unramified representations. Note that for k = 1, a(s, c, τ)
and b(s, c, τ) are the functions given in [Yam14, § 3.5] ((s, c) here corresponds to
(s − 1/2, n′) in loc. cit.).

The computations in [CFGK19, Lemmas 27 and 33] show that if τ and ψ are
unramified and fτ (resp., fτ ′) is the normalized unramified section of V (Wψ(ρc(τ)))
(resp., V (Wψ(ρc(τ ′)))),

M(s, Wψ(ρc(τ)), wP )fτ = a(s, c, τ)b(s, c, τ)−1fτ ′ . (3.7)

(This also holds for GLkc and any β = (β1, β2), but will not be used.) Using this
result and the usual multiplicative properties of the intertwining operators, it is
possible to state the fundamental properties of the factors C(s, c, τ, ψ) which define
them uniquely, e.g., multiplicativity and their values for unramified data (see (6.13)
below), as we shall do for the γ-factors; see [Sha90, LR05]. Here we only prove the
properties needed for the purpose of the γ-factors, in the process of establishing the
properties of the latter.

For general spin groups the arguments are similar to the orthogonal cases. The
notation can be adapted to incorporate twisting by χ, e.g., λ(s, c, τ ⊗ χ, ψ) and
C(s, c, τ ⊗ χ, ψ). For odd c and k, one uses the modified version of (3.4) with jkc

and t0, noting that conjugation by jkc defines an involution of GSpin2kc, and t0 is
regarded as an element in TGLkc

< MRkc,2kc
(see § 2.5). The functions a(s, c, τ⊗χ) and

b(s, c, τ ⊗χ) are defined as in the orthogonal cases, but the formulas for a0(· · · ) and
b0(· · · ) are modified by replacing (∧2, ∨2) with (∧2 ⊗χ,∨2 ⊗χ), thereby a(s, c, τ ⊗χ)
and b(s, c, τ ⊗ χ) are products of twisted L-functions.
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4 The γ-factor

In this section we define the local γ-factors, following [GJ72, JPSS83, Sha90, Sou93,
LR05, Kap15]. We proceed with the notation of § 2 and in particular consider the
irreducible representations π of G and τ of GLk, or if G = GLn, τ = τ0 ⊗ χ−1τ∨

0 for
an irreducible representation τ0 of GLk (τ is also generic). Also define χπ = 1 unless
G = GSpinc, in which case it is the restriction of the central character of π to C◦

G,
regarded as a character of F ∗.

With the notation of § 2.6, consider the space (2.9), i.e.,

Hom(G,G)(JU,ψ−1
U

(V (s, Wψ(ρc(τ)) ⊗ χπ)), π∨ ⊗ πι).

(Recall that for G = GLn, π∨ ⊗ πι is replaced with (χkπ)∨ ⊗ π.) According to [GK,
Theorem 2.1], outside a discrete subset of s the dimension of (2.9) is at most 1.

In its domain of absolute convergence, which for entire sections depends only
on the representations, the integral Z(s, ω, f) belongs to (2.9), by Proposition 2.2.
Over p-adic fields the uniqueness result combined with Proposition 2.6 readily imply
the meromorphic continuation of the integral, by virtue of Bernstein’s continuation
principle (in [Ban98]). Over archimedean fields, in § 6.10 we deduce the meromorphic
continuation of the integral along with the continuity of the continuation in the input
data, using multiplicativity arguments and an idea of Soudry [Sou95] (see § 6.7.2).
We proceed over any local field.

The meromorphic continuation of Z(s, ω, f), regarded as a bilinear form, belongs
to (2.9) (for any meromorphic f). Therefore we may study a functional equation
relating the integrals Z(s, ω, f) and

Z∗(s, ω, f) = Z(1 − s, ω, M∗(s, c, τ ⊗ χπ, ψ)f).

We can define the equation directly using the proportionality factor between Z(s, ω,
f) and Z∗(s, ω, f). However, as in [LR05, Kap15], it is advantageous for some ap-
plications (e.g., [ILM17]) to introduce an additional normalization, which produces
better behaved multiplicative factors. Let

ϑ(s, c, τ ⊗ χπ, ψ) =

⎧⎪⎨
⎪⎩

γ(s, τ, ψ)τ(−1)nτ(2)−2n|2|−2kn(s−1/2) G = Sp2n,

χπ(2)−knτ(−1)nτ(2)−2n|2|−2kn(s−1/2) G = SOc, GSpinc,

τ0(−1)n G = GLn .

Here for SOc and GSpinc, n = �c/2� (as we use throughout). Recall that for GSpin2n

we defined the element iG in § 2.5. Set iG = −Ic for G = Sp2n, SO2n and GLn

(Sp2n, SO2n < GL2n), and let iG be the identity element if G = SO2n+1 or GSpin2n+1.
Also denote N = 2n for all groups except G = Sp2n, where N = 2n + 1.

Since (2.9) is at most one dimensional (outside a discrete subset of s), there is a
function γ(s, π × τ, ψ) such that for all data (ω, f),

γ(s, π × τ, ψ)Z(s, ω, f) = π(iG)kϑ(s, c, τ ⊗ χπ, ψ)Z∗(s, ω, f). (4.1)
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Note that γ(s, π×τ, ψ) is well defined, meromorphic and not identically zero. Indeed,
one can choose data for which Z(s, ω, f) is nonzero, the local integrals are meromor-
phic and M∗(s, c, τ ⊗ χπ, ψ) is onto, outside a discrete subset of s. We also need to
address the following minimal cases: for Sp2n and n = 0, define Sp0 as the trivial
group and take γ(s, π×τ, ψ) = γ(s, τ, ψ); for GSpinc and c ≤ 1 put γ(s, π×τ, ψ) = 1
(the integral is over C◦

GSpinc
\ GSpinc).

Remark 4.1. Equation (4.1) agrees with [LR05, § 9] up to factors depending only
on the groups, the central character of τ and a constant to the power s (cf. [Kap15,
Remark 4.4]). In addition here A is fixed and we only consider split groups (hence
we defined SO2n using J2n, implying D = 1 and ε(1/2, τD, ψ) = 1 in the notation of
[LR05, § 9]). The sign τ0(−1) for GLn is compatible with [Gan12, p. 82] (see also
[Kak20]).

Here is our main result regarding the local factors, formulated as in [LR05, Theo-
rem 4]. To simplify the presentation, in the following theorem the case of GLn is
excluded except for (4.8), which defines this γ-factor uniquely. In (4.8), γRS(· · · )
denotes the γ-factor of [JPSS83], or [JS90] over archimedean fields. The local fac-
tors in [JPSS83, JS90] were mainly defined for representations affording a unique
Whittaker model, but as explained in [JPSS83, § 9.4] since all irreducible tempered
representations of general linear groups satisfy this property, one can define these
local factors for all irreducible representations.

Theorem 4.2. The γ-factor satisfies the following properties.

• Unramified twisting: γ(s, π × | det |s0τ, ψ) = γ(s + s0, π × τ, ψ). For the group
GSpinc we can also twist π, then γ(s, |Υ|−s0π × τ, ψ) = γ(s + s0, π × τ, ψ) (Υ
was defined in § 2.5).

• Multiplicativity: Let π be a quotient of IndG
R(σβ′ ⊗ π′), where R is a standard

parabolic subgroup of G, σβ′ ⊗ π′ is an irreducible representation of MR =
Mβ′ × G′, and β′ is a d′ parts composition of l ≤ n. Let τ = IndGLk

Pβ
(τβ) with

τβ = ⊗d
i=1τi, τi = | det |aiτ0,i, a1 ≥ . . . ≥ ad and each τ0,i is square-integrable, or

τ is the essentially square-integrable quotient of IndGLk

Pβ
(τβ) and τβ is irreducible

supercuspidal (including the case β = (1k) over any local field). Then

γ(s, π × τ, ψ) =
d∏

i=1

γ(s, π × τi, ψ), (4.2)

γ(s, π × τ, ψ) = γ(s, π′ × τ, ψ)
d′∏

i=1

γ(s, σi × (τ ⊗ χ−1
π τ∨), ψ). (4.3)

Here if G = Sp2n and l = n, γ(s, π′ × τ, ψ) = γ(s, τ, ψ) as defined above.
• Unramified factors: When all data are unramified,

γ(s, π × τ, ψ) =
L(1 − s, π∨ × τ∨)

L(s, π × τ)
. (4.4)
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• Duality:

γ(s, π∨ × τ, ψ) = γ(s, π × χ−1
π τ, ψ). (4.5)

• Functional equation:

γ(s, π × τ, ψ)γ(1 − s, π∨ × τ∨, ψ−1) = 1. (4.6)

• Dependence on ψ: Denote ψb(x) = ψ(bx), for b ∈ F ∗. Then

γ(s, π × τ, ψb) = χkn
π (b)τ(b)N |b|kN(s−1/2)γ(s, π × τ, ψ). (4.7)

• GLn-factors:

γ(s, π × (τ0 ⊗ χ−1τ∨
0 ), ψ) = γRS(s, π × χτ0, ψ)γRS(s, π∨ × τ0, ψ). (4.8)

• Archimedean property: Over F = R or C, let ϕ : WF → L(GLk ×G) be the
homomorphism attached to τ ⊗π, and let ε(s, r◦ϕ, ψ) and L(s, r◦ϕ) be Artin’s
local factors attached to r ◦ ϕ by Langlands’ correspondence ([Bor79, Lan89]).
Here WF is the Weil group of F ; L(GLk ×G) is the L-group; and r is the
standard representation. Then

γ(s, π × τ, ψ) = ε(s, r ◦ ϕ, ψ)
L(1 − s, r∨ ◦ ϕ)

L(s, r ◦ ϕ)
. (4.9)

• Crude functional equation: Let F be a number field with a ring of adeles A, ψ be
a nontrivial character of F\A, and assume π and τ are cuspidal representations
of G(A) and GLk(A). Let S be a finite set of places of F such that for ν /∈ S,
all data are unramified. Then

LS(s, π × τ) =
∏
ν∈S

γ(s, πν × τν , ψν)LS(1 − s, π∨ × τ∨). (4.10)

Here LS(s, π × τ) is the partial L-function with respect to S.

Furthermore, the γ-factors are uniquely determined by the properties of multiplica-
tivity, dependence on ψ, GLn-factors and the crude functional equation.

Remark 4.3. For k = 1, by the uniqueness property our γ-factor coincides with the
γ-factor of [LR05] for Sp2n; for SOc, Rallis and Soudry [RS05, § 5] showed how to
use the γ-factor of [LR05] defined for Oc to obtain a γ-factor for SOc, which is then
identical with ours.

Remark 4.4. For GSpinc, the choice of Υ is not canonical (as opposed to det, see
[Kap17, § 1.2]). Also regarding (4.4), if π is a quotient of IndGSpinc

Rn,c
(IndGLn

BGLn
(⊗n

i=1πi)⊗
χπ) (Rn,c was defined in § 2.5) and τ = IndGLk

BGLk
(⊗k

j=1ηj),

L(s, π × τ) =
∏
i,j

(1 − χππiηj(�)q−s)−1
∏
i,j

(1 − π−1
i ηj(�)q−s)−1.
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The Satake parameter of π regarded as an element of GLN (C) is

diag(χππ1(�), . . . , χππn(�), π−1
n (�), . . . , π−1

1 (�)). (4.11)

This is compatible with Asgari and Shahidi [AS06, (64)]: they wrote the Satake
parameter using the characters χ1, . . . , χn, χ0χ

−1
n , . . . , χ0χ

−1
1 , χ0 was the central

character which identifies with χπ, and since θ∨
i �→ ε∨

i − ε∨
0 , πi corresponds to χ−1

0 χi

of loc. cit.

Corollary 4.5. If π is a generic representation, our γ-factor is identical with the
γ-factor of Shahidi.

Proof. Shahidi’s γ-factors satisfy the same list of properties ([Sha90, Theorem 3.5]).
For GSpinc, to compare the multiplicative formulas (4.3) and (4.8) to those of
Shahidi, note that the standard intertwining operator takes the representation in-
duced from a maximal parabolic subgroup and τ ⊗π′, to the representation induced
from χ−1

π′ τ∨ ⊗ π′ (χπ′ = χπ). ��

Remark 4.6. The Rankin–Selberg γ-factors for classical groups and generic repre-
sentations were defined in [Sou93, Sou95, Sou00, Kap13a, Kap13c, Kap15]. A refined
definition which satisfies the above list of canonical properties was given in [Kap15],
where the notation Γ(s, π × τ, ψ) was used. With the minor corrections described in
[AK19], the Rankin–Selberg γ-factors for Sp2n and SOc are identical with Shahidi’s,
thereby also with the γ-factors defined here (for generic representations).

5 Proof of Theorem 4.2: Part I: Multiplicativity

The proof that the γ-factors are uniquely determined by the properties of multiplica-
tivity, dependence on ψ, GLn-factors and the crude functional equation follows from
a standard globalization argument as in [LR05, p. 339], we omit the details. The main
part of the proof is devoted to multiplicativity, and since several similar proofs of this
property have appeared in this generality, see [Sou93, Sou95, Sou00, Kap13a, Kap15],
we settle for brief justifications here (they are similar and simpler). For clarity, we
usually treat Sp2n and SO2n together, and for SO2n+1 explain only the modifications;
the proofs for GSpinc then follow by an almost “uniform modification” of the SOc

case (except the unramified twisting); the GLn case is usually simpler. The proof of
the remaining parts of Theorem 4.2 is deferred to § 6 below.

Several arguments are important for deducing additional results. We try to point
them out at the end of each section, to minimize the number of cross references
between separated sections.

We will repeatedly apply the following standard argument to integrals over
unipotent subgroups. Let V denote a space of complex-valued functions on H. The
group H acts on V by right-translations and we assume this action is admissible.
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Lemma 5.1. Let X, Y be unipotent subgroups of H and let ξ ∈ V. Consider an inte-
gral

∫
X ξ(hx)dx and assume for each y ∈ Y ,

∫
X y ·ξ(hx)dx =

∫
X ξ(hx)ψ(< x, y >)dx,

with a non-degenerate pairing <, >. Then x �→ ξ(hx) is a Schwartz function of X,∫
X |ξ(hx)|dx < ∞ and we can choose ξ′ ∈ V such that

∫
X ξ′(hx)dx = ξ(h).

Proof. The proof technique is called “root elimination”, see e.g., [Sou93, § 6.1, § 7.2]
and [Jac09, § 6.1] (see also the proof of [CFGoK, Lemma 9]). ��
Remark 5.2. In the archimedean case the proof uses [DM78]. If there is an auxiliary
dependence of V on a complex parameter s as in § 2.3, one can replace [DM78] by
Corollary A.3.

5.1 Unramified twisting. For the twisting of τ one only needs to observe

ρc(| det |s0τ) = | det |s0ρc(τ),
M∗(s, c, | det |s0τ ⊗ χπ, ψ) = M∗(s + s0, c, τ ⊗ χπ, ψ),
ϑ(s, c, | det |s0τ ⊗ χπ, ψ) = ϑ(s + s0, c, τ ⊗ χπ, ψ).

For GSpinc, changing π by |Υ|−s0 implies that the integrand of Z(s, ω, f) is mul-
tiplied by |Υ|s0(g). Regarding Υ also as a character of H, the definition of the em-
bedding implies |Υ|s0(g) = |Υ|s0((1, g)) = |Υ|s0((1, ιg)). Then since |Υ|−s0(r∨c (x0)) =
|x0|2s0 , we obtain χ(|Υ|−s0π) = | · |2s0χπ and the section |Υ|s0f belongs to

|Υ|s0V (Wψ(ρc(τ)) ⊗ | |2s0χπ) = V (Wψ(| det |s0ρc(τ)) ⊗ χπ).

Also note that

M(s, Wψ(ρc(τ)) ⊗ | · |2s0χπ, wP )|Υ|s0f = M(s, Wψ(ρc(| det |s0τ)) ⊗ χπ, wP )f,

M∗(s, c, τ ⊗ | · |2s0χπ, ψ) = M∗(s, c, | det |s0τ ⊗ χπ, ψ),

where the second equality follows also because |Υ| is trivial on the Weyl elements
and unipotent matrices appearing in (3.4). Then a simple computation shows

ϑ(s, c, τ ⊗ χ(|Υ|−s0π), ψ) = ϑ(s, c, | det |s0τ ⊗ χπ, ψ),

and we conclude γ(s, |Υ|−s0π × τ, ψ) = γ(s, π × | det |s0τ, ψ) = γ(s + s0, π × τ, ψ), as
proved above.

5.2 Multiplicativity II: Identity (4.2). We proceed as in [Kap15, § 8.1].
Start with G = Sp2n, SO2n. By [CFGoK, Lemma 7], ρc(τ) is a quotient of

IndGLkc

Pβc
(⊗d

i=1ρc(τi)). (5.1)

For simplicity, throughout the proof we assume d = 2, i.e., β = (β1, β2). If F is non-
archimedean and τ is a full induced representation we can always assume this, by the
definition of ρc(τ) and transitivity of induction; if τ is essentially square-integrable
or if F is archimedean, we should really work with any d ≥ 2 (in the archimedean
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case even if τ is a full induced representation, we have to apply [Cas80a] because
the analytic properties of (1.3) are only known for degenerate principal series).

The representation τβ of Mβ is irreducible and generic. Let H ′, P ′, U ′
0, δ′ = δ′

0δ
′
1

be the groups and elements defined in § 2 for the G×GLβ2 integral involving π × τ2.
Let L be the standard parabolic subgroup of H with ML = GLβ1c ×H ′. As explained
in [CFGoK, § 3.1] we form the twisted version of (5.1) which is also (k, c). We then
realize the (k, c) model using (1.3). Let ζ ∈ C. If fζ is a section corresponding to

IndH
P (| det |s−1/2 IndGLkc

Pβc
(⊗2

i=1| det |ζiWψ(ρc(τi)))), (ζ1, ζ2) = (ζ,−ζ),

the integral takes the form

Z(s, ω, fζ) =
∫

G

ω(g)
∫

U0

∫

Vβ′c

fζ(s, wβcvδu0(1, ιg))ψ−1(v)ψU (u0) dv du0 dg. (5.2)

For Re(s) � Re(ζ) � 0, the integral (5.2) is absolutely convergent as a triple integral
(see e.g., [Sou00, Lemma 3.1]). We will prove

Z∗(s, ω, fζ)
Z(s, ω, fζ)

=
2∏

i=1

π(iG)−kiϑ(s, c, | det |ζiτi, ψ)−1γ(s, π × | det |ζiτi, ψ).

Since ϑ is holomorphic in ζ, and γ satisfies the unramified twisting property, we may
take ζ = 0 on the r.h.s. (right-hand side). Furthermore, Z(s, ω, fζ) is a meromorphic
function of ζ and s which is well defined as a meromorphic function of s for any fixed
ζ. This follows from the uniqueness result for (2.9) when we include the twists by ζ in
the non-archimedean case and from § 6.10 when the field is archimedean. Moreover,
for a fixed compact set C ⊂ C we can choose A > 0 such that Z(s, ω, fζ) is absolutely
convergent for all Re(s) > A and ζ ∈ C. Hence the Dominated Convergence Theorem
implies limζ→0 Z(s, ω, fζ) = Z(s, ω, limζ→0 fζ) and because (1.3) is entire, the last
limit equals f0 = f and then (1.3) realizes the (k, c) model of ρc(τ). Similarly for
Z∗(s, ω, fζ) (convergence will be in a left half plane). In addition, the denominator
on the l.h.s. can be taken to be not identically zero for ζ = 0 by Proposition 2.6. Thus
we can take ζ = 0 on both sides and conclude (4.2). (One can also justify taking
ζ = 0 by arguing as in [Sou93, p. 66].) Henceforth we omit ζ from the notation.

Denote the triple integral (5.2) by I(f). Write U0 = U ′
0 � (U0 ∩ UL) and observe

the following:

(1) δ−1
Vβ′c normalizes U0 and UL = δ−1

Vβ′c � (U0 ∩ UL),

(2) wβcδ0 = δ′
0wL, where wLUL = U−

L (wL =
(

Iβ1c

I2β2c

ε0Iβ1c

)
),

(3) δ1 = δ′
1,

(4) wL commutes with δ′
1 and U ′

0,
(5) (1, ιg) normalizes UL,
(6) wL(1, ιg) is the element (1, ιg) appearing in the G × GLβ2 integral.



Y. CAI ET AL. GAFA

Using these properties,

I(f) =
∫

UL

Z ′(s, ω, (wLu) · f)ψ−1(u) du. (5.3)

Here Z ′ is the G×GLβ2 integral for π and τ2; ψ(u) is defined by the trivial extension of
the character of δ−1

Vβ′c (the conjugation of the character of Vβ′c) to UL, and (wLu)·f
is regarded as a meromorphic section of V (Wψ(ρc(τ2))). Therefore by (4.1),

γ(s, π × τ2, ψ)I(f) = π(iG)k2ϑ(s, c, τ2, ψ)
∫

UL

Z ′∗(s, ω, (wLu) · f)ψ−1(u) du.

(The justification of this formal step is actually given in the proof of Corollary 5.3
below.) Reversing the manipulations (5.2)–(5.3) we obtain

γ(s, π × τ2, ψ)I(f) = π(iG)k2ϑ(s, c, τ2, ψ)I(M∗(s, c, τ2, ψ)f). (5.4)

Here on MP , M∗(s, c, τ2, ψ)f is a function in the space of

IndGLkc

Pβc
(Wψ(ρc(τ1)) ⊗ Wψ(ρc(τ∨

2 ))).

Next, since the dv-integration of (1.3) comprises the l.h.s. of (3.4),

I(M∗(s, c, τ2, ψ)f) = I(M∗(s, c, τ1 ⊗ τ∨
2 , ψ)M∗(s, c, τ2, ψ)f). (5.5)

Now on the r.h.s. β is replaced by (β2, β1), and the section (restricted to GLkc) is a
function in the space of

IndGLkc

P(β2,β1)c
(Wψ(ρc(τ∨

2 )) ⊗ Wψ(ρc(τ1))).

To complete the proof we use the multiplicativity of the intertwining operators,
namely

M∗(s, c, τ, ψ) = M∗(s, c, τ1, ψ)M∗(s, c, τ1 ⊗ τ∨
2 , ψ)M∗(s, c, τ2, ψ). (5.6)

To see this note that the application of (3.3) to f (with the realization (1.3)) takes
the form ∫

UP

∫

Vβ′c

f(s, wβcvdk,cδ0u)ψ−1(v)ψ−1(u) dv du,

with the characters and dk,c defined in § 3. Applying (1), (2) and (4) to this inte-
gral we obtain the application of (3.3) to f as a section of V (Wψ(ρc(τ2))), as an
inner integral. Note that wβcdk,c = diag(d′, dβ2,c). Applying (3.4) for H ′, the section
changes to M∗(s, c, τ2, ψ)f . Then we apply the functional equation (3.4) for GLkc

(to the dv-integral) to produce the operator M∗(s, c, τ1 ⊗ τ∨
2 , ψ), and repeat (1), (2)

and (4) again for M∗(s, c, τ1, ψ).
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Applying the steps (5.2)–(5.3) to the r.h.s. of (5.5), using (5.6) and the identity

ϑ(s, c, τ1, ψ)ϑ(s, c, τ2, ψ) = ϑ(s, c, τ, ψ),

we conclude γ(s, π × τ, ψ) = γ(s, π × τ1, ψ)γ(s, π × τ2, ψ). The proof is complete.
Exactly the same manipulations apply to the GLn integral. In this case τ = τ0 ⊗

χ−1τ∨
0 ; we assume τ0 = IndGLk

Pβ
(�1 ⊗ �2) (or a quotient if τ0 is square-integrable and

the inducing data is supercuspidal); τi = �i ⊗ χ−1�∨
i and the intertwining operator

applied in (5.5) is replaced by M∗(s, c, �1 ⊗ χ−1�∨
2 , ψ)M∗(s, c, �2 ⊗ χ−1�∨

1 , ψ). The
formula (4.2) for GLn is again

γ(s, π × τ, ψ) = γ(s, π × τ1, ψ)γ(s, π × τ2, ψ).

Consider G = SO2n+1. The proof is similar, except for modifications related to
the embedding of G×G in H and the parity of k. Equality (5.2) remains valid. Also
while U0 and U ′

0 do depend on the parities of k and β2, we always have jβ1U ′
0 < U0.

Hence we write U0 = jβ1U ′
0 � (U0 ∩ UL). Looking at the list of properties above,

item (1) still holds. For (2) use

wL = tβ1

(
Iβ1c

I2β2c

Iβ1c

)
, tβ1 = diag(Ikc−1, (−1)β1I2, Ikc−1)jβ1 .

Equality (3) holds; for (4), wL still commutes with δ′
1, but now wL(jβ1U ′

0) = U ′
0

and this conjugation changes the character ψU |U0 to be the proper character for
the G × GLβ2 integral, i.e., for G × GLk it depends on the parity of k, after the
conjugation it depends on the parity of β2; and (5) is valid. Finally for (6), in the
previous cases wL commutes with (1, ιg), but here this is a bit more subtle: when k
and β2 do not have the same parity (equivalently tβ1 is nontrivial), the constants ε1

and ε2 used in the construction of the integral are swapped and the matrices ι = ιk
and m = mk defined in § 2 change (m depends only on the parity of k, and for fixed
n so does ι). We see that tβ1ιkmk = ιβ2mβ2 . This completes the verification of the
properties leading to (5.3).

We apply the functional equation and reverse the manipulations (5.2)–(5.3), but
if β2 is odd, the resulting inner integral for π × τ∨

2 is slightly modified, since the
section belongs to a space of a representation induced from jβ2P ′: δ′

0, δ′
1, U ′

0 and its
character ψU ′ are different, e.g., δ′

0 is now given by (2.3) (see § 2.4). In both cases
we see that (4) still holds, but (2) and (3) are modified. Let

zβ2 = diag(I(k−1)c+n, −In, jk diag(−2, −1/2)jβ2 , −In, I(k−1)c+n)

if β2 is odd, otherwise zβ2 = I2kc. The integral before reversing (1) is
∫

G

ω(g)
∫

UL

∫

U ′
0

M∗(s, c, τ2, ψ)f(s, jβ2wβcδzβ2(
w−1

L u′
0)u(1, ιg))ψU ′(u′

0)ψ
−1(u) du′

0 du dg.
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Here if β2 is even, w−1
L U ′

0 = jβ1U ′
0 < U0, but for odd β2, w−1

L U ′
0 < jβ2U0. Thus in

all cases zβ2 (w−1
L U ′

0) < U0 and when we change variables in u′
0, the character ψU ′

changes back to its definition when the representation is induced from P ′. We can
also take a subgroup of UL of the form δ−1z−1

β2 Vβ′c, then we can follow (1) in the
opposite direction. Also zβ2 commutes with ι and (if β2 is odd) (1, ιg) �→ zβ2 (1, ιg)
is an outer involution of (1, G), hence we can conjugate zβ2 to the right. We obtain
(5.4), except that the section on the r.h.s. is

((zβ2jβ2) · M∗(s, c, τ2, ψ)f)jβ2 (5.7)

(det zβ2jβ2 = 1). The section M∗(s, c, τ2, ψ)f(s, h) belongs to a space of a represen-
tation induced from jβ2P , but the additional conjugation by jβ2 takes it back to a
section of a space induced from P . Then we can apply (3.4) and obtain (5.5), but
with (5.7) instead of M∗(s, c, τ2, ψ)f on both sides. We may then repeat the steps
above for τ1, and again consider odd β1 separately. If k is even, zβ1zβ2 = I2kc, hence
after applying the functional equation for τ1 we obtain the correct form of the inte-
gral for M∗(s, c, τ, ψ)f (regardless of the parity of, say, β2). When k is odd, either
zβ1 or zβ2 is trivial, and we obtain

Z(1 − s, ω, ((zkjk) · M∗(s, c, τ, ψ)f)jk).

At this point conjugating zk to the left and jk to the right, we reach∫

G

ω(g)
∫

U0

∫

Vβ′c

M∗(s, c, τ, ψ)f(s, jk(wβcv)δu0(1, ιg))ψ−1(v)

× ψU (u0) dv du0 dg = Z∗(s, ω, f),

with δ, U0 and ψU defined correctly (i.e., for a section of a space induced from jkP ).
The proof of the orthogonal cases extends to GSpinc as follows. All conjugations

of unipotent subgroups above remain valid. When we write wβcδ0 = δ′
0wL, the

elements δ0 and δ′
0 were fixed in the definition of the integral, and the choice of wβc

is canonical by our identification of GLkc with a subgroup of MP . Then wL is already
defined uniquely, it is a representative for the Weyl element corresponding to the
permutation matrix wL in SO2kc. When c is even, det wβc = 1 hence wβc ∈ SLkc,
and by the definition of the embedding of GLkc in MP (see § 2.5), wβc ∈ Spin2kc.
Therefore wL ∈ Spin2kc is one of the elements in the preimage of the matrix wL.
For odd c, when detwβc = (−1)β1β2 = −1, [diag(−1, Ikc−1), 1]wL ∈ Spin2kc (the
element [diag(−1, Ikc−1), 1] commutes with δ′

0). In both cases (6) holds. Finally, the
intertwining operators are now M∗(s, c, τi ⊗ χπ, ψ) and M∗(s, c, τ1 ⊗ χ−1

π τ∨
2 , ψ).

The proof has the following corollary, which can be used to reduce the proof of
several properties of the integrals to the case of an essentially tempered τ , or even a
character for archimedean fields. Assume τ is an irreducible generic representation of
GLk such that ρc(τ) is a quotient of (5.1), with any d ≥ 2 (d = k over archimedean
fields) and where the representations τi appearing in (5.1) are irreducible generic.
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Let V ′(s, Wψ(ρc(τd))⊗χπ) be the space corresponding to the representation induced
from P ′ to H ′, where H ′ and P ′ are the groups and elements defined in § 2 for the
G×GLβd

integral involving π×τd. Also recall that π is an irreducible representation
of G and let ω be a matrix coefficient of π∨.

Corollary 5.3. For every entire section f ′ ∈ V ′(Wψ(ρc(τd))⊗χπ) there is an entire
section f ∈ V (Wψ(ρc(τ))⊗χπ) such that Z(s, ω, f) = Z(s, ω, f ′). Over archimedean
fields f is smooth.

Proof. The proof is a similar to [Sou00, Lemma 3.4]. Since ρc(τ) is a quotient of (5.1)
and using transitivity of induction, we can regard functions in V (s, Wψ(ρc(τ)) ⊗
χπ) as complex-valued functions on H × GLβ1c × . . . × GLβd−1c ×H ′ such that the
mapping h′ �→ f(s, h, a, h′) in particular, belongs to V ′(s, Wψ(ρc(τd)) ⊗ χπ). Again,
for simplicity only we set d = 2.

Assume F is p-adic. Given f ′, choose an entire section f such that wL · f is
supported in LN , where N is a small neighborhood of the identity in H, and wL ·
f(s, v, Iβ1c, h

′) = f ′(s, h′) for all s and v ∈ N . Since f ′ is entire, one can take N
independently of s even though it depends on f ′ (because there is a neighborhood
of the identity in H ′ fixing f ′ for all s). According to (5.3),

I(f) =
∫

UL

Z ′(s, ω, (wLuwL) · f)ψ−1(u) du.

Then we see that wLu belongs to the support of wL ·f if and only if the coordinates of
u are small, hence the integral reduces to a nonzero measure constant multiplied by
Z ′(s, ω, wL ·f) = Z ′(s, ω, f ′). This computation is justified for Re(s) � 0 and ζ = 0,
since UL contains the conjugation of Vβ′c (see (1) in the proof), hence the inner
dv-integral in (5.2) is over elements of Vβ′c which belong to a compact subgroup of
GLkc. The result now follows by meromorphic continuation.

Over archimedean fields, we can define an entire section f ∈ V (Wψ(ρc(τ)) ⊗ χπ)
such that wL · f is supported in LU−

L , wL · f(s, h′u) = φ(u)f ′(s, h′) for u ∈ U−
L

where φ is a compactly supported Schwartz function, and
∫
U−

L
φ(u)du = 1. Then we

proceed as above. ��
5.3 Multiplicativity I: Identity (4.3).

5.3.1 The groups Sp2n and SO2n. Let G = Sp2n, SO2n. The case l = n essentially
follows from [CFGK19, Lemma 27], but the general case is more involved. It is enough
to consider a maximal parabolic subgroup R, so assume σ is a representation of
GLl, l ≤ n. For SO2n and l = n there are two choices for R, in this case we assume
R = {( a z

a∗ ) : a ∈ GLn} (the other case of j1R can be dealt with similarly). Put
ε = σ⊗π′. We prove the (stronger) statement for π = IndG

R(ε). Then π∨ = IndG
R(ε∨).

If 〈, 〉 is the canonical pairing on ε ⊗ ε∨ and ϕ ⊗ ϕ∨ belongs to the space of π ⊗ π∨,

〈ϕ(rg1), ϕ∨(rg2)〉 = δR(r)〈ϕ(g1), ϕ∨(g2)〉, ∀g1, g2 ∈ G, r ∈ R.
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Thus we can realize the matrix coefficient on π∨ using a semi-invariant measure dg0

on R\G (see [BZ76, 1.21]), as in [LR05, § 4]. Take

ω(g) =
∫

R\G

〈ϕ(g0), ϕ∨(g0g)〉 dg0. (5.8)

Let G	 < G × G be the diagonal embedding. Since for any g ∈ G,∫

R\G

〈ϕ(g0gg1), ϕ∨(g0gg2)〉 dg0 =
∫

R\G

〈ϕ(g0g1), ϕ∨(g0g2)〉 dg0,

and by Corollary 2.3 the integral of f over U0 is invariant under (g, ιg) ((g1, g2) ∈ H
was defined in § 2.2), we can write Z(s, ω, f) in the form∫

G�\G×G

∫

R\G

∫

U0

〈ϕ(g0g1), ϕ∨(g0g2)〉f(s, δu0(g1,
ιg2))ψU (u0) du0 dg0 d(g1, g2).

Regard the dg0-integral as an integral over R	\G	, collapse it into the d(g1, g2)-
integral, and domain using∫

R�\G×G

d(g1, g2) =
∫

R×R\G×G

∫

R�\R×R

d(r1, r2) d(g1, g2) =
∫

R×R\G×G

∫

R

dr d(g1, g2).

We obtain, in a right half plane (ensuring absolute convergence)∫

R×R\G×G

∫

MR

∫

UR

∫

U0

δ
−1/2
R (m)〈ϕ(g1), ε∨(m)ϕ∨(g2)〉 (5.9)

f(s, δu0(g1,
ι(zmg2)))ψU (u0) du0 dz dmd(g1, g2).

Recall that f(s, ·) belongs to a space induced from Wψ(ρc(τ)). Since we already
proved (4.2), we can assume τ is essentially tempered, thus the results of [CFGoK,
§ 3.2] are applicable to ρc(τ) and we can realize the (k, c) model using (1.4) and
(1.5). Applying this to f(s, ·) we obtain a section of the space of the representation

IndH
P (| det |s−1/2 IndGLkc

P(kl,k(c−l))
((Wψ(ρl(τ)) ⊗ Wψ(ρc−l(τ)))δ−1/(2k)

P(kl,k(c−l))
)).

This adds the Weyl element κl,c−l and a unipotent integration over a subgroup, which
we denote by V1. Then we apply (1.4) and (1.5) again, this time to the bottom right
k(c − l) × k(c − l) block to obtain a section of the space of

IndH
P (| det |s−1/2 IndGLkc

P(kl,kc′,kl)
((Wψ(ρl(τ)) ⊗ Wψ(ρc′(τ)) ⊗ Wψ(ρl(τ)))δ−1/(2k)

P(kl,kc′,kl)
)),

(5.10)

with c′ = c − 2l = 2(n − l). The additional Weyl element is diag(Ikl, κc′,l) and the
unipotent integration is over a subgroup V2. Note that if c′ = 0, diag(Ikl, κc′,l) = Ikc
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and V2 is trivial. Both applications do not change the dependence on s, because we
only change the realization of Wψ(ρc(τ)). Now for any h ∈ H, the du0-integration
of (5.9) takes the form∫

U0

∫

V1

∫

V2

f(s, diag(Ikl, κc′,l)v2κl,c−lv1δu0h)ψU (u0) dv2 dv1 du0. (5.11)

By matrix multiplication we see that δ−1
v1u0 = uv1

δ−1
0 v1 and (κl,c−lδ)−1

v2u0 =
uv2

(κl,c−lδ0)−1
v2, where the elements uvi

∈ U0 satisfy ψU (uvi
) = ψU (u0). Thus we

may shift v1 and v2 to the right of u0. Also note that (κl,c−lδ0)−1
v2 normalizes δ−1

0 V1,
and for simplicity denote the resulting semi-direct product (where vi varies in Vi) by
V , and set κ = diag(Ikl, κc′,l)κl,c−l. Note that V is the subgroup of V(ck) with blocks
vi,j (in the notation of (1.1)) of the form(

0l 0 0
∗ 0c′ 0
∗ ∗ 0l

)
, (5.12)

where for any j, 0j ∈ Matj is the zero matrix. Then the last integral equals∫

V

∫

U0

f(s, κδu0vh)ψU (u0) du0 dv.

Plugging this back into (5.9), we obtain∫

R×R\G×G

∫

MR

∫

UR

∫

V

∫

U0

δ
−1/2
R (m)〈ϕ(g1), ε∨(m)ϕ∨(g2)〉 (5.13)

f(s, κδu0v(g1,
ι(zmg2)))ψU (u0) du0 dv dz dmd(g1, g2).

As above, we proceed in Re(s) � 0 so that the multiple integral is absolutely
convergent.

For z ∈ UR we see that

κδu0v(1, ιz) = κδ0(1, ιz)κ δ0 xz δ1 uz rz au0,z bz v, (5.14)

where xz ∈ V((k−1)c+c/2,c/2); uz ∈ U0 depends on z; rz =
(

Ikc u
Ikc

) ∈ UP is such that
all coordinates of u are zero except the bottom left c × c block, which equals(

0l z1 z2
0c′ z′

1
0l

)
, (5.15)

au0,z ∈ V ∩V((k−1)c,c), bz ∈ V(kc−l,l) ∩V((k−1)c,c) (in particular au0,z and bz commute)
and au0,z depends on both u0 and z. Observe the following properties.

(1) Since κδ0(1, ιz) ∈ V(kl,k(c−l)) � UP , h �→ f(s, h) is left-invariant under κδ0(1, ιz).
(2) κδ0xz belongs to (V(lk) × V(c′k)) � V(kl,k(c−l)), changing variables in uz affects

ψU , but this cancels with the character emitted when κδ0xz transforms on the
left of f , i.e., f(s, κδ0xzδ1uzh)ψU (u0) = f(s, κδu0h)ψU (u0).
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(3) δu0rzbz = δ0bzδ1ubz
rz, where ubz

∈ U0, and as with κδ0xz, f(s, κδ0bzδ1ubz
rzh)

ψU (u0) = f(s, κδu0rzh)ψU (u0).
(4) Lastly, by a change of variables au0,zv �→ v.

Now if U◦ is the subgroup of elements u0rz and we extend ψU trivially to U◦, (5.13)
becomes ∫

R×R\G×G

∫

MR

∫

V

∫

U◦

δ
−1/2
R (m)〈ϕ(g1), ε∨(m)ϕ∨(g2)〉 (5.16)

f(s, κδuv(g1,
ι(mg2)))ψU (u) du dv dmd(g1, g2).

Let

Hσ = GL2kl, P σ, Uσ
0 , δσ = δσ

0 δσ
1

be the groups and elements defined in § 2 for the GLl × GLk integral, with the
exception that for δσ

1 we actually take δ−ε0
1 instead of δ1 defined there. Also let

H ′, P ′, U ′
0, δ′ = δ′

0δ
′
1

be the notation for the G′ × GLk integral. Fix the standard parabolic subgroup
L < H with ML = Hσ ×H ′, and regard the groups Hσ and H ′ as subgroups of ML.

Put κ• = δ−1
0 κ = diag(κl,c′ , Ikl)κc−l,l. Conjugating U◦ by κ•, we obtain

U• = κ•
U◦ < UP .

Denote the top right kc × kc block of elements of U• by (ui,j)1≤i,j≤3. We see

that
(

Ikl u1,1

Ikl

)
is a general element of Uσ

0 and similarly
(

Ikc′ u2,2

Ikc′

)
of U ′

0, u2,1 ∈
Matkc′×kl (resp., u3,1 ∈ Matkl) and its bottom left c′ × l (resp., l × l) block is 0. This
determines the blocks u3,2 and u3,3 and the dimensions of all the blocks uniquely,
and the remaining blocks take arbitrary coordinates such that U• < H. The restric-
tion of ψU to U• is given by the product of characters ψ−ε0

Uσ
0

and ψU ′
0

defined on the
corresponding coordinates u1,1 and u2,2 (ψ−ε0

Uσ
0

= ψUσ
0

for Sp2n).
Write δ0 = w−1δ′

0δ
σ
0 w1 (δ′

0 ∈ H ′ < ML), where

w−1 = diag(Ikl,

(
Ikc′

Ikl

ε0Ikl

Ikc′

)
, Ikl). (5.17)

For Sp2n, w1 = w. Here the case of SO2n requires additional treatment: if kl is odd,
det w = −1, whence this decomposition of δ0 does not hold in H. To remedy this
we let j = jkl, then δ0 = w−1j jδ′

0
jδσ

0 jw1 and we re-denote w−1 = w−1j, δ′
0 = jδ′

0,
δσ
0 = jδσ

0 and w1 = jw1, and also re-denote H ′ = jH ′ and similarly for Hσ (then
U ′

0, U
σ
0 and the characters are conjugated by j as well). Also set j = I2kc for Sp2n.

Then

w1((δ
−1
0 κδ0)δ1) = δσ

1 δ′
1
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and if [ui,j ] is the subgroup of U• generated by elements whose coordinates ut,t′
are

zeroed out for (t, t′) �= (i, j),

Uσ
0 = w1 [u1,1, u3,3], U ′

0 = δσw1 [u2,2], Z = δ′δσw1 [u1,2, u1,3, u2,3],

O = [u2,1, u3,1, u3,2].

In coordinates

jZ =

{
diag(Ikl,

(
Ikl z1 z2

Ikc′
Ikc′ z∗

1
Ikl

)
, Ikl) ∈ H

}
. (5.18)

We write the integration du as an iterated integral according to these subgroups.
Returning to (5.16), we obtain∫

R×R\G×G

∫

MR

∫

V

∫

O

∫

Uσ
0

∫

U ′
0

∫

Z

δ
−1/2
R (m)〈ϕ(g1), ε(m)ϕ∨(g2)〉 (5.19)

f(s, w−1zδ′u′δσuσw1o κ•v(g1,
ιmιg2))ψU ′(u′)ψ−ε0

Uσ (uσ)
dz du′ duσ do dv dmd(g1, g2).

Denote m(s, τ, w)f(s, h) =
∫
Z f(s, w−1zh)dz. Let Y < H be the standard para-

bolic subgroup with MY = GLkl × GLkc′ × GLkl and Y < P . When c′ = 0, wMY =
GLkl ×j GLkl and if c′ > 0, wMY = GLkl × GLkl ×j GLkc′ . Let D < H denote the
standard parabolic subgroup with MD = wMY and D < jP . Then m(s, τ, w) is a
standard intertwining operator taking representations IndH

Y (· · · ) to IndH
D(· · · ). Using

(5.10) and transitivity of induction, m(s, τ, w) becomes an intertwining operator
from the space of

IndH
Y

(
(| det |s−1/2Wψ(ρl(τ))⊗| det |s−1/2Wψ(ρc′(τ))⊗| det |s−1/2Wψ(ρl(τ)))δ−1/(2k)

P(kl,kc′,kl)

)

to the space of

IndH
jL

(
δ
−1/2
jL

(
| det |dV (s, Wψ(ρl(τ)) ⊗ Wψ(ρl(τ∨))) ⊗ V (s, Wψ(ρc′(τ)))

))
. (5.20)

Here d is a constant obtained from the modulus characters (d = (k − 1/2)(c − l) −
ε0/2).

Let m = diag(a, g, a∗) ∈ MR, where a ∈ GLl, g ∈ G′ and a∗ is uniquely deter-
mined by a. Then dm = dadg. We see that (1, ι diag(a, Ic′ , a∗)) which we briefly
denote by (1, ιa) commutes with κ•v, normalizes O (with a change of measure
| det a|(1−k)(c−l)) and

w1(1, ιa) = diag(Ikl, a, I2(kc−kl−l), a
∗, Ikl) = (1, a)σ,

that is, the embedding of GLl in the GLl × GLk integral (ισ = Il).
Now consider (1, ι diag(Il, g, Il)) = (1, ιg). The complication here is that (1, ιg)

does not normalize the subgroup δ−1
0 V1 < V nor O. To handle this, consider the
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subgroup O1 < O where all the coordinates of u2,1 are zero except the bottom right
c′ × ((k − 1)l) block which is arbitrary, and u3,1 is also zero except on the anti-
diagonal of l × l blocks (u3,1 ∈ Matkl), which are arbitrary, except the bottom left
l × l block which is zero.

Then (κ•)−1
O1 is normalized by V , denote V • = V �

(κ•)−1
O1. Also write O as a

direct product O◦ × O1 for a suitable O◦ < O, and put g̃ = κ•
(1, ιg). The upshot is

that (1, ιg) normalizes V •, g̃ commutes with the elements of O◦ and w1 g̃ = (1, ι′
g)′,

the embedding in the G′ × GLk integral. After pushing (1, ιg) to the left, we may
rewrite the integration over O and V1 as before. The integral becomes

∫

R×R\G×G

∫

V

∫

O

∫

GLl

∫

Uσ
0

∫

G′

∫

U ′
0

δ
−1/2
R (a)| det a|(1−k)(c−l)〈ϕ(g1), σ∨(a) ⊗ π′∨(g)ϕ∨(g2)〉

(5.21)

m(s, τ, w)f(s, (δ′u′(1, ι′
g)′) (δσuσ(1, a)σ)w1o κ•v(g1,

ιg2))

ψU ′(u′)ψ−ε0
Uσ (uσ) du′ dg duσ da do dv d(g1, g2).

Note that δ
−1/2
R (a)| det a|(1−k)(c−l) = | det a|−d. Considering this integral as a func-

tion of the section m(s, τ, w)f , denote it by I(m(s, τ, w)f). The duσda-integral is
the GLl × GLk integral of σ × (τ ⊗ τ∨); the du′dg-integral is the G′ × GLk integral
of π′ × τ . Thus multiplying (5.21) by the appropriate γ-factors we obtain, formally
at first,

γ(s, σ × (τ ⊗ τ∨), ψ)γ(s, π′ × τ, ψ)Z(s, ω, f)

= σ(−1)kτ(−1)lπ′(−Ic′)kϑ(s, c′, τ, ψ)I(M∗(s, l, τ ⊗ τ∨, ψ)
× M∗(s, c′, τ, ψ)m(s, τ, w)f). (5.22)

Note that for SO2n the integral varies slightly from the definition in § 2 because δσ
1

and ψUσ are the inverses of those defined there (i.e., −ε0 = −1 for SO2n). However,
this does not change the γ-factor, to see this replace f in (4.1) with its right translate
by diag(−Ikl, Ikl).

We justify the formal application of the functional equations. First note that the
d(g1, g2)-integration is over a compact group, by the Iwasawa decomposition. Hence
over p-adic fields it is immediate that this integration can be ignored for this purpose.
Over archimedean fields, one can apply Corollary A.3 to replace f with a sum of
convolutions against Schwartz functions on G× ιG. The computation of the integrals
will then justify (5.22) once the inner integrals are shown to be proportional (with
the correct factor). Alternatively, once we know the inner integral is meromorphic
and continuous in the input data, we can use the Banach–Steinhaus Theorem as in
[Sou95, § 5, Lemma 1] (see § 6.10). We proceed to handle the intertwining opera-
tor and dodv-integral. Since we are not confined to a prescribed s, we can assume
m(s, τ, w) as a mapping from (5.10) to (5.20) is onto. While V (s, Wψ(ρc(τ))) is only
a subrepresentation of (5.10) (ρc(τ) is embedded in (1.4)), for the proof of (5.22)



GAFA THE GENERALIZED DOUBLING METHOD: LOCAL THEORY

we can consider an arbitrary (meromorphic section) f of (5.10) (which is a stronger
statement). Now one can take m(s, τ, w)f which is supported in jLU−

jL, such that its
restriction to U−

jL is given by a Schwartz function. Then the integrals over V and O
reduce to a constant (see Corollary 5.3). This justifies the formal step. Alternatively,
note that for fixed g1 and g2 the integrand is a Schwartz function of o and v (see
the proof of [CFGK19, Lemma 27] and repeatedly use Lemma 5.1); this can also be
used for a justification.

Next, applying the same manipulations (5.9)–(5.21) to Z∗(s, ω, f) yields

Z∗(s, ω, f) = I(m(1 − s, τ∨, w)M∗(s, c, τ, ψ)f).

For any b ∈ F ∗ set C(b) = τ(b)2l|b|2kl(s−1/2). To complete the proof we claim

M∗(s, l, τ ⊗ τ∨, ψ)M∗(s, c′, τ, ψ)m(s, τ, w) = C(1/2)m(1 − s, τ∨, w)M∗(s, c, τ, ψ).
(5.23)

Granted this, since c = c′ + 2l,

C(1/2)τ(−1)lϑ(s, c′, τ, ψ) = ϑ(s, c, τ, ψ), (5.24)

and also π(−Ic) = σ(−1)π′(−Ic′), we obtain the result:

γ(s, σ × (τ ⊗ τ∨), ψ)γ(s, π′ × τ, ψ)Z(s, ω, f) = π(−Ic)kϑ(s, c, τ, ψ)Z∗(s, ω, f).

We mention that for Sp2n, if c′ = 0, by definition γ(s, π′ × τ, ψ) = γ(s, τ, ψ).
Set d0 = −(c − l)/2 and s0 = s − 1/2, and consider the representation

IndH
jL

(
δ
−1/2
jL

((
| det |dV (1 − s, Wψ(ρl(τ∨)) ⊗ Wψ(ρl(τ))

))

⊗ V (1 − s, Wψ(ρc′(τ∨)))
))

(5.25)

∼= IndH
D(| det |d0−s0ρl(τ∨) ⊗ | det |d0+s0ρl(τ) ⊗ | det |−s0ρc′(τ∨)). (5.26)

The space H of intertwining operators from V (s, Wψ(ρc(τ))) to the space of (5.26)
is, outside a discrete subset of s, at most one dimensional. This follows from the
filtration argument in [LR05, Lemma 5], which extends to any k ≥ 1. Briefly, write
H =

∐
h PhD where h varies over the representatives of W (MP )\W (H)/W (MD),

and for h and ν ≥ 0 define

Hν(h) = HomDh
(| det |s0ρc(τ) ⊗ h

(
| det |−d0+s0ρl(τ) ⊗ | det |−d0−s0ρl(τ∨)

⊗| det |s0ρc′(τ)
)

⊗ Λh,ν , θh).

Here Dh = hD∩P ; over archimedean fields Λh,ν is the algebraic dual of the symmetric
ν-th power of Wh = Lie(H)/(Lie(P ) + Ad(h)Lie(D)), and over non-archimedean
fields it is simply omitted; and θh(x) = δDh

(x)δ−1/2
D (h−1

x)δ−1/2
P (x). Denote h ∼ h′

if PhD = Ph′D. According to the Bruhat Theory ([Sil79, Theorems 1.9.4–5] over
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non-archimedean, [War72, Proposition 5.2.1.2, Theorem 5.3.2.3] over archimedean
fields), dimH ≤ ∑

h,ν dim Hν(h) (a finite sum in the p-adic case). But arguing as in
[LR05, Lemma 5] using central characters (see also [GK, § 2.1.2 and (2.7)]), there is
a discrete subset B ⊂ C such that for all s /∈ B, Hν(h) = 0 except when

h ∼ h0 =

(
Ik(c−l)

Ikl

Ikl

Ik(c−l)

)
j

⎛
⎜⎝

Ikl

Ikl

Ikc′
ε0Ikc′

Ikl

ε0Ikl

⎞
⎟⎠ , ν = 0.

Note that θh0 = δ
1/2
P(kl,kc′,kl)

. Here since h0 is not the longest Weyl element, in the
archimedean case dim Λh0,ν > 1 unless ν = 0. To eliminate Hν(h0) for ν > 0 observe
that each nonzero subspace of Wh0 is an eigenspace for the action of tIkc ∈ CMP

<
Dh corresponding to an eigenvalue |t|a for some integer a > 0 (direct computation).
Then we can consider a second filtration, of Λh0,ν , such that the action of CMP

on
the i-th constituent is given by |t|ai with ai < 0, and since CMP

acts trivially on

| det |s0ρc(τ) ⊗ h0

(
| det |−d0+s0ρl(τ) ⊗ | det |−d0−s0ρl(τ∨) ⊗ | det |s0ρc′(τ)

)

(ρc(τ) admits a central character) and θh0 is trivial on CMP
, Hν(h0) = 0 when ν > 0.

It remains to consider H0(h0). Since V(kl,kc′,kl) < h0UD∩P < Dh0 , each morphism

in H0(h0) factors through δ
1/2
P(kl,kc′,kl)

JV(kl,kc′,kl)
(ρc(τ)) (see e.g., [GK, (2.5)]) whence

H0(h0) becomes

HomMD
(| det |s0JV(kl,kc′,kl)

(ρc(τ)) ⊗
(
| det |−d0−s0ρl(τ∨) ⊗ | det |−s0ρc′(τ∨)

⊗| det |d0−s0ρl(τ∨)
)

, 1)

= HomMD
(JV(kl,kc′,kl)

(ρc(τ)), | det |d0ρl(τ) ⊗ ρc′(τ) ⊗ | det |−d0ρl(τ)).

When k = 1, dim H0(h0) = 1 immediately because ρc(τ) = τ ◦ det. In light of (1.4)
(applied twice, see (5.10)), the proof of [CFGoK, Lemma 9] (where we considered
an arbitrary summand) and the Frobenius reciprocity law ([Cas80a], [HS83, Theo-
rem 4.9], [Cas89]) there are dimH0(h0) constituents of ρc(τ) which afford (k, c) func-
tionals. Since ρc(τ) is (k, c) and the generalized Whittaker functor is exact ([GGS17,
Corollary G], over p-adic fields [BZ76]), dim H0(h0) = 1.

Since both sides of (5.23) take V (s, Wψ(ρc(τ))) into the space of (5.25) which is
isomorphic to (5.26), they are proportional. It remains to compute the proportion-
ality factor. We argue as in [LR05, Lemma 9]. Denote

λ = λ2(s, l, τ ⊗ τ∨, ψ)λ(s, c′, τ, ψ),
λ∨ = λ2(1 − s, l, τ∨ ⊗ τ, ψ)λ(1 − s, c′, τ∨, ψ).

Here λ2(· · · ) are the functionals appearing in (3.4) except that the character ψ
appearing in (3.3) is replaced with ψ−2ε0 (but ρl(τ) is still realized in Wψ(ρl(τ))).
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Define the following functionals: for f0(s, ·) in the space of (5.20) and f∨
0 (1 − s, ·) in

the space of (5.25),

Λλ(f0) =
∫

O•
λf0(s, w1o

•κ•) do•, Λλ∨(f∨
0 ) =

∫
O•

λ∨f∨
0 (1 − s, w1o

•κ•) do•.

Here O• is the subgroup κ•
V �O

′
, where O

′
is obtained from O be replacing the zero

blocks in u2,1 and u3,1 by arbitrary coordinates; λ2(s, l, τ⊗τ∨, ψ) and λ(s, c′, τ, ψ) are
applied to the restriction of f0(s, ·) to MjL. The integrands are Schwartz functions
on O•. This follows from Lemma 5.1 and the fact that using right translations of f
by unipotent elements, we can eliminate the roots in O•. For a description of these
elements see the proof of [CFGK19, Lemma 27] (U3 in their notation corresponds to
O, the additional blocks of O

′
can be handled similarly). See also [LR05, Lemma 8]

and the example on [LR05, p. 325].
First we show

λ(s, c, τ, ψ)f = Λλ(m(s, τ, w)f). (5.27)

This actually follows from the arguments above: repeat the steps (5.9)–(5.19) (ex-
cluding arguments regarding G and δ1), in particular apply (1.5) twice, and (5.16)
is modified by replacing (U◦, ψU ) with UP and its character defined by λ(s, c, τ, ψ).
Specifically,

λ(s, c, τ, ψ)f =
∫

V

∫

UP

f(s, κδ0uv)ψ−1(u) du dv

=
∫

O•

∫

UP σ

∫

UP ′

∫

Z

f(s, w−1zδ′
0u

′δσ
0 uσw1o

•κ•)ψ−1(u′)ψ−1
−2ε0

(uσ) d(· · · )

= Λλ(m(s, τ, w)f).

Here (UP σ , UP ′) replaced (Uσ
0 , U ′

0) in (5.19) (keeping the identification of Hσ or H ′

with their conjugations by j as above), and note that we obtain ψ−2ε0 on Uσ.
Now on the one hand, using (5.27) and applying (3.4) twice implies

λ(s, c, τ, ψ)f = Λλ∨(C(2)M∗(s, l, τ ⊗ τ∨, ψ)M∗(s, c′, τ, ψ)m(s, w, τ)f). (5.28)

Here C(2) is obtained when in (3.4), f is replaced with its right translate by
diag(−2ε0Ikl, Ikl). On the other hand again by (5.27),

λ(1 − s, c, τ∨, ψ)M∗(s, c, τ, ψ)f = Λλ∨(m(1 − s, τ∨, w)M∗(s, c, τ, ψ)f). (5.29)

Then (5.23) follows when we equate the left hand sides of (5.28) and (5.29) using
(3.4).
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5.3.2 The group SO2n+1. Let G = SO2n+1. We can argue as above, and reach
(5.9). Then apply (1.4)–(1.5) twice and obtain a section of the space induced from
(5.10), with c′ = c − 2l = 2(n − l) + 1. We still obtain (5.13), except that V is
slightly different: this is because the last c columns of v1 are affected differently by
δ0 in the conjugation δ−1

0 v1 (permuted and for odd k, one column is negated). Now
jkV < V(ck) (jk = jkc because c is odd), the blocks vi,j of jkV are given by (5.12) for
j < k, and the blocks vi,k take the form

(
0l 0 0
∗ 0c′ 0∗ a2 a3

)
, a3 ∈ Matl, (5.30)

where the rightmost column of a2 and first l − 1 columns of a3 are zero.
For z ∈ UR, we see that (5.14) holds except the following modifications: jkxz ∈

V((k−1)c+n,n+1); jkrz =
(

Ikc u
Ikc

)
and instead of (5.15), the bottom left c × c block of

u becomes (
z0 0l z1 z2

02(n−l) z′
1

0l

0 z′
0

)
; (5.31)

jkau0,z ∈ V ∩ V((k−1)c,c) and jkbz = bz ∈ V(kc−l−1,l+1) ∩ V((k−1)c,c). Properties (1)–(4)
hold and we reach the analog of (5.16).

Now we use the notation Hσ, Uσ
0 , H ′, U ′

0 etc., for the GLl × GLk and G′ × GLk

integrals. As with the SO2n case, we take δσ
1 to be the inverse of this element defined

in § 2. Put

δk,n = diag
((

In

(−1)k

In

)
,

(
In

(−1)k

In

))
jk ∈ O2c

and w0 =
(

Ikc

Ikc

)
, then δ0 = w0 diag

(
I(k−1)c, δk,n, I(k−1)c

)
. Set

κ• = (w−1
diag(I(k−1)c+2l, δ

−1
k,n−l, I(k−1)c+2l))(

w−1
0 κ) diag(I(k−1)c, δk,n, I(k−1)c),

(5.32)

where w−1 is the matrix given in (5.17) (here w1 = w). Then

κδ0 = w−1δ′
0δ

σ
0 wκ•, κδ = w−1δ′δσwκ•.

Note that det κ• = 1. Then U• = κ•
U◦, and observe that (w−1jkw)U• < UP . The

subgroup U• now plays the same role as in the previous cases.
For odd kl we re-denote w−1 = w−1jkl (because then the determinant of (5.17)

is −1), δ′ = jklδ′, H ′ = jklH ′ and similarly for U ′
0 and ψU ′ (c′ > 0, always, hence

jklδσ = δσ and Hσ remains the same when kl is odd). Let

Uσ
0 = w[u1,1, u3,3], U ′

0 = δσw[u2,2], Z = δ′δσw[u1,2, u1,3, u2,3],

O = [u2,1, u3,1, u3,2].
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Here jkU ′
0 < UP ′ (the form of P ′ also depends on the parity of kl) and jklZ is given

by the r.h.s. of (5.18) (here j = jkl). The integral becomes the analog of (5.19). We
denote m(s, τ, w)f as above, it belongs to (5.20) (with j = jkl, d = (k − 1/2)(c − l)).

Let m = diag(a, g, a∗) ∈ MR. We see that (1, ιa) commutes with v (look at
(5.30)), κ•

(1, ιa) normalizes O (multiplying the measure by | det a|(1−k)(c−l)) and
wκ•

(1, ιa) = (1, a)σ. Regarding (1, ιg), we define O◦ × O1 and V • exactly as above
(except that c′ is different). Then (1, ιg) normalizes V •, κ•

(1, ιg) commutes with the
elements of O◦ and wκ•

(1, ιg) = (1, ι′
g)′, the embedding in the G′ × GLk integral.

Finally we obtain the analog of (5.21), i.e.,
∫

R×R\G×G

∫

V

∫

O

∫

GLl

∫

Uσ
0

∫

G′

∫

U ′
0

| det a|−d〈ϕ(g1), σ∨(a) ⊗ π′∨(g)ϕ∨(g2)〉 (5.33)

m(s, τ, w)f(s, (δ′u′(1, ι′
g)′) (δσuσ(1, a)σ)wo κ•v(g1,

ιg2))

ψU ′(u′)ψ−1
Uσ(uσ) du′ dg duσ da do dv d(g1, g2).

Note that for l = n, G′ = {1} but if k > 1, U ′
0 = jk{( Ik x

Ik

) ∈ SO2k} is nontrivial,

δ′ =
(

Ik

Ik

)
diag(Ik−1, (−1)kjk, Ik−1), ψU ′(u′) = ψ−1((−1)k 1

2(jku′)k−1,k+1)

and we have a Whittaker functional on V (s, Wψ(τ)). For even k, the rest of the proof
now follows as above.

For odd k, recall that the integral Z∗(s, ω, f) is slightly different from Z(s, ω, f)
(see § 2.4). Since we already proved (4.2), and also (4.3) for even k, it is enough to
assume k = 1. This is clear over archimedean fields. Over p-adic fields, let τ be an
irreducible tempered representation of GL2k+1 and take a unitary character τ0 of
F ∗, then τ̂ = IndGL2k+2

P(2k+1,1)
(τ ⊗ τ0) is irreducible tempered,

γ(s, π × τ, ψ)γ(s, π × τ0, ψ) = γ(s, π × τ̂ , ψ) = γ(s, π′ × τ̂ , ψ)γ(s, σ × (τ̂ ⊗ τ̂∨), ψ)

= γ(s, π′ × τ, ψ)γ(s, π′ × τ0, ψ)γ(s, σ × (τ ⊗ τ∨), ψ)γ(s, σ × (τ0 ⊗ τ−1
0 ), ψ).

Hence (4.3) for γ(s, π × τ0, ψ) implies (4.3) for γ(s, π × τ, ψ).
Let δ0,odd and δ1,odd be the corresponding elements δi in the construction of

Z∗(s, ω, f), δ′
i,odd be these elements for G′ × GL1, δodd = δ0,oddδ1,odd and δ′

odd =
δ′
0,oddδ

′
1,odd. Put

t0 = diag(I2n, −2, −1/2, I2n), t1 = diag(In, −In, I2, −In, In).

Then δ0,odd = j1δ0j1t0 and δ1,odd = δ1t1. Note that κ and V are trivial now (since
k = 1). Define κ• by (5.32). Then wκ• commutes with j1 and t0, and wκ•t1(wκ•)−1 =
t′1tσ1 , where

t′1 = diag(In−l, −In−l, I2, −In−l, In−l), tσ1 = diag(Il, −Il)
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(for the product t′1tσ1 , t′1 is regarded as an element of H ′, and tσ1 ∈ Hσ). Thus

δ0,odd = j1δ0j1t0 = j1(w−1δ′
0δ

σ
0 wκ•)j1t0 = j1w−1δ′

0,oddδ
σ
0 wκ•,

δodd = j1δ0j1t0δ1t1 = j1(w−1δ′δσwκ•)j1t0t1 = j1w−1δ′
oddδ

σtσ1wκ•.

Assume l is even. Denote

m(1 − s, τ∨, w)f =
∫

Z

f(1 − s, j1w−1
1

j1 diag(Il,

(
Il z1 z2

Ic′
Ic′ z∗

1
Il

)
, Il)) dz.

Taking z ∈ UR and conjugating to the left, integral Z∗(s, ω, f) becomes
∫

R×R\G×G

∫

GLl

∫

G′

| det a|−d〈ϕ(g1), σ∨(a) ⊗ π′∨(g)ϕ∨(g2)〉m(1 − s, τ∨, w)M∗(s, c, τ, ψ)

(5.34)

f(1 − s, (δ′
odd(1, ι′

g)′) (δσtσ1 (1, a)σ)wκ•(g1,
ιg2)) dg da d(g1, g2).

We change variables a �→ −a to remove tσ1 from the integrand, thereby emitting
σ(−1) (!). To relate between (5.33) (with k = 1) and (5.34), we need the analog of
(5.23).

First assume l < n. Then we claim

M∗(s, l, τ ⊗ τ∨, ψ)M∗(s, c′, τ, ψ)m(s, τ, w) = C(1/2)m(1 − s, τ∨, w)M∗(s, c, τ, ψ).
(5.35)

(C(b) = τ(b)2l|b|2l(s−1/2).) Now we may proceed as in § 5.3.1: apply the functional
equations of GLl × GL1 and G′ × GL1 to (5.33), use (5.35) and (5.24), and deduce

γ(s, σ × (τ ⊗ τ∨), ψ)γ(s, π′ × τ, ψ)Z(s, ω, f) (5.36)

= τ(−1)lϑ(s, c′, τ, ψ)I(M∗(s, l, τ ⊗ τ∨, ψ)M∗(s, c′, τ, ψ)m(s, τ, w)f)
= ϑ(s, c, τ, ψ)I(m(1 − s, τ∨, w)M∗(s, c, τ, ψ)f) = ϑ(s, c, τ, ψ)Z∗(s, ω, f).

This completes the proof for k = 1 (under (5.35)), even l and l < n. When l = n,
we claim

M∗(s, l, τ ⊗ τ∨, ψ)m(s, τ, w)f = C(1/2)(t0 · m(1 − s, τ∨, w)M∗(s, c, τ, ψ)f)j1 .
(5.37)

Granted that, since in this case δ′
odd = j1δ

′j1t0 , we can conjugate j1t0 to the right in
(5.34) (wκ• commutes with j1t0). Moreover, j1t0 is the image of (1, diag(In, −1, In))
(see § 2.2), therefore commutes with (g1, 1), and the conjugation of (1, ιg2) by jt0 is
an outer involution of G. We can therefore rewrite (5.34) in the form

I((t0 · m(1 − s, τ∨, w)M∗(s, c, τ, ψ)f)j1),
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where I(· · · ) is given by (5.33). Using (5.37) we obtain an analog of (5.36),

γ(s, σ × (τ ⊗ τ∨), ψ)Z(s, ω, f) = τ(−1)lI(M∗(s, l, τ ⊗ τ∨, ψ)m(s, τ, w)f)
= ϑ(s, c, τ, ψ)I((t0 · m(1 − s, τ∨, w)M∗(s, c, τ, ψ)f)j1) = ϑ(s, c, τ, ψ)Z∗(s, ω, f).

To prove (5.35), first recall that the functional equation (3.4) reads

λ(s, c, τ, ψ)f =λ(1 − s, c, τ∨, ψ)(t0 · M∗(s, c, τ, ψ)f)j1 .

(Here jkc = j1.) For brevity, put

f1 = t0 · M∗(s, l, τ ⊗ τ∨, ψ)M∗(s, c′, τ, ψ)m(s, τ, w)f,

f2 = t0 · m(1 − s, τ∨, w)M∗(s, c, τ, ψ)f.

Since l is even, these sections belong to the same space. We claim C(2)f1 = f2.
Starting with the l.h.s. of (3.4) and applying the functional equations defining the
normalized intertwining operators on the Levi components, we obtain

∫
j1UP

f(s, δ0u)ψ−1(u) du = C(2)
∫

O•

∫

UP σ

∫
j1UP ′

f j1
1 (s, δ′

0u
′δσ

0 uσw1o
•κ•)

× ψ−1(u′)ψ−1
−2(u

σ) d(· · · ).

On the r.h.s. we similarly have
∫

j1UP

(t0 · M∗(s, c, τ, ψ)f)j1(s, δ0u)ψ−1(u) du

=
∫

O•

∫

UP σ

∫
j1UP ′

∫

Z

M∗(s, c, τ, ψ)f(s, j1w−1 j1z j1δ
′
0u

′δσ
0 uσw1o

•κ•j1t0)

× ψ−1(u′)ψ−1
−2(u

σ) d(· · · )
=
∫

O•

∫

UP σ

∫
j1UP ′

f j1
2 (s, δ′

0u
′δσ

0 uσw1o
•κ•)ψ−1(u′)ψ−1

−2(u
σ) d(· · · ).

We proceed as in § 5.3.1 to deduce C(2)f1 = f2, i.e., (5.35). The difference in the
proof of (5.37) is that there is no functional equation for H ′ (UP ′ = {1} when l = n
and k = 1). In turn, we have t0 and j1 on the r.h.s. of (5.35) but not on the left, and
instead of f j1

1 , we have M∗(s, l, τ ⊗ τ∨, ψ)m(s, τ, w)f . The proof of the case k = 1,
even l with l ≤ n, is complete.

The case of odd l is treated as before, by taking j1w−1j1 = j1w
−1, j1δ′

0,odd, etc.
When comparing both sides of (5.35) (now with odd l < n), note that on the l.h.s.
w−1 was replaced with w−1j1, so again both sides belong to the same space. For
l = n we have (5.37). The proof is similar.
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5.3.3 Example: SO3 × GL1. We provide an example illustrating § 5.3.2 for n =
k = 1 (the integral in [LR05] is different because it was defined for O3). We follow
the steps leading to (5.19) and see that Z(s, ω, f) equals∫

R×R\G×G

〈ϕ(g1), ϕ∨(g2)〉
∫

F ∗

∫

F

|a|−1/2σ−1(a)f(s, δ
(

1 z
1

1

)

× (
1

a−1

)
(g1,

ιg2)) dz da d(g1, g2). (5.38)

Here matrices in GLr, r = 2, 3, are identified with elements in H using the mapping
m �→ diag(m, I6−2r, m

∗). Write δ0 = w−1j1δ
′
0δ

σ
0 j1wκ• with

δ′
0 = diag(I2, −I2, I2), δσ

0 = diag(J2, I2, J2),

w−1 =

⎛
⎝

1
1

1
1

1
1

⎞
⎠ , κ• = diag(1, J2, J2, 1).

(For odd l, δ0 = w−1j1(j1δ′
0)δ

σ
0 j1wκ•, but since l = n and k = 1, δ′

0 = j1δ′
0.) Also set

j = j1 = diag(I2, J2, I2), t0 = diag(I2, −2, −1/2, I2),
t1 = diag(1, −1, I2, −1, 1),

and m(s, τ, w)f(s, h) =
∫
F f(s, w−1ju(z)h)dz with

u(z) =

⎛
⎝

1
1 z

1 −z
1

1
1

⎞
⎠ .

Then (5.38) becomes (5.33), which in this case is∫

R×R\G×G

〈ϕ(g1), ϕ∨(g2)〉
∫

F ∗

|a|−1/2σ−1(a)

× m(s, τ, w)f(s, δ′δσ
0

(
1 −1

1

)
( 1

a ) jwκ•(g1,
ιg2)) d(· · · ).

It follows that

γ(s, σ × (τ ⊗ τ−1), ψ)Z(s, ω, f) = σ(−1)τ(−1)I(M∗(s, 1, τ ⊗ τ−1, ψ)m(s, τ, w)f).
(5.39)

The integral Z∗(s, ω, f) is slightly different from Z(s, ω, f), because k is odd. The
element δodd (e.g., with δ0,odd given by (2.3)) equals jδjt0t1, where δ is the element
appearing in (5.38), and Z∗(s, ω, f) equals (compare to (5.38))∫

R×R\G×G

〈ϕ(g1), ϕ∨(g2)〉
∫

F ∗

∫

F

|a|−1/2σ−1(a)M∗(s, c, τ, ψ)f

(1 − s, jδjt0t1j
(

1 z/2
1

1

)
j
(

1
a−1

)
(g1,

ιg2)) dz da d(g1, g2).
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Conjugating by t1 and jt0 we obtain∫

R×R\G×G

〈ϕ(g1), ϕ∨(g2)〉
∫

F ∗

∫

F

|a|−1/2σ−1(a)M∗(s, c, τ, ψ)f

(1 − s, jδ
(

1 z
1

1

) (
1

−a−1

)
jt0(g1,

ιg2)) dz da d(g1, g2).

Decomposing δ0 as above now gives∫

R×R\G×G

〈ϕ(g1), ϕ∨(g2)〉
∫

F ∗

∫

F

|a|−1/2σ−1(a)m(1 − s, τ−1, w)M∗(s, c, τ, ψ)f

(1 − s, jδ′δσ
0

(
1 −1

1

) (
1 −a

)
jwκ•jt0(g1,

ιg2)) da d(g1, g2),

where m(1 − s, τ−1, w)f(1 − s, h) =
∫
F f(1 − s, jw−1 ju(z)h)dz. Then changing vari-

ables a �→ −a emits σ(−1). Moreover, jt0 is the image of (1, diag(1, −1, 1)), hence
commutes with (g1, 1) and the conjugation of (1, ιg2) by jt0 is an outer involution.
The integral becomes

σ(−1)
∫

R×R\G×G

〈ϕ(g1), ϕ∨(g2)〉
∫

F ∗

∫

F

|a|−1/2σ−1(a)

m(1 − s, τ−1, w)M∗(s, c, τ, ψ)(t0 · f)(1 − s, jδ′δσ
0

(
1 −1

1

)
( 1

a ) jwκ•(g1,
ιg2)j) d(· · · ).

Therefore

Z∗(s, ω, f) = σ(−1)I((t0 · m(1 − s, τ−1, w)M∗(s, c, τ, ψ)f)j). (5.40)

The functional equation (3.4) will show

M∗(s, 1, τ ⊗ τ−1, ψ)m(s, τ, w)f = C(1/2)(t0 · m(1 − s, τ−1, w)M∗(s, c, τ, ψ)f)j,
(5.41)

where C(2) = τ(2)2|2|2(s−1/2). Thus (5.39) and (5.40) imply

γ(s, π × τ, ψ) = γ(s, σ × (τ ⊗ τ−1), ψ).

The functional equation (3.4) reads

λ(s, c, τ, ψ)f =λ(1 − s, c, τ∨, ψ)(t0 · M∗(s, c, τ, ψ)f)j.

The l.h.s. equals

∫

F 3

f(s,
(

I3
I3

) ( 1 −1
1

)
j

⎛
⎝

1 z y
1 x −y

1
1 −x −z

1
1

⎞
⎠)ψ−1(−2y) dz dy dx

=
∫

F 2

m(s, w, τ)f(s, ( 1
1 )

(
1 y

1

)
δ′
0jwκ•

(
1

1 x
1

)
)ψ−1(−2y) dy dx.
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The r.h.s. equals

∫

F 3

(t0 · M∗(s, c, τ, ψ)f)j

⎛
⎝s,

(
I3

I3

) ( 1 −1
1

)
j

⎛
⎝

1 z y
1 x −y

1
1 −x −z

1
1

⎞
⎠
⎞
⎠

ψ−1(−2y) dz dy dx =
∫

F 2

(t0 · m(1 − s, w, τ−1)M∗(s, c, τ, ψ)f)j

× (s, ( 1
1 )

(
1 y

1

)
δ′
0jwκ•

(
1

1 x
1

)
)ψ−1(−2y) dy dx.

The dy-integrations are again related via (3.4) and we deduce (5.41).

5.3.4 The group GSpinc. Assume G = GSpinc. The integration over MR changes
to C◦

G\MR. The applications of (1.5) are carried out in GLkc, hence remain valid
here. When we decompose δ0, the elements δ′

0 and δσ
0 are already fixed, and the

representative for w−1 is fixed as explained in § 2.5. This determines w1, which
belongs to Spin2kc. The decomposition of the conjugation of δ1 into δσ

1 δ′
1, e.g.,

w1((δ
−1
0 κδ0)δ1) = δσ

1 δ′
1 for even c, is still valid in H, because δ1, δ

σ
1 , δ′

1 ∈ NH .
The representation (5.20) is now

IndH
jL

(
δ
−1/2
jL

(
| det |dV (s, Wψ(ρl(τ)) ⊗ (χ−1

π ◦ det)Wψ(ρl(τ∨)))

⊗ V (s, Wψ(ρc′(τ)) ⊗ χπ)
) )

. (5.42)

We write m = [a, g] ∈ MR, where a ∈ GLl and g ∈ G′(= GSpinc−2l). Recall that
under the embedding defined in § 2.5, C◦

G = C◦
G′ . This implies that as m varies in

C◦
G\MR, a ∈ GLl and g ∈ C◦

G′\G′.
Recall that for the GLl × GLk integral arising here we use the representation

τ ⊗ χ−1
π τ∨ (see (4.3)). For t0 ∈ TGLn

, the embedding (t0, 1) is given by (2.7). It
follows that for a, b ∈ GLl,

w1κ•
(b, ιa) = w1(r∨2kc(det b) diag(b, . . . , b, Ikc′ , b∗, . . . , b∗, a∗, a, b, . . . , b, Ikc′ , b∗, . . . , b∗))

= r∨2kc(det bk)(b, a)σ.

Here on the first line, b appears k times before the first block Ikc′ , then b∗ appears
k−1 times (recall 2l+c′ = c). So the GLl × GLk integral we obtain is of the following
form: for vectors ξσ and ξ∨

σ in the spaces of σ and σ∨ (resp.), and a section fσ
0 of

V (Wψ(ρl(τ)) ⊗ χ−1
π Wψ(ρl(τ∨))),

∫

GL�
l \ GLl × GLl

∫

Uσ
0

〈σ(b)ξσ, σ∨(a)ξ∨
σ 〉σfσ

0 (s, δσuσ
0 (b, a)σ)ψ−1

Uσ(uσ)χπ(det bk) duσ da db.

Note that for a = b, since fσ
0 (s, (b, b)σh) = χ−1

π (det bk)fσ
0 (s, h), the integrand is well

defined on the quotient. Writing this integral on the right copy of GLl (i.e., factoring



GAFA THE GENERALIZED DOUBLING METHOD: LOCAL THEORY

out the db-integral) gives us the GLl × GLk integral for σ × (τ ⊗ χ−1
π τ∨) (given in

§ 2.4).
To prove w1κ•

(1, ι[Il, g]) = (1, ι′
g)′, note that for each of the root subgroups X

of G′, w1κ•
(1, ι[Il, X]) belongs to (1, G′)′ and ι′

(w1κ•
(1, ι[Il, X])) = (1, X)′, hence

w1κ•
(1, ι[Il, g]) = (1, ι′

g)′ for all g ∈ Spinc′ . This applies to any g ∈ G′ by a direct
verification for t ∈ TG′ .

In conclusion, when we reach the formula equivalent to (5.21) or (5.33), we have
the inner GLl × GLk integral for σ× (τ ⊗χ−1

π τ∨) and G′ ×GLl integral for π′ ×τ . As
in the orthogonal cases, the GLl × GLk γ-factor is essentially γ(s, σ×(τ⊗χ−1

π τ∨), ψ),
but because δσ

1 and ψUσ are the inverses of those defined in § 2, this factor is further
multiplied by χπ(−1)kl (replace f in (4.1) with diag(−Ikl, Ikl)·f). The constant C(2)
becomes χπ(−2)klτ(2)2l|2|2kl(s−1/2). Also for even c, π(iG) = σ(−1)π′(iG′), because
the definition of the embedding of GLl × GSpinc−2l in MR implies iG = [iGLl

, iG′ ]
(see § 2.5). Now (5.24) reads

C(1/2)χπ(−1)klτ(−1)lϑ(s, c′, τ ⊗ χπ, ψ) = ϑ(s, c, τ ⊗ χπ, ψ),

and note that χπ(−1)kl cancels on the l.h.s. because it also appears in C(1/2).

5.3.5 The group GLn. The proof for any l ≤ n is similar to the case l = n
for Sp2n, and so is considerably simpler than the general case proved in § 5.3.1.
This is mainly because even though here we also apply (1.5) twice, we apply it on
commuting copies of GLl and GLc−l, hence these applications may be treated almost
independently. In fact, most of the manipulations for GLn were already described
in [CFGK19, Lemma 33], where we handled the (unramified) case with π induced
from P(l,c−l) for any 0 < l < c. We provide a brief description and when applicable,
use notation from § 5.3.1.

Assume ε = σ ⊗ π′ is a representation of GLl × GLc−l and π∨ = IndG
R(ε∨). The

formula (4.3) takes the form

γ(s, π × τ, ψ) = γ(s, σ × τ, ψ)γ(s, π′ × τ, ψ)

(recall τ = τ0 ⊗ χ−1τ∨
0 ). We obtain (5.9), except that the integrand is further mul-

tiplied by χk(det(g1)). Assuming τ0 is essentially tempered or unitary, we apply
(1.4)–(1.5) to each of the (k, c) functionals Wψ(ρc(τ0)) and Wψ(ρc(τ∨

0 )) in the in-
ducing data of f(s, ·). We obtain a section in the space of

IndH
P(kl,k(c−l),kl,k(c−l))

(| det |−(c−l)/2+sWψ(ρl(τ0)) ⊗ | det |l/2+sWψ(ρc−l(τ0))

⊗ | det |−(c−l)/2−sχ−1Wψ(ρl(τ∨
0 )) ⊗ | det |l/2−sχ−1Wψ(ρc−l(τ∨

0 ))). (5.43)

Let V1 and V2 be the additional unipotent subgroups introduced by the lemma
(V1 = V2). The du0-integration of (5.9) becomes, for fixed g1, g2 ∈ G,∫

U0

∫

V1

∫

V2

f(s, diag(κl,c−l, κl,c−l) diag(v1, v2)δu0(g1, g2))ψU (u0) dv2 dv1 du0.
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We then observe the following properties, which simplify the passage to the analog
of (5.16):

(1) δ−1
0 diag(v1, v2) = diag(v2, v1).

(2) If vi ∈ Vi, diag(v2,v1)δ1 = δ1u
′ where u′ ∈ U0 and ψU (u′) = 1.

(3) If vi ∈ Vi, diag(v2, v1) normalizes U0 and fixes ψU |U0 .
(4) The subgroup diag(V2, Ikc) commutes with (1, g2).
(5) δ0 commutes with diag(κl,c−l, κl,c−l).
(6) diag(κl,c−l, Ikc) commutes with (1, g2).

Applying these properties to the last integral gives∫

U0

∫

V1

∫

V2

f(s, δ0(κ•
δ1)(κ•

u0)

× diag(Ikc, κl,c−lv1)(1, g2) diag(κl,c−lv2, Ikc)(g1, 1))ψU (u0) dv2 dv1 du0,

where κ• = diag(κl,c−l, κl,c−l). When we factor (5.9) through UR we use the invari-
ance properties of the top left (k, l) model in the inducing data of f (see (5.43)), and
ψU . We then form the subgroup U◦ generated by U0 and the additional coordinates
obtained from the conjugation of U0 by z ∈ UR.

We use the notation Hσ, P σ etc., for the data corresponding to the GLl × GLk

integral, and H ′, P ′ etc., for the GLc−l × GLk integral. Let L = P(2kl,2k(c−l)); then
diag(Hσ, H ′) = ML. Define

U• = κ•
U◦ =

{(
Ikl u1,1 u1,2

Ik(c−l) u2,1 u2,2

Ikl

Ik(c−l)

)}
. (5.44)

The bottom left (c − l) × l block of u2,1 is zero, Uσ
0 = {

(
Ikl u1,1

Ikl

)
} and U ′

0 =

{
(

Ik(c−l) u2,2

Ik(c−l)

)
}. Write δ0 = w−1δ′

0δ
σ
0 w1 with w−1 = diag(Ikl, w(k(c−l),kl), Ik(c−l))

and w1 = w. Then

Z = δ′δσw1 [u1,2] = diag(Ikl, V(kl,k(c−l)), Ik(c−l)), O = [u2,1].

(This notation was introduced before (5.18).) We obtain (5.19), where the character
on Uσ is ψUσ(uσ), and as above the integrand is twisted by χk(det g1).

The intertwining operator m(s, τ, w) takes f to the space of

IndH
L (δ−1/2

L (| det |dc−lV (s, Wψ(ρl(τ0)) ⊗ χ−1Wψ(ρl(τ∨
0 )))

⊗ | det |−dlV (s, Wψ(ρc−l(τ0)) ⊗ χ−1Wψ(ρc−l(τ∨
0 ))))),

where for an integer r, dr = (k−1/2)r. Write m = diag(a, g) ∈ M(l,c−l) and conjugate
a and g to the left. We see that

w1(diag(Ikc,κl,c−l)(1, m)) = diag(Ikl, a, I(k−1)l, Ik(c−l), g, I(k−1)(c−l)) = (1, a)σ(1, g)′.
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We obtain a formula similar to (5.21), except we have ψUσ(uσ) instead of ψ−ε0
Uσ (uσ)

(and χk(det g1)). Equality (5.22) takes the form

γ(s, σ × τ, ψ)γ(s, π′ × τ, ψ)Z(s, ω, f)

= π(−1)kϑ(s, c, τ, ψ)I(M∗(s, l, τ, ψ)M∗(s, c − l, τ, ψ)m(s, τ, w)f).

The proof is then complete once we prove

M∗(s, l, τ, ψ)M∗(s, c − l, τ, ψ)m(s, τ, w) = m(1 − s, τ∨, w)M∗(s, c, τ, ψ).

The argument is similar to the proof of (5.23), and simpler because there are no
twists to the characters (e.g., in § 5.3.1 we used ψ−2ε0 in the definition of λ2).

6 Proof of Theorem 4.2: Part II

Here the exposition is ordered so that the flow of the proof is “linear” (not according
to the order of properties in the statement of the theorem). For example in § 6.2
we prove the minimal case for the GLn factors, then use it to compute the γ-factors
for unramified data. This is needed for the proof of the crude functional equation in
§ 6.6, which is then used in § 6.7 to complete the computation of the GLn factors in
general.

6.1 Dependence on ψ. Consider Sp2n and SO2n first. Changing the character
ψ entails changing the (k, c) model of ρc(τ) and the normalization of the intertwining
operator. Fix a (k, c) functional λ on ρc(τ), with respect to ψ, and consider

tb = diag(bk−1Ic, . . . , bIc, I2c, b
−1Ic, . . . b

1−kIc) ∈ TH .

Then tb commutes with the image of G × G in H; normalizes U0; t−1
b ψU = (ψb)U on

U0 (x−1
ψU (y) = ψU (xy)); tb commutes with δ1; if yb = δ0tb where the r.h.s. remove is

regarded as an element of GLkc, the mapping ξ �→ λ(yb · ξ) is a (k, c) functional on
ρc(τ) with respect to ψb. Therefore if f is a meromorphic section of V (Wψ(ρc(τ))),
Z(s, ω, tb · f) is equal to the similar integral when ψ is replaced by ψb, multiplied by
a measure constant cb. This constant appears because of the conjugation of U0 by
tb and the changes to the measures of G and U0, when the character ψ is changed
to ψb. Also since

w−1
P δ0tb = (bk−1Ikc)yb, (6.1)

we see that

Z(s, ω, M(s, Wψ(ρc(τ)), wP )tb · f) (6.2)

= cb|b|−d/2ρc(τ)(bk−1)|b|(k−1)kc(s−1/2)Z(s, ω, M(s, Wψb
(ρc(τ)), wP )f).

Here d is the number of roots in UP , |b|−d/2 appears because the measure for the
intertwining operator on the r.h.s. is defined with respect to dψb

x = |b|1/2dψx (see
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after (3.4)), and we used δ
1/2
P (bk−1Ikc)δP (δ0tb) = 1. Also recall that ρc(τ)(bk−1) is

shorthand for ρc(τ)(bk−1Ikc) (see § 1.1).
Next, we relate the normalizing factor C(s, c, τ, ψb) to C(s, c, τ, ψ). Take

hb = diag(bkIc/2, b
k−1Ic . . . , bIc, Ic, b

−1Ic, . . . , b
−k+1Ic, b

−kIc/2) ∈ TH

(for k = 1, hb = diag(bIc/2, Ic, b
−1Ic/2)) and put zb = δ0hb. The mapping ξ �→ λ(zbξ)

realizes Wψb
(ρc(τ)). Again take a section f of V (Wψ(ρc(τ))). Then

λ(s, c, τ, ψ)hb · f = δP (hb)
∫

UP

f(s, zbδ0u)ψb(u) du = |b|−d/2δP (hb)λ(s, c, τ, ψb)f,

and since w−1
P zb = (bkIkc)zb,

λ(1 − s, c, τ∨, ψ)M(s, Wψ(ρc(τ)), wP )hb · f

= |b|−dρc(τ)(bk)|b|k2c(s−1/2)δ
1/2
P (bkIkc)δP ′(w−1

P hb)δP (hb)
× λ(1 − s, c, τ∨, ψb)M(s, Wψb

(ρc(τ)), wP )f.

Note that δ
1/2
P (bkIkc)δP ′(w−1

P hb) = 1. Therefore by (3.4),

C(s, c, τ, ψ) = ρc(τ)(b)−k|b|d/2−k2c(s−1/2)C(s, c, τ, ψb). (6.3)

Combining this with (6.2) and the definitions, and since ρc(τ)(b) = τ c(b),

γ(s, π × τ, ψb) = τ c(b)|b|kc(s−1/2)γ(s, π × τ, ψ)
ϑ(s, c, τ, ψb)
ϑ(s, c, τ, ψ)

.

This proves the result for G = SO2n. For Sp2n the result follows from the last
equality using γ(s, τ, ψb) = |b|k(s−1/2)τ(b)γ(s, τ, ψ) (see [JPSS83], or [FLO12, § 9]).

For SO2n+1 we proceed as above. The elements tb and yb are the same (δ0tb does
not depend on the parity of k). The integral Z∗(s, ω, f) is defined differently when k
is odd, and when we use the correct version of δ0 (for even k (2.2), otherwise (2.3)),
(6.1) still holds, leading to (6.2). To compute C(s, c, τ, ψb) take

hb = diag(bkIn, bk−1Ic . . . , bIc, Ic+1, b
−1Ic, . . . , b

−k+1Ic, b
−kIn)

(c = 2n+1) and put zb = δ0hb, where δ0 is given by (2.2). When we compute the r.h.s.
of (3.4), we use the fact that jkc commutes with hb, and w−1

P jkczb = (bkIkc)mbzb where
mb is the diagonal embedding of diag(In, b−1, In) in GLkc (jkc appears because on this
side the section is (t0 · M(s, Wψ(ρc(τ)), wP )hb · f)jkc). The functional ξ �→ λ(mbzbξ)
still realizes Wψb

(ρc(τ)), and thus is proportional to λ(zbξ) and by Lemma 1.1,

λ(mbzbξ) = τ(det diag(In, b−1, In))λ(zbξ) = τ(b)−1λ(zbξ).

Then the r.h.s. of (6.3) is multiplied by τ(b)|b|k(s−1/2). This explains the change from
τ c(b)|b|kc(s−1/2) to τN (b)|b|kN(s−1/2) (now N = c − 1) in (4.7).
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For GSpinc, r∨2kc(b
r)yb = δ0tb with r = −k(k − 1)c/2, so that the constant cb

emitted from Z(s, ω, tb · f) is multiplied by χπ(br). Equality (6.1) (with δ0 depend-
ing on the parity of k for odd c) still holds, whence (6.2) is unchanged. Similarly
r∨2kc(b

r−kn)zb = δ0hb. Thus (the odd or even version of) (6.3) is modified by multi-
plying the r.h.s. by χπ(br−kn), leading to the factor χkn

π (b) appearing in (4.7).
For the GLn integral the argument is similar. We explain the modifications. The

element tb remains the same; w−1
P δ0tb = diag(bk−1Ikc, b

1−kIkc)yb;

hb = diag(bk−1Ic, . . . , bIc, Ic, b
−1Ic, . . . , b

−kIc),

w−1
P zb = diag(bkIkc, b

−kIkc)zb; and ρc(τ) = ρc(τ0)⊗ χ−1ρc(τ∨
0 ). Altogether we obtain

γ(s, π × (τ0 ⊗ χ−1τ∨
0 ), ψb) = χ(b)kcτ2c

0 (b)|b|2kc(s−1/2)γ(s, π × (τ0 ⊗ χ−1τ∨
0 ), ψ).

6.2 GLn factors: the minimal case. Next we establish (4.8) for n = k = 1,
over any local field (simplifying [LR05, § 9.1] to some extent). The general cases of
(4.4) (for all G) and (4.8) will follow from this.

For any r ≥ 1, let S(F r) be the space of Schwartz–Bruhat functions on the
row space F r. The Fourier transform of φ ∈ S(F r) with respect to ψ is given by
φ̂(y) =

∫
F r φ(z)ψ(z ty)dz. For a quasi-character η of F ∗, φ ∈ S(F ) and s ∈ C, Tate’s

integral [Tat67] is given by

ζ(s, φ, η) =
∫

F ∗
φ(x)η(x)|x|sd∗x.

It is absolutely convergent in a right half plane, admits meromorphic continuation
and satisfies the functional equation

γTate(s, η, ψ)ζ(s, φ, η) = ζ(1 − s, φ̂, η−1). (6.4)

Define the following meromorphic section fτ0,χ,φ of V (τ) = V (τ0 ⊗ χ−1τ−1
0 ). For

φ ∈ S(F 2),

fτ0,χ,φ(s, g) =
∫

F ∗

φ(e2 ( z
z ) g)τ0(det(( z

z ) g))χ(z)| det ( z
z ) g|s d∗z.

Here e2 = (0, 1). Since n = 1, we can take the matrix coefficient ω = π−1. Then

Z(s, ω, fτ0,χ,φ) =
∫

F ∗

π−1(g)
∫

F ∗

φ(e2 ( z
z ) δ

(
1

g

)
)τ0(−z2g)χ(z)| det ( z

z ) g|s d∗z dg.

It is absolutely convergent for Re(s) � 0, as a double integral. Consider φ = φ1 ⊗φ2

with φ1, φ2 ∈ S(F ). Using a change of variables g �→ z−1g we see that

Z(s, ω, fτ0,χ,φ) = τ0(−1)ζ(s, φ1, πτ0χ)ζ(s, φ2, π
−1τ0). (6.5)



Y. CAI ET AL. GAFA

Next we compute M∗(s, 1, τ, ψ)fτ0,χ,φ. The l.h.s. of (3.4) is seen to be

τ0(−1)
∫

F

∫

F ∗

φ(z, u)ψ−1(z−1u)|z|2s−1τ2
0 (z)χ(z) d∗z du. (6.6)

For any φ′ ∈ S(F 2), define F(φ′) ∈ S(F ) by F(φ′)(z) =
∫
F

φ(z, u) du. Then

M(s, 1, τ, ψ)fτ0,χ,φ(s, g) = τ0(−1)τ0(det g)| det g|sζ(2s − 1, F(gφ), χτ2
0 ).

Thus by (6.4), and using F̂(gφ)(z) = ĝφ(z, 0) and ĝφ = | det g|−1(tg−1) · φ̂,

γTate(2s − 1, χτ2
0 , ψ)M(s, 1, τ, ψ)fτ0,χ,φ(s, g) = f

τ−1
0 ,χ−1,φ̂

(1 − s, w1,1
tg−1).

Using this and a partial Fourier inversion,

λ(1 − s, 1, χ−1τ−1, ψ)M(s, 1, τ, ψ)fτ0,χ,φ (6.7)

= χ(−1)γTate(2s − 1, χτ2
0 , ψ)−1

∫

F

∫

F ∗

φ(z, u)ψ−1(z−1u)|z|2s−1τ2
0 (z)χ(z) d∗z du.

Then from (6.6) and (6.7) we deduce

C(s, 1, τ, ψ) = χ(−1)τ0(−1)γTate(2s − 1, χτ2
0 , ψ).

Returning to Z∗(s, ω, fτ0,χ,φ) and since φ̂ = φ̂1 ⊗ φ̂2,

Z∗(s, ω, fτ0,χ,φ) = π(−1)ζ(1 − s, φ̂1, π
−1τ−1

0 χ−1)ζ(1 − s, φ̂2, πτ−1
0 ). (6.8)

Now dividing (6.8) by (6.5) and using (6.4) we conclude

γ(s, π × τ, ψ) = γTate(s, πτ0χ, ψ)γTate(s, π−1τ0, ψ). (6.9)

Of course, in this case the Rankin–Selberg γ-factors are identical with Tate’s.

Remark 6.1. A similar choice of fτ0,χ,φ was used in [PSR87, § 6.1] (with χ = 1) for
any n, for computing the integrals with unramified data by reducing to the integrals
of Godement and Jacquet [GJ72]. Specifically, define fτ0,χ,φ as above with a Schwartz
function φ on Matn×2n(F ), e2 replaced by ( 0 In ), z ∈ GLn and | · · · |s replaced by
| · · · |s+(n−1)/2. When the representations are unramified, take φ = φ1 ⊗ φ2 where
φ1, φ2 are the characteristic functions of Matn(O). Then fτ0,χ,φ is unramified and
fτ0,χ,φ(s, I2n) = b(s, 1, τ0 ⊗ χ−1τ−1

0 ). For an unramified ω we obtain (6.5) for all n,
with the integrals of [GJ72] on the r.h.s.
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6.3 The minimal case of GSpin2. We explain this case, where G = GSpin2

and k = 1, because of the unique structure of G. We identify G with MR1,2 , then
π = σ ⊗ χπ is a character. Since we divide by C◦

G, the integral is written over
the coordinate of GL1, denoted θ∨,G

1 (x) = θ∨
1 (x). The image of θ∨,G

1 (x) in H is
α∨

0 (x−1)α∨
1 (x−1), which is the coordinate θ∨,H

2 (x) of TH when we identify TH with
TGL2 × TGSpin0

. Thus

Z(s, ω, f) =
∫

F ∗

σ−1(x)f(s, δ diag(1, x−1, x, 1)) dx,

which is similar to the integral for SO2. The same manipulations now lead to the
GL1 × GL1 integral for σ × (τ ⊗ χ−1

π τ∨) and the γ-factor is hence γ(s, π × τ, ψ) =
γ(s, σ × (τ ⊗ χ−1

π τ∨)).

6.4 The computation of the integral with unramified data. Although we
will deduce (4.4) directly from (4.2)–(4.3) and (6.9), the value of the integral with
unramified data can be used to determine C(s, c, τ, ψ) with unramified data, and is
crucial for the crude functional equation. This computation was carried out for Sp2n,
SO2n and GLn in [CFGK19, Theorems 28, 29]: using (5.21) (proved in [CFGK19]
for l = n and when data are unramified) we reduced the integral to the GLn × GLk

integral, which was computed using induction on n. To compute the GL1 × GLk

integral, we reduced it to the Rankin–Selberg integrals of [JPSS83], by employing
an idea of Soudry [Sou93, Sou95] (see § 6.7.2 below for more details). The result
proved was that when all data are unramified,

Z(s, ω, f) =
L(s, π × τ)
b(s, c, τ)

. (6.10)

Here if G = GLn, τ = τ0 ⊗ χ−1τ∨
0 and L(s, π × τ) = L(s, π × χτ0)L(s, π∨ × τ0).

We now complete the cases of SO2n+1 and GSpinc. Assume τ is unitary (see
Remark 6.2 below). Let G = SO2n+1. According to the proof of (4.3) with l = n,
Z(s, ω, f) is equal to (5.33). Since in this case we can assume that g1 and g2 belong
to KG, the integration d(g1, g2) can be ignored (each integral dgi reduces to the
volume of KG, which is 1). Since c′ = 1, G′ is trivial. Because f is unramified,
using Lemma 5.1 the integrations over V and O can also be ignored (see [CFGK19,
Lemma 27] for details in the case of Sp2n). Thus (5.33) becomes an integral for
GLn × GLk, multiplied by a du′-integration in H ′, where the section is obtained by
restricting m(s, τ, w)f .

The section m(s, τ, w)f is a scalar multiple of the normalized unramified function
in the space of (5.20) (with (H, L, j, d) as defined for SO2n+1). To compute the
scalar, we appeal to the Gindikin–Karpelevich formula ([Cas80b, Theorem 3.1]).
Write w−1 = w−1

0 (jknw−1
1 ) with

w0 = jkn diag(Ik(n+1),
(

Ikn

Ikn

)
, Ik(n+1)), w1 = diag(Ikn, w(k,kn), w(kn,k), Ikn).
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Then we use multiplicativity to compute m(s, τ, w)f . To compute the contribution
of the operator corresponding to w0, note that the action of the L-group of the Levi
part on the Lie algebra of the L-group of the unipotent subgroup (the subgroup
corresponding to z2 in (5.18), conjugated by jknw−1

1 ) is ∧2. If τ = IndGLk

BGLk
(τ1 ⊗ . . .⊗

τk), the unramified representation of SO2kn is IndSO2kn

BSO2kn
(⊗1≤i≤k,1≤j≤nτi| |s−1/2+j)

(use (5.10)). From this operator we obtain

∏
1≤j≤�n/2�

L(2s + 2j, τ,∨2)
L(2s + 2j + 2�n/2� − 1, τ, ∨2)

∏
1≤j≤�n/2�

L(2s + 2j − 1, τ, ∧2)
L(2s + 2j + 2�n/2�, τ, ∧2)

.

(6.11)

For the second operator, the action on the Lie algebra of the L-group of the unipotent
subgroup corresponding to z1 in (5.18) is st ⊗ s̃t, the unramified representation is

IndGLk(n+1)

BGLk(n+1)
((⊗1≤i≤kτi| |s−1+k(n+1)/2) ⊗ (⊗1≤i≤k,1≤j≤nτ−1

i | |−s−j+k(n+1)/2))

and the contribution is

∏
1≤j≤n

L(2s + j − 1, τ × τ)
L(2s + j, τ × τ)

=
L(2s, τ × τ)

L(2s + n, τ × τ)
. (6.12)

Finally when k > 1, the du′-integral constitutes the Whittaker functional on
IndH′

P ′ (| det |s−1/2τ) given by the Jacquet integral, applied to the normalized unramif-
ied vector. According to the Casselman–Shalika formula [CS80] (or see [Sou93,
p. 97]), the du′-integral equals L(2s, τ,∧2)−1. Multiplying (6.11), (6.12), L(2s, τ,∧2)−1

and (6.10) for GLn × GLk, and since Sp2n(C) is the L-group of SO2n+1, we obtain
(6.10) for SO2n+1.

For GSpinc one uses § 5.3.4 and follows the computation of SOc. The contribution
of the intertwining operator, which is given for odd c by (6.11) and (6.12), is now
modified to the twisted versions. Specifically ∨2 and ∧2 change to ∨2χπ and ∧2χπ;
τ ⊗ τ changes to τ ⊗ χπτ ; and b(s, c, τ) in (6.10) is replaced with b(s, c, τ ⊗ χπ). The
GLn × GLk integral becomes

L(s, σ × χπτ)L(s, σ∨ × τ)
b(s, c, τ ⊗ χ−1

π τ∨)
.

Remark 6.2. The assumption that τ is unitary is needed in order to apply (1.5),
which is used for the proof of (4.3). One may study the case of unramified τ sepa-
rately, and replace this assumption by taking an inducing character for τ in “general
position”.
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6.5 Unramified factors. We handle all groups simultaneously. First use mul-
tiplicativity to reduce to the case n = k = 1, which is further reduced to the
GL1 × GL1 integral using (4.3). Then (4.4) follows from (6.9) and the computation
of Tate’s integrals with unramified data [Tat67]. Note that for GLn the r.h.s. of (4.4)
is replaced by

L(1 − s, π∨ × χ−1τ∨
0 )L(1 − s, π × τ∨

0 )
L(s, π × χτ0)L(s, π∨ × τ0)

.

Now we may also deduce the value of C(s, c, τ ⊗ χπ, ψ) for unramified data
(assuming τ is unitary, see Remark 6.2). Indeed, combining (6.10) with (3.7), (4.1)
and (4.4) we see that

C(s, c, τ ⊗ χπ, ψ) =
b(1 − s, c, χ−1

π τ∨ ⊗ χπ)
a(s, c, τ ⊗ χπ)

[
L(s, τ)

L(1 − s, τ∨)

]
. (6.13)

Here the factor in square brackets appears only when H = Sp2kc (because ϑ(s, c, τ ⊗
χπ, ψ) contains γ(s, τ, ψ) in this case).

6.6 The crude functional equation. We treat all groups G �= GLn together,
the proof for GLn is obtained by minor modifications to the notation. Also, to lighten
the formulas we omit χπ from the notation, it is easily recovered by looking at (6.13).
The global construction was described in the introduction and in § 2. For the proof
we may assume τ is unitary. Let Eτ be the generalized Speh representation and
V (Eτ ) be the global analog of the representation defined in § 2.3 (i.e., we induce
from P (A) and | det |s−1/2Eτ to H(A)). Let

M(s, Eτ , wP )f(s, h) =
∫

UP ′ (A)

f(s, w−1
P uh) du

be the global intertwining operator (UP ′ was defined in § 3).
Take a standard KH -finite section f of V (Eτ ) which is a pure tensor, and a large

finite set S of places of F . According to the functional equation of the Eisenstein
series and (3.7),

E(·; s, f) = E(·; 1 − s, M(s, Eτ , wP )f) =
aS(s, c, τ)
bS(s, c, τ)

E(·; 1 − s, f ′), (6.14)

where the superscript S denotes the infinite product of local factors over the places
outside S. Since Eτ is irreducible ([Jac84, § 2]), f ′ ∈ V (E∨

τ ), and because the local
components of Eτ are unitary, the representations ρc(τν) are irreducible and [CFGoK,
Claim 6] implies ρc(τν)∨ = ρc(τ∨

ν ), thus E∨
τ = Eτ∨ . Then f ′ ∈ V (Eτ∨) and for

ν ∈ S, f ′
ν(s, h) = Mν(s, ρc(τν), wP )fν(s, h) (see (3.2), ρc(τν) and Wψν

(ρc(τν)) are
isomorphic here).
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The global integral (0.3) is Eulerian ([CFGK19, Theorem 1] and [CFGoK, The-
orem 4]), and according to (6.10) we have

Z(s, ϕ1, ϕ2, f) =
LS(s, π × τ)
bS(s, c, τ)

∏
ν∈S

Z(s, ων , fν). (6.15)

Combining (6.14) and (6.15) for the section bS(s, c, τ)f we obtain

LS(s, π × τ)
∏
ν∈S

Z(s, ων , fν) =
aS(s, c, τ)

bS(1 − s, c, τ∨)
LS(1 − s, π∨ × τ∨)

×
∏
ν∈S

Z(1 − s, ων , f
′
ν). (6.16)

By the definition (4.1) for all ν ∈ S,

γ(s, πν × τν , ψν) = πν(iG)kϑ(s, c, τν , ψν)C(s, c, τν , ψν)
Z(1 − s, ων , f

′
ν)

Z(s, ων , fν)
.

For any ν let ϑ◦(s, c, τν , ψν) = ϑ(s, c, τν , ψν)[γ(s, τν , ψν)−1], where [. . .] appears only
for Sp2n. Let ϑ◦(s, c, τ, ψ) and γ(s, τ, ψ) be the products of the corresponding lo-
cal factors over all places of F . Then ϑ◦(s, c, τ, ψ) = (ϑ◦)S(s, c, τ, ψ) = 1. Since
γ(s, τ, ψ) = 1, for Sp2n we have

γS(s, τ, ψ)−1
∏
ν∈S

ϑ◦(s, c, τν , ψν) =
∏
ν∈S

ϑ(s, c, τν , ψν).

Then by (6.13) and using π(iG) = πS(iG) = 1,

CS(s, c, τ, ψ) =
bS(1 − s, c, τ∨)

aS(s, c, τ)
[γS(s, τ, ψ)−1]

=
∏
ν∈S

πν(iG)kϑν(s, c, τν , ψν)
bS(1 − s, c, τ∨)

aS(s, c, τ)
. (6.17)

Let C(s, c, τ, ψ) =
∏

ν C(s, c, τν , ψν). Below we show C(s, c, τ, ψ) = 1. Then when
we multiply (6.16) by C(s, c, τ, ψ) and use (6.17) and (4.1), we obtain (4.10), i.e.,

LS(s, π × τ) =
∏
ν∈S

γ(s, πν × τν , ψν)LS(1 − s, π∨ × τ∨).

It remains to prove C(s, c, τ, ψ) = 1. To this end consider the Fourier coefficient∫
Yk,c(F )\Yk,c(A)

E(u; s, f)ψ−1
k,c(u) du, (6.18)

with Yk,c and ψk,c as defined after (3.3). We unfold the Eisenstein series in Re(s) � 0
and analyze the contribution from each representative of P\H/Yk,c. The contribu-
tions from all but one representative vanish, this follows using the character ψk,c
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and the “smallness” of Eτ (the global version of the proof of Theorem 3.2). For the
representative δ0, δ−1

0 P ∩ Yk,c = jkcV(ck) whence (6.18) equals
∫

UP ′ (A)

∫
V(ck)(F )\V(ck)(A)

f(s, vδ0u)ψ−1
k,c(vu) dv du.

Denote the inner integration by Wψ(δ0u · f). It is factorizable because (Eτ )ν sup-
ports a unique (k, c) functional for all ν. Thus for a factorizable f , Wψ(δ0u · f) =∏

ν Wψν
(δ0uν · fν) and we obtain

∏
ν

λν(s, c, τν , ψν)Wψν
(fν). (6.19)

On the other hand, applying the functional equation (6.14) then recomputing (6.18)
we have ∏

ν

λν(1 − s, c, τ ′
ν , ψν)Mν(s, Wψν

(ρc(τν)), wP )Wψν
(fν), (6.20)

or the modified version for the groups H = SOc, GSpinc when c and k are odd
(with jkc and t0, see after (3.4)). Equating (6.19) and (6.20) and looking at (3.4) we
conclude C(s, c, τ, ψ) = 1.

6.7 The GLn-factors.

6.7.1 Proof of (4.8). The multiplicativity property was proved above for GLn

as well. Hence over archimedean fields, by Casselman’s subrepresentation theorem
[Cas80a] the proof reduces to the minimal case (6.9) already proved in § 6.2. Over
p-adic fields, by (4.2) and (4.3) to (irreducible) supercuspidal representations.

Now assume π is a supercuspidal representation of GLn. Hence π is also generic
(and τ is always generic). Then we can use the global argument in [Sha90, § 5]:
take a number field F and embed π and τ as the components of two cuspidal rep-
resentations at a place ν0 of F , and similarly globalize ψ (implicitly using (4.7)).
We can further assume that at all places ν �= ν0 the local representations are quo-
tients of principal series. The p-adic case then follows from (4.10), (4.2), (4.3), (6.9)
and because the same global property is satisfied by the product of Rankin–Selberg
γ-factors appearing on the r.h.s. of (4.8).

6.7.2 The case n = 1. The results of this section will be used below to deduce
the archimedean meromorphic continuation (§ 6.10). Along the way, although we
already deduced (4.8), we provide a direct proof of this for n = 1 and k > 1. Assume
k > 1, up to Corollary 6.7.

The argument was adapted from [CFGK19], where it was used to complete the
computation of the integrals for G × GLk with unramified data (see § 6.4). We
follow (and elaborate on) the proof of [CFGK19, Proposition 34], which was given
for unramified data, but the relevant manipulations are valid in general and over
any local field.
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Let π and χ be quasi-characters of F ∗ and τ0 be an irreducible generic representa-
tion of GLk. Since n = 1, ω(a) is a scalar multiple of π−1(a), so that we can re-denote
the integral Z(s, ω, f) by Z(s, f), where f is a section of V (Wψ(τ0) ⊗ χ−1Wψ(τ∨

0 )).
Then

Z(s, f) =
∫

F ∗

∫

U0

f(s, δu0 diag(Ik, a, Ik−1))ψU (u0)π−1(a) du0 d∗a. (6.21)

It is absolutely convergent as a multiple integral, in a right half plane depending
only on π and τ0, and over archimedean fields it is continuous in the input data (in
its domain of convergence). In this domain it belongs to (2.9), which here becomes

Hom(GL1,GL1)(JU,ψ−1
U

(V (s, Wψ(τ0) ⊗ χ−1Wψ(τ∨
0 ))), (χkπ)−1 ⊗ π). (6.22)

Specifically,

Z(s, (b, a)u · f) = ψ−1
U (u)χ−1(bk)π(a)π−1(b)Z(s, f), ∀a, b ∈ GL1, u ∈ U. (6.23)

We study Z(s, f) by relating it to the integral
∫

V −
(k−1,1)

∫

F ∗

λ−1((diag(I2k−1, a)[v]w′
(k−1,1)) · f)π−1(a)|a|−η+k−1 d∗a dv, (6.24)

where λ−1 = λ−1(s, 1, τ0 ⊗ χ−1τ∨
0 , ψ) is the functional from (3.4) except that ψ

appearing in (3.3) is replaced with ψ−1 (cf. λ2(· · · ) in § 5.3.1); [v] = diag(Ik, v)
for v ∈ V −

(k−1,1) and we also identify v with a row vector in F k−1; w′
(k−1,1) =

diag(Ik, w(k−1,1)); and η is an additional complex parameter. The proofs of the fol-
lowing two claims appear below.

Claim 6.3. Integral (6.24) is absolutely convergent for Re(η) � 0 and admits mero-
morphic continuation in η and s. It is a meromorphic function of s when η = 0.
Over archimedean fields the continuation in η and s, and only in s when η = 0, is
continuous in the input data.

To relate Z(s, f) to (6.24) we follow the idea of Soudry [Sou93, p. 70] (also used in
[Sou00, Kap13a], the particular variant we use appeared in [Sou95] for archimedean
fields). Since in its domain of convergence (6.24) belongs to (6.22) with π replaced
by | |ηπ (direct verification of (6.23)), so does its meromorphic continuation. Taking
η = 0, the meromorphic continuation of (6.24) belongs to (6.22) itself. By [GK, The-
orem 2.1] this space is at most one dimensional outside a discrete subset of s. In fact,
this particular uniqueness result was already proved in [CFGK19, Lemma 35] over
p-adic fields, and since there are only finitely many orbits to consider in the proof,
the argument readily extends to the archimedean case. Thus comparing Z(s, f) in
its domain of convergence to the meromorphic continuation of (6.24), they are pro-
portional.
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We will compute the proportionality factor using a direct substitution. This
factor will turn out to be the meromorphic function γRS(s, π−1 × τ0, ψ)π(−1)k−1.
Therefore we obtain a functional equation relating Z(s, f) to (6.24) as meromorphic
continuations. The bonus is over archimedean fields: we can deduce the meromorphic
continuation and continuity of the continuation for Z(s, f), from that of (6.24) (over
p-adic fields we already know Z(s, f) is meromorphic, though this is another method
for proving it).

Claim 6.4. As meromorphic continuations γRS(s, π−1 × τ0, ψ)π(−1)k−1Z(s, f) is
equal to integral (6.24) with η = 0.

Next we apply (3.4) to (6.24) and obtain

γRS(s, π−1 × τ0, ψ)χ(−1)kπ(−1)k−1Z(s, f)

=
∫

V −
(k−1,1)

∫

F ∗

λ−1((diag(I2k−1, a)[v]w′
(k−1,1))·

× M∗(s, 1, τ0 ⊗ χ−1τ∨
0 , ψ)f)

× π−1(a)|a|k−1 d∗a dv.

Here the l.h.s. was multiplied by χ(−1)k, because we used (3.4) with λ−1, and the
r.h.s. The contributions from is regarded as the meromorphic continuation with
η = 0. Applying Claim 6.4 again, to the last integral, we obtain

γRS(1 − s, π−1 × χ−1τ∨
0 , ψ)−1γRS(s, π−1 × τ0, ψ)χ(−1)kZ(s, f) = Z∗(s, f).

(Z∗(s, f) = Z(1 − s, M∗(s, 1, τ0 ⊗ χ−1τ∨
0 , ψ)f).) Since by [JPSS83],

γRS(s, π × χτ0, ψ)γRS(1 − s, π−1 × χ−1τ∨
0 , ψ) = π(−1)kχ(−1)kτ0(−1)

(direct verification using [JPSS83, § 2], see also [FLO12, § 9]), we deduce

γ(s, π × (τ0 ⊗ χ−1τ∨
0 ), ψ) = γRS(s, π × χτ0, ψ)γRS(s, π−1 × τ0, ψ).

This completes the verification of (4.8) for n = 1 and k > 1, once we justify the
formal application of (3.4).

Indeed write a general element of V −
(k−1,1) as

(
Ik−1

v 1

)
. Let Yi be the subgroup of

elements of V −
(k−1,1) where all coordinates of v other than the i-th are zero, X be the

subgroup of matrices

diag(Ik−1,
(

Ik−1 x
1

1

)
),

and Xi < X, 1 ≤ i ≤ k − 1, be the subgroup of elements where all coordinates of x
other than xi are zero. Then for any a ∈ F ∗, v ∈ Yi and x ∈ Xi,

λ−1((diag(I2k−1, a)[v]w′
(k−1,1)

w′
(k−1,1)

−1

x) · f)

= ψ(xivi)λ−1((diag(I2k−1, a)[v]w′
(k−1,1)) · f).
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Thus by Lemma 5.1 we can “hide” the dv-integral in (6.24) by replacing f with a
convolution against Schwartz functions, independently of a (see [CFGK19, pp. 1051–
1052]).

Proof of Claim 6.3. First change a �→ a−1 in (6.24). Recall that if σ is a finitely
generated (admissible) representation of GL2k, which admits a unique Whittaker
model with respect to ψ, and W is a Whittaker function in this model, W̃ (h) =
W (J2k

th−1) is a Whittaker function in the Whittaker model of σ∗ with respect to
ψ−1 (see e.g., [JPSS83, § 2.1]; σ∗(h) = σ(h∗)). Using this we see that (6.24) is a
Rankin–Selberg integral for GL1 × GL2k and

π × IndGL2k

P(k2)
(| det |s−1/2χτ0 ⊗ | det |1/2−sτ∨

0 ), (6.25)

of the type [JPSS83, § 2.4(3)] (with j = k−1 in the notation of loc. cit.). In particular
it is absolutely convergent for η � 0 ([JPSS83, JS90]).

Over p-adic fields the integral is a meromorphic function of η and s, by Bernstein’s
continuation principle [Ban98], and by [JPSS83, Theorem 3.1] its poles are contained
in

L(η + s, π × χτ0)L(η + 1 − s, π × τ∨
0 ).

That is, when we divide the integral by this product of L-functions we obtain an
entire function. Thus we may take η = 0 and still obtain a meromorphic function of
s.

Over archimedean fields this integral admits meromorphic continuation in η and
s by Jacquet [Jac09, Theorem 2.1(ii)] (see also [Jac09, Appendix]). In fact the con-
tinuation in η was already proved by Jacquet and Shalika [JS90, Theoerm 5.1]. By
[Jac09, Theorem 2.3(i)] (see the proof of [Jac09, Proposition 12.5]) the continuation
in η is continuous in the input data, namely the section from the induced represen-
tation. This applies to any fixed s. When we apply the Whittaker functional λ−1 to
an entire section f , the result is a Whittaker function which is still entire in s, and
we can bound it using a continuous semi-norm which is independent of s when s
varies in a compact subset (see e.g., [Sou95, (4.16)]). Using this the proof of [Jac09,
Proposition 12.5] implies that the continuation of (6.24) in both η and s is continu-
ous in f . The poles are still located in the aforementioned product of L-factors, and
again we can take η = 0. Hence (6.24) admits meromorphic continuation which is
continuous in the input data. ��

Remark 6.5. As explained above, we can remove the dv-integral from (6.24) (now
using Corollary A.3) and reduce to an integral over F ∗, then obtain the continu-
ity statement of Claim 6.3 directly using the asymptotic expansions of Whittaker
functions from [Sou95, § 4].
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Proof of Claim 6.4. We begin with a general observation. For t, m ∈ F , a section
ξ ∈ V (Wψ(τ0) ⊗ χ−1Wψ(τ∨

0 )) and a Schwartz function φ on F , define

�(m) = diag(Ik−1, ( 1 m
1 ) , Ik−1) ∈ UP , [t] = diag(Ik, ( 1 t

1 ) , Ik−2),

φ(ξ)(s, h) =
∫

F

ξ(s, h�(m))φ(m) dm.

For any ξ,
∫

U0

ξ(s, δ0�(b)u0[t])ψU (u0) du0 = ψ((1 − b)t)
∫

U0

ξ(s, δ0�(b)u0)ψU (u0) du0.

Since
∫
F ψ((1 − b)t)dt = 0 unless b = 1, and noting that δ1 = �(1),

∫

U0

ξ(s, δu0)ψU (u0) du0 =
∫

F

∫

F

∫

U0

ξ(s, δ0�(b)u0[t])ψU (u0) du0 dt db.

Applying this to Z(s, f) we obtain
∫

F ∗

∫

F

∫

F

∫

U0

f(s, δ0�(b)u0[t]ea)ψU (u0)π−1(a) du0 dt db d∗a. (6.26)

Here ea = diag(Ik, a, Ik−1), for brevity. This integral is defined in the domain of defi-
nition of Z(s, f), but is not absolutely convergent as a multiple integral. Nonetheless,
consider the integral formally obtained from (6.26) by changing the order of inte-
gration dt db to db dt:

∫

F ∗

∫

F

∫

F

∫

U0

f(s, δ0�(b)u0[t]ea)ψU (u0)π−1(a) du0 db dt d∗a. (6.27)

First we show that in a right half plane depending only on the representations,

∫

F ∗

∫

F

∣∣∣∣∣∣
∫

F

∫

U0

f(s, δ0�(b)u0[t]ea)ψU (u0)π−1(a) du0 db

∣∣∣∣∣∣ dt d∗a < ∞. (6.28)

We can shift ea to the left of δ0, multiplying the measure by |a|1−k. Observe that,
as in the proof of Proposition 2.5, in a domain of this form

∫

F ∗

∫

UP

∣∣∣f(s, δ0eaδ0u)π−1(a)
∣∣∣ |a|1−k du d∗a < ∞. (6.29)
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It remains to show that t belongs to the support of a Schwartz function (which may
depend on f). Consider a Schwartz function φ on F and the integral

∫

F ∗

∫

F

∣∣∣∣∣∣
∫

F

∫

U0

∫

F

f(s, δ0eaδ0�(b)u0[t]�(m))φ(m)ψU (u0)π−1(a)|a|1−k dmdu0 db

∣∣∣∣∣∣ dt d∗a.

We see that �(−m)[t] = um,t[t], where um,t ∈ UP is such that ψ(um,t) = ψ−1(mt). We
can freely change the order of integration dmdu0db to du0dbdm, because of (6.29)
and the Schwartz function. Then we can also change variables b �→ b−m. We obtain

∫

F ∗

∫

F

∣∣∣∣∣∣
∫

F

∫

U0

f(s, δ0eaδ0�(b)u0[t])φ̂(t)ψU (u0)π−1(a)|a|1−k du0 db

∣∣∣∣∣∣ dt d∗a.

This proves (6.28) (see Lemma 5.1, here we can fix s and use [DM78]).
Now a direct verification shows that (6.27) also belongs to (6.22). Assume for

the moment that (6.27) admits meromorphic continuation. Then we can compare
(6.26) (or Z(s, f)) to (6.27) in the domain of definition of (6.26). We show the
proportionality factor is 1, by proving that (6.27) for φ(f) is Z(s, φ(f)). Indeed,
after shifting ea to the left, conjugating [t] by �(m) and changing b �→ b − m, the
integral (6.27) becomes

∫
f(s, δ0eaδ0�(b)u0[t])ψ(mt)φ(m)ψU (u0)π−1(a)|a|1−k dmdu0 db dt d∗a

=
∫

f(s, δ0�(b)u0[at]ea)φ̂(t)ψU (u0)π−1(a)|a| du0 db dt d∗a

=
∫

f(s, δ0�(b)u0ea)ψ(t(1 − b))φ̂(a−1t)ψU (u0)π−1(a) du0 db dt d∗a.

Changing b �→ b + 1, then shifting �(b) to the right (thereby changing b �→ a−1b), we
have ∫

f(s, δu0ea�(b))ψ(−ba−1t)φ̂(a−1t)ψU (u0)π−1(a)|a|−1 du0 db dt d∗a.

Now we change t �→ at (eliminating |a|−1), then we can change db dt �→ dt db, and
since by the Fourier inversion formula

∫
F φ̂(t)ψ(−bt)dt = φ(b) we obtain Z(s, φ(f)).

To proceed we describe a special choice of data, for which we can compute both
(6.27) (in its domain of definition) and (6.24) (in Re(η) � 0, then for η = 0 in
Re(s) � 0, then in the domain of (6.27) by meromorphic continuation). The pro-
portionality factor will be γRS(s, π−1 × τ0, ψ)π(−1)k−1. The claim follows, because
we deduce the meromorphic continuation of (6.27), then the argument above readily
implies that the continuations of Z(s, f) and (6.27) are identical.

Let W ∈ Wψ(τ0). Over a p-adic field, choose f ′ such that δ0 · f ′ is right-
invariant by a small neighborhood of the identity N in H, supported in PN , and
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such that for all a ∈ GLk, δ0 · f ′(s, diag(a, Ik)) = | det a|s−1/2+k/2W (a) (N de-
pends on W ). Over archimedean fields take δ0 · f ′ supported in PU−

P such that
δ0 · f ′(s, diag(a, Ik)u) = | det a|s−1/2+k/2W (a)φ′(u) for all u ∈ U−

P , where φ′ is a
compactly supported Schwartz function on F k2

and
∫
F k2 φ′(u)du = 1.

Then over p-adic fields we take f = φ(f ′) where φ is such that for all s and h,∫

F

f ′(s, h[t])φ̂(t) dt = f ′(s, h)

(e.g., take φ̂ supported near 0). Over archimedean fields, by Corollary A.3 we can
take fi and compactly supported Schwartz functions φ̂i such that for all s and h,

l∑
i=1

∫

F

fi(s, h[t])φ̂i(t) dt = f ′(s, h). (6.30)

Then we take f =
∑l

i=1 φi(fi). For convenience, we use this notation (with l = 1)
also in the p-adic case.

Plugging f into (6.27), conjugating ea to the left and using the definition of f ,
we obtain
∫

F ∗

∫

F

∫

F

∫

U0

l∑
i=1

∫

F

fi(s, δ0eaδ0�(b)u0[t]�(m))φi(m)ψU (u0)π−1(a)|a|1−k dmdu0 db dt d∗a

=
∫

F ∗

∫

F

∫

F

∫

U0

l∑
i=1

fi(s, δ0eaδ0�(b)u0[t])φ̂i(t)ψU (u0)π−1(a)|a|1−k du0 db dt d∗a.

Here again we first changed dmdu0db to du0dbdm, before changing variables u0 �→
u0u

−1
m,t and b �→ b − m. As above, since φ̂i is a Schwartz function and using (6.29),

we can further change du0 db dt to dt du0 db, then by the definition of the functions
fi and φi, we have∫

F ∗

∫

F

∫

U0

f ′(s, δ0eaδ0�(b)u0)ψU (u0)π−1(a)|a|1−k du0 db d∗a.

Again by (6.29) we may change the order of integration du0 db d∗a to d∗a du0 db, and
we also write u = �(b)u0 and extend ψU to UP trivially on �(b). We reach∫

UP

∫

F ∗

f ′(s, δ0eaδ0u)ψU (u)π−1(a)|a|1−k d∗a du.

Then by our definition of f ′ (e.g., over p-adic fields the integrand vanishes unless
the coordinates of u are small) we obtain∫

F ∗

W (diag(a, Ik−1))π−1(a)|a|s−(k−1)/2 d∗a. (6.31)
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This is the Rankin–Selberg integral for GL1 × GLk and π−1 × τ0 ([JPSS83, § 2.4(3)]
with j = 0).

To compute (6.24) for the same f , write v = (t, v′) where t is the leftmost
coordinate of v, conjugate diag(I2k−1, a) diag(Ik,

(
Ik−1

(0,v′) 1

)
)w′

(k−1,1) to the left and
arrive at∫

F

∫

F k−2

∫

F ∗

∫

UP

f(s,
(

0 1 0
0 0 Ik−2

a 0 v′

)
δ0u[t])ψ(u)π−1(a)|a|−η+1−k du d∗a dv′ dt

=
∫

F k−2

∫

F ∗

∫

UP

l∑
i=1

∫

F

fi(s,
( 0 1 0

0 0 Ik−2

a 0 v′

)
δ0u[t])φ̂i(t)ψ(u)π−1(a)|a|−η+1−k dt du d∗a dv′.

The justification for the formal steps is similar to the above (but simpler) and again
we use (6.29). Then exactly as above, we end up with the other side of the Rankin–
Selberg functional equation (the version in [Sou93, p. 70])

∫

F k−2

∫

F ∗

W
((

0 1 0
0 0 Ik−2

a 0 v′

))
π−1(a)|a|−η+s−(k−1)/2 d∗a dv′.

This integral is absolutely convergent for Re(η) � 0, but moreover, for ζ = 0 it is
absolutely convergent for Re(s) � 0 and admits meromorphic continuation given by

∫

F k−2

∫

F ∗

W
(( 0 1 0

0 0 Ik−2

a 0 v′

))
π−1(a)|a|s−(k−1)/2 d∗a dv′. (6.32)

Since (6.31) and (6.32) are related by γRS(s, π−1 × τ0, ψ)π(−1)k−1, the proof is
complete. ��

Corollary 6.6. For each pole of the Rankin–Selberg GL1 × GLk L-function L(s,
π−1×τ0) with multiplicity m we can find an entire section f (smooth over archimedean
fields) such that Z(s, ω, f) contains this pole with multiplicity m.

Proof. Any such pole (with multiplicity) occurs in a GL1 × GLk integral for π−1 ×τ0

for some W ∈ Wψ(τ0) (over p-adic fields see [JPSS83], over archimedean fields
[CPS04, § 1.3], one may even use KGLk

-finite vectors). Taking the substitution f ′

from the proof of Claim 6.4 (e.g., δ0 ·f ′ supported in PU−
P and compactly supported

in U−
P , over archimedean fields) and computing Z(s, ω, f ′) directly, i.e., without using

(6.27), we obtain (6.31) except the integrand is further multiplied by a compactly
supported Schwartz function of a. By [Jac09, Proposition 6.1] (or more directly in
the p-adic case) this is sufficient for the pole (we only need to produce the pole, as
opposed to obtaining the precise Rankin–Selberg integral). ��

Corollary 6.7. If k = 1, Corollary 6.6 applies to any n, i.e., to GLn × GL1.
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Proof. For a representation π of GLn and n ≥ 1, one uses f such that δ0 · f is
supported in PU−

P and restricts to a compactly supported Schwartz function on U−
P

(see also [Yam14, § 5.3, § 7]), to obtain a Godement–Jacquet integral ([GJ72]). The
latter integral produces any pole with multiplicity by [GJ72, Jac79]. ��
6.8 Duality. This is known for G = Sp0, clear for GSpinc with c < 2 since the
γ-factors are trivial, and also holds for SO2 and GSpin2 by (4.3) and (4.8). (Here
G �= GLn.)

For the general case we follow a local-global method similar to [Kap15, § 5]. Ac-
cording to the multiplicative properties, it is enough to show (4.5) for supercuspidal
representations. These we can globalize as in § 6.7.1, using the globalization argu-
ment of Henniart [Hen84, Appendice 1] (π is in general not generic), and using (4.7)
we simultaneously globalize ψ. We can assume that at all places except ν0 (where we
embed π and τ), the representations are quotients of principal series representations.

We can then write πν (ν �= ν0) as the quotient of IndG(Fν)
R(Fν)(σν ⊗ χπν

), where
R < G is a maximal parabolic subgroup, σν is a principal series representation of
GLn(Fν) and σν ⊗ χπν

is a representation of MR(Fν). Then by (4.3) and (4.8),

γ(s, πν × χ−1
πν

τν , ψν) = γRS(s, σν × τν , ψν)γRS(s, σ∨
ν × χ−1

πν
τν , ψν). (6.33)

Since σν is a principal series, we can permute the inducing character of σν to obtain
a principal series representation σ′

ν such that π∨
ν is a quotient of IndG(Fν)

R(Fν)(σ
′
ν
∨⊗χ−1

πν
).

Then

γ(s, π∨
ν × τν , ψν) = γRS(s, σ′

ν × τν , ψν)γRS(s, σ′
ν
∨ × χ−1

πν
τν , ψν). (6.34)

The Rankin–Selberg γ-factors appearing in (6.33) and (6.34) are equal, hence

γ(s, π∨
ν × τν , ψν) = γ(s, πν × χ−1

πν
τν , ψν).

This holds for all ν �= ν0, thus also at ν0 by (4.10).

6.9 Functional equation. According to (3.6) and since

ϑ(s, c, τ ⊗ χπ, ψ)ϑ(1 − s, c, χ−1
π τ∨ ⊗ χπ, ψ) = χπ(−1)knτ(−1)N ,

γ(s, π × τ, ψ)γ(1 − s, π × χ−1
π τ∨, ψ) = χπ(−1)knτ(−1)N . Then (4.5) and (4.7) imply

(4.6).

6.10 Archimedean meromorphic continuation. We deduce the meromor-
phic continuation of the integral Z(s, ω, f), and continuity of this continuation re-
garded as a trilinear form on V (s, Wψ(ρc(τ))⊗χπ)×π×(πι)∨ or the similar space for
GLn. Recall that for Fréchet spaces, a separably continuous trilinear map extends
to a continuous linear map on the inductive tensor. We will also prove the meromor-
phic continuation of λ(s, c, τ, ψ) and continuity of this continuation as a functional
on V (s, Wψ(ρc(τ)) ⊗ χπ). Our proof is facilitated by the multiplicativity identities
(5.21) and (5.27), which allow us to argue inductively.
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We begin with the integral. Since the field is archimedean, we may assume
(by [Cas80a]) that π is an irreducible quotient of a principal series representa-
tion induced from quasi-characters π1, . . . , πn and χπ (for GSpinc) of F ∗. Write
τ = IndGLk

Pβ
(⊗d

i=1| det |aiτi) where τi are tempered and a1 > . . . > ad. For ζ ∈ C
d,

let τζ = IndGLk

Pβ
(⊗d

i=1| det |ζi+aiτi). For ζ in general position, ρc(τζ) is a subrepre-
sentation of (1.2) (for such ζ we may permute the representations in the inducing
data to obtain this). Hence the realization of the (k, c) functional given by (1.5) is
applicable to ρc(τζ) (see [CFGoK, § 3.2]), and we may then argue as in § 5.3 (e.g.,
§ 5.3.1), to write the integral for π × τζ in the form (5.21) (or similar, depending on
G).

The realization (5.8) of ω is continuous on π ⊗ π∨ (since it is a separably contin-
uous bilinear form). The integral d(g1, g2) in (5.21) is over a compact group, hence
can be ignored for our purpose here, by virtue of the Banach–Steinhaus Theorem
— see the proof of [Sou95, § 5, Lemma 1].

The outer integral over V ×O can be handled as follows. Write the inner integral
in the form Ξ(s, ω, f), then the iterated integral takes the form

∫

V ×O

Ξ(s, ω, y · f) dy.

Note that for (v, o) ∈ V ×O, y = oκ•v, and we can identify V ×O with the subgroup
κ•

V � O of H. Assume Ξ(s, ω, f) is meromorphic for meromorphic sections f , and
continuous as a trilinear form. The root subgroups of V × O are handled one after
the other, with a predefined order (see [CFGK19, pp. 1037–1040] and the paragraph
before (5.27)). Let Y ′ < V × O and

Ξ′(s, ω, f) =
∫

Y ′

Ξ(s, ω, y′ · f) dy′.

For the base case Y ′ is trivial and Ξ′(s, ω, f) = Ξ(s, ω, f). Assume Ξ′(s, ω, f) is
meromorphic and continuous, as above. At each step we take a subgroup Y < H
such that Y � Y ′ < V × O, prove similar properties for

∫

Y

Ξ′(s, ω, y · f) dy =
∫

Y

∫

Y ′

Ξ(s, ω, y′y · f) dy′ dy, (6.35)

then re-denote Y � Y ′ by Y ′, eventually obtaining the result for V × O.
Regarding (6.35), there is a unipotent subgroup X < H such that for all x ∈ X,

∫

Y

Ξ′(s, ω, yx · f) dy =
∫

Y

Ξ′(s, ω, y · f)ψ(〈x, y〉) dy, (6.36)
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where 〈x, y〉 is a non-degenerate pairing. For a compactly supported function φ in
the space S(X) of Schwartz functions on X, denote

φ(f)(s, h) =
∫

X

x · f(s, h)φ(x) dx, φ̂(f)(s, h) =
∫

Y

y · f(s, h)φ̂(y) dy.

Here φ̂ ∈ S(Y ). The sections φ(f) and φ̂(f) are meromorphic, because the repre-
sentation of H on V (s, Wψ(ρc(τ)) ⊗ χπ) is of moderate growth uniformly when s
varies in a compact set (see e.g., [Jac09, § 3.3]), and Schwartz functions are rapidly
decreasing, so that we can differentiate φ̂(f) under the integral sign.

In Re(s) � 0 the multiple integral (over V × O, X and the domains in the
definition of Ξ) is absolutely convergent, whence by (6.36),

∫

Y

Ξ′(s, ω, y · φ(f)) dy = Ξ′(s, ω, φ̂(f))

is meromorphic for each (meromorphic) f . According to Corollary A.3 we can always
write f =

∑
i φi(fi) (a finite sum), then the l.h.s. of (6.35) becomes

∑
i Ξ′(s, ω, φ̂i(fi))

which is meromorphic (here it is crucial the functions φi are independent of s).
Moreover when we fix s, the bilinear map (φ, f) �→ φ(f) extends to a continuous

surjective and open map S(X)⊗V (s, Wψ(ρc(τ))⊗χπ) → V (s, Wψ(ρc(τ))⊗χπ) (see
e.g., [Sou95, p. 199]). Thus the l.h.s. identify of (6.35) is continuous (as a trilinear
form). This completes the reduction.

It remains to consider Ξ(s, ω, f), which is a GLn × GLk doubling integral for
the matrix coefficient a �→ 〈ϕ(1), σ∨(a)ϕ∨(1)〉 of σ∨ and the section m(s, τ, w)f |MjL

.
Assuming the latter integral admits meromorphic continuation, so does the G×GLk

integral. Moreover, if the continuation of the GLn × GLk integral is continuous in
its data, the continuation of Ξ(s, ω, f) (and thereby, of the G × GLk integral) is
continuous in ω and f (i.e., as a trilinear form), because evaluation at the identity
is continuous in the topology on the smooth induced representations. Note that if c
is odd, there is an additional inner integration du′ which is a Whittaker functional
(see after (5.33)), whose analytic properties are known ([Jac67, Sha80]).

Repeating the arguments of § 5.3.5 we reduce to the case of n = 1 and the
representations πi × (τζ ⊗ χ−1

π τ∨
ζ ). We assume k > 1, since for k = 1 meromorphic

continuation in s and continuity in the input data can be checked directly (when
n = k = 1). Now as described in § 6.7.2, the analytic properties of the GL1 × GLk

integral follow from those of (6.24), which here takes the form
∫

V −
(k−1,1)

∫

F ∗

λ−1(s, 1, τζ ⊗ χ−1
π τ∨

ζ , ψ)((diag(I2k−1, a)[v]w′
(k−1,1)) · f)

π−1
i (a)|a|−η+k−1 d∗a dv.
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By Claim 6.3 and its proof, this integral admits meromorphic continuation in η, ζ and
s, which is continuous in the input data f ([JS90, Jac09]). The poles are contained
in

L(η + s + ζ, πi × χπτ)L(η + 1 − s − ζ, πi × τ∨). (6.37)

Thus we may take η = 0. We deduce that the original G × GLk integral for π × τζ

admits meromorphic continuation in ζ and s, which is continuous in the input data,
and its poles are contained in the product of the above L-factors with η = 0 over all
1 ≤ i ≤ n. Since limζ→0 Z(s, ω, fζ) = Z(s, ω, limζ→0 fζ) (see the justification after
(5.2)), we conclude the result for π × τ by taking ζ = 0 (for ζ = 0, ρc(τζ) = ρc(τ)).

Regarding λ(s, c, τ, ψ), the meromorphicity and continuity properties are conse-
quences of (5.27), which expresses the functional as the composition of an inter-
twining operator m(s, τ, w) with similar functionals on GL2kl and on a lower rank
group H ′ of the type of H, and with an additional outer integral which is handled
similarly to the outer integral over V ×O above (using Corollary A.3). Since the field
is archimedean, we may already take l = n, then if c is odd we have one additional
Whittaker functional (λ(s, c′, τ ⊗ χπ, ψ), c′ = 1). The intertwining operator satisfies
the conditions we need (see e.g., [KS71, Sch71, KS80]). Applying the general linear
groups analog of (5.27) to GL2kl we reduce to products of such functionals on GL2k,
which are already Whittaker functionals. As above we first work with τζ to utilize
(1.5) (the proof of (5.27) also uses (1.5)), then take ζ = 0.

Remark 6.8. The twist by ζ is only needed in order to regard ρc(τ) as a summand
of (1.2) and apply (1.5) (using [CFGoK, § 3.2]). If τ is unitary, no additional twist
is needed.

Corollary 6.9. For any given s, one can find ω and an entire section f of V (Wψ

(ρc(τ)) ⊗ χπ), which is also KH -finite, such that Z(s, ω, f) �= 0 and the integral is
holomorphic in a neighborhood of s.

Proof. A similar nonvanishing result was obtained in Proposition 2.6, albeit with
a smooth section f , but one can find a sequence {fm} of entire KH -finite sections
converging to f . Since we proved the integral is continuous in the input data, we
deduce Z(s, ω, fm) is finite and nonzero at s for some (almost all) m. Then there is
a neighborhood of s where the integral is also holomorphic (s is not a pole). ��
Remark 6.10. Alternatively we may also prove Corollary 6.9 by applying Corol-
lary 5.3 to reduce the proof to the case k = 1, where it is known ([KR90, Theo-
rem 3.2.2]).

We also have the following corollary.

Corollary 6.11. Assume τ is unitary generic and f is a standard and KH -finite
section of V (Wψ(ρc(τ))⊗χπ). Let D be a vertical strip of finite width and P (s) be a
polynomial such that P (s)Z(s, ω, f) is holomorphic in D. Then P (s)Z(s, ω, f) is of
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finite order in D, i.e., |P (s)Z(s, ω, f)| ≤ ae|s|r for some constants a > 0 and r > 0,
for all s ∈ D.

Proof. Since τ is unitary, we can carry out the reduction described above using
τ directly (see Remark 6.8). However, instead of applying (5.21) once then using
induction, we repeatedly apply the multiplicative identities ((5.21) is applied once,
then we use § 5.3.5), each time introducing another intertwining operator m(s, τ, w)i,
an integration over unipotent subgroups Oi and Vi, and an integration over maximal
compact subgroups KGi

× KGi
.

Following these reductions, the function h �→ f(s, h) belongs to the space V ⊗(s, τ)
of

IndH
L (⊗n

i=1V (s, Wψ(τ) ⊗ χ−1
π Wψ(τ∨)) ⊗ V (s, Wψ(τ)) ⊗ χπ). (6.38)

Here when H �= GL2kc, L < H is the standard parabolic subgroup with ML =
M((2k)n) if c = 2n, ML = M((2k)n) × SO2k if c = 2n + 1, and in both cases we have
the additional factor GL1 for GSpinc. For brevity, the minor modifications for GL2kc

are omitted, as well as the twist of ML and the additional modulus characters which
are independent of s (see (5.20)). The first n spaces in (6.38) correspond to the spaces
of sections for the GL1 × GLk doubling integrals, and V (s, Wψ(τ)) is included when
c is odd.

By transitivity of induction, we can also identify (6.38) with the representation

IndH
L0

(|χ|s(⊗c
i=1Wψ(τ i)) ⊗ χπ),

where L0 < L is a standard parabolic subgroup of H with ML0 = M(kc)(× GL1),
τ i alternates between τ and χ−1

π τ∨, and χ is a suitable algebraic character of ML0

(e.g., |χ|s = | det |s−1/2 ⊗ | det |1/2−s if c = 2). One can then define entire sections
of V ⊗(τ), i.e., functions ϕ on C × H such that for all s, ϕ(s, ·) ∈ V ⊗(s, τ), and
s �→ ϕ(s, h) is entire, and also meromorphic sections, KH -finite sections, etc. (see
§ 2.3).

Let m(s, τ) be the composition of the operators m(s, τ, w)i, it has finitely many
poles in D. Since P (s)Z(s, ω, f) is holomorphic in D, we can assume for the proof
that | Im(s)| ≥ A � 0, so that m(s, τ) is holomorphic for s ∈ DA = {s ∈ D :
| Im(s)| ≥ A}. Put f ′ = m(s, τ)f .

We combine the integrations over the unipotent (resp., compact) subgroups into
one subgroup Y (resp., KG × KG). This is possible by reversing the passage from
(5.19) to (5.21) once we apply the Iwasawa decomposition to the inner integral over
the Levi subgroup of G. In fact each KGi

is a maximal compact subgroup of a Levi
subgroup MRi

, where R = R1 > R2 > . . . > Rm = BG is a finite decreasing chain of
standard parabolic subgroups of G, hence we can simply integrate over KG × KG.
As for the unipotent subgroups, observe that the subgroups Oi are all subgroups of
U0 (on which ψU is trivial), and Vi all originate from the realization of Wψ(ρc(τ)).
Combining them here amounts to writing the identity (4.3) with respect to induction
from BG, instead of going through maximal parabolic subgroups (as described in
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§ 5.3). In this process we also shift the Weyl elements w1 and κ• from each reduction
to the right, thereby conjugating the unipotent subgroups Oi and Vi and the images
of KGi

× ιKGi
in H. The subgroup Y is taken to be the product of subgroups Oi

and Vi, each conjugated by the appropriate Weyl elements. Then Y < U−
L . Let w

denote the product of Weyl elements. We obtain, first in Re(s) � 0,∫

KG×KG

∫

Y

∫

GLn
1

∫

U
�c/2�
0

f ′(s, δu0(1, a)y(w(g1,
ιg2))w)ψU (u0)

× ε∨(a)〈ϕ(g1), ϕ∨(g2)〉 du0 da dy d(g1, g2).
Here GLn

1 and Un
0 are the direct products of n copies of the groups GL1 and U0

for the GL1 × GLk doubling integrals; δ is the product of n elements δ from § 2.4
occurring in these integrals, and an element δ for the Whittaker functional if c is
odd; ε∨(a) =

∏n
i=1 π−1

i (ai); and if c is odd, the additional inner integral over U0

is a Jacquet integral constituting the evaluation of a Whittaker functional at the
identity (see after (5.33)).

We start “peeling off” the outer integrals, each time regarding an inner integral
as a meromorphic function on C (as opposed to Re(s) � 0); then the outer integral
is defined for all s except at the poles of the inner integral.

Since (w(g1,
ιg2))w ∈ KH and f is KH -finite, it remains to bound the du0dady-

integral with (w(g1,
ιg2))·f ′ replaced by f ′

0 = m(s, τ)f0 for an arbitrary standard KH -
finite section f0. Arguing as explained above, the dy-integration can be traded for a
sum of convolution sections, by a repeated application of Corollary A.3 (more details
appear below). Note that the equivariance properties of the inner doubling integrals
with respect to unipotent subgroups are preserved, even though the inner integrals
are each further reduced to GL1 × GLk doubling integrals, and these equivariance
properties are all that is needed in order to obtain (6.36). Eventually one obtains a
finite sum of integrals of the form

∫

GLn
1

∫

U
�c/2�
0

φj(fj)(s, δu0(1, a))ψU (u0)ε∨(a) du0 da, (6.39)

where fj is a section and φj(fj)(s, h) =
∫
Y fj(s, hy)φj(y)dy for some Schwartz func-

tion φj (compactly supported or otherwise).
To describe fj , first note that for any h0 ∈ KH , f ′

0(s, h0) is a product of a
rational function of s (depending on h0) and fixed quotients of twisted classical
Gamma functions due to the normalization factors of Langlands ([Art89, Theo-
rem 2.1 and § 3]). Hence there is a constant r > 0 such that for all h0 ∈ KH ,
f ′
0(s, h0) is holomorphic of order at most r in DA. We can then adapt the arguments

of Appendix A to deduce that in the application of Corollary A.3, f ′
0 =

∑
i φi(fi)

where each fi is also holomorphic of order at most r in DA (i.e., s �→ f(s, h0) is of
order ≤ r for all h0 ∈ KH). Specifically, with the notation of Appendix A, W con-
sists of holomorphic functions from DA into the space of IndKH

KH∩ML0
(((⊗c

i=1Wψ(τ i))⊗
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χπ)|KH∩ML0
), and the semi-norms ||f ||νD are replaced with ||f ||νm =

maxs∈DA
{ν(f(s))e−|s|r+1/m} where m varies over N − 0; then W is still a Fréchet

space which is a continuous, smooth representation of moderate growth of H (argue
as in [Jac09, § 3.3], but instead of compact subsets Ω ⊂ C consider DA). We repeat-
edly apply Corollary A.3, each time obtaining new holomorphic sections fj of order
at most r in DA (though no longer KH -finite).

It remains to bound the integrals (6.39). Since the Rankin–Selberg integrals for
GL1 × GL2k are bounded at infinity in D ([Jac09, Theorem 2.1(ii)]), Claim 6.4 and
the proof of Claim 6.3 imply that the product of n integrals over GL1 and U0 is
bounded by a polynomial in D (the polynomial is needed because of the mediating
γ-factor). When c is odd, the Whittaker functional is entire of finite order in D
(in fact in the entire plane) by a result of McKee [McK13]. It remains to consider
|φj(fj)(s, 1)|, where 1 denotes the identity element of H. Note that we can assume
A � 0 so that the Rankin–Selberg integrals are holomorphic in DA (because the
representations of GL1 and GL2k are already determined).

Write y = vtb using the Iwasawa decomposition, with v ∈ NH , t ∈ TH and
b ∈ KH . Each coordinate of t can be bounded by a polynomial in ||y||, where || · ||
is a fixed norm on H. Specifically, there are d0 > 0, d1 > 0 and an integer M > 0
such that d0||y||−M ≤ |ti| ≤ d1||y||M for all 1 ≤ i ≤ kc (if H = GSpin2kc, we write
the decomposition in Spin2kc). See e.g., [Jac09, § 5.2] and [Sou93, § 7.3, Lemma 3].
If t = diag(b1, . . . , bc) with bj ∈ TGLk

,

|χ|s(t) = (
n∏

j=1

| det b2j−1|s−1/2| det b2j |1/2−s)| det b2n+1|s−1/2.

Since ||y|| ≥ 1, we can bound this character from above by ||y||Ns where Ns > 0 is an
integer depending on s. Moreover, since D is a vertical strip of finite width, we can
take a uniform bound N for all s ∈ D. In addition because the representation of ML0

on ⊗c
i=1Wψ(τ i) is of moderate growth, we can take a large N and a semi-norm on the

space of fj(s) = fj(s, ·) such that for all y, maxh0∈KH
|fj(s, yh0)| ≤ ||y||Nν(fj(s)).

Then

|φj(fj)(s, 1)| ≤ ν(fj(s))
∫

Y

||y||N |φj(y)| dy.

The norm ν(fj(s)) is of finite order for s ∈ DA, completing the proof. ��
Remark 6.12. Note that P (s) exists and can be taken independently of ω and f .
Indeed as we have seen in the discussion above (see (6.37)), the poles of the integrals
together with their multiplicities are bounded independently of the data.

6.11 Archimedean property. Using (4.2)–(4.3) and the twisting property we
reduce to the case where π and τ are square-integrable. Now we apply Casselman’s
subrepresentation theorem [Cas80a], to regard both π and τ as quotients of principal
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series representations. Then we can certainly use (4.2)–(4.3)and (4.8) to reduce to
GL1 × GL1 factors, which are Tate γ-factors, but it is a priori not clear how they
relate to the Langlands parametrization.1

Recall that when the representations are generic, Shahidi [Sha85] computed the
local coefficients and equated them with the corresponding Artin factors. The results
of Knapp and Wallach [KW76] on extensions of roots, and Knapp and Zuckerman
[KZ82] who related the inducing data from Casselman’s result to the Harish-Chandra
parameter (here — of τ ⊗ π), were crucial to his proof.

Shahidi expressed the local coefficient as a product of Tate factors involving
Casselman’s inducing data and simple reflections [Sha85, Lemma 1.4]. Then in a
sequence of lemmas (loc. cit., § 3),he used the results of [KW76, KZ82] to prove that
this product is equal to the product of γ-factors defined using Artin’s root number
and L-factor for the homomorphism ϕ (attached to τ ⊗ π). The relation between
these products is formal, and the lemmas from [Sha85, § 3] can be applied to the
Tate factors we obtain (using multiplicativity). Note that in our setting, since we
only treat split groups, only the SL2 case of [Sha85, Lemma 1.4] appears in the
computation, and we only obtain the factors for the standard representation r (the
local coefficient consists of the finite list of representations ri, see [Sha85]). This
completes the proof of (4.9).

7 L- and ε-factors

Theorem 4.2 enables us to define the local L- and ε-factors, using the γ-factor. This
was carried out in [LR05] for k = 1 (following [Sha90]), and we briefly recall the
construction.

For G = GLn define the L- and ε-factors as the products of Rankin–Selberg
L- and ε- factors for π × χτ0 and π∨ × τ0 defined in [JPSS83, JS90] (see (4.8)).
Henceforth we assume G �= GLn, until the end of this section.

Over p-adic fields we follow Shahidi [Sha90]. When π and τ are both tempered,
define L(s, π × τ) = P (q−s)−1, where P (X) ∈ C[X] is the polynomial such that the
zeros of P (q−s) are those of γ(s, π × τ, ψ) and such that P (0) = 1. This does not
depend on ψ, by (4.7). Then by (4.6),

ε(s, π × τ, ψ) =
γ(s, π × τ, ψ)L(s, π × τ)

L(1 − s, π∨ × τ∨)

is invertible in C[q−s, qs]. The final form of the functional equation is

γ(s, π × τ, ψ) = ε(s, π × τ, ψ)
L(1 − s, π∨ × τ∨)

L(s, π × τ)
. (7.1)

1 There was a gap in the proof in the first version of this manuscript; we would like to thank
Freydoon Shahidi for pointing it out to us, and indicating the applicability of his results from
[Sha85].
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The general definition of the L- and ε- factors for an arbitrary irreducible representa-
tion π and irreducible generic τ is now given in terms of the Langlands’ classification,
using the unramified twisting and multiplicativity properties in Theorem 4.2, and
using the GLn case above. In more detail, assume π is the unique irreducible quotient
of a representation parabolically induced from σβ′ ⊗π′, where β′ is a d′ parts compo-
sition of l ≤ n, σβ′ = ⊗d′

i=1σi, each σi is essentially tempered, π′ is tempered unless
G = GSpinc then it is essentially tempered, and τ = IndGLk

Pβ
(⊗d

j=1τj) where each τj

is essentially tempered. For each pair π′ × τj , if |Υ|s0π′ = π′
0 and | det |−rjτj = τ0,j

are tempered, where π′ = π′
0 and s0 = 0 when G �= GSpinc, L(s, π′

0 × τ0,j) is defined
using the zeros of γ(s, π′

0 × τ0,j , ψ) and

L(s, π′ × τj) = L(s + s0 + rj , π
′
0 × τ0,j),

ε(s, π′ × τj , ψ) = ε(s + s0 + rj , π
′
0 × τ0,j , ψ).

Then by definition

L(s, π × τ) =
∏
i,j

L(s, σi × χπτj)L(s, σ∨
i × τj)

∏
j

L(s, π′ × τj),

ε(s, π × τ, ψ) =
∏
i,j

ε(s, σi × χπτj , ψ)ε(s, σ∨
i × τj , ψ)

∏
j

ε(s, π′ × τj , ψ).

Now (7.1) holds in general. In addition by Corollary 4.5, for generic representations
the local factors defined here agree with Shahidi’s.

In particular when data are unramified, we obtain the L-function defined using
the Satake isomorphism, and the ε-factor is trivial: for tempered representations this
follows from (4.4) because for tempered unramified representations, the inducing
data is unitary; the general case then follows from the definition and the tempered
case.

Over archimedean fields we define the L- and ε-factors by the Langlands cor-
respondence [Bor79, Lan89] (for details see [CKPSS04, § 5.1]). Specifically, if Π
is the local functorial lift of π to GLN , we define L(s, π × τ) = L(s, Π × τ) and
ε(s, π × τ, ψ) = ε(s, Π × τ, ψ). Then (7.1) holds because of (4.9).

If π is unramified, we also consider its functorial lift Π to GLN , defined by virtue
of the Satake isomorphism [Sat63, Bor79, Hen00, HT01] (see [CKPSS04, § 5.2]). The
local γ-, L- and ε-factors of Π × τ are defined by [JPSS83].

Lemma 7.1. If π is unramified, the γ-, L- and ε-factors of π × τ and Π× τ coincide.

Proof. This follows as in [CKPSS04, Proposition 5.2], which was stated for generic
representations, but extends to this setting using Theorem 4.2. We provide a proof.
The multiplicativity properties (4.2)–(4.3) imply that the γ-factors coincide, then
by (7.1) it suffices to prove L(s, π × τ) = L(s, Π × τ). Both L-factors can be defined
as the products of L-factors for essentially tempered representations, and by the
unramified twisting property we may assume τ is tempered.
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Assume that π is an irreducible quotient of an unramified principal series rep-
resentation, induced from an unramified character ⊗n

i=1πi of TG if G is a classical
group, or from ⊗n

i=1πi ⊗χπ for GSpinc as explained in Remark 4.4. Also write π as a
quotient of a representation parabolically induced from σβ′ ⊗π′, where σβ′ = ⊗d′

i=1σi,
σi (resp., π′) is an unramified essentially tempered representation of GLβ′

i
(resp., G′).

The representations σi and π′ are also quotients of unramified principal series
representations. If the unramified character corresponding to σi is ⊗jσi,j , and the
one corresponding to π′ is ⊗lπ

′
l or ⊗lπ

′
l ⊗ χπ, up to reordering ⊗i,jσi,j ⊗l π′

l is the
character ⊗iπi.

By definition

L(s, π × τ) = L(s, π′ × τ)
d′∏

i=1

L(s, σi × (τ ⊗ χ−1
π τ)).

(Recall χπ = 1 for G �= GSpinc.) Again, by definition

L(s, σi × (τ ⊗ χ−1
π τ)) = L(s, σi × χπτ)L(s, σ∨

i × τ),

where on the r.h.s. these are Rankin–Selberg L-functions for generic representations,
and the description in [JPSS83, § 8.4] implies

L(s, σi × (τ ⊗ χ−1
π τ)) =

∏
j

L(s, σi,j × χπτ)L(s, σ−1
i,j × τ).

Regarding π′, by virtue of our definition we can already assume it is tempered.
Then L(s, π′ × τ) is defined by the zeros of γ(s, π′ × τ, ψ), which by (4.3) are the
zeros of

[γ(s, τ, ψ)]
∏

l

γRS(s, π′
l × χπτ, ψ)γRS(s, π′

l
−1 × τ, ψ). (7.2)

Here [. . .] appears only for G = Sp2n. Since the inducing character of π′ is unitary,
when we write each γ-factor in (7.2) as a quotient of L-functions multiplied by the
ε-factor, there are no cancellations, in each quotient as well as between pairs of
quotients corresponding to pairs of γ-factors. Thus the zeros of (7.2) are precisely
the poles of

[L(s, τ)]
∏

l

L(s, π′
l × χπτ)L(s, π′

l
−1 × τ).

We deduce

L(s, π × τ) = [L(s, τ)]
n∏

i=1

L(s, πi × χπτ)L(s, π−1
i × τ). (7.3)

According to [JPSS83, § 8 and § 9.4], this identity is also satisfied by L(s, Π × τ). ��
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Corollary 7.2. Let π be tempered and τ be unitary generic, and if the field is
p-adic also assume π is unramified. Then L(s, π×τ) is holomorphic for Re(s) ≥ 1/2.
If τ is tempered, L(s, π × τ) is holomorphic for Re(s) > 0.

Proof. Since τ is unitary (and generic), τ ∼= IndGLk

Pβ
(⊗d

i=1| det |riτi) for square-integ-
rable τi and ri > −1/2 for all i ([Vog86, Tad86]). Over a p-adic field, since the
inducing character of π is unitary, Π is tempered (it is a full induced representation).
Thus L(s, π×τ) = L(s, Π×τ) factors as the product of L-functions for unitary twists
of | det |riτi ([JPSS83, § 8.4, § 9.4]), each holomorphic for Re(s) ≥ 1/2 because L(s, τi)
is holomorphic for Re(s) > 0 ([GJ72]) and ri > −1/2. Over archimedean fields we
can directly deduce that L(s, π × τ) is a product of L-functions L(s + ri, π × τj),
each known to be holomorphic for Re(s) + ri > 0. The case of a tempered τ follows
at once since then ri = 0. ��

Assume F is p-adic. We prove a stability result which essentially follows from
the stability result of Rallis and Soudry [RS05] for the doubling method. Let π be
an irreducible representation of G. Let Π be an irreducible generic representation of
GLN , where for G �= GSpinc we assume Π has a trivial central character, and for
GSpinc we assume Π is unramified with a central character χ

N/2
π (e.g., take Π whose

Satake parameter takes the form (4.11)).

Lemma 7.3. If η is a sufficiently highly ramified character of F ∗, depending on π and
Π, then for any τ = ητ0 where τ0 is an irreducible generic unramified representation
of GLk, the γ-, L- and ε-factors of π×τ and Π×τ coincide and moreover, L(s, π×τ) =
L(s, Π × τ) = 1. (Other than the condition on the central character for GSpinc, π
and Π are not related in any way.)

Proof. Let πgen be an irreducible generic representation of G. If G = GSpinc, πgen

must in addition have the same central character as π. This can be obtained, e.g., by
taking πgen to be an irreducible principal series with an inducing character (⊗n

l=1χl)⊗
χπ, then it is automatically generic and if c is even, we can take ⊗n

l=1χl such that∏n
l=1 χl(−1) = π([−In, 1]) (in this case CG = C◦

G

∐
[−In, 1]C◦

G).
Assume k = 1. According to the stability results [RS05, Wag] (see Remark 4.3),

for a sufficiently highly ramified η (independent of τ0), γ(s, π × τ, ψ) is equal to the
γ-factor γ(s, πgen × τ, ψ) of Shahidi [Sha90]. The latter coincides with γ(s, Π × τ, ψ)
and moreover belongs to C[q−s, qs]∗, i.e., is invertible in C[q−s, qs] (because it is
equal to the ε-factor), by the stability results of [CKPSS04, § 4.5–4.6] for classical
groups and [AS06, § 4] for general spin groups. By (4.2) we deduce that for all k,

γ(s, π × τ, ψ) = γ(s, Π × τ, ψ) ∈ C[q−s, qs]∗. (7.4)

Now write π as the irreducible quotient of a representation parabolically induced
from σβ′ ⊗ π′, where σβ′ = ⊗iσi, and all σi and π′ are essentially tempered. For a
sufficiently highly ramified η (still, depending only on π), by [JPSS83, 2.13],

L(s, σi × χπτ) = L(s, σ∨
i × τ) = L(s, σ∨

i × χ−1
π τ∨) = L(s, σi × τ∨) = 1
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for all i, then γ(σi×(τ ⊗χ−1
π τ∨), ψ) ∈ C[q−s, qs]∗. Therefore by (4.3), γ(s, π′×τ, ψ) =

γ(s, π×τ, ψ) up to factors in C[q−s, qs]∗. By (7.4), γ(s, π′×τ, ψ) ∈ C[q−s, qs]∗, thus by
definition L(s, π′×τ) = 1. Hence L(s, π×τ) = 1 as a product of trivial L-factors. Also
L(s, Π × τ) = 1 ([JPSS83, 2.13]), whence (7.1) implies ε(s, π × τ, ψ) = ε(s, Π × τ, ψ).
��
Until the end of this section assume F is archimedean. The following lemma sum-
marizes several basic properties of the L-function, which follow from known results
on the classical Gamma functions.

Lemma 7.4. (1) L(s, π × τ) has finitely many poles in Re(s) ≥ 1/2.
(2) There is an ε > 0 (usually small) such that the poles of L(s, π×τ) are contained

in {s : | Im(s)| < ε}.
(3) L(s, π × τ) decays exponentially in | Im(s)|.
(4) Write s = σ + it with σ, t ∈ R. Fix σ, and let ε0 > 0. There are constants

A, B > 0 such that for all |t| > ε0, |L(1−s, π∨ ×τ∨)/L(s, π×τ)| ≤ A(1+ |t|)B.

Proof. By (4.9) and the definitions of the Artin factors,

L(s, π × τ) = C(s)
m∏

i=1

Γ(ris + di), L(s, π∨ × τ∨) = C̃(s)
m∏

i=1

Γ(ris + d̃i),

where C(s) and C̃(s) are complex-valued functions such that |C(s)| and |C̃(s)| are
fixed when Re(s) is fixed; ri ∈ {1, 1/2} and di, d̃i ∈ C (see e.g., [Sha85, § 3]). In
particular ri > 0. The first two assertions follow immediately, and the third follows
from Stirling’s approximation for Γ(s). For the last, observe that again by Stirling’s
approximation, under the assumption |t| > ε0, |Γ(ri(1 − s) + d̃i)/Γ(ris + di)| ≤
Ai|t|Bi−2riσ, where Ai > 0, Bi ∈ R and both depend on ri, di and d̃i. ��
Proposition 7.5. Both ϑ(s, c, τ ⊗ χπ, ψ) and C(s, c, τ ⊗ χπ, ψ) are bounded by a
polynomial in vertical strips of finite width away from their poles.

Proof. For any two meromorphic functions q(s) and q′(s), denote q(s) � q′(s) if
q(s) = ε(s)q′(s) for an entire function ε(s), which is also invertible and bounded at
infinity on vertical strips of finite width. E.g., ϑ(s, c, τ ⊗χπ, ψ) � 1 unless G = Sp2n,
in which case ϑ(s, c, τ ⊗χπ, ψ) � γ(s, τ, ψ). The assertion on ϑ(s, c, τ ⊗χπ, ψ) is now
clear by Lemma 7.4 (4).

Next we claim

C(s, c, τ ⊗ χπ, ψ) � [γ(s, τ, ψ)−1]
�c/2�∏
j=1

γ(2s − c + 2j − 1, τ, ∨2 ⊗ χπ, ψ) (7.5)

×
�c/2�∏
j=1

γ(2s − c + 2j − 2, τ, ∧2 ⊗ χπ, ψ),
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where [. . .] appears only when H = Sp2kc. This will complete the proof by the afore-
mentioned lemma. To prove (7.5), one reduces to the case k = 1 using Casselman’s
subrepresentation theorem [Cas80a] and (5.6), then it is essentially implied by the
proof of [Yam14, Lemma B.1] (see also [Swe95, Yam11] and the conclusive [GI14,
Appendix A.3]). In more detail, one argues by a globalization argument using (6.3),
(6.13) and § 6.6. In our setup (as opposed to [Yam14]), at the p-adic places we
can always compute C(s, c, τ ⊗ χπ, ψ) using (6.10) (see § 6.5), unless c is odd then
(6.10) is valid when |2| = 1 (see § 2.2). In the remaining case we can still determine
C(s, c, τ ⊗ χπ, ψ) using unramified sections and the multiplicative formulas for the
functional λ on both sides of (3.4), given in § 5.3.2 (see also § 5.3.3). ��

8 Global Theory: The Completed L-function

Assume G �= GLn (the results of this section are known for GLn). Let F be a
number field and A be its ring of adeles. Denote the set of infinite places of F by
S∞. Let π and τ be cuspidal representations of G(A) and GLk(A). If G = GSpinc

let χπ = π|C◦
G(A), otherwise χπ is trivial. Also let χτ : F ∗\A

∗ → C be the central
character of τ .

Theorem 8.1. Let S be a finite set of places of F , such that outside S, all data are
unramified. The partial L-function LS(s, π × τ) admits meromorphic continuation
to the plane.

Proof. The l.h.s. of (6.15) admits meromorphic continuation, and on the r.h.s. for
any given s, by Proposition 2.6 and Corollary 6.9 we can choose data such that each
integral at a place ν ∈ S is holomorphic and nonzero. ��

In § 7 we defined local L- and ε-factors. Now we may define the global (completed)
L-function L(s, π × τ) and ε-factor ε(s, π × τ), as the Euler products of local factors
over all places of F . Note that ε(s, π × τ) does not depend on ψ by (4.7).

Corollary 8.2. The L-function L(s, π × τ) admits meromorphic continuation to
the plane.

Proof. By Theorem 8.1, and since the local L-factors admit meromorphic continua-
tion. ��

Theorem 8.3. The global functional equation holds:

L(s, π × τ) = ε(s, π × τ)L(1 − s, π∨ × τ∨).

Proof. This follows from (4.10) with (7.1). ��

We turn to proving boundedness in vertical strips.
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Theorem 8.4. Let S be a finite set of places of F , such that outside S, all data
are unramified. Assume LS(s, π × τ) and LS(s, π∨ × τ∨) have finitely many poles in
Re(s) ≥ 1/2, and all of them are real. For any ε > 0, there are constants A, B > 0
such that |LS(s, π × τ)| ≤ A(1 + |s|)B for all s with Re(s) ≥ 1/2 and | Im(s)| ≥ ε.

Proof. We closely follow the arguments of [GL06, Proposition 1]. Let S0 ⊂ S be the
subset of finite places. Using (7.1), we may write (4.10) in the form

LS(s, π × τ)
LS0(1 − s, π∨ × τ∨)

= εS(s, π × τ, ψ)
LS∞(1 − s, π∨ × τ∨)LS(1 − s, π∨ × τ∨)

LS(s, π × τ)
,

where the subscript S0 (resp., S, S∞) denotes the finite product of factors over the
places in S0 (resp., S, S∞). According to our assumptions on the finiteness of poles,
the l.h.s. has finitely many poles in Re(s) ≥ 1/2, and LS(1 − s, π∨ × τ∨) has finitely
many poles in Re(s) ≤ 1/2. By Lemma 7.4 (1), LS∞(1 − s, π∨ × τ∨) also has finitely
many poles in Re(s) ≤ 1/2. The remaining factors on the r.h.s. do not contribute
(any) poles. Therefore, there is a polynomial P (s) such that

L(s) = P (s)
LS(s, π × τ)

LS0(1 − s, π∨ × τ∨)

is entire.
Next, we can find r1 � 0 � r2 such that L(s) is bounded on the boundary of

the half-strip {s : r1 ≤ Re(s) ≤ r2, Im(s) ≥ ε} by A(1 + |s|)B (by assumption the
poles of LS(· · · ) are real, therefore any ε > 0 suffices).

Indeed, on the right boundary, this follows since LS(s, π × τ) is absolutely con-
vergent for Re(s) � 0 hence bounded there, and for ν < ∞, Lν(s, πν × τν)−1 is
bounded on any vertical line Re(s) = σ depending only on σ. On the left, this is
because LS(1−s, π∨×τ∨) is absolutely convergent for Re(s) � 0, Lν(s, πν ×τν)−1 is
again bounded on vertical lines for ν < ∞, and |LS∞(1−s, π∨×τ∨)/LS∞(s, π×τ)| ≤
A(1 + |s|)B by Lemma 7.4 (4).

Moreover, by [GL06, Theorem 2] (stated also for non-generic representations)
LS(s, π × τ) is a meromorphic function of finite order, whence so is L(s). Now the
Phragmén–Lindelöf principle implies |L(s)| ≤ A(1 + |s|)B on the half-strip, thereby
on {s : r1 ≤ Re(s) ≤ r2} (with possibly different constants A, B) because L(s) is
entire.

To obtain the bound for LS(s, π × τ) we apply the maximum modulus principle
exactly as in [GL06, Proposition 1]. ��

Corollary 8.5. If L(s, π × τ) and L(1 − s, π∨ × τ∨) are entire, they are bounded
in vertical strips of finite width.

Proof. Let S and S0 be as in Theorem 8.4. Since L(s, π × τ) is entire, it is enough to
prove boundedness in D = {s : r1 ≤ Re(s) ≤ r2, | Im(s)| ≥ ε}, where r1 � 0 � r2,
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and ε is sufficiently large such that LS∞(s, π × τ) is analytic in D (see Lemma 7.4
(2)). Put

L(s) = LS0(s, π × τ)−1L(s, π × τ) = LS∞(s, π × τ)LS(s, π × τ).

Since L(s, π × τ) and L(1 − s, π∨ × τ∨) are entire, so are LS(s, π × τ) and LS(1 −
s, π∨ × τ∨). Hence we may apply Theorem 8.4 without restricting to Re(s) ≥ 1/2
(see [GL06, Remark 2]), and deduce that LS(s, π × τ) is bounded by A(1 + |s|)B

in D. This bound is now polynomial in | Im(s)|, while the L-functions appearing in
LS∞(s, π×τ) decay exponentially in | Im(s)| (Lemma 7.4 (3)). Hence L(s) is bounded
in D.

As in [GL06, Proposition 1], let C be the (discrete) union of discs of fixed radius
r > 0 around the poles of LS0(s, π × τ). Since LS0(s, π × τ) is bounded in D − C, so
is L(s, π × τ), hence by the maximum modulus principle L(s, π × τ) is bounded in
D, completing the proof. ��
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Appendix A. Technical results on analytic families of representations
(Dmitry Gourevitch)

Let 2 H be a real reductive group. Fix a maximal compact subgroup KH of H. Let
P be a parabolic subgroup of H, and MP be its Levi quotient. Let ρ be a (com-
plex) smooth Fréchet representation of MP , of moderate growth. For an algebraic
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character χ of MP and s ∈ C
l, let V (s, ρ) be the space of the smooth induced repre-

sentation IndH
P (|χ|sρ) (l is determined by MP ). For example H is a classical group,

P is a Siegel parabolic subgroup of H, MP is isomorphic to GLr(R) or GLr(C), ρ is
in addition admissible of finite length, χ is the determinant character and s ∈ C.
By virtue of the Iwasawa decomposition, the spaces V (s, ρ) where s varies are all iso-
morphic as representations of KH to the smooth induction V :=IndKH

MP ∩KH
(ρ|MP ∩KH

).
Let W denote the space of functions from C

l to V that are holomorphic in the
sense that their composition with every continuous functional on V is a holomorphic
function. This notion was discussed by Grothendieck [Gro53, § 2]. Since V is a
Fréchet space, by [Gro53, § 2, Remarque 1 and footnote 4] a function f : C

l → V is
holomorphic if and only if it is continuous, and in addition ψ ◦ f is a holomorphic
function C

l → C for every ψ in a separating set X of functionals on V . Separating
here means that they have no common zeros on V . For example, we can take X to
be the set of all functionals of the form v �→ 〈w, v(k)〉, where k ∈ KH (thus v(k)
belongs to the space of ρ), and w is a KM -finite vector in the space of the continuous
dual representation of ρ. Here, KM is a maximal compact subgroup of M .
Define a topology on W by the system of semi-norms ||f ||νD := maxs∈D ν(f(s)),
where D runs over all closed balls in C

l, and ν over all the semi-norms on V . Note
that this family of semi-norms defines a Fréchet topology on W . Indeed, the topology
stays equivalent if we keep only balls with rational centers and radii, and thus can be
given by a countable family of semi-norms. Furthermore, the topology is complete
since for any Cauchy sequence fn and any s ∈ C

l, the sequence of vectors fn(s)
converges, and the limit f(s) is holomorphic in s by the Cauchy formula, since for
every continuous functional ψ on V , the holomorphic functions ψ(fn(s)) converge
to ψ(f(s)) uniformly on compact sets.
Note that W is naturally a continuous representation of H of moderate growth
(see e.g., [Jac09, § 3.3]). Furthermore, W is a smooth representation of H. Indeed,
V (s, ρ) is smooth for every s, and for every X in the Lie algebra of H and f ∈ W , the
functions t−1(exp(tX)f(s) − f(s)) converge when t → 0 to the derivative X(f(s))
uniformly on compact sets. The latter follows from the definition of the topology on
the smooth induction (see e.g., [Cas89] for this definition).
Let R be a Lie subgroup of H. Let C∞(R) denote the space of smooth functions on
R, and let C∞

c (R) be the subspace of compactly supported functions. Fix a (non-
zero) left-invariant measure dx on R. For any φ ∈ C∞

c (R) and any f ∈ W , define
φ(f) ∈ W by

φ(f)(s) =
∫

R

x · f(s)φ(x) dx.

Equivalently, we can define φ(f) using the action of φ on the representation W , rather
than separately on V (s, ρ) for each s. The Dixmier–Malliavin Theorem [DM78] (see
also [Cas] for a modern exposition and [Dor] for an extension to bornological spaces)
applied to W implies the following statement.
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Theorem A.1. For any f ∈ W there exist m ∈ N, φ1, . . . φm ∈ C∞
c (R) and

f1, . . . , fm ∈ W such that f =
∑m

i=1 φi(fi), i.e., f(s) =
∑m

i=1 φi(fi)(s) for all s.

Remark A.2. As a rule, even if f does not depend on s, the sections fi will still
depend on s, unless R < KH .

In the discussion above, and in the theorem, one can restrict the domain of the
functions to any open subset U of C

l. One can also define meromorphic sections
of W as functions f from U \ S to V for some discrete set S such that for some
holomorphic function α : U → C, the product αf extends to an element of W .
Multiplying by α, Theorem A.1 implies the following corollary.

Corollary A.3. For any meromorphic section f ∈ W there exist m ∈ N, φ1, . . . , φm

∈ C∞
c (R) and meromorphic sections f1, . . . , fm ∈ W such that for all s for which

f(s) is defined, each fi(s) is also defined and we have f(s) =
∑m

i=1 φi(fi)(s).

Consider f ∈ W (a holomorphic section), and let D ⊂ C
l be a domain (in the paper

l = 1 and the domains are vertical strips of finite width). We say that f is of finite
order in D if for every continuous functional ψ on V , the holomorphic C

l → C

function ψ ◦ f has a finite order in D.

Theorem A.4. For any f ∈ W there exists a sequence fn ∈ W that converges to f ,
and for every n, fn is a finite sum of the form fn =

∑mn

i=1 ϑn,ifn,i with the following
properties:

(1) Each fn,i ∈ W is a standard section, in the sense that fn,i(s) is independent of
s.

(2) Each fn,i is KH-finite.
(3) Each ϑn,i : C

l → C is holomorphic.
(4) If f is of finite order in D, so are all the functions ϑn,i.

Proof. According to Bishop [Bis62, Theorem 1], there exists a sequence pk of con-
tinuous mutually annihilating projections on V , whose ranges are one dimensional
subspaces of V , such that f =

∑
k pk ◦ f . Choosing for each k a nonzero vector

vk ∈ V in the image of pk, we can write f =
∑

k αkvk where each αk : C
l → C is

holomorphic.
The vectors vk uniquely define standard sections hk. We then approximate each hk

by a sequence of standard KH -finite vectors hi
k. Since f =

∑∞
k=1 αkhk, and the

sequences hi
k converge to hk for every k, there exist sequences of indices kn and in

such that the sequence fn :=
∑kn

k=1 αkh
in

k converges to f .
Finally if f is of finite order (in D), each pk ◦ f is of finite order, then so are the
functions αk. ��
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Appendix B. Proof of Theorem 3.2 (Eyal Kaplan)

We prove the result by adapting the arguments from [GK] to the present setup. We
use the notation of § 1.1 and § 3. For brevity and to simplify the comparison to [GK],
we put D = Yk,c and ψD = ψk,c (D of loc. cit. is a different subgroup but plays the
same role). Let ρ be a (k, c) representation of finite length, not necessarily of the
form ρc(τ). We prove dim HomD(V (s, ρ), ψD) ≤ 1 by analyzing distributions on the
orbits of the right action of D on the homogeneous space P\H. For h, h′ ∈ H, write
h ∼ h′ if PhD = Ph′D, otherwise h �∼ h′. Denote Ph = h−1

P ∩ D. By the Frobenius
reciprocity law, the space of distributions on the orbit PhD is given by

H(h) = HomPh
(h−1

(| det |s−1/2ρ) ⊗ ψ−1
D ⊗ Λh,ν , θh). (B.1)

Here Λh,ν is the trivial one dimensional representation if F is p-adic or h ∼ δ0

(δ0 was defined in § 2.4), otherwise for each integer ν ≥ 0, Λh,ν is the algebraic
dual of the symmetric ν-th power of the normal bundle to PhD, and θh(x) =
δPh

(x)δ−1
D (x)δ−1/2

P (hx) (x ∈ Ph). We prove H(h) = 0 when h �∼ δ0, and dimH(δ0) =
1. The local analysis on the orbits implies the result: in the non-archimedean case
this follows from the theory of Bernstein and Zelevinsky [BZ76] of distributions on
l-sheafs, note that the action of D is constructive; in the archimedean case the anal-
ysis is far more involved, but now follows transparently from Kolk and Varadarajan
[KV96] and Aizenbud and Gourevitch [GK, Appendix], exactly as explained in [GK,
§ 2.1.3]. Note that for the vanishing arguments we only use the equivariance prop-
erties with respect to unipotent subgroups of Ph, and for these the representations
Λh,ν can be ignored (see [GK, § 2.1.1]).
Fix H = Sp2kc. At the end of the proof we explain how to adapt it to SO2kc and
GSpin2kc (for GLkc the result already follows from [CFGoK, Proposition 2]).
Since V(ck) � UP = D < P , we have P\H/D =

∐
h PhD with h = wu, where w is a

representative from W (MP )\W (H) and u ∈ NH ∩ M(ck) < MP . Identify w with a
kc-tuple of 0’s and 1’s, where the i-th coordinate corresponds to

⎛
⎝

Ikc−i

0 1
I2(i−1)

ε0 0
Ikc−i

⎞
⎠ .

E.g., w = (1, 0kc−1) = diag(Ikc−1,
(

1
ε0

)
, Ikc−1). Writing v ∈ D in the form

(vi,j)1≤i,j≤ 2k with vi,j ∈ Matc, let Bi be the i-th block vi,i+1, 1 ≤ i ≤ k, then
Bk ∈ D ∩ UP . Note that Bi takes arbitrary coordinates in Matc for i < k, while
Bk ∈ {X ∈ Matc : Jc(tX)Jc = X}. Also ψD|Bi

= ψ ◦ tr for each i.
As shown in [GK, § 2.1.2], the condition

ψD|D∩h−1UP
�= 1 (B.2)

implies H(h) = 0 (in loc. cit. ψU was restricted to U ∩ h−1
UP ).

Let h = wu. We have the following analog of [GK, Lemma 2.6].
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Lemma B.1. Condition (B.2) is implied by

ψD|D∩w−1UP
�= 1. (B.3)

Proof. By (B.3), there exists a root in D such that for the subgroup Y < D generated
by this root, wY < UP and ψD|Y �= 1. Since u normalizes D, it remains to show
ψD|u−1Y �= 1. If this root belongs to Bi for i < k, it is identified by a diagonal
coordinate d of Bi, and if i = k, by two diagonal coordinates (d, d) and (c−d+1, c−
d+1) of Bi. In both cases, since u ∈ NH ∩M(ck), the conjugation by u only changes
coordinates above or to the right of these diagonal coordinates, whence ψD|u−1Y �= 1
(cf. the proof of [GK, Lemma 2.6]). ��

Recall the embedding GL	
c of GLc in GLkc, and further embed GL	

c in MP by g	 �→
diag(g	, (g	)∗). We see that GL	

c stabilizes the restriction of ψD to B1, . . . , Bk−1.
Since (g�

ψD)|Bk
(X) = ψ(tr(Jc

tg−1Jcg
−1X)), the stabilizer of ψD in MP is {g	 : g ∈

GLc,
tgJcg = Jc}. In particular, the stabilizer contains W (Oc) (the Weyl group of

Oc) regarded as a subgroup of permutation matrices. The following result simplifies
the structure of w, at the cost of slightly modifying u. See [GK, Propositions 2.7–2.8].

Proposition B.2. We have H(h) = 0, unless h ∼ ŵûσ such that for an integer
0 ≤ l ≤ n,

ŵ = (1n, 0n−l, 1l, w2, . . . , wk), ∀1 < i ≤ k,

wi = (1n, 0n−l−di−1 , 1l+di−1), 0 ≤ d1 ≤ . . . ≤ dk−1 ≤ n − l,

σ = σ	
0 for σ0 ∈ W (Oc) and σ−1

û ∈ NH ∩ M(ck).

Proof. Put w = (w1, . . . , wk) with wi ∈ {0, 1}c and denote the j-th coordinate of wi

by wi[j]. For 1 ≤ j ≤ n, if w1[j] = w1[c−j +1] = 0, (B.3) holds, then by Lemma B.1
(B.2) holds whence H(h) = 0. This already describes the first c coordinates of ŵ up
to a permutation. E.g., l is the number of coordinates with w1[j] = w1[c−j +1] = 1.
Assume wi[j] = 1 for some 1 ≤ i < k and 1 ≤ j ≤ c. Hence the j-th column of Bk−i

is permuted into UP , and if wi+1[j] = 0, the j-th row of Bk−i is not permuted. Thus
the (j, j)-th coordinate of Bk−i is permuted into UP , and as above (B.3) implies
H(h) = 0.
Now as in the proof of [GK, Proposition 2.8], we can choose a suitable permutation
σ = σ	

0 with σ0 ∈ W (Oc) such that ŵ = σw satisfies the required properties, then
clearly so does û = σu, and h ∼ σh = ŵûσ. ��

Re-denote w = ŵ and u = û with the properties of the proposition, then h = wuσ.
To compute hD ∩ MP note that hD = wD. We can further multiply h on the left by
elements of MP , to change the blocks Ja appearing in the matrix corresponding to
w to blocks Ia, then conjugate hD ∩MP by permutation matrices in MP to obtain a
subgroup of NMP

(see [GK, (2.26)] and the discussion after [GK, Proposition 2.8]).
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Example B.3. For k = 2, we first multiply h on the left by elements in MP to
obtain

w =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Il+d1
In−l−d1

In

Il

In−l

In

ε0In

In−l

ε0Il

ε0In

In−l−d1
ε0Il+d1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then conjugate hD ∩ MP by

(
In−l−d1

Ic−l

Il

In+l+d1

)(
In−l−d1

Ic

In

Il+d1

)(
I2c−l−d1

Il+d1

)
.

We see that hD ∩ MP = Vβ for the composition β of kc given by

β = (n − l − dk−1, . . . , n − l − d1, n − l, n + l, n + l + d1, . . . , n + l + dk−1). (B.4)

(Cf. [GK, (2.27)].) Denote ψVβ
= hψD|Vβ

. First we describe wψD|Vβ
, then handle uσ.

For

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

In−l−dk−1 b1 ···
. . . . . .

In−l−d1 bk−1 ···
In−l bk ···

In+l bk+1 ···
. . . . . .

In+l+dk−2 b2k−1

In+l+dk−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Vβ ,

wψD(v) = ψ

⎛
⎝ 2∑

j=k−1

tr
(
bk−j

(
0dj−dj−1×n−l−dj

In−l−dj

))
+ tr

(
bk−1

(
0d1×n−l−d1

In−l−d1

))

+ tr
(

bk

(
0l×n−l

In−l

0l×n−l

))
− tr

(
bk+1

(
In 0n×l

0d1×n 0d1×l

0l×n Il

))

−
k−1∑
j=2

tr

(
bk+j

(
In 0n×dj−1+l

0dj−dj−1×n 0dj−dj−1×dj−1+l

0dj−1+l×n Idj−1+l

))⎞
⎠ . (B.5)

(The sum
∑2

j=k−1 is omitted if k ≤ 2.)
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Proposition B.4. Assume k > 1 and l < n. If H(h) �= 0, ψVβ
belongs to the orbit

of

v �→ ψ

⎛
⎝ 2∑

j=k−1

tr
(
bk−j

( ∗dj−dj−1×n−l−dj∗n−l−dj

))
+ tr

(
bk−1

( ∗d1×n−l−d1∗n−l−d1

))
+ tr

(
bk

( ∗l×n−l

In−l∗l×n−l

))

(B.6)

− tr
(

bk+1

(
In 0n×l∗d1×n ∗d1×l∗l×n ∗l

))
−

k−1∑
j=2

tr
(

bk+j

(
In 0n×dj−1+l

∗dj−dj−1×n ∗dj−dj−1×dj−1+l

∗dj−1+l×n ∗dj−1+l

))⎞
⎠ .

Here ∗ means undetermined block entries. When uσ is the identity element, all
coordinates were computed above and (B.6) coincides with (B.5).

Proof. The proof is a simplified version of [GK, Proposition 2.11]. We need some
notation. Set d0 = 0 and dk = dk−1. For each 1 ≤ i ≤ k − 1, write Bi as the upper
right block of⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Il+dk−i−1 B1,1
i B1,2

i B1,3
i B1,4

i

Idk−i−dk−i−1 B2,1
i B2,2

i B2,3
i B2,4

i

In−l−dk−i
B3,1

i B3,2
i B3,3

i B3,4
i

In B4,1
i B4,2

i B4,3
i B4,4

i

Il+dk−i−1

Idk−i−dk−i−1

In−l−dk−i

In

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and Bk as the upper right block of
⎛
⎜⎜⎜⎜⎜⎝

Il B1,1
k B1,2

k B1,3
k B1,4

k

In−l B2,1
k B2,2

k B2,3
k B2,4

k

In−l B3,1
k B3,2

k B3,3
k B3,4

k

Il B4,1
k B4,2

k B4,3
k B4,4

k

Il

In−l

In−l

Il

⎞
⎟⎟⎟⎟⎟⎠

.

With this notation ψD is given by ψ(
∑k

i=1

∑4
j=1 tr(Bj,j

i )). Denote the lists of blocks

Bt,t′

i conjugated by w into MP , UP and U−
P by MP , UP and U −

P (resp.). We have

MP ={B1,1
i , B1,4

i , B2,1
i , B2,4

i , B3,2
i , B3,3

i , B4,1
i , B4,4

i : 1 ≤ i ≤ k − 1}∐
{B1,3

k , B2,1
k , B2,2

k , B2,4
k , B3,3

k , B4,3
k },

UP ={B3,1
i , B3,4

i : 1 ≤ i ≤ k − 1}
∐

{B2,3
k }

and the remaining blocks belong to U −
P .

Recall h = wuσ. Since σ fixes ψD, hψD = wuψD, thus we can already assume h = wu
(but u is still given by Proposition B.2). Write u = diag(z1, . . . , zk) ∈ M(ck) with
zi = σ0vi and vi ∈ NGLc

(recall σ−1
u ∈ NH ∩ M(ck)). We can simplify the form of zi
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as follows. If zi = z′
imi such that w diag(z′

1, . . . , z
′
k, z

′∗
k , . . . , z′∗

1 ) ∈ MP , then because
h ∼ ph for any p ∈ P , we can already assume zi = mi. We take for 1 ≤ i ≤ k,

mi =

(
Il+dk−i

+M1
i M2

i M1
i 0

M2
i In−l−dk−i

+M3
i M4

i M3
i

0 M4
i In

)
∈ GLc,

Il+dk−i
+ M1

i M2
i ∈ GLl+dk−i

, In−l−dk−i
+ M3

i M4
i ∈ GLn−l−dk−i

.

These matrices are invertible because mi ∈ σ0NGLc
, and so are the matrices

In−l−dk−i
+ M2

i M1
i (see the proof of [GK, Proposition 2.11]). Then

m−1
i =

(
Il+dk−i

−M1
i M1

i M3
i

−M2
i In−l−dk−i

+M2
i M1

i −(In−l−dk−i
+M2

i M1
i )M3

i

M4
i M2

i −M4
i (In−l−dk−i

+M2
i M1

i ) In+M4
i (In−l−dk−i

+M2
i M1

i )M3
i

)
.

Also set for X ∈ Mata×b, X ′ = −Jb
tXJa.

To determine ψVβ
we compute uψD on the blocks of D conjugated by w into

bk, bk+1, . . . , b2k−1. First, bk = ( B2,1
k B2,2

k B2,4
k ). To compute uψD on bk we consider

m−1
k Bk(Jc

tm−1
k Jc). Note that

Jc
tm−1

k Jc =
(

In+(M3
k)′(In−l+(M1

k)′(M2
k)′)(M4

k)′ (M3
k)′(In−l+(M1

k)′(M2
k)′) (M3

k)′(M1
k)′

(In−l+(M1
k)′(M2

k)′)(M4
k)′ In−l+(M1

k)′(M2
k)′ (M1

k)′

(M2
k)′(M4

k)′ (M2
k)′ Il

)
.

Since ψD|Bk
= ψ ◦ tr, uψD|Bk

= ψ(tr(Jc
tm−1

k Jcm
−1
k Bk)). The restriction of uψD

to B2,3
k is given by the product of rows n + 1, . . . , c − l of Jc

tm−1
k Jc and columns

l + 1, . . . , n of m−1
k , and because B2,3

k ∈ UP , we have

( (In−l+(M1
k)′(M2

k)′)(M4
k)′ In−l+(M1

k)′(M2
k)′ (M1

k)′ )
( −M1

k

In−l+M2
kM1

k

−M4
k(In−l+M2

kM1
k)

)
= 0, (B.7)

otherwise H(h) = 0 by (B.2). Since the restriction of uψD to ( B2,1
k ,B2,2

k ) is given by
the product of rows 1, . . . , n of Jc

tm−1
k Jc and columns l + 1, . . . , n of m−1

k ,
(

In+(M3
k)′(In−l+(M1

k)′(M2
k)′)(M4

k)′ (M3
k)′(In−l+(M1

k)′(M2
k)′)

(M3
k)′(M1

k)′

)

×
( −M1

k

In−l+M2
kM1

k

−M4
k(In−l+M2

kM1
k)

)
=
(−M1

k
a

)
, (B.8)

where a = In−l +M2
kM1

k ∈ GLn−l. Set da = diag(I(k−1)c+l, a, Ic, a
∗, I(k−1)c+l) ∈ MP .

Since wda ∈ MP , h ∼ wdau and when we repeat the computation above we obtain(
−M1

ka−1

In−l

)
, hence uψD belongs to an orbit of a character which agrees with (B.6) on

bk.
For 1 ≤ i ≤ k − 1,

bk+i =
(

(B4,4
k−i)

′ (B2,4
k−i)

′ (B1,4
k−i)

′

(B4,1
k−i)

′ (B2,1
k−i)

′ (B1,1
k−i)

′

)
. (B.9)
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To compute uψD on bk+i consider m−1
k−iBk−imk−i+1. Since ψD|Bk−i

= ψ ◦ tr,

uψD|Bk−i
= ψ(tr(mk−i+1m

−1
k−iBk−i)).

This restriction must be trivial on B3,4
k−i ∈ UP , otherwise H(h) = 0 by (B.2). Thus

we obtain, if H(h) �= 0,

( 0n×l+di−1 M4
k−i+1 In )

(
−M1

k−i

In−l−di
+M2

k−iM
1
k−i

−M4
k−i(In−l−di

+M2
k−iM

1
k−i)

)
= 0.

Hence

( 0n×l+di−1 M4
k−i+1 In )

(
M1

k−iM
3
k−i

−(In−l−di
+M2

k−iM
1
k−i)M

3
k−i

In+M4
k−i(In−l−di

+M2
k−iM

1
k−i)M

3
k−i

)
= In.

Then the restriction of uψD to B4,4
k−i, which corresponds to the bottom right n × n

block of mk−i+1m
−1
k−i, is ψ ◦ tr = ψD|B4,4

k−i
. Similarly, because B3,1

k−i ∈ UP , H(h) = 0
unless

( Il+di−1+M1
k−i+1M

2
k−i+1 M1

k−i+1 0l+di−1×n )

(
−M1

k−i

In−l−di
+M2

k−iM
1
k−i

−M4
k−i(In−l−di

+M2
k−iM

1
k−i)

)
= 0.

Hence

( Il+di−1+M1
k−i+1M

2
k−i+1 M1

k−i+1 0l+di−1×n )

(
M1

k−iM
3
k−i

−(In−l−di
+M2

k−iM
1
k−i)M

3
k−i

In+M4
k−i(In−l−di

+M2
k−iM

1
k−i)M

3
k−i

)
= 0.

Therefore uψD and ψD are both trivial on B4,1
k−i. It then follows from (B.9) that uψD

is given on the blocks which w conjugates into bk+i by

ψ(tr(
(

(B4,4
k−i−1)

′ (B2,4
k−i−1)

′ (B1,4
k−i−1)

′

(B4,1
k−i−1)

′ (B2,1
k−i−1)

′ (B1,1
k−i−1)

′

)(
In 0n×l+di∗l+di+1×n ∗l+di+1×l+di

)
)).

We conclude ψVβ
belongs to the orbit of (B.6). ��

Proposition B.5. If l < n, H(h) = 0.

Proof. The proof is a simplified version of [GK, Proposition 2.12]. The definitions
imply any morphism in H(h) factors through JVβ ,ψVβ

(ρ) (see [GK, § 2.1.1]). The
pair (Vβ , ψVβ

) defines a degenerate Whittaker model in the sense of [MW87]. Let
ϕ be the transpose of the nilpotent element defined by ψVβ

, which is an upper
triangular nilpotent matrix in Matkc. We show ϕ is nilpotent of order at least k +1.
Since ρ is (k, c), we deduce JVβ ,ψVβ

(ρ) = 0 by [GGS17, Theorem E] (which over
non-archimedean fields is based on [BZ76, 5.9–5.12]).
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By Proposition B.4 we can assume ψVβ
is given by (B.6), then the block bi of ϕ is

the transpose of the block appearing to the right of bi in (B.6), up to the signs ±1.
Consider the blocks bk, . . . , b2k−1 of ϕ: for i > k, the (n, n)-th coordinate of bi is
nonzero and is the only nonzero coordinate in its column, and the same applies to
the (n − l, n)-th coordinate of bk. These are k coordinates, and it follows that ϕ is
nilpotent of order at least k + 1. ��
Remark B.6. The above reasoning in [GK] only implied d1 = n − l; we had to use
a third method to deduce vanishing (see [GK, Proposition 2.14]), and lose a discrete
subset of s.

The remaining case to consider is l = n, which means h ∼ δ0. Now since Pδ0 = V(ck)

and ψD|Pδ0
is the (k, c) character (1.1)(see(B.5)),

H(δ0) = HomV(ck)
(δ−1

0 ρ ⊗ ψ−1
D , 1) = HomV(ck)

(ρ ⊗ ψD, 1) = HomV(ck)
(ρ, ψ−1

D ),

which is one dimensional (but the space in the theorem can still vanish) because ρ
is (k, c) and ψ−1

D belongs to the orbit of ψk, ψ−1
D = dk,cψk. The proof is complete.

We now explain the case of H = SO2kc. The main difference is that here the restric-
tion of ψD to the block Bk is given by X �→ ψ(tr(tAX)) (A was defined in § 2.1,
now A �= Ic).
Assume momentarily that kc is even. First, for the kc-tuple representing the element
w, the sum of coordinates must be even. Lemma B.1 remains valid, but now for the
proof if the root belongs to Bk and c is odd, it is determined by a pair of coordinates
(d, d + 1) and (c − d, c − d + 1) where 1 ≤ d ≤ n.
The stabilizer of ψD in MP does not contain W (Oc), but GL	

c still fixes the re-
striction of ψD to the blocks B1, . . . , Bk−1. We argue as in Proposition B.2: Using
conjugations by elements σ = σ	

0 for σ0 ∈ diag(W (O2n), Ic−2n), we first deduce ŵ =
(a1Ic−2n, 1n, 0n−l, 1l, w2, . . . , wk) for some 0 ≤ l ≤ n and wi = (aiIc−2n, 1n, 0n−l−di−1 ,
1l+di−1) for i > 1. Here a1, . . . , ak ∈ {0, 1} only appear when c is odd, and a1 ≤ . . . ≤
ak. If c is odd we now conjugate ŵ by diag(In,

(
1

In

)
)	. Let o ≥ 1 be minimal such

that ao = 1, where if ak = 0 we set o = k + 1. Then, for j < o we have wj =
(1n, 0n+1−l−dj−1 , 1l+dj−1) (d0 = 0) and for j ≥ o, wj = (1n+1, 0n−l−dj−1 , 1l+dj−1).
It follows that in the even case β is still given by (B.4). In the odd case the leftmost
k − o + 1 parts of β are (n − l − dk−1, . . . , n − l − do−1), the next o − 1 parts are
(n+1− l −do−2, . . . , n+1− l −d0), the following o− 1 parts are (n+ l +d0, . . . , n+
l+do−2), and the rightmost k−o+1 parts are (n+1+ l+do−1, . . . , n+1+ l+dk−1).
Now consider Proposition B.4. Besides minor modifications to the sizes of the parts
of β in the odd case, the main difference concerns the restriction of (B.6) to bk. This
is because for i �= k, ψVβ

|bi
depends only on ψD|Bj

for j < k and then σψD|Bj
=

ψD|Bj
. However, σ does not fix ψD|Bk

(which determines ψVβ
|bk

). We can write
σψD|Bk

(X) = ψ(tr(�X)) for � ∈ Matc, � = diag(�1, . . . , �c) where �i = ±1 for all i if
c is even, and when c is odd �i = ±1 for all i �= n + 1 and �n+1 = 0. The important
observation is that σψD|Bk

will still be nonzero on n root subgroups. To determine
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uσψD on bk we multiply the rows of Jc
tm−1

k Jc� by columns of m−1
k . On the l.h.s of

both (B.7) and (B.8) we “inject” � into the product. The r.h.s. of (B.7) still vanishes
because B2,3

k ∈ UP (if o > 1, B2,3
k is taken to be an n−l+1×n−l+1 block), and the

r.h.s. of (B.8) becomes ( In 0 ) �
(−M1

k
a

)
(if o = 1, In here is replaced by In+1). The

only change to (B.6) (and in particular, to (B.5)) concerns the block In−l appearing
in the restriction to bk which is replaced by �◦ = diag(�l+1, . . . , �n) when c is even,
by ( �◦ 0 ) ∈ Matn−l×n+1−l if o > 1 and by

(
�◦

0

) ∈ Matn+1−l×n−l for o = 1.
This change does not cause any new complications in the proof of Proposition B.5
and we conclude l = n. When c is even this implies h ∼ δ0 and we complete the proof
as above. When c is odd the remaining compositions β are uniquely determined by
o, which varies over the numbers 1, . . . , k+1 such that k−o+1 is even. For each such
β, the associated partition is pβ = (k + o− 1, k2n−1, k − o+1) and the character ψVβ

is generic. For o > 1 the partition pβ is greater than (kc), thus H(h) = 0 (because ρ
is (k, c)). Since we are still considering the case where kc is even, k − o + 1 is even
for o = 1. Then h ∼ δ0 again, and the result holds. Lastly, when kc is odd we write
w = w′j1 with detw′ = −1. Since now D = j1V(ck) �

j1UP (see § 3), the same proof
is applicable. In addition, since the proof only involves unipotent subgroups and the
properties of (k, c) representations, the case of H = GSpin2kc is now clear as well.
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