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Abstract. A fundamental difficulty in the study of automorphic representations,
representations of p-adic groups and the Langlands program is to handle the non-
generic case. In a recent collaboration with David Ginzburg, we presented a new
integral representation for the tensor product L-functions of G x GLj where G is a
classical group, that applies to all cuspidal automorphic representations, generic or
otherwise. In this work we develop the local theory of these integrals, define the local
~v-factors and provide a complete description of their properties. We can then define
L- and e-factors at all places, and as a consequence obtain the global completed
L-function and its functional equation.
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Y. CATIET AL. GAFA

Introduction

Let A be the ring of adeles of a number field. Let G be either a symplectic group or a
split special orthogonal group, of rank n, or a split general spin group of rank n + 1.
The classical doubling method of Piatetski-Shapiro and Rallis [PSR87] produced
an integral representation for the standard L-function of an irreducible cuspidal
automorphic representation of a classical group twisted by a grossencharacter. In
the recent work [CFGK19] their construction was extended to include twists by
arbitrary cuspidal representations of GLy(A), for all k. The purpose of this work is
to develop the local theory of these integrals and characterize the local y-factors. As
a result, we can define local L- and e-factors, then obtain the completed L-function
and its functional equation.

Let F' be a local field of characteristic 0 and ¥ be a nontrivial additive character
of F. Let m and 7 be a pair of irreducible admissible representations, m of G(F')
and 7 of GLg(F), and assume 7 is generic. Based on the recent uniqueness result of
Gourevitch and the third named author [GK], the local doubling integral satisfies
a functional equation with respect to an intertwining operator. Our main result
concerns the v-factor arising from this equation:

Theorem A. There exists a y-factor (s, X T,1)) which satisfies the fundamental
list of properties of Shahidi [Sha90, Theorem 3.5].

See Theorem 4.2. In the classical case kK = 1, the local theory was fully developed
by Lapid and Rallis [LR05] (and Gan [Gan12] for the metaplectic group). We follow
their formulation of the canonical properties of the y-factor.

Using standard arguments we can now define local L- and e-factors. In turn, in
a global context let m and 7 be cuspidal representations of G(A) and GLy(A), resp.
(throughout, cuspidal representations are always automorphic and irreducible). We
can define the completed L-function as the Euler product of the local L-functions.
We summarize our global results Theorems 8.2, 8.3 and Corollary 8.5:

Theorem B. The L-function L(s,m X T) admits meromorphic continuation to the
plane and satisfies a standard functional equation L(s,m X T7) = €(s,m x 7)L(1 —
s, x 7). Moreover, if L(s, ™ x ) and L(s,7¥ x V) are entire, they are bounded
in vertical strips of finite width.

Over the past few decades, local factors and y-factors in particular have been a
ubiquitous part of the Langlands Program. In the generic case the definitive theory
was developed by Shahidi (e.g., [Sha90]) and the cornerstone of his theory was the
existence and uniqueness of the Whittaker model. Because of this, it was considered
difficult to envision similar results in the non-generic case. Among the few attempts
to attack this problem, we mention the work of the second named author and Gold-
berg [FG99] and the doubling method itself, for & = 1. While we can now define
the local factors using the theory of Arthur, the trace formula does not provide us
with any information on the poles. By contrast, the generalized doubling method
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can be used to study the poles of the local and global L-functions of G x GLg, which
are typically highly interesting. See e.g., the work of Yamana [Yam14] on the global
theta lifting using the doubling integrals for k = 1.

To place our results in context we turn to the global setting and recall the global
construction of the generalized doubling integral, following [CFGK19]. Let now F
be a number field and A = Ap. Let G be the split group Sp,,,, SO2, or SO2,41
(minor modifications are needed for general spin groups; these are described below).
Then G(F') acts naturally on a c-dimensional F-vector space (¢ = 2n or 2n + 1).
Denote the Borel subgroup of upper triangular invertible matrices in GLg. by Bar,.,
let Py < GLgc be the standard parabolic subgroup corresponding to the partition
(k) = (k,...,k), and Kqgr,, be a maximal compact subgroup of GLy.(A) (chosen
as in, e.g., [MW95, § 1.1.4]).

Let 7 be a cuspidal representation of GLg(A). Consider the generalized Speh
representation &, of Jacquet [Jac84], which is the residual representation attached
to the Eisenstein series F(g;(,&) associated with a standard Kgr, -finite section
¢ of the induced representation Indg(kaj((ﬁ))(] det |7 ® ... ® |det|%7) at the point
((c=1)/2,(c—=3)/2,...,(1—¢)/2). The automorphic representation &; is irreducible
and when 7 is unitary, belongs to the discrete spectrum of the space of square-
integrable automorphic forms of GLg.(A). Jiang and Liu [JL13] studied the Fourier
coefficients of £; (elaborating on [Gin06)). In particular, they proved that £ admits
a nonzero Fourier coefficient along the unipotent orbit attached to (k¢). Fix a non-
trivial additive character 1) of F'\A. Then they showed that for some automorphic
form ¢ in the space of &,

k—1
Wy (h) = / p(v) ™t (tr (Z ui,m)) dv # 0. (0.1)
=1

V(ck)(F)\V(ck)(A)

Here V(. is the unipotent radical of P+ (note the interchange of ¢ and k) and for
v € Vigry, v = (vij)1<ij<k Where v; ; are ¢ x ¢ blocks. Call this Fourier coefficient a
global (k, c) functional.

We define an auxiliary group H, on which we construct an Eisenstein series with
inducing data &;. Let H be either Spgy,. if G is symplectic or SOq,. if G is orthogonal,
and fix the Borel subgroup By = H N Bgr,,.. Take a standard maximal parabolic
subgroup P < H with a Levi part isomorphic to GLg.. Define the Eisenstein series

E(his,f)= Y. f(s,6h),  heH(A), (0.2)
SeP(F)\H(F)

H(A)
P(A)
(| det [5=1/2€,), regarded as a complex-valued function. This series converges abso-
lutely for Re(s) > 0 and has meromorphic continuation to C.

We construct the following Fourier coefficient of E(h;s, f). Let @ be a standard
parabolic subgroup of H, whose Levi part Mg is isomorphic to GL. x ... x GL. x Hy,

where s € C and f is a standard Kp-finite section of the representation Ind
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where GL. appears k—1 times and Hp = Spy,. or SOz.. Let U = Ug be the unipotent
radical of ). We define a character ¢y of U(A), which is trivial on U(F), such that
the direct product G(A) x G(A) can be embedded in the stabilizer of ¢y inside
Mqg(A).

Now let 7 be a unitary cuspidal representation of G(A), and let ¢; and s be
two cusp forms in the space of . The global integral is defined by

Z(s,p1, 92, f) = / P1(91) “2(92) BV (91, 92)1 5, f) dgn dge,
G(F)xG(F)\G(A)xG(A)
(0.3)
where g +— ‘g = 1tgt=! is an involution of G(A) and ‘@2(g2) = ¢2(“g2); (g1, g2) is the
embedding of G x G in H; and

EY%v(h;s, f) = / E(uh;s, f)vy(u) du (0.4)
UFI\U(4)
is the Fourier coefficient of £ with respect to U and . In particular for £ = 1,
Hy = H and U is trivial, and this recovers the doubling integral of Piatetski-Shapiro
and Rallis [PSR&7].
Integral (0.3) admits meromorphic continuation to C, which is analytic except

perhaps at the poles of the series. In a right half plane Z(s, @1, 2, f) unfolds to an
adelic integral:

/ / (1. 7(9) 02 fov o) (5, o1, "g)) o () duo d. (0.5)
G(A) Uo(A)

Here Uy is a subgroup of U; (,) is the standard inner product

(¢1,p2) = / ©1(90)¢2(g0) dgo; (0.6)
G(F)\G(A)

fw, (e, is the composition of f with the Fourier coefficient (0.1); and § € G(F) is a
representative of the open double coset P\H/(G x G)U. For additional details see
§ 2.

By [CFGoK, Theorem 4], for decomposable data (0.5) is Eulerian (in [CFGK19]
we proved (0.5) is “almost Eulerian”). At almost all places v of F', the local integral
with unramified data equals L(s,m, X 7,)/b(s,¢c,7,), where b(s, ¢, 7,) (a product of
local L-functions) is the local component of the normalizing factor of (0.2). Con-
sequently the integral (0.3) represents the partial L-function L°(s,7 x 1), for a
sufficiently large finite set S of places of F.

In [CFGK19] we treated Sp,,, and SOgy,. To extend the applicability of the dou-
bling method, here we treat several other classes of groups, each of which follows the
model of [CFGK19] but requires modifications. The first class is G = SOgy,41. Here
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the embedding of G x G in H is more involved, and several computations, most
notably the calculation of the integrals with unramified data, are more difficult.
The second class is G = GL,,, which appeared briefly in [CFGK19] because it was
needed for the induction step in the unramified calculation. In this case the global
construction involves 7 ® 7 instead of 7, and in (0.3) we divide the integration
domain by the center of H(A) = GLag,(A). The third class is the split general spin
group G = GSpin, (in hindsight, [PSR87, § 4.3] hinted at this). The group H is
then GSpiny,,.. There are two main differences in the global construction. First, the
inducing data of the series (0.2) is &, ® xx, where x is the restriction of the central
character of 7 to the connected component Cg(A) of the center of G(A). Second,
we divide the domain of integration of (0.3) by the two copies of Cg(A). For more
details see § 2.5.

We mention that the proof of the global unfolding which equates (0.3) and (0.5)
in Re(s) > 0 was only recently completed, in [GK, § 3.2] (a preliminary version was
sketched in [CFGK19]).

Our main application of the local and global theory, which will appear in a follow-
up to this work, is a new proof of global functoriality from G(A) to the appropriate
general linear group, using the Converse Theorem of Cogdell and Piatetski-Shapiro
[CPS94, CPS99]. This result will extend the global result of [CKPSS01, CKPSS04,
AS06] in the sense that it will be applicable to all cuspidal representations of G(A),
i.e., not only the globally generic ones. While global functoriality is now already
included in the work of Arthur on the trace formula (e.g., [Art13]), our proof will
be independent of the trace formula and its prerequisites.

The integrals described here have been recently used by Ginzburg and Soudry
[GS21, GS22] in a global context, to construct the inverse image of the weak func-
torial lift from the classical group to the general linear group, via their method of
global descent. A possible application of the local theory here would be to construct
the local descent.

We expect the local and global theories developed here to have further appli-
cations, due to the role of the doubling method in a wide range of problems. We
mention the studies of [KR94, HKS96, GS12, GI14, Yaml4] on the theta corre-
spondence, which is related to the doubling method by the Siegel-Weil formula; the
works of [BS00, HLS05, HLS06, EHLS20] who used the doubling integrals for co-
homological automorphic representations, in the context of p-adic L-functions; and
also [Gar84, KR90, Tak97, Kim00].

The doubling method was originally developed for classical groups of symplec-
tic, orthogonal or unitary type, including non-split cases [PSR87, LRO5]. It was
extended to the classical metaplectic group, i.e., the double cover of the symplectic
group, by Gan [Ganl2]. These cases, as well as unitary groups of hermitian or skew-
hermitian forms over division algebras, were included in [Yam14]. In this work we
deal with a subset of these groups, but also describe split general spin groups. We
expect that our methods can be extended to the other cases studied, in particular
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quasi-split orthogonal groups, and to quasi-split general spin groups. As opposed to
the aforementioned works, here we deal with connected groups. This is in line with
the theories of Langlands and Shahidi, which were formulated for connected groups,
and with several other works on Rankin—Selberg integrals.

For the extension of the generalized doubling method to arbitrary rank central
extensions of the symplectic group see [Kapa, Kapb].

There are two appendices to this manuscript. Appendix A by Dmitry Gourevitch
contains two results on families of representations depending on a complex parame-
ter: an extension of the Dixmier-Malliavin Theorem ([DM78]), and a precise density
result for smooth sections. Appendix B by the third named author contains the proof
of a uniqueness result underlying the functional equation of the local intertwining
operators.

1 Preliminaries

1.1 Groups and general notions. Let F' be a local field of characteristic zero.
If F'is p-adic, O denotes its ring of integers, ¢ is the cardinality of its residue field and
@ is a uniformizer with || = ¢~!. When referring to unramified representations or
data, we implicitly mean over p-adic fields. Throughout, linear algebraic groups will
be defined and split over F', and for such a group H we usually identify H = H(F).
We fix a Borel subgroup By = T X Ny where Ny7 is the unipotent radical, and for a
standard parabolic subgroup P of H denote its Levi decomposition by P = Mpx Up,
with Up < Npg. The modulus character of P is dp and the unipotent subgroup
opposite to Up is U, . Also W (H ) denotes the Weyl group of H. When H is reductive,
fix a maximal compact subgroup Ky in H which is the hyperspecial subgroup H(QO)
for p-adic fields. The center of H is denoted Cp. For z,y € H, *y = zyx~", and if
Y<H?®Y={":yeY}.

Specifically for GL;, Bgy, is the subgroup of upper triangular invertible matrices,
Pg = Mg x Vg denotes the standard parabolic subgroup corresponding to a d parts
composition § = (f1,...,04) of [, and V3 < Ngr,. For ¢ > 0, fc = (fic, ..., Bac)
is a composition of lc. Let Mat,x; be the space of a x b matrices and Mat, =
Matgx,. Let wg be the permutation matrix consisting of blocks of identity matrices
Ig,, ..., Ig,, with Ig € Matg, on its anti-diagonal, beginning with Ig, on the top
right, then Ig,, etc. In particular J; = wy1), the permutation matrix with 1 on the
anti-diagonal. We use 75 to denote a representation of Mg, where 74 = ®f:17'i (7; is
then a representation of GLg,). The transpose of g € Matgyp is denoted ‘g, and tr is
the trace map. For g € GL;, put g* = Jig~'J;. For a representation 7 of GL; which
admits a central character, 7(a) denotes the value of the central character on al;.

Throughout, representations are assumed to be complex and smooth. Repre-
sentations of reductive groups are in addition assumed to be admissible, and over
archimedean fields they are also Fréchet of moderate growth. Induction is understood
to be normalized and smooth.
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For a representation 7 of a closed unipotent subgroup U < H on a space V, and
a character ¢ of U, the Jacquet module Jy;(7) is the quotient of V by the subspace
spanned by {m(u)§ — ¢(u)§ : £ € V,u € U} over non-archimedean fields, and by
the closure of this subspace for archimedean fields. If R < H is a closed subgroup
containing U and 7 is a representation of R, the normalizer of U and stabilizer of v
in R acts on Jy(m), we normalize the action as in [BZ77, 1.8].

When the field is p-adic, an entire function f(s) : C — C will always be an
element of Clg~*, ¢°], and a meromorphic function will belong to C(¢~*) (so, mero-
morphic is actually rational). When a property holds outside a discrete subset of
s, it means for all but finitely many values of ¢~*. Similarly, f(¢) : C¥ — C is en-
tire (resp., meromorphic) if it belongs to C[¢T<, ..., ¢T¢] (resp., C(g~%, ..., ¢~ %)),
where ¢ = (¢1,...,Ck)-

1.2 Representations of type (k,c).  We briefly recall the results of [CFGoK]
that will be needed throughout this work. Let k and ¢ be positive integers. Fix a
nontrivial additive character ¢ of F' and extend it to a generic character of V() by

k—1
Y(v) =1 (Z tr(vz',m)) ,  v=(vijh<ij<k, iy € Matec. (1.1)
i=1

Let p be a finite length (and admissible) representation of GLg.. We say that p
is a (k,c) representation if (k°) is the unique maximal orbit in its wave-front set
and dimHomy,, (p,¥) = 1. See [GK, § 1.4] and [CFGoK, § 2.1] for details and
an equivalent definition in terms of orbits. E.g., p is (k, 1) if it affords a unique
Whittaker model, and (1, ¢) representations are plainly characters of GL.

For a (k,c) representation p, its (k,c) model Wy (p) is the space of functions
g — Mp(g)€) where g € GLg. and ¢ is a vector in the space of p, and 0 # \ €
Homy, , (p, %) is fixed.

In [CFGoK, § 2.2], for an irreducible generic representation 7 of GLj; we de-
fined a (k,c) representation p.(7). If 7 is unitary, p.(7) is the unique irreducible
subrepresentation of

ke —1/(2k
Ind§((r @ ... @ 7)dp ). (1.2)

d

In general 7 = Ind%{?’“(@z 1| det |%7;) where [ is a composition of d parts of k,

ap > ... > ag and each 7; is tempered, then p.(7) = Ind%{j’“(@f:ﬂdet |% pe(Ti))-
Note that p.(7) admits a central character.

For a representation g of GL; let 0*(g9) = o(g*). If o is irreducible, o* = pV. By
[CFGoK, Claim 6], p.(7)" = pe(7Y) when 7 is tempered, and p.(7)* = p.(7) in
general. Let g — ¢g© denote the diagonal embedding of GL, in GLg.. By [CFGoK,
Lemma 12]:

LEMMA 1.1. Let A € Homy,, (pc(7),%) and & be a vector in the space of pc(T). For
any g € GLe, Mpe(7)(97)€) = 7(det(g))A(S).
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We will utilize the following realizations of (k, ¢) representations.

First assume k& > 1 and consider a representation Ind%‘" (1) where 8 = (B, ...,
(1) is a nontrivial [ parts composition and 73 is an irreducible generic representation.
Denote ' = (f,...,31). Consider the Jacquet integral

/ £(wpew) i (v) dv, (1.3)

Ve

where £ belongs to the space of I = Indgjc’“ (@!_ Wy (pe(7:))) and 9 is the restriction
of (1.1) to Vg.. Note that { can be regarded as a complex-valued function. As
explained in [CFGoK, § 3.1] we can twist the inducing data of I by auxiliary complex
parameters ¢ € C', then (1.3) becomes a meromorphic function which realizes the
(k, c) model of each twisted representation I and in particular, if p.(7) is a quotient
of I, of p.(7). Note that if F' is archimedean, the analytic continuation and continuity
of (1.3) are at present known only when 3 = (1¥), but we can always assume this.
Second, assume 0 < [ < ¢ and an unramified twist of 7 is unitary. Fix 0 <1 < c.
Since now both p;(7) and p.—;(7) embed in the corresponding spaces (1.2),
pe(r) C Indls  (Wy(pu(r)) © Wl ()0, 20 ). (14)

Pt k(e—1)) Pt k(e—1)
To construct the (k,c) functional we introduce the following notation. For v € Viex)
1 2
set v;; = <U3J 241), where vilj € Mat; and v?j € Mat._;. For t € {1,...,4}, let
i,J i,J 2 bl

Vvt < Vi(ery be the subgroup obtained by deleting the blocks vf:j for all i < j and
t' #t,and V = V3. Also define

I
0 0 I
o o 0o 0 I )
K= Klc] = o 1 L 0 € GLy,..
c—1

0 0 0 Iy
Iy

For £ in the space of p.(7) under the embedding (1.4) (and regarded as a complex-
valued function), consider the functional

£ /f(lﬂ]) dv. (1.5)
14

By [CFGoK, § 3.2, Lemma 9] this integral is absolutely convergent and realizes the
(k, c¢) functional on p.(T).

2 The Integrals

We define the local integral with details for the different groups, starting with clas-
sical groups in § 2.1-2.4, then general spin groups in § 2.5.
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2.1 Classical groups. Let G be either a split classical group of rank n, or
GL,,. Fix a nontrivial additive character ¢ of F'. Given an integer k, introduce the
following group H and auxiliary notation, used in the definition of the integral and
the local factors below:

Spgn SOQn SOQn+1 GLn
2n 2n 2n+1 n
Spoke SO2ke  SOgre  GLogc

=7

Ly (" In)( In) I,

Here Sp,,, is realized as the subgroup of g € GLg, such that ‘gJg = J, where
J = (—Jn ‘]) (g is the transpose of g and J,, = w(in)); and SO, consists of all
g € SL. satisfying tgJ.g = J.. Take By = H N BgL,,, -

For an integer [ > 0, put jo; = I and jo;11 = Jo. For m > 1 and h € GLg,,, when
we write ' h we identify j; with diag(l,—1, 51, Im—1). Also set g = —1 for G = Sp,,,
and ¢y = 1 otherwise.

2.2 The embedding: U,y and G X G. Let Q = Mg x Ug be the following
standard parabolic subgroup of H: if G # GL,,, Mg = GL. x ... x GL. xHy (k —1
copies of GL.) and Hy is of the type of H with rank ¢, and for G = GL,,, Mg =
M1 9¢,00-1). Let U = Ug. For k > 1, denote the middle 4¢ x 4¢ block of an element

in U by
1. u v 21
I, u' ). .
. (2.1)

Denote by u!! € Mat,, the top left block of u; let u>»? € Mat,, be the bottom right
block of u if G # GL,, and for GL,, it denotes the top block of u'; for SOg,+1 also
let (u3,u?) € Matix2 be the middle two coordinates of row n + 1 of w.

For G # GLy,, regard V(.x-1) as a subgroup of U by embedding it in the top left
block, and for k > 1, the character ¢y restricts to (1.1) on V(e-1). For G = GLy,
there are two copies of V(x-1), in the top left and bottom right blocks of U, and ¢y
restricts (for & > 1) to the inverse of (1.1) on each copy. The character v is given
on (2.1) by

[T |Q

0

Ptr(—ubl + u??)) G = GL,,
dltr(ubt +u>?)) G = Spyy,; SO2n,
Ptr(ubt + u?) 4+ equd — eut) G = SO2p+1,

where € = 1 if k is even and ¢; = 1/2 if k is odd, and ez = 61_1/2. For all k > 1 we
describe the embedding (g1, g2) of G x G in Mg, in the stabilizer of ¢y

911 gi,2

diag(‘gl’.”’gl’< g2 )791(7791‘) G:Spgn,SOQn,
(91792) = 91,3 91,4

diag(gl;--~791,91,92,917-“;91), G:GLn,
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where g7 appears k — 1 times and is uniquely defined by g; and H; for G # GL,,
g1 = (gi:; gi:j ), g1, € Mat,; and for GL,,, g1 appears k times on the left of g and
k — 1 on the right. When we write (g1, 1) or (1, g2), we use 1 to denote the identity

element of G.

For SOs,,+1 the embedding is defined as follows. Take column vectors e4;, 1 <
i < 2n+ 1, whose Gram matrix is Jo(a,11) (i.e., ‘ese_j = d; 7). Let

b= (61, ce.5 €20, €1€2n 4] — €2€_9p1,€1€2p41 T €262 1,€_2p, .- -, 671),
bi = (e1,...,€en, €1€2n41 — €26_2p_1,€6_p,...,€_1),
by = (ent1s---+€2m,€1€2n41 + €26 271,621, ..., €_pn_1),

m = diag(Le—1, (5, &) s Le—1)-

The Gram matrices of (b, b1,b2) are (Joan41), diag(ln, =1, I) Jont1, Jant1). Define
the left copy of SOg,41 using by, i.e., the group of matrices g1 € SLay,41 such that

tgl dlag(‘[n7 _17 In)JZn—Hgl = dla‘g(-[na _17 In)JZn—i-la

and the right copy using by, which is our convention for SOg,1. For each 4, extend
gi by letting it fix the vectors of bs_;, then write this extension as a matrix g, €
SOg(2n+1) With respect to b. Now g} and ™g; commute and

(91792) = diag(gl)' .. 7gl7mgi mgévgra s 79?)

We also mention that over archimedean fields, we can choose Ky such that Kq x
K¢g < Kp (under this embedding); over p-adic fields when ¢ is even clearly K¢g X
Ko < Ky (Kg = G(0), Ky = H(O)), and when ¢ is odd this also holds assuming
2| = 1.

ExaMPLE 2.1. Here are a few examples for the embedding in the odd orthogonal
case. We assume k = 2 and n is arbitrary, but the only difference for other values
of k£ would be in the number of copies of SOs,+1 above the middle 2¢ x 2¢ block,
because we keep €1 and €z in the notation (we only assume 2¢1e5 = 1). We can write
u € U in the form

1. X Y
u = Izc vX'’ 5
1.

21 by a1 ax by oz
X=1|2 b a3 a4 by 2z3]|, =z1,b1,26 €Maty, as,as € Maty,
23 b3 a5 ag bs 26
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then ¢y (u) = ¥ (tr(z1) + €1a3 — e2a4 + tr(zg)). For the embedding of the left copy of
G in H,

((a 1 (f),l):diag((a 1 a*>7<a Tonio a*)>7 a*ZJntaflJn,
(7))
2]

3

I, €2 —ax Y

Loy I,
3 1 ez’
= diag , 1 S ,

I,
Iﬂ’ I’Vl,
L,
' =tad, L ]
tydy, + Joy = Juxtxd,’ 1 , ’
n—1
L, 1
. 1
= diag . -1 )
Iy
I,y
1
I,
2¢?
2¢€3
In
1
Iy

Here and below we omitted the bottom right ¢ x ¢ block, because it is uniquely
determined by the top left ¢ x ¢ block and H. For the right copy,

(L (" ,.)) = dig <Ic, (In o )) . at=Ta
I, = v n
(" 7))

p_ ot
= diag | I, T ="z

1 e Dty dn 4 Juy = —Juxtxd,’
In
Ian—1

1 , !
1 . 7261
1, ) —1 = diag | I, o
In_1 1

2.3 Sections. We define the local spaces of sections that we use for the integral.
These are the local analogs of the space on which we constructed the Eisenstein
series (0.2). Let H be one of the groups given in § 2.1, and P be a standard maximal
parabolic subgroup of H with Mp = GLg, or P = P((;)2) when H = GLagg.. Let p be
a finite length representation of Mp realized in a space of complex-valued functions.
We assume p = p1 @ pg if P = P(jc)). For a complex parameter s, let V(s,p) be

Top—1
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the space of Ind¥ (| det [*~1/2p), or the space of Ind (| det |*=1/2p; ® | det | ~*+1/2py)
when H = GLog,.

Extend the notation also to the case of H = GLj. and P = Pg. for an arbitrary
composition 3 = (31, 32) of k, then V (s, p) is still the space of the representation
induced from |det |*~1/2p; @ | det |~5t1/2p,. This space does not appear in the con-
struction of the integral, but must be considered for multiplicativity arguments.

For m € Mp, let a,, be the projection of m onto GLg. if H is a classical group,
otherwise m = diag(my, mg) and a,, = diag(mi, my'). The elements of V (s, p) are
smooth functions € on H, such that for all h € H, m € Mp and u € Up, e(muh) =
5;/2(771)] det a,,|*~'/2¢(h), and the mapping m — (5};1/2(m)| det a,,|~*t1/2e(mh) be-
longs to the space of p. In particular h +— £(h) is a complex-valued function, namely
the evaluation of a function in the space of p at the identity. By virtue of the Iwasawa
decomposition, the spaces V (s, p) where s varies are all isomorphic as representations
of K H-

A function f on C x H is called an entire section of V(p) if for all s € C,
f(s,-) € V(s,p), and for each h € H, the function s — f(s,h) is entire. A standard
section is then an entire section whose restriction to Ky is independent of s. A
meromorphic section of V(p) is a function f on C x H, such that for some entire
function ¢ : C — C not identically zero, ¢(s)f(s,h) is an entire section (see e.g.,
[Yam14, § 3.1]). Away from the zeros of ¢, f(s,:) € V(s,p). The group H acts
by right translations in the second parameter of sections, we denote this action by
h - f. Also if a group H' acts on H by conjugation, f* is the section given by
f¥(s,h) = f(s."'h).

Recall that when the field is p-adic, an entire section f satisfies, for all h, s —
f(s,h) € Clg~*,¢°], and if f is meromorphic, s — f(s,h) € C(q~*) (see § 1.1). If
the representation p is unramified, the normalized unramified section of V(p) is the
unique element f such that f(s,-) is the normalized unramified vector for all s.

Over archimedean fields, f is called smooth if f(s,-) is smooth for all s (similarly
for Kp-finite). If s is fixed, this is the usual notion of smooth or Kp-finite vectors
of V (s, p). For any smooth section f we can find a sequence of Kpy-finite sections
converging uniformly to f on each compact subset of C. See [Cas89, Jac09] for the
topological considerations, and also Appendix A. The Dixmier—Malliavin Theorem
[DM78] can be applied separately to each V (s, p), i.e., once s is fixed. Several argu-
ments involving sections require us to treat s as a parameter (e.g., for the purpose of
meromorphic continuation, or computations of integrals). The extension of [DMT78§]
to this general setup is established in Appendix A, Theorem A.1 and Corollary A.3.

2.4 The integral. Let 7 be an irreducible representation of G. If G # GL,, let
T be an irreducible generic representation of GLj, and P be the standard maximal
parabolic subgroup of H such that Mp = {(*,) : a € GLg.}. For GL,, 7 =
70 ® X 17y for an irreducible generic representation 7y of GLg, a quasi-character

of F™* (implicitly lifted to GLj using det), and P = P((;)2).
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Let w be a matrix coefficient of 7V and f be a meromorphic section of
V(Wi (pe(T))), where for GLy, Wy (pe()) = Wy(pe(10)) @x Wiy (pe(7y))). The local
integral takes the form

Z(s,w, f) = // (s,0u0(1,"g)) Yu(uo) dug dg.

G U,
Here 6 = dyd1,

c

I(k—1)c
0= (¢, ™) (G#80241), 51=< o )
I(k 1)c

I(g—1)e X Z
I Y
Jke — c
Uy I,
(1)

and for G = SO2p41,

I, I,
8o = (7, ™) diag(Lp-1)c, ( . (—1)’°> , ((—1)" . > A—1)e) ke (2.2)
(( —eol, ) G= Sp2n7 SOQna
I, G = GL,,

I ) G = SOQn+1, odd k‘,

I,
( —2¢2 2 ) G = S02,41,even k;

for Spy,, and SOay,, g + ‘g(= tgt™1) is an involution; for SO, 1, note that ¢ = g

with
I,
Lo = (I (=1)F*t ) € O2p41

(written with respect to the basis bg) and ‘g = "(**g)’ (g — ‘°g is an inner or outer
involution of G, depending on the parities of k£ and n); and when we write the middle
block of ug € Uy as in (2.1),

P(tr(u>?)) G # SO2p41,
¢U(U0) = w(tr(ugg) - %’Ufl) G = SOQn-‘r—la even ka
P(tr(u??) + 3ud) G =SO0g,41,0dd k.

When G = SOg,+1 and k is odd we need a similar version of the integral above,
when the section belongs to the representation induced from 7 P and 7* Wy (pc(7)).

!/
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This is because when we apply an intertwining operator to the section, the Weyl

element (Ik I’““) is not in H. We still denote the integral by Z(s,w, f), but the
notation changes as follows:
I, L,
' 2) ) (1/2
I,

diag(l(k_l)c_,_n, —In,IQ, _Inal(k—l)c-‘rn)v (23)

) ) I(k—l)c)7

50 = Jkc ([kc Ikc) diag(I(k—l)ca

Tk—1)c
I. A
0 = I

n

NN S~ —~

Ip—1)e
Ie—1)e X
Uo = & I ;
Iij—1)e

Yo (ug) = (tr(u®?) — u?) (the middle block of ug is given by (2.1)).

The integrals are absolutely convergent in a right half plane, which for entire
sections depends only on the representations (see Proposition 2.5 below). Over p-adic
fields they can be made constant (Proposition 2.6), and over archimedean fields they
can be made nonvanishing and finite in a neighborhood of a given s (Proposition 2.6,
and Corollary 6.9 with a Ky-finite section). Furthermore, they admit meromorphic
continuation: over p-adic fields this continuation belongs to C(¢~*) (see § 4), over
archimedean fields the continuation is continuous in the input data—more precisely
continuous as a trilinear map (see § 6.10). For similar assertions in the literature
see, e.g., [GJ72, JPSS83, GPSR&7, JS90, KR90, BG92, Sou93, Sou9ds, GRSI8, LRO5,
RS05, Jac09, Kap13b, Kapl3c, FK19)].

We explain how to obtain the form of the local integral from the global. The local
integral is defined once we prove that (0.3) unfolds to (0.5). We describe this proce-
dure briefly, complete details for all groups can be obtained from the comprehensive
local treatment in [GK], see [GK, § 3.2] (see also [CFGK19, § 2.3] for Sps,,).

Assume G # GL,,. The global integral defined by (0.3) is

Z(s, 1,02, f) = / ©1(g1) “p2(92) BV (g1, 92); 5, f) dgi dga,
G(F)xG(F\G(A)XG(A)

with the notation of the introduction. For Re(s) > 0, after unfolding the Eisenstein

series (0.2), Z(s, 1,2, f) = 32, 1(7) where v € H(F) varies over the representatives
of P\H/L, L = (G x G)U, and

I(v) = / ©1(91) “p2(g2) f(s,vulg1, 92)) Vv (u) dudgy dgs.
L, (F)\L(A)

Here L, = 7PN L. All but one summand vanish. This is proved by arguments
utilizing the character ¥y, the cuspidality of 7 or the “smallness” of the represen-
tation & in the inducing data of the series, namely its Fourier coefficients attached
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to orbits greater than or not comparable with (k¢) vanish (it is globally (k,c)). For
the remaining summand I(y), we see that L, N Up is trivial, V(o) < 7L, and if we
factor through L, (A), the integration over V() (F)\V(er)(A) together with 1y form
a global (k,c) functional, namely a Fourier coefficient along V.+) and a character
in the orbit of (1.1). We can modify v using left multiplication by an element of
Mp(F), to obtain the character (1.1) and coefficient (0.1). Denote the new repre-
sentative by 6. We then see that the reductive part of Ls is {(go,"g0) : go € G} and
0Ls = G x Viery < Mp, where G is embedded in the stabilizer of (1.1), in the diago-
nal embedding of SL.. In [CFGK19, Claim 8] we proved that (0.1) is invariant with
respect to the diagonal embedding of SL.(A), which implies in particular invariance
under G(A). Therefore 1(d) becomes

/ ©1(g091) “p2(*9092) fw, (e,) (8, duo(g1, 92))
G2 (A\G(A)xG(A) Uo(A) G(F\G(A)
X ’LbU (UO) dg() duo d91 dgg. (2.4)

Here G2 is the diagonal embedding in G x G, Uy = *Up N U, and Jwi(e,) is the
composition of the section with (0.1): for any s € C and h € H(A),

k—1
Two)(s,h) = / f(s,vh) ! (tr <Z Uz‘,i+1>> dv. (2.5)
i=1

‘/(ck)(F)\‘/(ck)(A)

It remains to apply * to g2 and use (0.6) to obtain (0.5).

Returning to the local context, at a place v of F', p.(7,) is the local component
of & (7 is now global) and for a decomposable f, f =[], f, where for all v, f, is a
section of V(Wy, (pc(7v))), which is normalized and unramified for almost all v.

For G = GL,, the definition of (0.3) is modified to handle the center. We take
1 in the space of x*7 where y is a continuous character of F*\A*, ©9 in the space
of ¥ (if 7 is unitary, 7 = 7) and the representation of Mp(A) is | det [*~1/2&, ®
| det | =51/ 2x '€y, where 1) is a cuspidal representation of GL;(A). The modified
version of (0.3) is given by

Z(s, 01,02, f,01) = / ©1(91)p2(g2)
(Cu(A)G(F)xG(F)\(G(A)xG(A))

EYYU((g1, 92)5 s, fou(| det(g2g7 1)) dgr dgsa,

where g; is a compactly supported Schwartz function on RY, introduced to ensure
convergence as in [PSR87, § 4.2] (they used this to extend their construction from
PGL,, to GL,). Note that the integrand is indeed invariant under C(A).

In the unfolding of Z(s, ¢1, p2, f, 01) we obtain two (k, ¢) functionals: one on &,
the other on X_IETOv. By Lemma 1.1, at any place v, the local (k,¢) functional on
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pe((70),) transforms under G (F,) with respect to g* + (79),(det(g)). Using this
we reach an integral similar to (2.4),

X" (det g1)e1(g0g1)2(9092)
G2 (A\G(A)xG(A) U (A) Ca(A)G(F)\G(A)
fw, &) (8, 0u0(g1, g2))ei(| det(gag; ™)) Yo (uo) dgo duo dgy dgo

_ / / (o1, 7(9)02) Fur e (5, Suo(L, 9))eu(| det g) v (o) duo dg. (2.6)

G(A) Uo(4)

Note that Cy < G2, Wy (&) is defined to be Wy (Er,) ® x Wy (Ery), and in the
integral defining the inner product the domain is divided by Cg(A). As explained
in [PSR87, § 4.2], the convergence of (2.6) for Re(s) > 0 is independent of g;, and
an application of the Monotone Convergence Theorem implies we can define, for

Re(s) > 0,

Z(379017()02>f) = llirggz(sv%plvﬁp%fa Ql)

_ / / (1, 7(9)02) Fur e (5, Suo(L, 9)) o (o) s .

G(A) Uo(8)

Here {0;}; is an arbitrary monotonic increasing sequence such that g; — 1 (the limit
of the integrals is independent of the choice of sequence), but is not used for the
local integral.

The reason for introducing the character y is to study the GL,, integral arising
from the integral for general spin groups, then x will essentially be the central
character of the representation of GSpin,.

2.5 Split general spin groups. For any integer ¢ > 2, the group Spin,. is the
simple split simply connected algebraic group of type D, if ¢ is even, or B,, if it is
odd, where n = |¢/2]. It is also the algebraic double cover of SO.. We fix the Borel
subgroup Bspin, < Spin, to be the preimage of Bso,. Denote the pullback of the i-th
coordinate function of Tso, to Tspin_ by €;, 0 <7 < n — 1. Then define e}/ such that
(€, (—:}’) = 0;j, where (,) is the standard pairing. The set of simple roots of Spin,. is
A.={ag,...,an_1}, where a; = ¢, — €41 f0<i<n—1, ap_1 = €42 + €, for
even ¢, a,_1 = €,_1 otherwise. For convenience, we include the cases ¢ = 0,1 in the
notation, then n = 0 and Spin,, is the trivial group.

Identify the split general spin group G = GSpin, with the Levi subgroup of
Spin., 5 obtained by removing g from A.;o. In particular, this fixes a Borel sub-
group Bg. Note that Spin, is the derived group of GSpin,, GSpin, = GSpin; = GL;
and GSpiny = GLj x GLj. Define a “canonical” character T of GSpin, as the lift of
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—€p (see [Kapl7, § 1.2]). Let

Qg c=0,
oo + o c=2,

Cg = {tl(t): t € F*}, t. =

o ={@) } CT) 2 2y an b an =252,
22?;010%""0% c=2n+1,n>0.

For odd c or ¢ = 0, Cg, = Cg; for even ¢ > 2, C¢, is the connected component of Cg,

n—2
Co=C¢[JicCe,  ie=]]a/(=D)" > ay_i(Day(-1).
i=0
We use this definition of i also for ¢ = 2, and for ¢ = 0 put i¢ = —1. For the compu-

tation of Cg and in particular ig, note that a general element t € Ty can be written
uniquely in the form ¢ = [[},aY(t;), then t € Cg if and only if [}, t/**" =1
for all 1 < j <n (ig is ej(—1)(p in the notation of [AS06, Proposition 2.3]; for even
n, t/(—1)ig is the image of z of [AS06, Remark 2.4] in Spin,,,).

For a detailed definition of general spin groups using based root datum refer
to [Asg02, AS06, HS16]. We work directly with the coroots of Spin, , to describe
torus elements of GSpin,. (in those works the coroots of GSpin, were used). See also
[Mat09].

Let R = R;. < G be a standard parabolic subgroup, obtained by removing one
of the roots o, 1 < [ < n. The Levi part Mg is isomorphic to GL; x GSpin,_o;.
We describe an isomorphism explicitly. First assume ¢ is odd or I < n — 1. The
derived group of GL; is the group generated by the root subgroups of a1, ...,q;_1
(if I > 1, otherwise it is trivial) and if 8;/(¢t) = diag(I;—1,t, I;_;) is the i-th standard
coordinate of Tgr,, 0 — € —¢y. It follows that Y|gr, = det. The copy of Spin,_q, 5
is identified with the roots Zé:o Qi QU4 1, - - -, Qp, then GSpin,_o; is obtained by
removing 22:0 ;. Under this embedding, the first coordinate map of Tspin__, ., I8
mapped to €y and T restricts to the same character on GSpin,._o;. In the remaining
cases c is even, define GL; as above and identify Spin,_o;, 5 with Z?;ol oy, Z?;OZ o+
an when | = n — 1, and GSping with ¢/ for I = n. Then Y|gspin, ,, = det™! when

l=n—1orl=n=1,and det72 if ] = n > 1. Under this identification, in all
cases O¢, = Clgyy,  and if ¢ is even, i = [—1I1,iGspin, ,,] € GL; x GSpin,_o. The

image of [[Ti_, 6Y (t:), [1i=s BY (z:)] € Tar, x Taspin, ,, (B - the cocharacters of

i=1"1
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Spin, 9, 9) in Mp is

n—2 n—1 n—2

[T (IT 69 [T o) Gomays(z)ay@) — evene,i=n—1,
i=0 j=it+1 i=0

n—1 n n—2

[TeY(II 69 I oY @hay i(zo)a @) evene l=n,

i=0 Jj=i+1 i=0

n—1 !

H o (z H t;l)aX(xo) odd ¢, l = n,

1=0 j=i+1

l

-1 1 n
Hoz;/( H 75]1) Ha;/(ﬂl) H Ol;/(ﬂfi—l) otherwise.
i=0

j=i+1 =0 i=l+1

When considering a € GL,, as an element of G, we implicitly use the identification
above of GL,, with a direct factor of R, .. The same applies to t € Tso,, since t =
diag(a, a*) or diag(a, 1,a*). The Weyl group W (G) of G is canonically isomorphic to
W(SO.). Given a permutation matrix wy € SO, the preimage of wy in Spin, consists
of 2 elements, which differ by an element in Cspiy . Choosing one representative w,
we then regard it as an element in G. In this manner we identify each wg with w € H
(this is not a homomorphism). To compute the action of W(G) on T we appeal to
the formulas from [HS16] (our choice of representatives eliminates the need for the
implicit inner automorphisms in [HS16]).

Let k be given. Define H = GSping,.. If k¢ < 1, G = GL; and we already
constructed this integral, so assume kc > 1. Since the unipotent subgroups of H are
isomorphic to those of SOy (as algebraic groups), we can define the data (A, U, ¥y)
exactly as we did above, for the corresponding orthogonal group.

We turn to the embedding of the two copies of G in the stabilizer of ¢y in Mg.
This stabilizer contains two commuting copies of G, but they intersect in CY; (it
cannot contain the direct product G x G, e.g., for k = 1 and ¢ = 2n, the rank of
H is 2n + 1 but the rank of G x G is 2n + 2). Adapting the convention (g1, g2),
we describe the mapping (,) : G x G — H, which is an embedding in each of the
variables separately, and also injective on the product of derived groups. We have a
left copy and a right copy.

Starting with the derived groups, the embedding described above for the orthog-
onal groups extends to an embedding of the direct product of derived groups, since
it identifies each root subgroup of a copy of G with a unipotent subgroup in H.
Also identify the first coordinate map of the left copy with —ep, and the right copy
with €. This completes the definition for ¢ # 2. If ¢ = 2, regard GSpin, as Mg, ,,
then since we already identified the first coordinate map of each copy (with Fe),
it remains to embed the GL; part of each copy, which is done using the embedding
SO2 x SOz < Tgo,,. Observe that for even ¢, the right copy of G is the natural
subgroup of Mg, , .-
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To deduce that both copies of G are subgroups of Mg which fix 17, it remains to
consider the image of C%. The definition implies that if z € Cg, (2,1) = (1,27!) €
CY;. Hence (G, 1) and (1, @) belong to the stabilizer of ¢y in Mg. Moreover,

(G7 1) N (17G) = (Cév 1) N (1708’) = C;{,

and (z, z) is the identity element.

For the global construction, 7 is cuspidal (unitary or not), ¢1 and ¢y are cusp
forms in the spaces of 7 and 7V, and in the integration domain of (0.3) we re-
place G(F)\G(A) with CZ(A)G(F)\G(A) (on both copies). Put P = Rycore < H.
Since Cg = GLq, the restriction of 7 to Cg is a continuous character y. of F*\A*.
The inducing data for the Eisenstein series is the representation |det |s-1/28, ®
Xr of Mp(A). Since o1 (resp., p2) transforms under Cg by Xx (resp., x;') and
Xr((21,22)) = X5 H(21)xr (22) for all 21,20 € C2,

01(2191)02(2292) BV (2191, 2292); 5. F) = ©1(91)02(92) V7 (g1, 92); 8, f)-

Thus the global integral is well defined. There are no additional convergence issues,
because we divided by the centers (analogous to the case of PGL,, in [PSR87]). The
unfolding process is carried out as in the orthogonal cases: the choice of represen-
tatives of P\H/(G,G)U is similar because these are either Weyl group elements or
unipotent elements. Then the arguments showing I(y) = 0 are the same, since they
only involve unipotent subgroups. For details see [GK].

The remaining summand is I(). First note that for ¢ > 3, ¢ lifts uniquely to an
involution of Spin,, because Spin, is the universal cover of SO.. When ¢ = 2 (v was
defined for ¢ > 2), ¢ can be replaced with 71, then ¢ acts on Spin, by conjugation,
when regarded as an element of the algebraic double cover Pin, of O.. Since in all
cases ¢ fixes Cso,, it also fixes Cspin_, hence can be extended to an involution of G
which fixes Cg. Now we may compute the reductive part of Ls, and it is again the
group {(go,"g0) : go € G}: in terms of unipotent subgroups and the torus element
[t,1] with t € GL,,, the computation is similar to the computation for the orthogonal
group, and C¢, is embedded in C7;.

To compute ‘g we may regard ¢ (for odd ¢) or ( I In ) (even c), as a Weyl element
of a higher rank special orthogonal group (non-uniquely), thereby a Weyl element in
the corresponding spin group. When c is even, ¢t = d ( I In ) with d = diag(l,,, —I,,).
The element d acts trivially on the Levi subgroup {(* ,-) : a € GL,} of SO, hence
on its preimage in Spin.. Since d belongs to the similitude group GSO,, it also acts
trivially on T¢;, and therefore can be ignored when computing ‘Mg, .. If g = [a,z] €
Mp, . with a € GL, and = € GLy, for ¢ > 2 we have ‘g = t/(deta™')[a*, 2] =
[a*,zdeta™!] € Mg, and for ¢ =2, ‘g = [a*, za™?].

For go € G, denote e(go) = °(go,'g0) € Mp. We show the (k,c) functional
transforms under e(G(A)) with respect to the trivial character. We start with the
torus. For go € T, write go = [to, xo] with to € Tgr, and zp € GLy. The image of
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x in G is then v/ (zg). We see that

(90, 1) = vyp.(zg ' det to)[diag(diag(to, 3), - . . , diag(to, t§) diag(to, Ireso1)), 1] (2.7)

(k —1 copies of diag(to, t}})), and note that vy, .(det ty) appears because the leftmost
coordinate map of the left copy of G is mapped to —eg. Then

e(g0) = ° ([to, o), [t§, wo det t5]) = °[diag(diag(to, t3), - . . , diag(to, t})), 1],

and since det(diag(to,;)) = 1, the last conjugation belongs to the diagonal em-
bedding of SL. in GLg.. (For example, when ¢ is even ig = [—I,,—1], ‘ig =
[ I, (=1)""1 and %(ig, “i¢) = °[~Ixe, 1] = [~Ike, 1], by a direct verification.) Thus
for go € T:(A) the (k,c¢) functional transforms under e(go) with respect to the triv-
ial character. Regarding Spin.(A), it suffices to check that e(Spin.) < SLg, i.e.,
the projection of e(Spin.) on the GL; part of Mp is trivial. This follows because
otherwise we would obtain a nontrivial character of Spin,., which is perfect. In more
detail, put e(z) = [¢(x), (z] € Mp, where {(z) € SL,. Since « € Spin,, (; belongs to
the projection C” of Cspin,,, into the GL;y part of Mp, and we claim (; is identically
1. Suppose otherwise. The structure of Cspin, = depends on the parity of kc, but C
is a nontrivial finite abelian group, namely ry, (—1) € C” (ry, (1) is ¢ of [Asg02,
Proposition 2.2]). Then since e is a homomorphism,

[£(zy), Cay] = e(zy) = e(x)e(y) = [£(x), GE(y), Gl = [(zy), CCyl-

Hence x +— (, is a homomorphism and composing it with a character of C’ we obtain
a nontrivial character of Spin,, which is a contradiction.

We conclude that the du-integral in I(d) is invariant under the reductive part of
Ls(A). Factor 1(0) through G(A). The dgo-integral in (2.4) becomes

©1(9091) “p2(*g092) dgo = (m(g1)p1, m(“g2)p2) (2.8)
C&(A)G(FI\G(A)

and the global integral analogous to (0.5) is

/ /<so1,w(g>¢2>fw,/,(gf>®xﬂ<s,5uo<1xg>>wU(uo>duUdg.

C&(ANG(A) Uo(A)

The definition of a local space V (s, p) from § 2.3 changes, taking into account the
fact that Mp = GLg. x GL1. Now p = p1 ® po, where p; is a representation of GLgc,
and V (s, p) is the space of Ind¥ (| det |¥=1/2p; ® py). The only changes to the local
integral are that f is a meromorphic section of V(Wy(pe(7)) ® X7 ), where x is the
restriction of the central character of 7 to ¢, regarded as a character of F'*, and the
domain is CZ\G (0 and ¢ are defined as explained above, e.g., o € H is obtained
from the matrix in SOgg.).
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2.6 Basic properties of the integrals. First we establish two formal proper-
ties of the integrals, which can be regarded as immediate consequences of the global
construction, then turn to prove convergence and show that the integrals can be
made nonzero.

Consider the space

Hom, ) (S (V (5, Wy (pe(7)) @ X)), 77 @ 7). (2.9)

Here Jy; ,-1(--+) is considered as a representation of (G,G); xr is omitted unless
G = GSpin,; 7" is the representation of G acting on the same space as m, where the
action is defined by 7‘(g) = 7(‘g); and when G = GL,, 7" ® 7" is replaced with
(x*m)Y @ 7 (for GLy, ¢ = L.).

ProprosITION 2.2. The integral can be regarded, at least formally, as a morphism

n (2.9).

Proof. Given w, by definition there are vectors ¢ and ¢ in the spaces of m and 7",
such that w(g) = wyev(g9) = ¢Y(m(g7 1)) for g € G. Regarding the integral as a
trilinear form on

V (s, Wy(pe(T)) @ xx) x (3Fm) x (7)Y,

where x = 1 unless G = GL,, we can show the equivalent statement

Z(8, Wyt (g o () (g)v > (91 92)u - f) = 05 (W) Z(s,w, f),  Vg1,92€G, u€eU.
It is straightforward to show the equivariance property for u, using the definition of
the embedding and Wy, (p.(7)). Regarding g, and g, since
Wytkr(g)e.(r) (g2)ev (9) = X (det g1) (1) (g2) " (m(g ™) (91)¢)
= x"(det g1)@" (7("g; "9~ 1)) = X" (det g1)w (g ' 9('g2)),

( Wk (g1, (7)Y (g2) @Y ’(91792) f)
*(det g1) w(yg )f(s,0u0(1,"9) (91, 92)) Y (uo) dug dg.
i

Uo

-1

Changing variables g — g1g(‘g2) ", we obtain

F(det g1) // (s,0u0(g1,'91)(1,"9)) Yu (uo) dug dg.

G Up

It remains to conjugate (g1,"g1) to the left. Note that 9(g1,'g1) € P and by Lemma 1.1,
£(5,%(g1,%91)h) = x"*(det g1) f (s, h) for any h € H (for G = GL,, see the definition
of Wy (pe(7))). Also 919 4y € U and when we change variables in ug and use s
and the equivariance properties of Wy (pc(7)) on U N Mp, we obtain Z(s,w, f). O
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As a corollary of the computation, we have the following result:

COROLLARY 2.3. For any section f of V(Wy(pe(T)) ® Xx), g0 € G and h € H,

/f(s,éuo(go,Lgo)h) wU(ug)duo—Xk(detgo)/f(s,éuoh) Yy (up) dug.

Uo

REMARK 2.4. Note that (2.9) was slightly different in the work of [PSR87] for k =1
(see [LRO5, (10)]). This difference is caused by a different choice of embedding for
G x G in H. E.g., the local integral of [PSR87, LR05] does not contain J; and the
global and local invariance with respect to (g,“g) was with respect to (g, g) in loc.
cit.

ProrosiTION 2.5. The integrals with entire sections are absolutely convergent in
a right half plane depending only on the representations. Over archimedean fields,
in the domain of absolute convergence they are continuous in the input data (as
trilinear forms, see (2.9)).

Proof. For k = 1 this was already proved in [LR05, Theorem 3], albeit for O, instead
of SO, and GSpin, was not included. The only ingredient in their proof which is
not straightforward to extend to SO, and GSpin, is the multiplicative property
[LRO5, Proposition 2|, but we prove this here in § 5.3.1-§ 5.3.4 (the proofs apply in
particular when k = 1).

Assume k > 1 but if G = GL,, k > 1. We can prove the stronger statement,

//\w (s, Sou(1, "g))| du dg < oo. (2.10)

G Up

If G = GSpin,, the domain G is replaced by Cz\G. (For G = GL,, and k£ =1 (2.10)
does not hold, the element d; is used.) Assume F' is p-adic. We may assume that w
is bi- Kg-invariant and f is right K g-invariant, because we may introduce auxiliary
integrations over K¢ and K. Using Corollary 2.3, the integral (2.10) reduces to an
integral over the cone T, which is the subset of t € T such that |a(t)| < 1 for all
the simple roots o of Tz. We need to bound

[ (o). datwlm(e) du

te(Ce (TGHKG) \Te  Us

Here and below C¢ is omitted unless G = GSpin,, and m is a modulus character
multiplied by |y *(dett)| if G = GL,. If W is a function in Wy(p.(7)) and k > 1,
its restriction to torus elements of the form diag(, I(;_1).) can be bounded using a
gauge ¢ (see [Sou93, § 2] for the definition and method of proof, and also [Cas80b,
§ 6]). Here in particular £ vanishes unless all coordinates of ¢ are small, and also
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note that £ is non-negative. If k = 1, {(¢) is taken to be a power of | det ¢|. Then as
in [Sou93, § 4], for each ¢, the integral over Up is bounded by

()] det t[Re©)H / (s, 5ou)| du,
Up

where d and d’ are constants depending only on 7 and H, and d > 0. This integral
is finite for Re(s) > 0, as an integral defining an intertwining operator, and we are
left with

> [w(t)] £(t) | det ¢RI

te(Ce(TaNKa))\T5

We can bound the matrix coefficient on T using the exponents of 7, and since the
coordinates of ¢ are small, this integral is finite for Re(s) > 0, depending only on 7"
and 7. Over archimedean fields the proof is similar, one uses the bound from [Wal92,
Theorem 15.2.4] (see also [FK19, Theorem 1.1] for an asymptotic expansion of matrix
coefficients), and [Sou93, § 3 and § 5]. Continuity in the domain of convergence can
be shown as in [Sou95, § 6, Lemma 1]. O

PROPOSITION 2.6. Assume F' is p-adic. There is a choice of data (w, ) where f is
an entire section, such that Z(s,w, f) is absolutely convergent and equals 1, for all s.
Over an archimedean field, for any given s, there is data (w, f) where f is a smooth
entire section (but not Kp-finite), such that the integral is absolutely convergent
and nonzero.

Proof. The proof is similar to [Sou93, § 6], [GRS98, Proposition 6.6], [Kapl3a,
Lemma 4.1]. For the doubling method with & = 1 this was proved in [RS05, p. 298]
(p-adic fields) and [KR90, Theorem 3.2.2] (archimedean fields), for Sp,,, and O,; the
arguments can be easily adapted to SO., and GSpin,. is proved along the same lines.
At any rate assume k > 1.

Consider the p-adic case first. Briefly, let NV be a small compact open neighbor-
hood of the identity in H, which is normalized by %4;. Take an entire section f
which is right-invariant by A/, and such that &y - f is supported in P(%d;)N. Using
Corollary 2.3 (or directly when G = GL,,) we obtain

/f(8a5U0(1,L9))1/1U(U0)d“0 :/50'f(87p(9) % (uodg) )t (uo) du,
Uy Uy

where p(g) € P and J, is obtained from ¢; by multiplying the block A in d; by
coordinates of g. Moreover, when % (uod,) € P(%8;) N, g varies in a small compact
open subgroup of G, f is left invariant by p(g) (e.g., op(p(g9)) = 1) and the coor-
dinates of ug are small. For a sufficiently small N, with respect to w and vy, the
integral reduces to a nonzero measure constant multiplied by w(1), and thus can be
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chosen to be nonzero, independently of s. The argument on the support also implies
absolute convergence.

Over archimedean fields we can define an entire section f such that g - f is
supported in PU, and dq - f(s,mu) = ¢(u)do - f(s,m) for v € Up and m € Mp,
where ¢ is a Schwartz function on Up,. Choosing ¢ with compact support near %08,
we obtain

/ &' (o) (uo) dug / w(g)do - [(5.p(9))#" (g) dg,
Uy

G

where ¢’ and ¢” are Schwartz functions on Uy and GG, obtained from ¢. The support
of ¢ (resp., @) can be taken arbitrarily small (resp., near the identity of G). Thus
the dugp-integral can be made nonzero, and for a given s, the dg-integral can also be
made nonzero (even in a small neighborhood of s). O

3 The Normalized Intertwining Operator

We define the intertwining operators that we apply to the spaces of sections defined
in § 2.3, and introduce their normalized versions, to be used for the definition of the
~-factor in § 4. Let k and ¢ be integers. Let H, 7 and P be given by § 2 (see § 2.1,
§ 2.4 and § 2.5), or H = GLj,, P = Ppg. for a 2 parts composition 3 of k, and 7 = 73
is irreducible and generic. Consider the intertwining operators

M(s, Wy (pe(7)), wp) : V (s, Wy(pe(7))) = V(L = 5, Wy (pe(7'))), (3.1)
M(1 = 5, Wy(pe(r")), wpr) - V(L = 5, Wy (pe(7'))) — Vs, Wy (pe(T))).

Here wp, 7', P/, and wp: are given as follows.

6OIk:c)

(1) For a classical group H, P’ = 7P wp = jg. (Ikc dg,c where dy . € Tqr,.

is the matrix diag(—1I,, I, ..., (—1)*I.) regarded as an element in Mp, 7/ = 7V,
and wps = 7wp. The representation on V(1 —s, Wy (pc(7"))) is induced from P’
and 7<(| det |2~ Wy(pe(7))).

The image of M (s, Wy,(pe(7)), wp) is a priori contained in V(1 — s, Wy (pe(7))*)
(¢* = Jre'g 1 Jpe). Since the application of the intertwining operator commutes
with the application of the (k,c¢) functional, we may assume the intertwining
operator is into V(1 — s, Wy,(pe(7)*)), and then by [CFGoK, Claim 6], p.(7)* =
pe(TY).

(2) For H = GSpiny,,., the representation Wy,(p.(7)) is twisted by a quasi-character
X to form a representation of Mp. Then M (s, Wy,(pe(7)) ® x, wp) is into V(1 —
8, Wy (pe(7)) ® x) with 7/ = x~17V. The remaining definitions are similar to
SOse, but wp is a representative in H.

(3) For H = GLy,, ﬂ/ = (ﬂg,ﬂl), P = Pgrc, wp = Wgre, 7' =71 ®71 and wp = Wge-
Further denote Wy (pc(78)) = Wy (pe(11)) @ Wy (pe(T2)). In particular for H =
GLak. and 3 = (k?), we usually take 7 = 70 ® x~'7y and then 7/ = x 17V, If
B # (k?), also set dp = wp'.
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REMARK 3.1. The purpose of dj . is to preserve the character ¢ in the model, i.e.,
for 7V we still use the (k,c) model with respect to 9 (instead of ¢~1). Globally,
we then use (0.1) with the same character on both sides of the global functional
equation. This is simpler because we may then keep the same representative ¢ in
the unfolding argument. Note that this symmetry breaks down when kc is odd, as
explained above; see (2.3).

To avoid burdensome notation, we exclude general spin groups until the end of
the section. For a meromorphic section f of V(Wy(pc(7))) (induction from P), the
operator M (s, Wy (pe(7)), wp) is defined for Re(s) > 0 by the absolutely convergent
integral

M. Wolpo(r)wef(s.0) = [ fs,wptuh) du, (3.2)
Up/

P

then by meromorphic continuation to C. By definition, when M (s, Wy,(pe(T)), wp)
is holomorphic

M(s, Wy (pe(7)), wp) = V(s, Wy (pe(T))) = V(L = 5, Wy (pe(7')))-

The picture is similar for M (1 — s, Wy (pe(7')), wpr).
We further define

As,e,m, ) f = f(s,00u)y " (u) du. (3.3)
Up:
Here if H = SOq. and ¢ is odd, g is given by (2.2). The character 1 is defined as
follows. If H is a classical group, v is the character of Up: given by J#- (I’“ 7:) —
Y(tr(*Az)), where x is the bottom left ¢ x ¢ block of u (*A = A unless kc is odd). In
this case we also put Yy . = 7*V( ) x Ups and define a character ¢ . of Y . by taking
the product of characters (1.1) (of /*<V|c+)) and ¢ of Up:. For GLy. (k = 1+ B2), ¥
is the character (1.1) of V() restricted to Up, Yy = Viery and ¢y is again (1.1).
The integral defining A(s, ¢, 7,1) is absolutely convergent for Re(s) > 0 (sim-
ilarly to an intertwining operator), and can be made nonzero for a given s. Over
p-adic fields, there is an entire section f such that for all s, A(s, ¢, 7,1)) is absolutely
convergent and equals a constant (independent of s).

Theorem 3.2. For all s, the space Homy, (V (s, pc(T)), k) is at most one dimen-
sional.

Proof. For H = GLg, the dimension is precisely 1, this follows from [CFGoK, Propo-
sition 2]. The proof for H # GLy, for all k > 1 appears in Appendix B. We note that
the case of k = 1 and non-archimedean fields was already proved by Karel [Kar79]
(see also [Wal88, LRO5]). 0

COROLLARY 3.3. The functional A(s,c,7,%) admits meromorphic continuation,
which is continuous in f over archimedean fields.
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Proof. For p-adic fields this follows from Bernstein’s continuation principle (in
[Ban98]), since we have uniqueness by Theorem 3.2 and the integral can be made
constant. Over archimedean fields we prove this using a multiplicativity argument
in § 6.10 below. O

By virtue of Theorem 3.2 and its corollary, there is a meromorphic function C(s, ¢, 7,
1) satisfying the following functional equation for all f: if kc is even,

As,e,m,0) f = C(s,e, 7, )N — s,¢, 7, )M (s, Wy (pe(T)), wp) f. (3.4)

For odd kc (i.e., H = SOgk. and both k£ and ¢ are odd), we modify this equa-
tion by replacing M (s, Wy (pc(7)), wp) f with (to - M (s, Wy (pe(7)), wp) f)?*, to =
diag(lge—1, —2,—1/2, Iy.—1), and note that on both sides of the equation A is de-
fined with Jp given by (2.2).

Equation (3.4) depends on the choice of measures on Up,, but we may choose the
measures for A on both sides in the same way, and then C(s, ¢, 7, 1) depends only on
the measure chosen for the intertwining operator. Specifically, let dyx be the additive
measure of I’ which is self-dual with respect to ¢». When H is a classical group, each
root subgroup of Up: is identified with F' by choosing the nontrivial coordinate above
or on the anti-diagonal (the identification is clear when H = GLj.). The measure
on Up: is then the product of measures dyx over each of these root subgroups. This
measure is chosen for all integrations over subgroups of Up/. Changing ¢ affects the
measure.

Following (3.4) we define the normalized version of the intertwining operator,

M*(s,¢,7,1) = C(s,¢,7,9) M (s, Wy (pe(T)), wp). (3.5)
Outside a discrete subset of s, the product

M(1 = 5, Wy(pe(r')), wp ) M (s, Wy (pe(7)), wp)

is a scalar, because by the construction of p.(7) (see § 1.2), we can use the mul-
tiplicative properties of intertwining operators to write M (s, Wy,(pe(7)), wp) as a
product of operators on spaces V (s, p) with irreducible generic representations p.
Therefore

M*(1—s,c, 7', )M*(s,c,7,7) = 1. (3.6)

We fix notation for certain products of L-functions, which appear below in the
normalizing factors of the intertwining operators (and globally, Eisenstein series).
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Put
le/2] [c/2]
ag(s,c,7) = [] L2s —c+2j —1,7,v?) J] L(2s —c+2j — 2,7, A%),
j=1 j=1
c/2
[[L@s+2j—2.7V)L(2s+2j —1,7,A% even c,
=1
bo(s,c,7) =37
0(8:¢7) = 0 o) /2]
ITLes+2i—1,7v*) [] L2s+2j—2,7.A% oddec
L j=1 j=1

Also for H = GLgy. and 3 = (k?), set 7 = 71 ® 7. Define:

H a(s,c,T) b(s,c,T)
SPoke L(s—c¢/2,T)ap(s,c,T) L(s+¢/2,7)by(s,c,T)
SO ap(s,c, T) bo(s,c,T)
GLoke|[[1<jcc L(2s +j —c = 1,11 x ") |[[1<j<. L(25 +j — 1,71 x 12Y)

These L-functions were defined by Shahidi [Sha90] for any (generic) 7, although we
only use the definition for unramified representations. Note that for &k = 1, a(s, ¢, 7)
and b(s,c, ) are the functions given in [Yaml14, § 3.5] ((s,c) here corresponds to
(s —1/2,7n') in loc. cit.).

The computations in [CFGK19, Lemmas 27 and 33] show that if 7 and v are
unramified and f; (resp., fr) is the normalized unramified section of V(W (pc(7)))

(resp., V(Wy(pe(7')))),
M (s, Wy (pe(T)), wp) fr = a(s, ¢, 7)b(s, c, T)_lfT/. (3.7)

(This also holds for GLk. and any 5 = (1, 82), but will not be used.) Using this
result and the usual multiplicative properties of the intertwining operators, it is
possible to state the fundamental properties of the factors C(s, ¢, 7,1) which define
them uniquely, e.g., multiplicativity and their values for unramified data (see (6.13)
below), as we shall do for the y-factors; see [Sha90, LRO5]. Here we only prove the
properties needed for the purpose of the y-factors, in the process of establishing the
properties of the latter.

For general spin groups the arguments are similar to the orthogonal cases. The
notation can be adapted to incorporate twisting by x, e.g., A(s,¢,7 ® x,) and
C(s,e,7 ® x,1). For odd ¢ and k, one uses the modified version of (3.4) with k.
and tg, noting that conjugation by ji. defines an involution of GSpiny;., and ¢y is
regarded as an element in Tqr,,, < Mg, ,,. (see § 2.5). The functions a(s, ¢, 7®x) and
b(s,c, ™ ®x) are defined as in the orthogonal cases, but the formulas for ag(---) and
bo(- -+ ) are modified by replacing (A2, V?) with (A2®x, VZ®@ ), thereby a(s, ¢, 7® )
and b(s,c, T ® x) are products of twisted L-functions.
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4 The ~-factor

In this section we define the local y-factors, following [GJ72, JPSS83, Sha90, Sou93,
LR05, Kapl5]. We proceed with the notation of § 2 and in particular consider the
irreducible representations w of G and 7 of GLy, or if G = GL,,, 7 = 19 ® )(17'8/ for
an irreducible representation 7y of GLy (7 is also generic). Also define y, = 1 unless
G = GSpin,, in which case it is the restriction of the central character of 7 to Cg,
regarded as a character of F™*.

With the notation of § 2.6, consider the space (2.9), i.e.,
Hom g ¢) (St (V (5, Wi (pe(7)) @ X)), 77 @ ).

(Recall that for G = GL,, 7V @ 7" is replaced with (x*7)¥ ® 7.) According to [GK,
Theorem 2.1], outside a discrete subset of s the dimension of (2.9) is at most 1.

In its domain of absolute convergence, which for entire sections depends only
on the representations, the integral Z(s,w, f) belongs to (2.9), by Proposition 2.2.
Over p-adic fields the uniqueness result combined with Proposition 2.6 readily imply
the meromorphic continuation of the integral, by virtue of Bernstein’s continuation
principle (in [Ban98]). Over archimedean fields, in § 6.10 we deduce the meromorphic
continuation of the integral along with the continuity of the continuation in the input
data, using multiplicativity arguments and an idea of Soudry [Sou95] (see § 6.7.2).
We proceed over any local field.

The meromorphic continuation of Z(s,w, f), regarded as a bilinear form, belongs
to (2.9) (for any meromorphic f). Therefore we may study a functional equation
relating the integrals Z(s,w, f) and

Z*(syw, ) =Z(1 — s,w, M*(s,¢, 7 @ Xz, V) [)-

We can define the equation directly using the proportionality factor between Z(s,w,
f) and Z*(s,w, f). However, as in [LR05, Kapl5], it is advantageous for some ap-
plications (e.g., [ILM17]) to introduce an additional normalization, which produces
better behaved multiplicative factors. Let

7(87 T, w)T(_l)nT(z)an|2‘72kn(371/2) G = Sp?n?
9(5, 0,7 @ Xms 1) = { xw(2)7F7(=1)r(2) 7272 2k2(-1/2) G = SO,, GSpin,,
7'0(—1)" G = GLn .

Here for SO, and GSpin,, n = |¢/2] (as we use throughout). Recall that for GSpin,,,
we defined the element ig in § 2.5. Set ig = —1. for G = Spy,, SOz, and GL,
(Spap, SO2, < GLay,), and let ig be the identity element if G = SO2,, 41 or GSpin,,, | ;.
Also denote N = 2n for all groups except G = Sp,,,, where N = 2n + 1.

Since (2.9) is at most one dimensional (outside a discrete subset of s), there is a
function (s, x 7,1) such that for all data (w, f),

v(s,m x T, ) Z(s,w, f) = w(ic)kﬁ(s,c,T ® Xr, V) Z*(s,w, f). (4.1)
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Note that v(s, 7 x 7,) is well defined, meromorphic and not identically zero. Indeed,
one can choose data for which Z(s,w, f) is nonzero, the local integrals are meromor-
phic and M*(s, ¢, T ® xr, %) is onto, outside a discrete subset of s. We also need to
address the following minimal cases: for Sp,, and n = 0, define Sp, as the trivial
group and take y(s, 7 x 7,19) = (s, 7,%); for GSpin, and ¢ < 1 put y(s, 7 x1,79) =1
(the integral is over Cggp;, \ GSpin,).

REMARK 4.1. Equation (4.1) agrees with [LR05, § 9] up to factors depending only
on the groups, the central character of 7 and a constant to the power s (cf. [Kapl5,
Remark 4.4]). In addition here A is fixed and we only consider split groups (hence
we defined SOy, using Ja,, implying D = 1 and €(1/2,7p, 1) = 1 in the notation of
[LRO5, § 9]). The sign 79(—1) for GL,, is compatible with [Ganl2, p. 82] (see also
[Kak20]).

Here is our main result regarding the local factors, formulated as in [LR05, Theo-
rem 4]. To simplify the presentation, in the following theorem the case of GL,, is
excluded except for (4.8), which defines this v-factor uniquely. In (4.8), YRS(--+)
denotes the 7-factor of [JPSS83], or [JS90] over archimedean fields. The local fac-
tors in [JPSS83, JS90] were mainly defined for representations affording a unique
Whittaker model, but as explained in [JPSS83, § 9.4] since all irreducible tempered
representations of general linear groups satisfy this property, one can define these
local factors for all irreducible representations.

Theorem 4.2. The y-factor satisfies the following properties.

e Unramified twisting: (s, m x | det |*°7,1) = (s + sg,m X T,1). For the group
GSpin, we can also twist m, then v(s,|Y|™%7 x 7,¢) = v(s + so, m x 7,9) (T
was defined in § 2.5).

e Multiplicativity: Let w be a quotient of Indg(ag/ ® 7'), where R is a standard
parabolic subgroup of G, og ® 7’ is an irreducible representation of Mr =
Mg x G', and (' is a d' parts composition of | < n. Let 7 = Indg’,;“’“ (13) with

T8 = ®§1:17'¢, 7; = |det |*704, a1 > ... > aq and each 1y ; is square-integrable, or
T is the essentially square-integrable quotient of IndgL’“ (13) and g is irreducible
B

supercuspidal (including the case 3 = (1*) over any local field). Then

d
7(377[- X 7’7¢) = H7(577T X Tiaw)v (42)
=1

)
A, x 7, 8) = (s, x 1) [[1(s,00 x (r@x )W) (43)

i=1
Here if G = Spy,, and | = n, y(s, 7’ X 7,9) = (s, 7,%) as defined above.
e Unramified factors: When all data are unramified,
L(1—s,7¥ x1Y)

L(s,mx )

y(s,m X T,) = (4.4)
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e Duality:
(s, x T,1p) = (s, x X7 T, 0h). (4.5)
e Functional equation:
(s, x )yl —s, 7Y x TV, 7)) = 1. (4.6)
e Dependence on v: Denote iy(x) = ¢ (bx), for b € F*. Then
(s, x ) = XE O (0)V bV (s, m x ). (4.7)

o GL,,-factors:

(s, x (0@ x '), ) = A" (5,7 X x70, )y

e Archimedean property: Over F = R or C, let ¢ : Wr — *(GLy xG) be the

homomorphism attached to T @, and let €(s,rop, 1)) and L(s,rop) be Artin’s

local factors attached to r o ¢ by Langlands’ correspondence ([Bor79, Lan89)).

Here W is the Weil group of F; ¥(GLj, xG) is the L-group; and r is the
standard representation. Then

Rs(s,ﬂv X 70, 1). (4.8)

L(1— s,V 0 )
L(s,r o)

Y(s,m X T, ) = €(s,10p, ) (4.9)

e Crude functional equation: Let F' be a number field with a ring of adeles A, 1 be
a nontrivial character of F\A, and assume 7 and T are cuspidal representations
of G(A) and GLj(A). Let S be a finite set of places of F' such that for v ¢ S,
all data are unramified. Then

LS(s,m x 1) = H (s, 7y X Ty b, ) LS (1 — s, x V). (4.10)
ves

Here L®(s,m x 7) is the partial L-function with respect to S.

Furthermore, the y-factors are uniquely determined by the properties of multiplica-
tivity, dependence on v, GL,-factors and the crude functional equation.

REMARK 4.3. For k = 1, by the uniqueness property our «-factor coincides with the
~-factor of [LRO5] for Sps,,; for SO., Rallis and Soudry [RS05, § 5] showed how to
use the ~-factor of [LRO5] defined for O, to obtain a y-factor for SO., which is then
identical with ours.

REMARK 4.4. For GSpin,, the choice of T is not canonical (as opposed to det, see

[Kapl7, § 1.2]). Also regarding (4.4), if 7 is a quotient of Indgfzm“ (Indggzn (@) ®

Xr) (Rn,c was defined in § 2.5) and 7 = Ind%ii(@?zlnj),

L(s,mxT)= H(l — Xamin;()g %) H(l — 7 (@) )

1]
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The Satake parameter of 7 regarded as an element of GLy(C) is

diag(xx71 (@), - - -, XaTon (@), T, H(@), . .., 77 H(w)). (4.11)
This is compatible with Asgari and Shahidi [AS06, (64)]: they wrote the Satake
parameter using the characters Xla"wXTMXOX;lw"7X0X1_17 xo was the central
character which identifies with X, and since 6 + € — ¢, 7; corresponds to xg ' X

of loc. cit.

COROLLARY 4.5. If w is a generic representation, our y-factor is identical with the
~-factor of Shahidi.

Proof. Shahidi’s v-factors satisfy the same list of properties ([Sha90, Theorem 3.5]).
For GSpin,, to compare the multiplicative formulas (4.3) and (4.8) to those of
Shahidi, note that the standard intertwining operator takes the representation in-
duced from a maximal parabolic subgroup and 7 ® 7/, to the representation induced
from x 'V @ 7 (Xn = Xr)- 0

REMARK 4.6. The Rankin—Selberg y-factors for classical groups and generic repre-
sentations were defined in [Sou93, Sou95, Sou00, Kap13a, Kapl3c, Kapl5]. A refined
definition which satisfies the above list of canonical properties was given in [Kap15],
where the notation I'(s, 7 x 7,1) was used. With the minor corrections described in
[AK19], the Rankin—Selberg ~-factors for Sp,,, and SO, are identical with Shahidi’s,
thereby also with the v-factors defined here (for generic representations).

5 Proof of Theorem 4.2: Part I: Multiplicativity

The proof that the ~-factors are uniquely determined by the properties of multiplica-
tivity, dependence on v, GL,-factors and the crude functional equation follows from
a standard globalization argument as in [LRO05, p. 339], we omit the details. The main
part of the proof is devoted to multiplicativity, and since several similar proofs of this
property have appeared in this generality, see [Sou93, Sou95, Sou00, Kap13a, Kap15],
we settle for brief justifications here (they are similar and simpler). For clarity, we
usually treat Spy,, and SOaq, together, and for SOg,,+; explain only the modifications;
the proofs for GSpin, then follow by an almost “uniform modification” of the SO,
case (except the unramified twisting); the GL,, case is usually simpler. The proof of
the remaining parts of Theorem 4.2 is deferred to § 6 below.

Several arguments are important for deducing additional results. We try to point
them out at the end of each section, to minimize the number of cross references
between separated sections.

We will repeatedly apply the following standard argument to integrals over
unipotent subgroups. Let V denote a space of complex-valued functions on H. The
group H acts on V by right-translations and we assume this action is admissible.
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LEMMA 5.1. Let X, Y be unipotent subgroups of H and let £ € V. Consider an inte-
gral [ £(hx)dz and assume for eachy € Y, [y y-&(hx)de = [y E(ha)y(< z,y > )z,
with a non-degenerate pairing <,>. Then x — {(hx) is a Schwartz function of X,
Jx [&(hx)|dx < oo and we can choose & € V such that [ &' (hx)dx = £(h).

Proof. The proof technique is called “root elimination”, see e.g., [Sou93, § 6.1, § 7.2]
and [Jac09, § 6.1] (see also the proof of [CFGoK, Lemma 9]). 0

REMARK 5.2. In the archimedean case the proof uses [DM78]. If there is an auxiliary
dependence of V on a complex parameter s as in § 2.3, one can replace [DM78] by
Corollary A.3.

5.1 Unramified twisting. For the twisting of 7 one only needs to observe
pe(|det [*7) = | det [* pe(7),
M*(s7 c’ ’ det ‘SDT ® XT(? w) = M*(s + 807 C? T ® X’TI" w)?
I(s, ¢, |det |7 & xr, 1) = (s + s0,¢, T @ Xr, V).

For GSpin,, changing 7 by | Y| ™% implies that the integrand of Z(s,w, f) is mul-
tiplied by |T]*°(g). Regarding T also as a character of H, the definition of the em-
bedding implies | Y|*(g) = |Y|*((1,9)) = |T|**((1,*g)). Then since | Y| 7% (v} (z0)) =
|g|*%0, we obtain X(1|-som) = | - |25y, and the section |Y[* f belongs to

X[V (Wy(pe(1) @ | Pox2) = V(Wy(| det [ pe(T)) @ Xa)-
Also note that
M (s, Wy(pe(T)) @ | - [** X, wp) | X% f = M (s, Wy (pe(| det [*7)) @ Xz, wp) f,
M*(37 C, T ® | . ‘QSOXWv 1/}) = M*(S,C, ’ det ’807— ® Xﬂ'a ¢)7

where the second equality follows also because |Y| is trivial on the Weyl elements
and unipotent matrices appearing in (3.4). Then a simple computation shows

(s, ¢, 7 @ X(1r|-0m)> ¥) = V(s ¢, | det [*°T & xx, 1),

and we conclude (s, |Y|7%07m x 7,9) = v(s, 7 x | det |*°7,¢) = v(s + so, ™ X T, 1)), as
proved above.

5.2 Multiplicativity II: Identity (4.2). We proceed as in [Kaplh, § 8.1].
Start with G = Sps,,, SO2,,. By [CFGoK, Lemma 7], p.(7) is a quotient of

Ind3 (@ pe(7:))- (5.1)

For simplicity, throughout the proof we assume d = 2, i.e., 8 = (01, f2). If F' is non-
archimedean and 7 is a full induced representation we can always assume this, by the
definition of p.(7) and transitivity of induction; if 7 is essentially square-integrable
or if F' is archimedean, we should really work with any d > 2 (in the archimedean
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case even if 7 is a full induced representation, we have to apply [Cas80a] because
the analytic properties of (1.3) are only known for degenerate principal series).
The representation 73 of Mg is irreducible and generic. Let H', P', U], ¢’ = 6,0}
be the groups and elements defined in § 2 for the G x GLg, integral involving m x 7o.
Let L be the standard parabolic subgroup of H with M, = GLg,. xH'. As explained
in [CFGoK, § 3.1] we form the twisted version of (5.1) which is also (k, ). We then
realize the (k, c) model using (1.3). Let ¢ € C. If f; is a section corresponding to

Indg (| det "~/ Indp e (@7 | det [“ Wy (pe(r))s  (C1:G2) = (¢, =€),

the integral takes the form

Z(s,w, f¢) :/w(g)/ / fC(s,wgcvéuo(l,‘g))w_l(v)wU(uo)dvduodg. (5.2)

G Uy Vﬁ/c

For Re(s) > Re(¢) > 0, the integral (5.2) is absolutely convergent as a triple integral
(see e.g., [Sou00, Lemma 3.1]). We will prove

2

= H m(ig) % (s, ¢, | det

i=1

Z*(s,w, fc)

Cir
Z(Sawafﬁ) TZ,M}).

Cinﬂb)_lv(s,w x | det

Since ¥ is holomorphic in ¢, and ~ satisfies the unramified twisting property, we may
take ¢ = 0 on the r.h.s. (right-hand side). Furthermore, Z(s,w, f¢) is a meromorphic
function of ¢ and s which is well defined as a meromorphic function of s for any fixed
(. This follows from the uniqueness result for (2.9) when we include the twists by ¢ in
the non-archimedean case and from § 6.10 when the field is archimedean. Moreover,
for a fixed compact set C C C we can choose A > 0 such that Z(s,w, f¢) is absolutely
convergent for all Re(s) > A and ¢ € C. Hence the Dominated Convergence Theorem
implies lim¢_g Z(s,w, f¢) = Z(s,w,lim¢_,o f¢) and because (1.3) is entire, the last
limit equals fo = f and then (1.3) realizes the (k,c) model of p.(7). Similarly for
Z*(s,w, f¢) (convergence will be in a left half plane). In addition, the denominator
on the Lh.s. can be taken to be not identically zero for ( = 0 by Proposition 2.6. Thus
we can take ¢ = 0 on both sides and conclude (4.2). (One can also justify taking
¢ = 0 by arguing as in [Sou93, p. 66].) Henceforth we omit ¢ from the notation.

Denote the triple integral (5.2) by Z(f). Write Uy = U}j x (Up N UpL) and observe
the following:

wy, commutes with 6] and Uy,
(1,*g) normalizes Uy,
“r(1,g) is the element (1,"g) appearing in the G x GLg, integral.

)
)
3) 6, =4},
)
)
)
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Using these properties,

1(f) = / Z(s,w, (wpn) - o= (u) du. (5.3)

UL

Here Z' is the Gx GLg, integral for m and 7; ¥ (u) is defined by the trivial extension of
the character of ' V. (the conjugation of the character of Vj..) to Uz, and (wru)- f
is regarded as a meromorphic section of V(Wy(pc(72))). Therefore by (4.1),

o x T WT) = 7900072, 0) [ 250, () - ) )

UL

(The justification of this formal step is actually given in the proof of Corollary 5.3
below.) Reversing the manipulations (5.2)—(5.3) we obtain

V(5™ X 72, O)I(f) = (i) (s, ¢ 72, Y)L(M (s, 0,72, $) ). (5:4)
Here on Mp, M*(s,c,m2,%)f is a function in the space of
Ind G (W (pe(m1)) @ Wiy (pe(3))).
Next, since the dv-integration of (1.3) comprises the Lh.s. of (3.4),
T(M*(s,¢,79,0)f) = Z(M*(s,¢,71 @ 7o, ) M*(s, ¢, 72,90) f). (5.5)
Now on the r.h.s. 3 is replaced by (32, 31), and the section (restricted to GLg.) is a

function in the space of

I | (Wy(pe(r3) © Wy (pe(r1)))-

Psy.61)c

To complete the proof we use the multiplicativity of the intertwining operators,
namely

M*(s,c,7,1)) = M*(s,¢,71,)M*(s,¢c,71 @ 5 ,0) M* (s, ¢, T2, ). (5.6)

To see this note that the application of (3.3) to f (with the realization (1.3)) takes
the form

/ / £(5, waevdebou)d ™ (w) (u) do du,

Up Vi,

with the characters and dy, . defined in § 3. Applying (1), (2) and (4) to this inte-
gral we obtain the application of (3.3) to f as a section of V(Wy(pc(72))), as an
inner integral. Note that “#dy, . = diag(d’,dg, ). Applying (3.4) for H’, the section
changes to M*(s,c,m2,1)f. Then we apply the functional equation (3.4) for GLg,
(to the dv-integral) to produce the operator M*(s,c, 71 @ Ty, 1)), and repeat (1), (2)
and (4) again for M*(s,c,m1,).
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Applying the steps (5.2)—(5.3) to the r.h.s. of (5.5), using (5.6) and the identity

19(57 C,T1, ?/))19(& C, T2, 17[)) = 19(5> G T, 7/1)»

we conclude y(s,m X 7,1) = (s, m X 71,%)y(s, 7™ X T2,1). The proof is complete.

Exactly the same manipulations apply to the GL,, integral. In this case 7 = 7y ®
X" 1mys we assume 1 = Ind%ﬁL’“ (01 ® 02) (or a quotient if 7¢ is square-integrable and
the inducing data is supercuspidal); 7, = 0; ® X_lg;/ and the intertwining operator
applied in (5.5) is replaced by M*(s,¢, 01 ® X oy, ) M*(s,c, 00 ® x 1oY, ). The
formula (4.2) for GL,, is again

7(577( X T, w) = 7(877‘- X 71,1/})”)/(8771' X 7—271/})'

Consider G = SOg,,+1. The proof is similar, except for modifications related to
the embedding of G x G in H and the parity of k. Equality (5.2) remains valid. Also
while Uy and U} do depend on the parities of k and (s, we always have 751 U} < U.
Hence we write Uy = 71 Uj x (Up N Upr). Looking at the list of properties above,
item (1) still holds. For (2) use

[ﬂlc .
wr, = tg, <I Tapye ) , tg, = dl&g(]kc,l, (—l)ﬁlfg,fkc,l)]gl.
Bie

Equality (3) holds; for (4), wy, still commutes with 0}, but now “* (1 Uj) = U}
and this conjugation changes the character ¢y|y, to be the proper character for
the G x GLg, integral, i.e., for G x GLj it depends on the parity of k, after the
conjugation it depends on the parity of f2; and (5) is valid. Finally for (6), in the
previous cases wy, commutes with (1,%g), but here this is a bit more subtle: when k
and [ do not have the same parity (equivalently tg, is nontrivial), the constants €;
and €9 used in the construction of the integral are swapped and the matrices ¢« = ¢y,
and m = my, defined in § 2 change (m depends only on the parity of k, and for fixed
n so does ¢). We see that tg tymy = tg,mgp,. This completes the verification of the
properties leading to (5.3).

We apply the functional equation and reverse the manipulations (5.2)—(5.3), but
if 32 is odd, the resulting inner integral for 7 x 7 is slightly modified, since the
section belongs to a space of a representation induced from 72 P": §(, 61, Uj) and its
character ¢y are different, e.g., ¢ is now given by (2.3) (see § 2.4). In both cases
we see that (4) still holds, but (2) and (3) are modified. Let

Zﬁg - diag(I(k,1)0+n, _Inajk dlag(_27 _1/2).7,827 _Ina I(kfl)chn)

if 32 is odd, otherwise zg, = Iaj.. The integral before reversing (1) is

/ w(g) / / M (s, ¢, 72,9) (5, 23,0507, (" (1, g) b ()" () duy du dg.

G UL Uy
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Here if By is even, ¥z U} = U} < Uy, but for odd fBa, “r U} < ?2Up. Thus in
all cases %% (Ve 1U(’)) < Up and when we change variables in wuj, the character iy
changes back to its definition when the representation is induced from P’. We can
also take a subgroup of Uy, of the form 0725, Vgre, then we can follow (1) in the
opposite direction. Also z3, commutes with ¢ and (if 82 is odd) (1,'g) — *2(1,'g)
is an outer involution of (1, ), hence we can conjugate zg, to the right. We obtain
(5.4), except that the section on the r.h.s. is

((28,08.) - M (s, ¢, 72, 9) f)72 (5.7)

(det 23,78, = 1). The section M*(s, ¢, 72,1)f(s,h) belongs to a space of a represen-
tation induced from 772 P, but the additional conjugation by jg, takes it back to a
section of a space induced from P. Then we can apply (3.4) and obtain (5.5), but
with (5.7) instead of M*(s,c,T2,1)f on both sides. We may then repeat the steps
above for 71, and again consider odd (3 separately. If k is even, 23,23, = Iaj., hence
after applying the functional equation for 71 we obtain the correct form of the inte-
gral for M*(s,c,7,%)f (regardless of the parity of, say, f2). When k is odd, either
28, or zg, is trivial, and we obtain

Z(1 = s,w, ((zkgk) - M7 (s, ¢,7,4) [)*).

At this point conjugating z to the left and j; to the right, we reach

w(g) M*(s, ¢, 7,) f (5,7 (wpev)duo (1, g))w~" (v)
Jeo] ]

G Us Vi,
X QJZ}U(UO) dv duo dg = Z*(S?waf)v

with &, Up and 9y defined correctly (i.e., for a section of a space induced from 7* P).
The proof of the orthogonal cases extends to GSpin,, as follows. All conjugations
of unipotent subgroups above remain valid. When we write wg.00 = dywr, the
elements dp and J;, were fixed in the definition of the integral, and the choice of wg,
is canonical by our identification of GLj. with a subgroup of Mp. Then wy, is already
defined uniquely, it is a representative for the Weyl element corresponding to the
permutation matrix wy, in SOg.. When c is even, det wg. = 1 hence wg. € SLy.,
and by the definition of the embedding of GLy. in Mp (see § 2.5), wg. € Spingy,.
Therefore wy, € Spingg, is one of the elements in the preimage of the matrix wy.
For odd ¢, when detwgs. = (—1)%% = —1, [diag(—1, Iy._1), lJw, € Sping,. (the
element [diag(—1, Ixc—1), 1] commutes with (). In both cases (6) holds. Finally, the
intertwining operators are now M*(s, ¢, 7; ® Xr, %) and M*(s,c, 71 @ X717 ,1).
The proof has the following corollary, which can be used to reduce the proof of
several properties of the integrals to the case of an essentially tempered 7, or even a
character for archimedean fields. Assume 7 is an irreducible generic representation of
GLj, such that p.(7) is a quotient of (5.1), with any d > 2 (d = k over archimedean
fields) and where the representations 7; appearing in (5.1) are irreducible generic.
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Let V' (s, Wy (pe(T4)) ® xx) be the space corresponding to the representation induced
from P’ to H', where H' and P’ are the groups and elements defined in § 2 for the
G x GLg, integral involving 7 x 74. Also recall that 7 is an irreducible representation
of G and let w be a matrix coefficient of 7V.

COROLLARY 5.3. For every entire section f' € V!(Wy,(pe(7a)) ® Xxx) there is an entire
section f € V(Wy(pe(T)) ® xx) such that Z(s,w, f) = Z(s,w, f'). Over archimedean
fields f is smooth.

Proof. The proof is a similar to [Sou00, Lemma 3.4]. Since p.(7) is a quotient of (5.1)
and using transitivity of induction, we can regard functions in V (s, Wy (pc(7)) @
X=) as complex-valued functions on H x GLg,. X% ... x GLg, ,. xH' such that the
mapping b’ — f(s,h,a, h’) in particular, belongs to V'(s, Wy (pc(74)) @ Xxx). Again,
for simplicity only we set d = 2.

Assume [ is p-adic. Given f’, choose an entire section f such that wy - f is
supported in LN, where A is a small neighborhood of the identity in H, and wy, -
f(s,v,1g,c,h') = f'(s,h') for all s and v € N. Since f’ is entire, one can take N/
independently of s even though it depends on f’ (because there is a neighborhood
of the identity in H' fixing f’ for all s). According to (5.3),

(f) = /Z'(S’w, (Vruwg) - flv ™ (u) du,

Ut

Then we see that “~u belongs to the support of wy - f if and only if the coordinates of
u are small, hence the integral reduces to a nonzero measure constant multiplied by
Z'(s,w,wr, - f) = Z'(s,w, f’). This computation is justified for Re(s) > 0 and ¢ =0,
since Uy, contains the conjugation of Vg, (see (1) in the proof), hence the inner
dv-integral in (5.2) is over elements of Vg which belong to a compact subgroup of
GLgce. The result now follows by meromorphic continuation.

Over archimedean fields, we can define an entire section f € V(Wy(pe(T)) ® Xxx)
such that wp, - f is supported in LU, , wr, - f(s,h'u) = ¢(u)f'(s,h) for u € U,
where ¢ is a compactly supported Schwartz function, and fUZ ¢(u)du = 1. Then we
proceed as above. O

5.3 Multiplicativity I: Identity (4.3).

5.8.1 The groups Spy,, and SOg,.  Let G = Sp,,,, SO2,. The case [ = n essentially
follows from [CFGK19, Lemma 27|, but the general case is more involved. It is enough
to consider a maximal parabolic subgroup R, so assume ¢ is a representation of
GL;, I <n. For SOy, and [ = n there are two choices for R, in this case we assume
R ={(*f):a € GL,} (the other case of 7' R can be dealt with similarly). Put
e = o@7’. We prove the (stronger) statement for 7 = Ind%(e). Then 7V = Ind% (V).
If {,) is the canonical pairing on € ® ¢ and ¢ ® ¢ belongs to the space of T @ 7V,

(p(rg1), ¢ (rg2)) = 6r(r){v(g1),¢"(92)),  VYg1,92 € G,r € R.
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Thus we can realize the matrix coefficient on 7V using a semi-invariant measure dgo

on R\G (see [BZ76, 1.21]), as in [LR0O5, § 4]. Take

w(g) = / ((g0), ¢ (909)) dgo. (5.8)

R\G

Let G® < G x G be the diagonal embedding. Since for any g € G,

/ (¢(90991), " (90992)) dgo = / (¢(g0g1), " (9092)) dgo,
R\G R\G

and by Corollary 2.3 the integral of f over Uy is invariant under (g,'g) ((91,92) € H
was defined in § 2.2), we can write Z(s,w, f) in the form

/ / ©(9091), ¢" (9092)) f (5, 6u0(g1, " 92)) Y (uo) duo dgo d(g1, g2).-

G2\GxG R\G U,

Regard the dgg-integral as an integral over R®\G%, collapse it into the d(g1, go)-
integral, and domain using

/ d(g1,92) / / d(r1,72) d(g1, 92) / /de (91,92)

RA\GXG RxR\GxG R®*\RxR RxR\GxG R

We obtain, in a right half plane (ensuring absolute convergence)

/ ///5_1/2 g1),e"(m)e" (g2)) (5.9)

RxR\GxG Mz Ug Uy
f(s,6u0(g1,"(2mgz))) Yu(uo) dug dz dm d(g1, g2).

Recall that f(s,-) belongs to a space induced from Wy, (p.(7)). Since we already
proved (4.2), we can assume 7 is essentially tempered, thus the results of [CFGoK,
§ 3.2] are applicable to p.(7) and we can realize the (k,c) model using (1.4) and
(1.5). Applying this to f(s,-) we obtain a section of the space of the representation

Indfl (| det |*~2 Ind§%: | (Wy(pu(r) © Wy pees(7)5 5, 5 ).

Pt k(c—1)) Pt k(c—1))
This adds the Weyl element r; .—; and a unipotent integration over a subgroup, which
we denote by V;. Then we apply (1.4) and (1.5) again, this time to the bottom right
k(c —1) x k(¢ —1) block to obtain a section of the space of
_ — k
Indf (| det "2 dBl: | (Wy(pi() © Wilpe (1)) @ Wi (pu()dp,) 20 ),

Pt ket k1) Pt ke ki

(5.10)

with ¢ = ¢ — 2] = 2(n — ). The additional Weyl element is diag(lj, K ;) and the
unipotent integration is over a subgroup Va. Note that if ¢ = 0, diag(Iy, ke 1) = Ike
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and V5 is trivial. Both applications do not change the dependence on s, because we
only change the realization of Wy (p.(7)). Now for any h € H, the dup-integration
of (5.9) takes the form

[ ][ #6s.cinstha.eyeans-orduah) vy (uo) des oy du, (5.11)
Uo V1 V2
By matrix multiplication we see that % ‘viug = Uy, o'y and (kr.e=18) " oy =

uvz(””c—l%)_lvg, where the elements u,, € Uy satisfy ¢y (uy,) = Yu(ug). Thus we
may shift v; and vy to the right of ug. Also note that (.-~ 5 normalizes 5511/1,
and for simplicity denote the resulting semi-direct product (where v; varies in V;) by
V', and set k = diag (g, ke )kie—1- Note that V' is the subgroup of Vi.ry with blocks
v;; (in the notation of (1.1)) of the form

0; 0 0
< £ 00 ) : (5.12)

where for any j, 0; € Mat; is the zero matrix. Then the last integral equals

[ [ #6s.mvugeh) v o) dua e

V U,

Plugging this back into (5.9), we obtain

/ ////5 Y2 m) (p(91). €Y (m)e" (92)) (5.13)

RXR\GxG MrUgr V U,
f(s, kdugv(gr, ‘(2mga))) Yu (uo) dug dv dz dm d(gu, ga)-
As above, we proceed in Re(s) > 0 so that the multiple integral is absolutely

convergent.
For z € Ur we see that

kougu(l,‘z) = ”50(1, "2) KOQ Ty 01 Uz Ty Ay 2 b2, (5.14)

where 2, € Vi(x_1)cte/2,¢/2) Uz € Uy depends on z; r, = (I’“c Y ) € Up is such that
all coordinates of u are zero except the bottom left ¢ x ¢ block which equals

0 1 2
( Yoo o > : (5.15)
0;

Augz € VN V(k=1)e,e)s bz € Vike—1,0) N V{(k=1)c,e) (in particular ay, . and b, commute)
and a,,, . depends on both uy and z. Observe the following properties.
(1) Since " (1,¢2) € Vikt je(e—1)) X Up, h— f(s, h) is left-invariant under Ko (1,42).
(2) "%z, belongs to (Viry X Vier)) X Vigik(e—1)), changing variables in u. affects
1y, but this cancels with the character emitted when %0y transforms on the
left of f, i.e., f(s,kdox.01uh)y(ug) = f(s, Kdupgh)y(uop).



Y. CATIET AL. GAFA

(3) Sugr.b, = dgb.d1up_ 1., where uy € Uy, and as with “x,, f(s, kb, d1up 7.h)
Yu(uo) = f(s, Kéugr.h)yy(uo).

(4) Lastly, by a change of variables ay, .v — v.

Now if U® is the subgroup of elements ugr, and we extend ¢y trivially to U°, (5.13)

becomes
/ / //521/2(m)<s0(g1),6v(m)sov(gz)) (5.16)
RXR\GxG Mg V U°
f(s, kéuv(gr,‘“(mge))) Yu(u) dudvdmd(gs, g2).
Let

H? = GLag, P, Uy, 07 = 6§67

be the groups and elements defined in § 2 for the GL; x GLj integral, with the
exception that for 0 we actually take d; “ instead of §; defined there. Also let

., P, U, §=80

be the notation for the G’ x GLj integral. Fix the standard parabolic subgroup
L < H with Mj = H° x H', and regard the groups H° and H' as subgroups of M.
Put k* =% k = diag(kie, Ixi) k1. Conjugating U° by x°, we obtain

U* =""U° < Up.

Denote the top right kc x kc block of elements of U® by (u®J

)i<ij<3. We see
, 'lL2 2
I

) of U, ut e
Mat e spr (resp., u®t € Matyy) and its bottom left ¢/ x [ (resp., [ x 1) block is 0. This
determines the blocks u? and 4?2 and the dimensions of all the blocks uniquely,

and the remaining blocks take arbitrary coordinates such that U® < H. The restric-
tion of ¢y to U*® is given by the product of characters wﬁ? and 1y, defined on the

that (I "1) is a general element of Ug and similarly (1

corresponding coordinates u'! and u?? (1/}55,0 = 4yg for Spy,).

Write o = w16y6§w (6 € H' < M), where

Tow
w = diag (I, <€osz Ik") k). (5.17)
I

For Sps,,, w1 = w. Here the case of SOg, requires additional treatment: if £/l is odd,

detw = —1, whence this decomposition of dg does not hold in H. To remedy this

we let 7 = jp, then §o = w™176,765 yw1 and we re-denote w™! = w1y, &) = 76,

5§ = 70§ and wy = jwi, and also re-denote H' = JH’ and similarly for H? (then

Uj, Ug and the characters are conjugated by j as well). Also set j = Ik, for Spy,.
Then

wy ((50_1“60)51) — 5?51
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and if [u®7] is the subgroup of U® generated by elements whose coordinates u>'" are

zeroed out for (¢,t') # (i,7),
U(c))' — w1 [ul,l u3,3] UI 5"w1[ 2,2] 7 — 667wy [u1,2 u1,3 u2,3]

0 = [u®!, u®L, w32,

I 2 22
17 = diag([kl, Ler Inw 2 ,Ikl) €eH;. (518)
Ikl

We write the integration du as an iterated integral according to these subgroups.
Returning to (5.16), we obtain

/I / 57 2ol clme¥ () (5.9)

RxR\GxG Mp V. O Ug U, Z

f(s,w™ L8 8% uCwyo k® v(g1,‘m*g2)) Yy (u )@ZJ_E‘)( 7)
dz du’ du® do dvdm d(gy, ga).

In coordinates

Denote m(s, 7,w) f(s,h) = [, f(s,w ' zh)dz. Let Y < H be the standard para-
bolic subgroup with My = GLj; X GLg» X GLy; and Y < P. When ¢ = 0, “My =
GLj; x? GLg; and if ¢ > 0, Y My = GLy; x GLj; x? GLge. Let D < H denote the
standard parabolic subgroup with Mp = “My and D < 7P. Then m(s,7,w) is a
standard intertwining operator taking representations Ind# (- - - ) to Ind& (- - - ). Using
(5.10) and transitivity of induction, m(s,7,w) becomes an intertwining operator
from the space of
ndf? ((|det [/, (pu(r)) @ | det [~/ 2Woy (o (7))@ | det [ 2Woy (o (7))o 20 )

Pt ke’ 1)

to the space of

W, (07,72 (1det [V (s, W (p1(r)) @ Walpu(7)) & V (s, Wolpe (1)) ) - (5:20)

Here d is a constant obtained from the modulus characters (d = (k —1/2)(c —1) —
€0/2).

Let m = diag(a, g,a*) € Mg, where a € GL;, g € G’ and a* is uniquely deter-
mined by a. Then dm = dadg. We see that (1,*diag(a, l,a*)) which we briefly
denote by (1,‘a) commutes with x®v, normalizes O (with a change of measure
| det a|(*=F)(e=D) and

w (]—7 La) == diag(-[kl7 a, IQ(kC,kl,l)7 a*v Ikl) - (]—7 a)U?

that is, the embedding of GL; in the GL; x GLj integral (17 = I;).
Now consider (1,"diag(l;,g,1;)) = (1,"g). The complication here is that (1,"g)
does not normalize the subgroup % 1V1 < V nor O. To handle this, consider the
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subgroup O' < O where all the coordinates of u?! are zero except the bottom right
¢ x ((k — 1)I) block which is arbitrary, and u®! is also zero except on the anti-
diagonal of I x [ blocks (u®! € Maty,;), which are arbitrary, except the bottom left
I x I block which is zero.

Then *)"" O is normalized by V, denote V* =V x (v*)7" 01, Also write O as a
direct product O° x O! for a suitable O° < O, and put g = *"(1,'g). The upshot is
that (1,'g) normalizes V*, § commutes with the elements of O° and 1§ = (1,*g)’,
the embedding in the G’ x GLj integral. After pushing (1,%g) to the left, we may
rewrite the integration over O and V) as before. The integral becomes

/ //////5;;1/2@”deta|(1_k)(c_l)<<ﬂ(91),av(a)®7T'V(9)90V(92)>

RxR\GxG V O GL, U5 G'" U}
(5.21)

m(s, 7, w)f(s, (8'u' (1, g)) (6°u°(1,a)”) wio k*v(g1, g2))
Yo (u)gs (u”) du' dg du® dado dv d(gu, g2)-

Note that 5;1/2(a)] det a|1=F)(c=1) = | det a|~%. Considering this integral as a func-
tion of the section m(s, T, w)f, denote it by Z(m(s,7,w)f). The du®da-integral is
the GL; x GLy, integral of o x (7 ® 7); the du’dg-integral is the G’ x GLj, integral
of 7 x 7. Thus multiplying (5.21) by the appropriate v-factors we obtain, formally
at first,

Vs, o x (r@7"), P)y(s, 7’ x 7,9)Z(s,w, f)
= U(_l)k’r(_l)lﬂ/(_[d)kﬁ(sv Cla T, ¢)I(M*(Sa L, r® Tva ¢)
X M*(s,c,m,4)m(s, 7,w)f). (5.22)

Note that for SOg,, the integral varies slightly from the definition in § 2 because 0f
and - are the inverses of those defined there (i.e., —e¢9 = —1 for SOg, ). However,
this does not change the ~-factor, to see this replace f in (4.1) with its right translate
by diag(—Ixi, Ix1)-

We justify the formal application of the functional equations. First note that the
d(g1, g2)-integration is over a compact group, by the Iwasawa decomposition. Hence
over p-adic fields it is immediate that this integration can be ignored for this purpose.
Over archimedean fields, one can apply Corollary A.3 to replace f with a sum of
convolutions against Schwartz functions on G x “*G. The computation of the integrals
will then justify (5.22) once the inner integrals are shown to be proportional (with
the correct factor). Alternatively, once we know the inner integral is meromorphic
and continuous in the input data, we can use the Banach—Steinhaus Theorem as in
[Sou95, § 5, Lemma 1] (see § 6.10). We proceed to handle the intertwining opera-
tor and dodv-integral. Since we are not confined to a prescribed s, we can assume
m(s, T, w) as a mapping from (5.10) to (5.20) is onto. While V (s, Wy,(p.(7))) is only
a subrepresentation of (5.10) (p.(7) is embedded in (1.4)), for the proof of (5.22)
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we can consider an arbitrary (meromorphic section) f of (5.10) (which is a stronger
statement). Now one can take m(s, 7, w)f which is supported in /LU, , such that its
restriction to U, is given by a Schwartz function. Then the integrals over V and O
reduce to a constant (see Corollary 5.3). This justifies the formal step. Alternatively,
note that for fixed ¢g; and gy the integrand is a Schwartz function of o and v (see
the proof of [CFGK19, Lemma 27] and repeatedly use Lemma 5.1); this can also be
used for a justification.
Next, applying the same manipulations (5.9)—(5.21) to Z*(s,w, f) yields

Z*(vahf) = I(m(l - s,TV,w)M*(s,c, T,’QZJ)f)
For any b € F* set C(b) = 7(b)%[b|**'(*=1/2). To complete the proof we claim

M*(s, 1,7 @77, p)M*(s,c,7,¢)m(s, 7,w) = C(1/2)m(1 — s, 7", w)M*(s, ¢, T, ).
(5.23)

Granted this, since ¢ = ¢ + 21,
C(1/2)r(=1) (s, 1, 1p) = (s, ¢, 7,0), (5.24)
and also w(—1I.) = o(—1)7'(—1+), we obtain the result:
v(s,0 x (T@TY), )y(s, ' X 1,0) Z(s,w, f) = 7(=I.)*V(s, c, 7, 0) Z*(s,w, f).

We mention that for Sp,,,, if ¢ = 0, by definition (s, 7" x 7,9¢) = (s, T, ).
Set dy = —(¢ —1)/2 and sp = s — 1/2, and consider the representation

IndfL (5;1/2 ((| det |V (1 — s, Wy (pu(7")) @ W¢(Pl(7))))

DV = 5, Wy(pe (7)) (5.25)
= Indf}(|det o= pi(rY) @ | det |5y (7) @ [det | *pe(r¥).  (5.26)

The space H of intertwining operators from V (s, Wy,(p.(7))) to the space of (5.26)
is, outside a discrete subset of s, at most one dimensional. This follows from the
filtration argument in [LR05, Lemma 5], which extends to any k > 1. Briefly, write
H = 1], PhD where h varies over the representatives of W(Mp)\W (H)/W (Mp),
and for A and v > 0 define

H, (h) = Homp, (| det [ pe(7) © " (| det |4t p(r) & | det |~ p(+)

®| det |*°per () ) ® Apy,0n).

Here Dj, = "DNP; over archimedean fields Ay, is the algebraic dual of the symmetric
v-th power of Wy, = Lie(H)/(Lie(P) + Ad(h)Lie(D)), and over non-archimedean
fields it is simply omitted; and 6, (x) = dp, (m)égl/Q(h_lx)égl/z(az). Denote h ~ b’/
if PhD = Ph'D. According to the Bruhat Theory ([Sil79, Theorems 1.9.4-5] over
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non-archimedean, [War72, Proposition 5.2.1.2, Theorem 5.3.2.3] over archimedean
fields), dim M < 3, , dim M, (h) (a finite sum in the p-adic case). But arguing as in
[LRO5, Lemma 5] using central characters (see also [GK, § 2.1.2 and (2.7)]), there is
a discrete subset B C C such that for all s ¢ B, H, (h) = 0 except when

I

Ik(c—l) Ikl I
~ _ Iy, kel —
h~ hy = 1o |7 col,u , v =0.
Ti(e—y)

€olr

Note that 6, = 51

Pt ket k1
archimedean case dim Ay, > 1 unless v = 0. To eliminate H, (hg) for v > 0 observe

that each nonzero subspace of Wy, is an eigenspace for the action of tI. € Cy, <
Dy, corresponding to an eigenvalue [¢|* for some integer a > 0 (direct computation).
Then we can consider a second filtration, of Ay, ,, such that the action of Cj, on
the i-th constituent is given by [¢|* with a; < 0, and since C)y,, acts trivially on

. Here since hg is not the longest Weyl element, in the

[det[*pe(r) @ ™ (| det | ~4r+%py(r) © | det |4 pi(r) @ | det [*pe (7))

(pc(7) admits a central character) and 6y, is trivial on Cyy,., H,(ho) = 0 when v > 0.
It remains to consider Ho(ho). Since Vg per 11y < hUpNP < Dy,, each morphism

. 1/2

in Ho(ho) factors through 5P{kl,,w/,kl>JV(M,M,M)(/’C(T)> (see e.g., [GK, (2.5)]) whence

Ho(ho) becomes

Homg, (| det [ Ty, ., (pe(7) © (| det |40 pu(r) @] det | per(7")
@] det | pi(7Y)) 1)
= Homaz,, (S, sy (Pe(7)), | det [ py(7) @ per (1) @ | det |~ py(7)).

When k = 1, dim Ho(ho) = 1 immediately because p.(7) = 7 o det. In light of (1.4)
(applied twice, see (5.10)), the proof of [CFGoK, Lemma 9] (where we considered
an arbitrary summand) and the Frobenius reciprocity law ([Cas80a], [HS83, Theo-
rem 4.9], [Cas89]) there are dim H(hg) constituents of p.(7) which afford (k, ¢) func-
tionals. Since p.(7) is (k, ¢) and the generalized Whittaker functor is exact ([GGS17,
Corollary GJ, over p-adic fields [BZ76]), dim Ho(ho) = 1.

Since both sides of (5.23) take V (s, Wy (pe(7))) into the space of (5.25) which is
isomorphic to (5.26), they are proportional. It remains to compute the proportion-
ality factor. We argue as in [LR05, Lemma 9]. Denote

)\ = )\2(3, l,T & 7-V7 @ZJ))\(S, C,a 7-71/})7
A =X1=-s, 7@ Y)A1—sd, 7, ¢).

Here A\y(---) are the functionals appearing in (3.4) except that the character 1
appearing in (3.3) is replaced with ¢ _oc, (but p;(7) is still realized in Wy (pi(7))).
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Define the following functionals: for fo(s,-) in the space of (5.20) and fy (1 —s,-) in
the space of (5.25),

Ax(fo) = / Ao(s,w10°k®) do®, A (fy) = /O. A fY (1 — s, w10°K®) do®.

Here O® is the subgroup *"V x O, where O’ is obtained from O be replacing the zero
blocks in u*! and u! by arbitrary coordinates; A2 (s,l, 7®7", 1) and A(s, ¢, 7, 1)) are
applied to the restriction of fy(s,-) to M,r. The integrands are Schwartz functions
on O°. This follows from Lemma 5.1 and the fact that using right translations of f
by unipotent elements, we can eliminate the roots in O°. For a description of these
elements see the proof of [CFGK19, Lemma 27] (U? in their notation corresponds to
O, the additional blocks of O" can be handled similarly). See also [LR05, Lemma §]
and the example on [LRO5, p. 325].

First we show
A(s, e, 7, 90) f = Ax(m(s, 7, w) f). (5.27)

This actually follows from the arguments above: repeat the steps (5.9)—(5.19) (ex-
cluding arguments regarding G and 1), in particular apply (1.5) twice, and (5.16)
is modified by replacing (U°,¢y) with Up and its character defined by A(s,c, 7,).
Specifically,

Als,e, ) f = F(s, kSuv) &~ (u) du dv
V/C{
— / / / /f(sa w_lz(%)u’csgu”wlo',{o) ¢—1(u/)¢:%eo(u0) d( . )
O* Upo Upr Z

= Ax(m(s, 7, w)f).

Here (Up-,Up:) replaced (UJ,U)) in (5.19) (keeping the identification of H” or H'
with their conjugations by 7 as above), and note that we obtain ¥_g,, on U°.
Now on the one hand, using (5.27) and applying (3.4) twice implies

A(s,e, 7 ) f = M (C@R)M* (s, L, 7@ 77, 0)M* (s, 7, p)m(s,w, 7) f).  (5.28)

Here C(2) is obtained when in (3.4), f is replaced with its right translate by
diag(—2€plx;, Ix;). On the other hand again by (5.27),

)‘(1 -5, TV’Q/))M*(S, ¢, va)f = A/\V (m(l - S,TV,’LU)M*(S, ¢, Tﬂ/’)f) (529)

Then (5.23) follows when we equate the left hand sides of (5.28) and (5.29) using
(3.4).
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5.83.2 The group SOg,4+1. Let G = SOg,+1. We can argue as above, and reach
(5.9). Then apply (1.4)—(1.5) twice and obtain a section of the space induced from
(5.10), with ¢ = ¢ — 2] = 2(n — 1) + 1. We still obtain (5.13), except that V is
slightly different: this is because the last ¢ columns of vy are affected differently by
8o in the conjugation % 11)1 (permuted and for odd k, one column is negated). Now
WV < Viery (Jk = Jke because c is odd), the blocks v; j of 7V are given by (5.12) for
J < k, and the blocks v; , take the form

0; 0 0
( Y oy o ) ., a3 € Maty, (5.30)
* as as

where the rightmost column of as and first [/ — 1 columns of a3 are zero.
For z € Ug, we see that (5.14) holds except the following modifications: 7*z, €
V=) etnns1)s 7512 = (I’“ I”:) and instead of (5.15), the bottom left ¢ x ¢ block of

u becomes
Z0 Ol Z1 Z2
Ox(n—1y 21 | .
01 ; (5.31)
0 z4

Hay, 2 € VO V(k-1)ce) and b, = b, € Vike—1-1,141) N V((k—1)e,c)- Properties (1)-(4)
hold and we reach the analog of (5.16).

Now we use the notation H?,U§, H', U] etc., for the GL; x GLj, and G’ x GLj,
integrals. As with the SOy, case, we take §7 to be the inverse of this element defined

in § 2. Put
. In In
s (). (0" Y)weon

and wg = (]kc I’“), then 09 = wq diag (I(k,l)c, Ok.ms I(k,l)c). Set

R® = (" diag(Ik—1)c21: O pys I 1yera)) (0 ) diag (L 1)es Ok Lk1)e)s
(5.32)

where w™! is the matrix given in (5.17) (here w; = w). Then
Kb = w L H0Gwk®, K6 = w1 67wk,

Note that detx® = 1. Then U® = *'U°, and observe that (w™lmw)re < Up. The
subgroup U® now plays the same role as in the previous cases.

For odd kI we re-denote w~! = w™!9 (because then the determinant of (5.17)
is —1), o' = ¢, H = 7 H'" and similarly for U} and ¢y (¢ > 0, always, hence
k5% = §7 and H? remains the same when kl is odd). Let

UOO _ w[u1,1’ u3,3]’ U(/) _ 6"w[u2,2]’ 7 — 6’§”w[u172’ u1,3’ u2,3],

0 = [u!, w3, 32,
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Here 7*U) < Up (the form of P’ also depends on the parity of kl) and /*'Z is given
by the r.h.s. of (5.18) (here 73 = jx;). The integral becomes the analog of (5.19). We
denote m(s, 7, w)f as above, it belongs to (5.20) (with 73 = jx;, d = (k—1/2)(c —1)).

Let m = diag(a,g,a*) € Mp. We see that (1,‘a) commutes with v (look at
(5.30)), **(1,a) normalizes O (multiplying the measure by |deta|=¥(=0) and
WK (1,ta) = (1,a)?. Regarding (1,'g), we define O° x O! and V* exactly as above
(except that ¢ is different). Then (1,‘g) normalizes V*, *(1,g) commutes with the
elements of O° and “*"(1,g) = (1,"g)’, the embedding in the G’ x GL; integral.
Finally we obtain the analog of (5.21), i.e

/ //////'det‘ZI “Hp(g1), 0V (@) @7 (9)¢" (92)) (5.33)

RxR\GxG V 0 GL U3 G’ U}
m(s, 7, w)f(s, (6'u'(1," g) ) (6%u?(1,a)?) wok*v(g1,“g2))
Yo (U )y x (u”) du' dg du’ da do dv d(gq, go).

Note that for [ =n, G’ = {1} but if k > 1, Uj = {(** I ") € SOq;} is nontrivial,

& =, ™) diag(le—1, (=1)* g, In—1), Yo (W) = (=) 3R )1 1)

and we have a Whittaker functional on V (s, Wy (7)). For even k, the rest of the proof
now follows as above.

For odd k, recall that the integral Z*(s,w, f) is slightly different from Z(s,w, f)
(see § 2.4). Since we already proved (4.2), and also (4.3) for even k, it is enough to
assume k = 1. This is clear over archimedean fields. Over p-adic fields, let 7 be an
irreducible tempered representation of GLgg11 and take a unitary character g of
F*, then 7 = Indg;i’jfl) (T ® 19) is irreducible tempered,

(s, x T, ) (5,7 X 70,0) = (s, 7 X T, p) = (s, 7' X T, )y(s,0 x (TR7T), )
=y(s, 7" x T, ) (s, 7" X 70,9)v(s,0 x (1@ 7Y),)y(s,0 x (1o @ 15 1), ).

Hence (4.3) for v(s,m X 19,%) implies (4.3) for v(s,m x 7,1).

Let 9o, odd and 01,44 be the corresponding elements ¢; in the construction of
Z*(s,w, f), 0 zodd be these elements for G’ x GL1, dodd = 00,0dd01,0dd and o,
56,odd5£,odd Put

to = diag(IQTH _27 _1/27 IZn)a t = dlag(Ina _ITL7 IQ) _ITH In)

Then 6y 0dd = 71001t and 01 0dq = 01t1. Note that x and V' are trivial now (since
k = 1). Define x® by (5.32). Then wk® commutes with 71 and to, and wr*t; (wk®) ! =

1ty , where

ty = diag(Ln—1, —In—1, Lo, —In—, In—y), t] = diag(f;, —1;)
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(for the product #)t], ¢ is regarded as an element of H’, and t{ € H?). Thus

80,0ad = J16071t0 = g1 (w ™ 50Gwk®)g1to = 7w 5 gqadg WK,

Oodd = j150j1t051t1 = jl(wil(s,(sawlﬁ.)jltotl = le’lé(’)ddé" 11711}/{..

Assume [ is even. Denote
Il Z1 Z2
m(l —s, 77, w)f = /f(l — 5,7 w9 diag(1, ( T I ZI) 1)) dz.
A

Taking z € Ur and conjugating to the left, integral Z*(s,w, f) becomes

/ / |det a"Ho(gn), 0¥ (a) ® 7 (g)" (g2))ym(1 — 5,7, w) M*(s, ¢, 7,)
RxR\GxG GL; G’
(5.34)
(L 5, (Fhaa(1, 7 9)') (6785 (1, @)7) wi (g1, 92)) dg da d(gy, g2).

We change variables a — —a to remove t{ from the integrand, thereby emitting
o(—1) (!). To relate between (5.33) (with £ = 1) and (5.34), we need the analog of
(5.23).

First assume | < n. Then we claim

M*(s,l, 7 @71, )M*(s,c,7,9)m(s, 7,w) = C(1/2)m(1 — 5,77, w)M*(s,c,7,).
(5.35)

(C(b) = 7(b)*|b|?(5=1/2) ) Now we may proceed as in § 5.3.1: apply the functional
equations of GL; x GL; and G’ x GL; to (5.33), use (5.35) and (5.24), and deduce

Y(s,0 x (1@ 717),)y(s, 7' x 7,9)Z(s,w, f) (5.36)
= T(—l)lﬁ(s, ) I(M* (s, 1,7 @71, )M*(s,c,7,9)m(s, 7,w)f)
=9(s, ¢, 7, )L(m(1 = 5,77, w)M*(s, ¢, 7,9) ) = (s, ¢,7,9) Z*(s,w, f).

This completes the proof for £ = 1 (under (5.35)), even [ and | < n. When [ = n,
we claim

M*(s,l,7 @717, )m(s, m,w)f = C(1/2)(to - m(1 — s, 7", w)M*(s, ¢, ,) f)".
(5.37)

Granted that, since in this case 0] 34 = 710’51t , we can conjugate jito to the right in

(5.34) (wk® commutes with y1to). Moreover, 71t¢ is the image of (1, diag(l,, —1,I,,))
(see § 2.2), therefore commutes with (g1, 1), and the conjugation of (1,‘ga2) by st is
an outer involution of G. We can therefore rewrite (5.34) in the form

I((to-m(1 — s, 7", w)M*(s,c,7,) f)"),
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where Z(---) is given by (5.33). Using (5.37) we obtain an analog of (5.36),

Y(s,0 x (TRTV), V) Z(s,w, f) = T(—l)lI(M*(s, L @7 )m(s,7,w)f)
= 19(8’ C’ 7-7 w)z_((to . m(l - 87 T\/’ w)M*(S7 C? T’ qp)f)]l) = 19(87 C7 T? w)Z*(S7w? f)'

To prove (5.35), first recall that the functional equation (3.4) reads

)\(S, ¢, ﬂd’)f :)‘(1 - 5,6 7_\/’ ¢)(t0 : M*(Sv G, 7—77:Z))f)J1'

(Here jr. = 71.) For brevity, put

fl = tO ' M*(SalaT ® Tv,iﬁ)M*(S,Cl,Tﬂl))m(S,T, ’UJ)f,
fZ =to- m(l - S,Tv,w)M*(S,C,T,w)f.

Since [ is even, these sections belong to the same space. We claim C(2)f; = fo.
Starting with the Lh.s. of (3.4) and applying the functional equations defining the
normalized intertwining operators on the Levi components, we obtain

[ #.dw) v co) [ [ ] o)

nUp O* Upo 11Upr
x W)y () d(- ).

On the r.h.s. we similarly have

/ (to - M*(s,c,7,9)f)* (s, 60u) ¥ (u) du

1nUp

// //M*(s,c,Tﬂ/J)f(s,le1312]15616/53“%”10.“.31750)

Upo n"Upr Z

x M)y () d(- )
/ / / (s, 601 8 u w10k )Y~ 1(U’)¢:§(u")d(---).

O Upo 71 UP’

We proceed as in § 5.3.1 to deduce C(2)f1 = fa, i.e., (5.35). The difference in the
proof of (5.37) is that there is no functional equation for H' (Up = {1} whenl =n
and k£ = 1). In turn, we have ¢y and j; on the r.h.s. of (5.35) but not on the left, and
instead of f{', we have M*(s,l,7 @ 7¥,¢)m(s, 7,w)f. The proof of the case k = 1,
even [ with [ < n, is complete.

The case of odd [ is treated as before, by taking 7wy = jw™, 760 oad> €te-
When comparing both sides of (5.35) (now with odd I < n), note that on the Lh.s.
w™! was replaced with w™!7;, so again both sides belong to the same space. For

I = n we have (5.37). The proof is similar.
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5.3.8 Example: SO3 x GLy.  We provide an example illustrating § 5.3.2 for n =
k =1 (the integral in [LRO5] is different because it was defined for O3). We follow
the steps leading to (5.19) and see that Z(s,w, f) equals

R //w V2o a) 5,6 (1)

RxR\GxG
< (1) (91,'92)) dz dad(gi, g2). (5.38)

Here matrices in GL,., r = 2, 3, are identified with elements in H using the mapping
m — diag(m, Ig_a,, m*). Write dg = w1916405 nwrk® with
56 = diag(IQ,—Ig,Ig), 58 = diag(Jg,Ig,Jg),

1
1

w = ! , k® = diag(1, Ja, J2, 1).
1
1

(For odd 1, §o = w191 (7164)dg j1wk®, but since [ = n and k = 1, 5y = 715).) Also set

g = = diag(ls, Jo, I5), to = diag(l2, —2,—1/2, I5),
tl = dlag( ,—1 IQ, ,1 y

and m(s, 7,w)f(s,h) = [ f(s,w™ ju(z)h)dz with

Then (5.38) becomes (5.33), which in this case is
[ et @) [lo%0 @)

RXR\GXxG F
X m(s, Taw)f(37 6,68 (1 711) (1 a)jw"q‘.(gh LQQ)) d( o )
It follows that

v(s,0 x (T® T_l), V) Z(s,w, f) =o(=1)7(=1)Z(M*(s,1,7 ® 1, Y)ym(s, T,w)f).
(5.39)

The integral Z*(s,w, f) is slightly different from Z(s,w, f), because k is odd. The
element Joqq (e.g., with dg oaq given by (2.3)) equals y0jtot1, where 6 is the element
appearing in (5.38), and Z*(s,w, f) equals (compare to (5.38))

[ woette [ [l e i @nr e

RxR\GxG F* F

1 z/2 .
(1- 87353t0t13< 1 >J(l ot ) (91,92)) dz dad(g1, g2)-
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Conjugating by t; and jty we obtain
[ elo @ [ [l e @i e ro)f
RxR\GxG F* F

(1—s,70 (1 1 i) (" _ao1) gto(g1,'92)) dz dad(gy, g2).

Decomposing dy as above now gives

/ (o), 0" (92)) / / 0] 20 aym(1 — 5,71 w)M* (s, e, 7, ) f
K

RxR\GxG
(]- - 8735/58 ( ! _11 ) ( ! —a ) ]wﬁ.]t(](glv ng)) da d(gla 92)5

where m(1 —s, 771 w)f(1 —s,h) = [, f(1—s, jw ' Ju(z)h)dz. Then changing vari-
ables a — —a emits o(—1). Moreover Jto is the image of (1, diag(1, —1,1)), hence
commutes with (g1,1) and the conjugation of (1,“g2) by jto is an outer involution.
The integral becomes

o) [ tele) @) [ [l a)
F~ F

RxR\GxG
m(l—s, 7L w)M* (s, ¢, 9)(to - ) (L — 5,005 (1 1) (1 o) gwr®(g1.g2)7) d(-- ).
Therefore
Z*(s,w, f) = o(=1)I((to - m(1 — s, 7~ 1, w)M*(s,c,7,) f)). (5.40)
The functional equation (3.4) will show

M*(s,1,7® 1 v)m(s, T,w)f = C(1/2)(ty - m(1 — s, Tﬁl,w)M*(s, e, T, 0)f)7,

(5.41)
where C(2) = 7(2)2|2|?¢=%2). Thus (5.39) and (5.40) imply
V(s mx T,) = (s,0 x (T@T71), ).
The functional equation (3.4) reads
)\(87 C? 7-7 w)f :A(]‘ - S? C7 T\/’ /l)b)(to : M*(S? C’ 7_7 /lj))f)]'
The Lh.s. equals
1 z Y
Is 1 1 T -y 1
Fe () (0 ) L U2 dzdyde
3 1

= | m(s,w,m)f(s, (1) (! ?)563“1”'(1 !
F2

D (~2y) dy da.
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The r.h.s. equals

1 z Y
1 T —
/(tO'M*(S,C,Tﬂ/J)f)J s (0, ) L,
F3 Loy
wil(_2y) dz dy dr = / (750 . m(l - S7w77—71)M*(87 C, 7—71/})!}0)]
2

o1 -
(s, (0 (0 ) skt (11 e ) (~2y) dy da.
The dy-integrations are again related via (3.4) and we deduce (5.41).

5.8.4  The group GSpin..  Assume G = GSpin,. The integration over My changes
to C&\Mg. The applications of (1.5) are carried out in GLj., hence remain valid
here. When we decompose &, the elements §( and §F are already fixed, and the
representative for w™! is fixed as explained in § 2.5. This determines wy, which
belongs to Sping.. The decomposition of the conjugation of §; into 874, e.g.,
wl((551”50)51) = 070} for even ¢, is still valid in H, because d1,07,0d] € Np.

The representation (5.20) is now

Ind ( ~1/2 (‘det|dV(s Wy(o(7) ® (xz ' o det) Wy (pi(7Y)))
@V (s, Wy(pe (7)) @ Xx) ) ) (5.42)

We write m = [a,g] € Mg, where a € GL; and g € G'(= GSpin,_q;). Recall that
under the embedding defined in § 2.5, C¢, = Cg,. This implies that as m varies in
Ce\MEg, a € GL; and g € C&,\G'.

Recall that for the GL; x GLj integral arising here we use the representation
7@ x7 17V (see (4.3)). For tg € Tgy,, the embedding (to,1) is given by (2.7). It
follows that for a,b € GL,

Wikt ta) = Yt (e (det b) diag(b, ..., b, Ty, b, ... 0%, a* a,b, ... b, Ipe, b, ... DY)
= typc(det ) (b, a)”.
Here on the first line, b appears k times before the first block Iy, then b* appears

k—1 times (recall 2+ = ¢). So the GL; x GLy integral we obtain is of the following
form: for vectors &, and &/ in the spaces of o and o (resp.), and a section fJ of

V(Wy(pi(7)) @ X' Wy (oi(TY))),
/ / D), 0 (@)€Y 0 £5 (5, 674G (b, @) )by (u” ) (det DY) du” dardb.
GL” \ GL, x GL, Ug

Note that for a = b, since fJ(s, (b,b)7h) = x; ' (det b¥) £ (s, h), the integrand is well
defined on the quotient. Writing this integral on the right copy of GL; (i.e., factoring
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out the db-integral) gives us the GL; x GLy, integral for o x (7 ® x,'7") (given in
§ 2.4).

To prove “**(1,*[I},g]) = (1,"g)’, note that for each of the root subgroups X
of G’ w*"(1,*[I}, X]) belongs to (1,G") and *(“+*"(1,'[I;, X])) = (1,X)’, hence
Wik (1,41}, g]) = (1,"g) for all g € Spin,,. This applies to any g € G’ by a direct
verification for t € Tg.

In conclusion, when we reach the formula equivalent to (5.21) or (5.33), we have
the inner GL; x GLy, integral for o x (T1®x, '7¥) and G’ x GL; integral for 7’ x 7. As
in the orthogonal cases, the GL; x GLj, y-factor is essentially v(s, o x (1@x, 1Y), 1),
but because 67 and 1y- are the inverses of those defined in § 2, this factor is further
multiplied by x(—1)¥ (replace f in (4.1) with diag(—Iy, I;)- f). The constant C(2)
becomes x(—2)7(2)%2[2K1(=1/2) " Also for even ¢, 7(i¢) = o(—1)7'(ig/), because
the definition of the embedding of GL; x GSpin,_q; in Mg implies i¢ = [iqL,,i¢’]
(see § 2.5). Now (5.24) reads

C/2Dxr (=1 7(=1)" (s, ¢, 7@ Xy ) = Vs, 6,7 @ X, ¥),
and note that x,(—1)* cancels on the L.h.s. because it also appears in C(1/2).

5.83.5 The group GL,,. The proof for any [ < n is similar to the case [ = n
for Spy,,, and so is considerably simpler than the general case proved in § 5.3.1.
This is mainly because even though here we also apply (1.5) twice, we apply it on
commuting copies of GL; and GL._;, hence these applications may be treated almost
independently. In fact, most of the manipulations for GL,, were already described
in [CFGK19, Lemma 33], where we handled the (unramified) case with 7 induced
from P ;) for any 0 <1 < c¢. We provide a brief description and when applicable,
use notation from § 5.3.1.

Assume € = 0 @ 7’ is a representation of GL; x GL._; and 7" = Indg(sv). The
formula (4.3) takes the form

(s, x T,)) =(s,0 x 7,9)y(s, 7 x T,9)

(recall 7 = 79 ® x 7). We obtain (5.9), except that the integrand is further mul-
tiplied by x*(det(g1)). Assuming 7y is essentially tempered or unitary, we apply
(1.4)-(1.5) to each of the (k,c) functionals Wy (pc(10)) and Wy (pe(7y)) in the in-
ducing data of f(s,-). We obtain a section in the space of

Indf

P(kl,k(cfl),kl,k(cfl)) (‘ det |7(Cil)/2+SWw(pl (TO)) ® | det |l/2+sW'¢)(pcfl(TO))
® [det [T 20T (o(1y)) - @ [det V25T Wy (peai()))). (5.43)

Let Vi and V5 be the additional unipotent subgroups introduced by the lemma
(Vi = V). The dup-integration of (5.9) becomes, for fixed g1, 92 € G,

///f(&diag(ﬁl,c—z,Féz,c—l)diag(v17v2)5u0(91,92))¢U(u0)dvzdvlduo-

Up Vi Vs
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We then observe the following properties, which simplify the passage to the analog
of (5.16):
(1) 8" diag(vi,ve) = diag(va, v1).
(2) If v; € V;, dias(v201)§) = 614/ where o/ € Uy and ¢y (u/) = 1.
(3) If v; € V;, diag(ve,v1) normalizes Uy and fixes ¥y |y, .
(4) The subgroup diag(Va, I.) commutes with (1, g2).
(5) 6o commutes with diag(k; i, ki,c—1)-
(6) diag(ki,c—1, Ie) commutes with (1, g2).

Applying these properties to the last integral gives

///f(5,50(5.51)(5.uo)

Uog Vi V>
x diag(Ixe, wi1,c—1v1)(1, g2) diag(kp,e—1v2, Ire) (91, 1)) v (uo) dvg dvy dug,

where k® = diag(kic—1, k1,c—1). When we factor (5.9) through Ur we use the invari-
ance properties of the top left (k, ) model in the inducing data of f (see (5.43)), and
Yy. We then form the subgroup U° generated by Uy and the additional coordinates
obtained from the conjugation of Uy by z € Ug.

We use the notation H?, P? etc., for the data corresponding to the GL; x GLg
integral, and H', P’ etc., for the GL.; x GLj, integral. Let L = Pgj ox(c—1)); then
diag(H?, H') = M],. Define

Ikl ul,l u1,2
(] ° o Ik c—1 u2=1 'LL2’2
U:HU:{< o 1 )}, (5.44)
k(c—1)

The bottom left (¢ — 1) x I block of u*! is zero, U = {(I"" “;kll)} and Uj =
{(I}c(c—l) [Zii) )} Write §p = w_15658w1 with w™! = diag(Iklaw(k(c—l),kzl),lk(c—l))
and w; = w. Then

Z =" (M) = diag (T, Viik(e—n)s Inery), O = [u®'].

(This notation was introduced before (5.18).) We obtain (5.19), where the character
on U? is 1y (u”), and as above the integrand is twisted by x*(det g1).
The intertwining operator m(s, 7, w) takes f to the space of

Ind (8,7 (| det |1V (s, Wy (p1(10)) @ X Wy (7))
® |det |_le(S’ Ww(pc—l(TO)) ® X_IWw(pc—l(T(;/)))))7

where for an integer r, d, = (k—1/2)r. Write m = diag(a, g) € M(; .—;) and conjugate
a and g to the left. We see that

b (diag([kmm’c*l)(la m)) = diag(Ikla a7I(k—l)bIk(c—Z)vg>I(k—1)(c—l)) = (17a)0(1ag)/'
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We obtain a formula similar to (5.21), except we have 9y (u?) instead of 5" (u?)
(and x*(det g1)). Equality (5.22) takes the form

7(570- X T7¢)7(s,ﬂl X T, ¢)Z(S7w>f)
= 7r(—1)k79(s, e, T, V) I(M* (s, 1, 7,2 0)M*(s,c — L, 0)m(s, T,w) f).

The proof is then complete once we prove
M*(s,1,7,)M*(s,c = L7, p)m(s, 7,w) = m(1 — 5,7, w)M*(s,¢,7,9).

The argument is similar to the proof of (5.23), and simpler because there are no
twists to the characters (e.g., in § 5.3.1 we used ¥_g¢, in the definition of \g).

6 Proof of Theorem 4.2: Part 11

Here the exposition is ordered so that the flow of the proof is “linear” (not according
to the order of properties in the statement of the theorem). For example in § 6.2
we prove the minimal case for the GL,, factors, then use it to compute the ~-factors
for unramified data. This is needed for the proof of the crude functional equation in
§ 6.6, which is then used in § 6.7 to complete the computation of the GL,, factors in
general.

6.1 Dependence on @. Consider Sp,,, and SOg, first. Changing the character
1) entails changing the (k, ¢) model of p.(7) and the normalization of the intertwining
operator. Fix a (k, ¢) functional A on p.(7), with respect to 1, and consider

ty = diag(b* ‘I, ... bl Ie, b~ 1,,.. .0 F1.) € Ty.

Then t; commutes with the image of G x GG in H; normalizes Up; tb_ll/JU = (¢p)y on
Uy (zfle(y) = Yy (*y)); tp, commutes with d1; if y, = do¢, where the r.h.s. remove is
regarded as an element of GLg., the mapping & — A(yp - £) is a (k, ¢) functional on
pe(T) with respect to iy,. Therefore if f is a meromorphic section of V (Wy(p.(7))),
Z(s,w,ty- ) is equal to the similar integral when 1) is replaced by v, multiplied by
a measure constant cp. This constant appears because of the conjugation of Uy by
tp and the changes to the measures of G and Uy, when the character v is changed
to 1. Also since

we 00ty = (0" )y (6.1)
we see that

Z(S,W,M(S,W¢(pc(7')),wP)tb 1) (6'2)
= a b2 pe(r) () || FTIETYD Z (5, w0, M (5, Wy, (pe(7)), wp) f)-

Here d is the number of roots in Up, ]b[‘d/ 2 appears because the measure for the
intertwining operator on the r.h.s. is defined with respect to dy,x = |b|'/?dya (see
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after (3.4)), and we used 6}3/2(bk_1lkc)5p(50tb) = 1. Also recall that p.(7)(b*1) is
shorthand for p.(7)(b¥~111.) (see § 1.1).
Next, we relate the normalizing factor C(s, ¢, T, ) to C(s,c, 7,1). Take

hy = diag(b¥ 1, jp, 0" Moo bLe Iy b Ly b F T bR ) € Ty

(for k =1, hy = diag(bl /s, I, b_llc/z)) and put z, = %h;. The mapping & — A(2€)
realizes Wy, (pc(7)). Again take a section f of V/(Wy(pe(7))). Then

(s, e, 7, 0)hy - f = p(hy) g £ (s, 2p00u) P (u) du = [b]~Y25p(hy)A(s, ¢, 7, ) f,

. —1
and since “7 z, = (b*Ix.) 2,

)\(1 ) 7_\/’ ¢)M(3a Wiﬁ(pC(T))a UJp)hb : f
= (6]~ pe(7) (67) b= YD 52 (B Iy )6 pr (V7 By (o)
X )‘(1 - 5,6 T\/a Qpb)M(Sv W¢b (pC(T))a wP)f

Note that 511[,/2(bklkc)5p/ (“r" hy) = 1. Therefore by (3.4),
C(s, ¢, 7,8) = pe(r) (0) Fp| > F 12O s, ¢, 7, 4by). (6.3)
Combining this with (6.2) and the definitions, and since p.(7)(b) = 7¢(b),

19(37 T, ¢b)
V(s e, m,9)

This proves the result for G = SOg,. For Sp,, the result follows from the last
equality using (s, 7,1) = |b|*C=Y2 7 (b)y(s, 7,1)) (see [JPSS83], or [FLO12, § 9]).

For SOs,,+1 we proceed as above. The elements ¢, and y; are the same (5°tb does
not depend on the parity of k). The integral Z*(s,w, f) is defined differently when &
is odd, and when we use the correct version of dy (for even k (2.2), otherwise (2.3)),
(6.1) still holds, leading to (6.2). To compute C(s, ¢, T, 1) take

v(s,m x 7,10) = 76(b)|bFET Dy (s, 7w x 7, 1))

hy = diag(b*L,,, 0" 0, ... bl Iy, b ey . b7 KL 07F D)

(c = 2n+1) and put z, = %hy, where &y is given by (2.2). When we compute the r.h.s.
of (3.4), we use the fact that j;. commutes with h;, and “’;17’“21, = (bFI1..)mp2zp where
my is the diagonal embedding of diag(l,,, b~ !, I,) in GLy. (Jxc appears because on this
side the section is (to - M (s, Wy (pe(7)), wp)hy - f)’*). The functional § — X(mpzp§)
still realizes Wy, (pc(7)), and thus is proportional to A(2,£) and by Lemma 1.1,

Mrmpzp) = T(det diag(L, b1, 1) A (2€) = 7(b) "I A (26).

Then the r.h.s. of (6.3) is multiplied by 7(b)[b[*(*=1/2). This explains the change from
7¢(b)[b|F(=1/2) to 7N (b)[p|FN=1/2) (now N = ¢ — 1) in (4.7).



GAFA THE GENERALIZED DOUBLING METHOD: LOCAL THEORY

For GSpin,, t,.(0")yy = %t, with r = —k(k — 1)c/2, so that the constant ¢,
emitted from Z(s,w,tp - f) is multiplied by x(b"). Equality (6.1) (with dyp depend-
ing on the parity of k for odd ¢) still holds, whence (6.2) is unchanged. Similarly
vy, (b7 k)2, = %R, Thus (the odd or even version of) (6.3) is modified by multi-
plying the r.h.s. by x,(b"7¥"), leading to the factor x%"(b) appearing in (4.7).

For the GL,, integral the argument is similar. We explain the modifications. The
element ¢, remains the same; wgl‘;‘)tb = diag(bF g, b 7 I )y

hy = diag(b* 1., ... bI. I, b~ 1., ... ,b7F1,),
we' 2y = diag(bF Ine, b Ire) z; and pe(7) = pe(10) @ X pe(7y). Altogether we obtain
(s, x (10 @ x7'rg) ) = x(0) g (B) BTy (s, 7 x (10 © X))

6.2 GL, factors: the minimal case. Next we establish (4.8) forn =k =1,
over any local field (simplifying [LR05, § 9.1] to some extent). The general cases of
(4.4) (for all G) and (4.8) will follow from this.

For any r > 1, let S(F") be the space of Schwartz—Bruhat functions on the
row space F". The Fourier transform of ¢ € S(F") with respect to v is given by
a(y) = [ #(2)1¥(z'y)dz. For a quasi-character n of F*, ¢ € S(F) and s € C, Tate’s
integral [Tat67] is given by

Cbn) = [ olantaatda

It is absolutely convergent in a right half plane, admits meromorphic continuation
and satisfies the functional equation

’YTate(Sﬂlal/J)C(Sa@bﬂl) = C(l - 37(/57 7771)‘ (64)

Define the following meromorphic section f, 4 of V(1) = V(g ® x~'751). For
¢ € S(F?),

Fro(5:9) = / bex (7 1) g)moldet((* ) 9))x(=)|det (7 ,) gl d"z.
J

Here ey = (0,1). Since n = 1, we can take the matrix coefficient w = 7—1. Then
(5,0, froxt) = / (g) / Blea (72)0 (1)) mo(—=2g)x(2)] det (* ) g* d*z dg.
F F

It is absolutely convergent for Re(s) > 0, as a double integral. Consider ¢ = ¢1 ® ¢
with ¢1, 2 € S(F). Using a change of variables g — 27 1g we see that

Z(Sv W, fTo,x,¢) = TU(_l)C(S’ ¢1’ WTOX)C(Sa ¢2a 7-[-_17—0)‘ (65)
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Next we compute M*(s,1,7,1) fr, y,¢- The Lh.s. of (3.4) is seen to be
1) [ [ olewu e P R () 8 (6.6)
F Fr

For any ¢' € S(F?), define F(¢') € S(F) by F(¢')(z) = [ ¢(z,u) du. Then
F

M(S, 1, va)fTo,X,(b(Sag) = TO(_l)TO(det g)| detg|5§(2s - 17f(g¢)7 XTS)
Thus by (6.4), and using @(z) = gd(2,0) and go = |det g| 1 (g~ - &,

7128 — 1,175, 0)M (5,1, 7,9) Frono(5.9) = fr0 o 5(1 = s,wia'g7Y).

Using this and a partial Fourier inversion,

AL = s, 1,x ' ) M (8,1, 7,0) fro o (6.7)
= (12 — 1, X7, ) / / oz (2 )P R () x(2) d 2
F F*

Then from (6.6) and (6.7) we deduce
C(Sa 17 T, ¢) = X(_I)TO(_I)FYTate(QS - 17 XTga 77/}>
Returning to Z*(s,w, fr, y,4) and since a = a ® @,

Z*(vav ng,X,d)) = F(_l)C(l - S7a7 7T71T()_1X71)<(1 - 87@7 7”-0_1)' (68)
Now dividing (6.8) by (6.5) and using (6.4) we conclude

Tate (

’Y(S)ﬂ- X T, sz)) =7 57WTOX)IZJ)’YTate(S77T_17—Ov¢)' (69)

Of course, in this case the Rankin—Selberg ~-factors are identical with Tate’s.

REMARK 6.1. A similar choice of f,, , 4 was used in [PSR87, § 6.1] (with x = 1) for
any n, for computing the integrals with unramified data by reducing to the integrals
of Godement and Jacquet [GJ72]. Specifically, define f, 4 as above with a Schwartz
function ¢ on Mat,,xo,(F), e2 replaced by (01,), 2 € GL,, and |---|° replaced by
\---|S+(”_1)/ 2. When the representations are unramified, take ¢ = ¢1 @ ¢ where
¢1, @2 are the characteristic functions of Mat, (O). Then f; , ¢ is unramified and
Frox (8, Ion) = b(s,1,79 @ x 175 !). For an unramified w we obtain (6.5) for all n,
with the integrals of [GJ72] on the r.h.s.
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6.3 The minimal case of GSpin,.  We explain this case, where G = GSpin,
and k = 1, because of the unique structure of G. We identify G with Mg, ,, then
T = 0 @ Xr is a character. Since we divide by C¢, the integral is written over
the coordinate of GLj, denoted GY’G(LE) = 6)(x). The image of GY’G(x) in H is
oy (x7 1Y (z71), which is the coordinate HX’H(w) of Ty when we identify Ty with
TGL2 X TGSpinO- Thus

Z(s,w, f) = /01($)f(3,(5diag(1,x1,a:, 1)) dz,

F*

which is similar to the integral for SO3. The same manipulations now lead to the
GL; x GL; integral for o x (7 ® xz17) and the y-factor is hence (s, m x 7,1) =
(s, 0 x (1@ x717Y)).

6.4 The computation of the integral with unramified data.  Although we
will deduce (4.4) directly from (4.2)—(4.3) and (6.9), the value of the integral with
unramified data can be used to determine C(s, ¢, 7,%) with unramified data, and is
crucial for the crude functional equation. This computation was carried out for Sp,,,,
SO2, and GL, in [CFGK19, Theorems 28, 29]: using (5.21) (proved in [CFGK19]
for { = n and when data are unramified) we reduced the integral to the GL,, x GLj
integral, which was computed using induction on n. To compute the GL; x GLj
integral, we reduced it to the Rankin—Selberg integrals of [JPSS83], by employing
an idea of Soudry [Sou93, Sou95] (see § 6.7.2 below for more details). The result
proved was that when all data are unramified,

_ L(s,mxT)

2(s,w, f) b(s,c,T)

(6.10)
Here if G = GL,,, 7 =7y ® x 17y and L(s,7m x 7) = L(s,m X x70)L(s, 7" X 0).

We now complete the cases of SOg,41 and GSpin,. Assume 7 is unitary (see
Remark 6.2 below). Let G = SOgy,41. According to the proof of (4.3) with [ = n,
Z(s,w, f) is equal to (5.33). Since in this case we can assume that g; and g2 belong
to K¢, the integration d(g1,g2) can be ignored (each integral dg; reduces to the
volume of K¢, which is 1). Since ¢ = 1, G’ is trivial. Because f is unramified,
using Lemma 5.1 the integrations over V' and O can also be ignored (see [CFGK19,
Lemma 27| for details in the case of Sp,,,). Thus (5.33) becomes an integral for
GL,, x GLj, multiplied by a du/-integration in H’, where the section is obtained by
restricting m(s, 7, w)f.

The section m(s, T, w)f is a scalar multiple of the normalized unramified function
in the space of (5.20) (with (H,L,,d) as defined for SO2,+1). To compute the
scalar, we appeal to the Gindikin-Karpelevich formula ([Cas80b, Theorem 3.1]).
Write w™! = wy ! (7w ) with

Wo = Jkn diag(Ik(n—H)v (],m Ikn) ka(n—l—l))v w1 = dlag(Ikna W(k,kn)s W(kn,k)> Ikn)
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Then we use multiplicativity to compute m(s, 7, w)f. To compute the contribution
of the operator corresponding to wq, note that the action of the L-group of the Levi
part on the Lie algebra of the L-group of the unipotent subgroup (the subgroup
corresponding to 2o in (5.18), conjugated by rwi ') is A2 If T = Indgg’;k (M®...®
T ), the unramified representation of SOgg, is IndSBCS)g’“: (®1<i<k,1<j<nTil |s—1/2+7)
(use (5.10)). From this operator we obtain .

H L(2s +27,7,V?) H L(2s+2j —1,7,A?)
L(2s+2j+42[n/2] —1,7,V?) L(2s+2j +2|n/2],7,A?)

(6.11)

1<j<|n/2] 1<5<[n/2]

For the second operator, the action on the Lie algebra of the L-group of the unipotent
subgroup corresponding to z1 in (5.18) is st ® st, the unramified representation is

GLk(n+1)
BGLk('rL+1)

Ind (®1<i<kms] [FTHHOTI2Y @ (@1<iap1<janty V] [T TRTD/Z))

and the contribution is

H L(2s+j—1,7x7)  L(2s5,7 xT) (6.12)
1 Zien L(2s+j,7 X T) L(2s+n,7 x 1)

Finally when k > 1, the du/-integral constitutes the Whittaker functional on
IndZ, (] det [5=1/27) given by the Jacquet integral, applied to the normalized unramif-
ied vector. According to the Casselman—Shalika formula [CS80] (or see [Sou93,
p. 97]), the du’-integral equals L(2s, 7, A?)~1. Multiplying (6.11), (6.12), L(2s, 7, A?) !
and (6.10) for GL,, x GLg, and since Spy,(C) is the L-group of SO2,41, we obtain
(6.10) for SO2p41.

For GSpin,. one uses § 5.3.4 and follows the computation of SO.. The contribution
of the intertwining operator, which is given for odd ¢ by (6.11) and (6.12), is now
modified to the twisted versions. Specifically V2 and A? change to VZy,; and A?x;;
T ® T changes to 7 ® x,7; and b(s, ¢, 7) in (6.10) is replaced with b(s,c, 7 ® x«). The
GL, x GL; integral becomes

L(s,0 X xaT)L(s,0" X T)
b(s,c, 7 ® X;lTV)

REMARK 6.2. The assumption that 7 is unitary is needed in order to apply (1.5),
which is used for the proof of (4.3). One may study the case of unramified 7 sepa-
rately, and replace this assumption by taking an inducing character for 7 in “general
position”.



GAFA THE GENERALIZED DOUBLING METHOD: LOCAL THEORY

6.5 Unramified factors. @ We handle all groups simultaneously. First use mul-
tiplicativity to reduce to the case n = k = 1, which is further reduced to the
GL; x GL; integral using (4.3). Then (4.4) follows from (6.9) and the computation
of Tate’s integrals with unramified data [Tat67]. Note that for GL,, the r.h.s. of (4.4)
is replaced by

L1 —s,7¥ x x Y7 )L(1 — s, x 7))

L(s,m x x10)L(s, 7™ X 10)

Now we may also deduce the value of C(s,¢,7 ® xr,1) for unramified data
(assuming 7 is unitary, see Remark 6.2). Indeed, combining (6.10) with (3.7), (4.1)
and (4.4) we see that

C(S7C7T®Xﬂ'7w) =

b(l—s,e,x;7 'V ®@xx) [ L(s,7) . (6.13)
a(87077—®X7r) L(l _S’TV)

Here the factor in square brackets appears only when H = Spy;.. (because ¥(s, ¢, 7®
Xr, %) contains (s, 7,1) in this case).

6.6 The crude functional equation.  We treat all groups G # GL,, together,
the proof for GL,, is obtained by minor modifications to the notation. Also, to lighten
the formulas we omit x, from the notation, it is easily recovered by looking at (6.13).
The global construction was described in the introduction and in § 2. For the proof
we may assume 7 is unitary. Let & be the generalized Speh representation and
V(&) be the global analog of the representation defined in § 2.3 (i.e., we induce
from P(A) and |det |*~1/2&, to H(A)). Let

M(s,&E-,wp)f(s,h) = / f(s,wptuh) du
UP’(A)

be the global intertwining operator (Ups was defined in § 3).

Take a standard K p-finite section f of V(&;) which is a pure tensor, and a large
finite set S of places of F. According to the functional equation of the Eisenstein
series and (3.7),

S(s,c,T)

E(,S,f) — E’(7 1-— S,M(Sag‘rawP)f) = 25(8707')

E(51—s,f), (6.14)
where the superscript S denotes the infinite product of local factors over the places
outside S. Since &; is irreducible ([Jac84, § 2]), f' € V(£Y), and because the local
components of £ are unitary, the representations p.(7,) are irreducible and [CFGoK,
Claim 6] implies p.(7,)Y = pe(7)/), thus &Y = Ev. Then f' € V(E;v) and for
vesS, fl(s,h) = My(s, pe(1v), wp) fu(s, k) (see (3.2), pe(1,) and Wy, (pc(1y)) are
isomorphic here).
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The global integral (0.3) is Eulerian ([CFGK19, Theorem 1] and [CFGoK, The-
orem 4]), and according to (6.10) we have

L3(s,m x

Z(s,¢1,02, f) = b5 (s, c 7_;) H Z(s,wy, fu)- (6.15)
bt VES

Combining (6.14) and (6.15) for the section b%(s, ¢, 7)f we obtain

S
a”(s,c, T
Lo(s,m x T) H Z(s,wy, fu) = bS(l(scz'V)LS(l —s,m’ x7Y)
vesS T
x [[20 = s,wi. £). (6.16)
ves

By the definition (4.1) for all v € S,

Z(1=s,wy, fy)

Z(S, Wy, fu) ‘
For any v let ¥°(s, ¢, 7,,9,) = 9(s, ¢, T, 1, ) [y(8, 7w, 1) "], where [...] appears only
for Spy,,. Let ¥°(s,c,7,v) and ~(s,7,7) be the products of the corresponding lo-

cal factors over all places of F. Then ¥°(s,c,7,%) = (9°)%(s,c,7,7)) = 1. Since
v(s,7,1) = 1, for Sp,,, we have

75(8a77¢)_1 H 190(8’6’ Tuku) = H 19(8,6, Tuku)-

vesS ves
Then by (6.13) and using 7(i¢) = 7°(ig) = 1,
b1 —s,c,7Y)

’Y(Saﬂ'u X TV7¢V) - Trl/(iG)k’ﬂ(Sacv Tuﬂ/Ju)C(S,C, TI/?¢I/)

OS(S’C’ mY) = a(s,c,T) [’YS(S’T’w)il]
1 bs(l 9L V)
= Vgsﬂ'y(lG)kﬁy(S;C; TV?¢V)TSC’CT;- (617)

Let C(s,c,1,¢) = [[, C(s,¢,1,1,). Below we show C(s,¢,7,1) = 1. Then when
we multiply (6.16) by C(s,c,7,%) and use (6.17) and (4.1), we obtain (4.10), i.e.,

LS(s,m x 1) = H v(s, 7y X T h, ) LS (1 — 5,7V x V).
ves
It remains to prove C(s,c,7,1) = 1. To this end consider the Fourier coefficient
/ Eus 5, ¥ (w) du, (6.18)
Yie(F)\Yk e(A) 7

with Y, . and v, . as defined after (3.3). We unfold the Eisenstein series in Re(s) > 0
and analyze the contribution from each representative of P\H/Y} .. The contribu-
tions from all but one representative vanish, this follows using the character 1 .
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and the “smallness” of & (the global version of the proof of Theorem 3.2). For the
representative dg, S%'pn Yi,e = 7*<V(cr) whence (6.18) equals

/ / f(s,v80u); L(vu) dv du.
Upr(4) V k)(F \V(c’»)(A 7

Denote the inner integration by Wy (dou - f). It is factorizable because (£;), sup-
ports a unique (k,c) functional for all v. Thus for a factorizable f, Wy (dou - f) =
I, Wy, (bowy - f) and we obtain

H)\ll(saca Tuawu)qu(fu)' (6'19)

On the other hand, applying the functional equation (6.14) then recomputing (6.18)
we have

[T = s e i) My (s, W, (pe(1), wp) W, (£), (6.20)

or the modified version for the groups H = SO, GSpin, when ¢ and k are odd
(with gx. and t, see after (3.4)). Equating (6.19) and (6.20) and looking at (3.4) we
conclude C(s, ¢, 7,1) = 1.

6.7 The GL,-factors.

6.7.1 Proof of (4.8). The multiplicativity property was proved above for GL,
as well. Hence over archimedean fields, by Casselman’s subrepresentation theorem
[Cas80a] the proof reduces to the minimal case (6.9) already proved in § 6.2. Over
p-adic fields, by (4.2) and (4.3) to (irreducible) supercuspidal representations.

Now assume 7 is a supercuspidal representation of GL,. Hence 7 is also generic
(and 7 is always generic). Then we can use the global argument in [Sha90, § 5]:
take a number field F' and embed 7 and 7 as the components of two cuspidal rep-
resentations at a place vy of F, and similarly globalize ¢ (implicitly using (4.7)).
We can further assume that at all places v # 1y the local representations are quo-
tients of principal series. The p-adic case then follows from (4.10), (4.2), (4.3), (6.9)
and because the same global property is satisfied by the product of Rankin—Selberg
~-factors appearing on the r.h.s. of (4.8).

6.7.2 The case n = 1.  The results of this section will be used below to deduce
the archimedean meromorphic continuation (§ 6.10). Along the way, although we
already deduced (4.8), we provide a direct proof of this for n = 1 and k£ > 1. Assume
k > 1, up to Corollary 6.7.

The argument was adapted from [CFGK19], where it was used to complete the
computation of the integrals for G x GLj with unramified data (see § 6.4). We
follow (and elaborate on) the proof of [CFGK19, Proposition 34], which was given
for unramified data, but the relevant manipulations are valid in general and over
any local field.
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Let m and x be quasi-characters of F* and 7y be an irreducible generic representa-
tion of GLy. Since n = 1, w(a) is a scalar multiple of 7~ !(a), so that we can re-denote
the integral Z(s,w, f) by Z(s, f), where f is a section of V(Wy(79) @ x "Wy (1y)).
Then

/) :/ / f (s, duo diag(Tr, a, I—1))Yu (uo)7™" (a) duo d”a. (6.21)

It is absolutely convergent as a multiple integral, in a right half plane depending
only on 7 and 79, and over archimedean fields it is continuous in the input data (in
its domain of convergence). In this domain it belongs to (2.9), which here becomes

Hom(gr, L) (Tt (V (s, Wy (10) @ X' Wiy (15))), (')~ @ ). (6.22)
Specifically,
Z(s, (b,a)u- f) = vyt (w)x 1 ")r(a)n () Z(s, f),  Va,be GLy,u € U. (6.23)

We study Z(s, f) by relating it to the integral

/ / (diag(Loi—1, oy ) - A (@)a| 7 dadv,  (6.24)

Vi1 ©

where A\_1 = A_1(s,1,70 ® x 17y, %) is the functional from (3.4) except that 1
appearing in (3.3) is replaced with ¥=! (cf. Ao(--+) in § 5.3.1); [v] = diag(lx,v)
for v € V(k 11) and we also identify v with a row vector in FF~l; w Ek’ L) =
diag([), w(—1,1)); and 7 is an additional complex parameter. The proofs of the fol-
lowing two claims appear below.

CLAIM 6.3. Integral (6.24) is absolutely convergent for Re(n) > 0 and admits mero-
morphic continuation in n and s. It is a meromorphic function of s when n = 0.
Over archimedean fields the continuation in 1 and s, and only in s when n =0, is
continuous in the input data.

To relate Z(s, f) to (6.24) we follow the idea of Soudry [Sou93, p. 70] (also used in
[Sou00, Kap13a], the particular variant we use appeared in [Sou95] for archimedean
fields). Since in its domain of convergence (6.24) belongs to (6.22) with 7 replaced
by | ["m (direct verification of (6.23)), so does its meromorphic continuation. Taking
n = 0, the meromorphic continuation of (6.24) belongs to (6.22) itself. By [GK, The-
orem 2.1] this space is at most one dimensional outside a discrete subset of s. In fact,
this particular uniqueness result was already proved in [CFGK19, Lemma 35] over
p-adic fields, and since there are only finitely many orbits to consider in the proof,
the argument readily extends to the archimedean case. Thus comparing Z(s, f) in
its domain of convergence to the meromorphic continuation of (6.24), they are pro-
portional.
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We will compute the proportionality factor using a direct substitution. This
factor will turn out to be the meromorphic function vRS(s, 771 x 19, ¢)m(—1)F1.
Therefore we obtain a functional equation relating Z(s, f) to (6.24) as meromorphic
continuations. The bonus is over archimedean fields: we can deduce the meromorphic
continuation and continuity of the continuation for Z(s, f), from that of (6.24) (over
p-adic fields we already know Z(s, f) is meromorphic, though this is another method
for proving it).

CLAIM 6.4. As meromorphic continuations v (s, 71 x 19, )n(=1)F"1Z(s, f) is
equal to integral (6.24) with n = 0.

Next we apply (3.4) to (6.24) and obtain
BS (5,771 % 79, ¢p)x(—1)*m(=1)* "1 Z(s, f)
-/ / ((ding(Tae-1, el 1))
Vi
X M*(s,1,m0® x "7, ) f)
x 7 Y a)|a* " d*adv.

v

Here the Lh.s. was multiplied by x(—1)¥, because we used (3.4) with A_1, and the
r.h.s. The contributions from is regarded as the meromorphic continuation with
n = 0. Applying Claim 6.4 again, to the last integral, we obtain

YL — s, 7t x Ty ) T (s, X o, )X (—1)FZ (s, f) = Z7(s, f).
(Z*(s, f) = Z(1 — 5, M*(s,1,70 @ x 173/, %) f).) Since by [JPSS83],
7 (s, x X, )Y (L = s, x T ) = (= 1) x (1) (1)
(direct verification using [JPSS83, § 2], see also [FLO12, § 9]), we deduce
(s, % (10 ® x 1)), ) = 7 (s, x Xm0, ) (s, 7 X 0, 9).

This completes the verification of (4.8) for n = 1 and k& > 1, once we justify the
formal application of (3.4).

Indeed write a general element of V(k 11) 88 (I’Cv—l 1). Let Y; be the subgroup of

elements of V(k 11) where all coordinates of v other than the i-th are zero, X be the
subgroup of matrices

diag(Iy_1, <ka1 1 T)),

and X; < X, 1 <7<k —1, be the subgroup of elements where all coordinates of x
other than z; are zero. Then for any a € F*, v € Y; and = € X,

A1((diag(Iop—1, @) [v)wfy_y )10 2) - f)
= P (zvi) A1 ((diag(l2k-1,a) [U]U)Zk;—l,l)) - f)-
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Thus by Lemma 5.1 we can “hide” the dv-integral in (6.24) by replacing f with a
convolution against Schwartz functions, independently of a (see [CFGK19, pp. 1051—
1052]).

Proof of Claim 6.3. First change a — a~ ' in (6.24). Recall that if o is a finitely
generated (admissible) representation of GLog, which admits a unique Whittaker
model with respect to ¢, and W is a Whittaker function in this model, W(h) =
W (Jorth~1) is a Whittaker function in the Whittaker model of o* with respect to
Y1 (see e.g., [JPSS83, § 2.1]; o*(h) = o(h*)). Using this we see that (6.24) is a
Rankin—Selberg integral for GL; x GLog and

T X Ind%i?(! det |*7Y2x70 @ | det |V/2757y), (6.25)

of the type [JPSS83, § 2.4(3)] (with j = k—1 in the notation of loc. cit.). In particular
it is absolutely convergent for n > 0 ([JPSS83, JS90]).

Over p-adic fields the integral is a meromorphic function of n and s, by Bernstein’s
continuation principle [Ban98], and by [JPSS83, Theorem 3.1] its poles are contained
in

Lin+s,mxx10)L(n+1—s,7x1).

That is, when we divide the integral by this product of L-functions we obtain an
entire function. Thus we may take = 0 and still obtain a meromorphic function of
s.

Over archimedean fields this integral admits meromorphic continuation in n and
s by Jacquet [Jac09, Theorem 2.1(ii)] (see also [Jac09, Appendix]). In fact the con-
tinuation in 7 was already proved by Jacquet and Shalika [JS90, Theoerm 5.1]. By
[Jac09, Theorem 2.3(i)] (see the proof of [Jac09, Proposition 12.5]) the continuation
in 7 is continuous in the input data, namely the section from the induced represen-
tation. This applies to any fixed s. When we apply the Whittaker functional A_1 to
an entire section f, the result is a Whittaker function which is still entire in s, and
we can bound it using a continuous semi-norm which is independent of s when s
varies in a compact subset (see e.g., [Sou95, (4.16)]). Using this the proof of [Jac09,
Proposition 12.5] implies that the continuation of (6.24) in both 1 and s is continu-
ous in f. The poles are still located in the aforementioned product of L-factors, and
again we can take n = 0. Hence (6.24) admits meromorphic continuation which is
continuous in the input data. O

REMARK 6.5. As explained above, we can remove the dv-integral from (6.24) (now
using Corollary A.3) and reduce to an integral over F*, then obtain the continu-
ity statement of Claim 6.3 directly using the asymptotic expansions of Whittaker
functions from [Sou95, § 4].
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Proof of Claim 6.4. We begin with a general observation. For t,m € F, a section
£ € V(Wy(ro) ® X 'Wy(1y)) and a Schwartz function ¢ on F, define

E( ) dlag Ik 17( ) Ik l) € UPv [t] = dlag(Ikv(l i)alk72)7
(s,h) /f s, he(m))p(m) dm.

For any &,
/ (s, 00l (b)uo )b (o) dug = (1 — bYE) / (s, 80 (b)uo )b (o) duo.
Uo Uo
Since [ ((1 — b)t)dt = 0 unless b = 1, and noting that §; = £(1),
§ S (SZLO T/JU(UO duo = 5 S (505 ”U,()[ ])wU(’U,O) duo dt db.
e~
Applying this to Z(s, f) we obtain
////f s, 00l (D)uo[t]eq )by (uo)m ™ (a) dug dt db d*a. (6.26)
P+ F F U

Here e, = diag(I,a, I_1), for brevity. This integral is defined in the domain of defi-
nition of Z(s, f), but is not absolutely convergent as a multiple integral. Nonetheless,
consider the integral formally obtained from (6.26) by changing the order of inte-
gration dt db to dbdt:

////f”of woltleq) vy (uo)m ™ (a) dug dbdt d*a. (6.27)

F U,

First we show that in a right half plane depending only on the representations,

// //f (5, 80L(b)uo[t)eq)tour (uo)w " (a) dug db| di d*a < oo. (6.28)

F+* F |F Uy

We can shift e, to the left of 5y, multiplying the measure by |a|'~*. Observe that,
as in the proof of Proposition 2.5, in a domain of this form

//)f(s,aoeaéou)w_l(a) la|' ™ dud*a < cc. (6.29)
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It remains to show that ¢ belongs to the support of a Schwartz function (which may
depend on f). Consider a Schwartz function ¢ on F' and the integral

// ///fs 200l (D)uo[t)0(m))p(m) vy (uo)m 1 (a)|a|' =% dm dug db| dt d*a.

F* F Uy F

We see that ‘") [t] = uy, 4[t], where uy,, € Up is such that ¢(um,) = ¢~ (mt). We
can freely change the order of integration dmdugdb to dugdbdm, because of (6.29)
and the Schwartz function. Then we can also change variables b — b— m. We obtain

// //f 0 eaB0l(b)uo[t]) $()tou (o)~ (a)|al' ¥ dug db| dt d*a.

F= F Uy

This proves (6.28) (see Lemma 5.1, here we can fix s and use [DMT78]).

Now a direct verification shows that (6.27) also belongs to (6.22). Assume for
the moment that (6.27) admits meromorphic continuation. Then we can compare
(6.26) (or Z(s, f)) to (6.27) in the domain of definition of (6.26). We show the
proportionality factor is 1, by proving that (6.27) for ¢(f) is Z(s,¢(f)). Indeed,
after shifting e, to the left, conjugating [t] by ¢(m) and changing b — b — m, the
integral (6.27) becomes

/f(s,6°ea50€(b)uo[t])Q,Z)(mt)gi)(m)q/JU(uo)ﬂ'_l(a)|a|1_k dm dug dbdt d*a
:/f(s,50€(b)u0[at]ea)q/b\(t)@bU(uo)ﬁ_l(a)|a|duodbdtd*a
= / £ (5,000 (b)ugeq)(t(1 — b))p(a )by (uo) 7~ (a) dug dbdt d*a.

Changing b + b+ 1, then shifting £(b) to the right (thereby changing b ~— a~'b), we
have

/ f(s, (5uoea€(b))w(—ba_lt)a(a_lt)wy(uo)w_l(a)\arl dug dbdt d*a.

Now we change ¢ — at (eliminating |a|~!), then we can change dbdt +— dt db, and
since by the Fourier inversion formula [, d(t)p(—bt)dt = ¢(b) we obtain Z(s, ¢(f)).

To proceed we describe a special choice of data, for which we can compute both
(6.27) (in its domain of definition) and (6.24) (in Re(n) > 0, then for n = 0 in
Re(s) < 0, then in the domain of (6.27) by meromorphic continuation). The pro-
portionality factor will be v85(s, 771 x 79, ¢)7(—1)*~1. The claim follows, because
we deduce the meromorphic continuation of (6.27), then the argument above readily
implies that the continuations of Z(s, f) and (6.27) are identical.

Let W € Wy(19). Over a p-adic field, choose f’ such that &g - f’ is right-
invariant by a small neighborhood of the identity N in H, supported in PN, and
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such that for all a € GLy, & - f'(s,diag(a,I)) = |deta|*"Y**/2W(a) (N de-
pends on W). Over archimedean fields take dg - f’ supported in PU, such that
S0 - f'(s,diag(a, I)u) = |detal>=1/2HK2W (q )(;5’( ) for all u € Up, where ¢' is a
compactly supported Schwartz function on F ¥ and f F? ¢ (u)du = 1.

Then over p-adic fields we take f = ¢(f’) where ¢ is such that for all s and h,

/ 15, [t @) dt = (s, h)
F

(e.g., take (/5 supported near 0). Over archimedean fields, by Corollary A.3 we can
take f; and compactly supported Schwartz functions ¢; such that for all s and h,

Z/fzsh Bi(t) dt = (s, h). (6.30)

le

Then we take f = Zizl ¢i(fi). For convenience, we use this notation (with [ = 1)
also in the p-adic case.

Plugging f into (6.27), conjugating e, to the left and using the definition of f,
we obtain

////Z/f’ % e, 80(b)uo[t](m)) i (M) (ug)m (a)|a|*=* dm dug dbdt d*a

«FFU, =lF
////Zf 2 eq00L(b)u H)sz( )y (uo)m ™ (a)|al*=* dug db dt d*a.
F F U =1

Here agaln we first changed dmduodb to duodbdm, before changing variables ug —
uoumt and b — b — m. As above, since ¢; is a Schwartz function and using (6.29),
we can further change dug dbdt to dt dug db, then by the definition of the functions
fi and ¢;, we have

///f (s, % eadol(b)uo) vy (uo)m*(a)|al' ™ dug dbd*a.

F* F U,

Again by (6.29) we may change the order of integration dug dbd*a to d*a dug db, and
we also write u = £(b)ug and extend vy to Up trivially on £(b). We reach

[ [ #6s.easiinr @al' ™ d*adu.
Up F*
Then by our definition of f’ (e.g., over p-adic fields the integrand vanishes unless

the coordinates of u are small) we obtain

/ W (diag(a, Tn_1))r(a) o]~ *=D/2 g*q, (6.31)
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This is the Rankin-Selberg integral for GL1 x GL and 7! x 79 ([JPSS83, § 2.4(3)]
with j = 0).

To compute (6.24) for the same f, write v = (¢,v') where t is the leftmost
coordinate of v, conjugate diag(lor_1,a)diag([x, ((Ik 1) ))wzk—l,l) to the left and

arrive at
////f (281’;2)50“ () (uw)r™ (a)|a| "  dud*ad dt
F Fk—2F* Up
-/ / i [ s, (3002 ) dnult) iy (@)lal 7 drdud'ad'
Fhk=2 F =l

The justification for the formal steps is similar to the above (but simpler) and again
we use (6.29). Then exactly as above, we end up with the other side of the Rankin—
Selberg functional equation (the version in [Sou93, p. 70])

[ (8 ) wtarme s

Fk—=2 [*

This integral is absolutely convergent for Re(n) > 0, but moreover, for ¢ = 0 it is
absolutely convergent for Re(s) < 0 and admits meromorphic continuation given by

//W((S b1l )) w @)lal D (6.32)

,U/
Fk—2 [*

Since (6.31) and (6.32) are related by y®5(s, 771 x 79,9)7(—=1)F"1, the proof is
complete. O

COROLLARY 6.6. For each pole of the Rankin—-Selberg GL; x GLj L-function L(s,
7~ x19) with multiplicity m we can find an entire section f (smooth over archimedean

fields) such that Z(s,w, f) contains this pole with multiplicity m.

Proof. Any such pole (with multiplicity) occurs in a GLy x GLy, integral for 7= x 7g
for some W € Wy (1) (over p-adic fields see [JPSS83], over archimedean fields
[CPS04, § 1.3], one may even use Kqi, -finite vectors). Taking the substitution f’
from the proof of Claim 6.4 (e.g., &y - f* supported in PUp and compactly supported
in U, over archimedean fields) and computing Z(s,w, f’) directly, i.e., without using
(6.27), we obtain (6.31) except the integrand is further multiplied by a compactly
supported Schwartz function of a. By [Jac09, Proposition 6.1] (or more directly in
the p-adic case) this is sufficient for the pole (we only need to produce the pole, as
opposed to obtaining the precise Rankin—Selberg integral). g

COROLLARY 6.7. If k = 1, Corollary 6.6 applies to any n, i.e., to GL, x GLj.
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Proof. For a representation m of GL, and n > 1, one uses f such that dp - f is
supported in PUp and restricts to a compactly supported Schwartz function on U,
(see also [Yam14, § 5.3, § 7]), to obtain a Godement—Jacquet integral ([GJ72]). The
latter integral produces any pole with multiplicity by [GJ72, Jac79). O

6.8 Duality. This is known for G = Spy), clear for GSpin, with ¢ < 2 since the
v-factors are trivial, and also holds for SO2 and GSpiny by (4.3) and (4.8). (Here
G # GL,.)

For the general case we follow a local-global method similar to [Kapl5, § 5]. Ac-
cording to the multiplicative properties, it is enough to show (4.5) for supercuspidal
representations. These we can globalize as in § 6.7.1, using the globalization argu-
ment of Henniart [Hen84, Appendice 1] (7 is in general not generic), and using (4.7)
we simultaneously globalize ). We can assume that at all places except vy (where we
embed 7 and 1), the representations are quotients of principal series representations.

We can then write m, (v # 1) as the quotient of Indggﬁ(al, ® Xr,), where
R < (G is a maximal parabolic subgroup, o, is a principal series representation of
GL,(F,) and 0, ® xr, is a representation of Mpr(F),). Then by (4.3) and (4.8),

'7(57 Ty X X;}Tua ¢V) = 'VRS(Sy Oy X Ty, ¢V)7R8(57 0-;/ X X;,,ITIM ¢u) (6~33)

Since o, is a principal series, we can permute the inducing character of o, to obtain
a principal series representation o, such that 7,/ is a quotient of Indgg?g (J’VV & X;yl).

Then

/

= 88(s,07, % 7, 10, )V (5,00, X X, ). (6.34)

The Rankin—Selberg ~-factors appearing in (6.33) and (6.34) are equal, hence

'7(37 77;/ X Ty, ¢zx)

’7(57 771\// X Ty, Q;Z)I/) = 7(57 Ty X XT_r,/le Q;Z)I/)
This holds for all v # vy, thus also at vy by (4.10).

6.9 Functional equation. According to (3.6) and since
19(57 ¢, T ® X 7/))19(1 — 5,6 X;ITV & Xy ?l)) = Xﬂ(_l)knT(_l)Nv

(s, x T, ) y(1 — s, x x7'7V,0) = xx(=1)*?7(=1)N. Then (4.5) and (4.7) imply
(4.6).

6.10 Archimedean meromorphic continuation. = We deduce the meromor-
phic continuation of the integral Z(s,w, f), and continuity of this continuation re-
garded as a trilinear form on V (s, Wy, (pe(7)) @ xx) X 7 x (7)Y or the similar space for
GL,,. Recall that for Fréchet spaces, a separably continuous trilinear map extends
to a continuous linear map on the inductive tensor. We will also prove the meromor-
phic continuation of A(s, ¢, 7,%) and continuity of this continuation as a functional
on V (s, Wy(pe(7)) ® xx). Our proof is facilitated by the multiplicativity identities
(5.21) and (5.27), which allow us to argue inductively.
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We begin with the integral. Since the field is archimedean, we may assume
(by [Cas80a]) that 7 is an irreducible quotient of a principal series representa-
tion induced from quasi-characters my,...,m, and x, (for GSpin,) of F*. Write
T = Indg;”c (@, | det |*7;) where 7; are tempered and a; > ... > ag4. For ( € C¢,
let 7c = IndE* (2L, | det
sentation of (1.2) (for such ¢ we may permute the representations in the inducing
data to obtain this). Hence the realization of the (k,c¢) functional given by (1.5) is
applicable to p.(7¢) (see [CFGoK, § 3.2]), and we may then argue as in § 5.3 (e.g.,
§ 5.3.1), to write the integral for 7 x 7¢ in the form (5.21) (or similar, depending on
G).

The realization (5.8) of w is continuous on 7 ® 7 (since it is a separably contin-
uous bilinear form). The integral d(gi, g2) in (5.21) is over a compact group, hence
can be ignored for our purpose here, by virtue of the Banach—Steinhaus Theorem
— see the proof of [Sou95, § 5, Lemma 1].

The outer integral over V' x O can be handled as follows. Write the inner integral
in the form =(s,w, f), then the iterated integral takes the form

Gtair). For ¢ in general position, pe(T¢) is a subrepre-

/ E(s,w,y - f)dy.

VxO

Note that for (v,0) € V x O, y = ok®v, and we can identify V x O with the subgroup
'V x O of H. Assume Z(s,w, f) is meromorphic for meromorphic sections f, and
continuous as a trilinear form. The root subgroups of V' x O are handled one after
the other, with a predefined order (see [CFGK19, pp. 1037-1040] and the paragraph
before (5.27)). Let Y/ <V x O and

E/(s,w,f)Z/E(s,w,y/-f)dy/.

Y/

For the base case Y’ is trivial and Z/(s,w, f) = E(s,w, f). Assume Z/(s,w, f) is
meromorphic and continuous, as above. At each step we take a subgroup ¥ < H
such that Y x Y/ < V x O, prove similar properties for

/ Z(s,w,y - f)dy = / / =(s,w,y'y - f) dy' dy, (6.35)
Y Y Y/

then re-denote Y x Y/ by Y, eventually obtaining the result for V' x O.
Regarding (6.35), there is a unipotent subgroup X < H such that for all z € X

/E,(Suwu yx - f) dy - /E/(vav Y- f)ib((x?y» dy7 (636)

Y Y



GAFA THE GENERALIZED DOUBLING METHOD: LOCAL THEORY

where (z,y) is a non-degenerate pairing. For a compactly supported function ¢ in
the space S(X) of Schwartz functions on X, denote

aﬁ@mw:/xm@mwum% &ﬁ@ﬂ%j/yfﬁﬁﬁwwy

X Y

Here ¢ € S (Y'). The sections ¢(f) and &5( f) are meromorphic, because the repre-
sentation of H on V (s, Wy(pe(T)) ® xx) is of moderate growth uniformly when s
varies in a compact set (see e.g., [Jac09, § 3.3]), and Schwartz functions are rapidly
decreasing, so that we can differentiate QAS( f) under the integral sign.

In Re(s) > 0 the multiple integral (over V x O, X and the domains in the
definition of Z) is absolutely convergent, whence by (6.36),

/E’(s,w,y (f))dy =E'(s,w, QAS(f))

Y

is meromorphic for each (meromorphic) f. According to Corollary A.3 we can always
write f = >, #i(fi) (a finite sum), then the Lh.s. of (6.35) becomes >, =/ (s, w, 6i(£:))
which is meromorphic (here it is crucial the functions ¢; are independent of s).

Moreover when we fix s, the bilinear map (¢, f) — ¢(f) extends to a continuous
surjective and open map S(X) @ V (s, Wy (pe(7)) @ xx) = V (s, Wy (pe(T)) @ Xx7) (see
e.g., [Sou9s, p. 199]). Thus the Lh.s. identify of (6.35) is continuous (as a trilinear
form). This completes the reduction.

It remains to consider Z(s,w, f), which is a GL, x GL; doubling integral for
the matrix coefficient a — (¢(1),0"(a)p¥ (1)) of ¢V and the section m(s, T, w) f|as, -
Assuming the latter integral admits meromorphic continuation, so does the G x GLy
integral. Moreover, if the continuation of the GL, x GL; integral is continuous in
its data, the continuation of Z(s,w, f) (and thereby, of the G x GLj integral) is
continuous in w and f (i.e., as a trilinear form), because evaluation at the identity
is continuous in the topology on the smooth induced representations. Note that if ¢
is odd, there is an additional inner integration du’ which is a Whittaker functional
(see after (5.33)), whose analytic properties are known ([Jac67, Sha80]).

Repeating the arguments of § 5.3.5 we reduce to the case of n = 1 and the
representations m; X (7¢ ® X5 172/ ). We assume k > 1, since for £k = 1 meromorphic
continuation in s and continuity in the input data can be checked directly (when
n =k = 1). Now as described in § 6.7.2, the analytic properties of the GL; x GLj
integral follow from those of (6.24), which here takes the form

/ /XM&LR®M%%¢N&%®Mh@MWFMQf)
Vi £

7 (a)a| TR d*a do.
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By Claim 6.3 and its proof, this integral admits meromorphic continuation in n, ¢ and
s, which is continuous in the input data f ([JS90, Jac09]). The poles are contained
in

Ln+s+¢mxxxT)L(n+1—5—Cmx1Y). (6.37)

Thus we may take n = 0. We deduce that the original G' x GLj, integral for 7 x ¢
admits meromorphic continuation in ¢ and s, which is continuous in the input data,
and its poles are contained in the product of the above L-factors with n = 0 over all
1 <@ < n. Since lim¢e_g Z(s,w, f¢) = Z(s,w,lim¢_g f¢) (see the justification after
(5.2)), we conclude the result for m x 7 by taking ( =0 (for ( =0, pe(7¢) = pe(T)).

Regarding A(s, ¢, 7,1), the meromorphicity and continuity properties are conse-
quences of (5.27), which expresses the functional as the composition of an inter-
twining operator m(s, 7, w) with similar functionals on GLgy; and on a lower rank
group H’ of the type of H, and with an additional outer integral which is handled
similarly to the outer integral over V x O above (using Corollary A.3). Since the field
is archimedean, we may already take [ = n, then if ¢ is odd we have one additional
Whittaker functional (A(s,c’, 7 ® xx, %), ¢ = 1). The intertwining operator satisfies
the conditions we need (see e.g., [KS71, Sch71, KS80]). Applying the general linear
groups analog of (5.27) to GLoy; we reduce to products of such functionals on GLgy,
which are already Whittaker functionals. As above we first work with 7¢ to utilize
(1.5) (the proof of (5.27) also uses (1.5)), then take ¢ = 0.

REMARK 6.8. The twist by ( is only needed in order to regard p.(7) as a summand
of (1.2) and apply (1.5) (using [CFGoK, § 3.2]). If 7 is unitary, no additional twist
is needed.

COROLLARY 6.9. For any given s, one can find w and an entire section f of V(W
(pe(7)) @ Xx), which is also K p-finite, such that Z(s,w, ) # 0 and the integral is
holomorphic in a neighborhood of s.

Proof. A similar nonvanishing result was obtained in Proposition 2.6, albeit with
a smooth section f, but one can find a sequence {f,,} of entire Kp-finite sections
converging to f. Since we proved the integral is continuous in the input data, we
deduce Z(s,w, fn) is finite and nonzero at s for some (almost all) m. Then there is
a neighborhood of s where the integral is also holomorphic (s is not a pole). O

REMARK 6.10. Alternatively we may also prove Corollary 6.9 by applying Corol-
lary 5.3 to reduce the proof to the case k = 1, where it is known ([KR90, Theo-
rem 3.2.2]).

We also have the following corollary.

COROLLARY 6.11. Assume 7 is unitary generic and f is a standard and Kp-finite
section of V.(Wy(pe(T)) ® Xx). Let D be a vertical strip of finite width and P(s) be a
polynomial such that P(s)Z(s,w, f) is holomorphic in D. Then P(s)Z(s,w, f) is of
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finite order in D, i.e., |P(s)Z(s,w, f)| < ael*" for some constants a > 0 and r > 0,
for all s € D.

Proof. Since 7 is unitary, we can carry out the reduction described above using
7 directly (see Remark 6.8). However, instead of applying (5.21) once then using
induction, we repeatedly apply the multiplicative identities ((5.21) is applied once,
then we use § 5.3.5), each time introducing another intertwining operator m(s, 7, w);,
an integration over unipotent subgroups O; and V;, and an integration over maximal
compact subgroups Kg, X Kg,.

Following these reductions, the function h — f(s, h) belongs to the space V®(s, )
of

Ind (@7, V (5, Wy (1) @ X7 Wis(7¥)) ® V (5, Wy (7)) @ X )- (6.38)

Here when H # Glog., L < H is the standard parabolic subgroup with M =
Mpymy if ¢ = 2n, M1, = M((a)n) X SOz if ¢ = 2n + 1, and in both cases we have
the additional factor GL; for GSpin,. For brevity, the minor modifications for GLo,
are omitted, as well as the twist of M, and the additional modulus characters which
are independent of s (see (5.20)). The first n spaces in (6.38) correspond to the spaces
of sections for the GL; x GLj doubling integrals, and V (s, Wy, (7)) is included when
¢ is odd.

By transitivity of induction, we can also identify (6.38) with the representation

Indy (|x|* (@5 Wy (1) @ xx),

where Ly < L is a standard parabolic subgroup of H with M, = M. (x GL1),
7% alternates between 7 and y; 7V, and y is a suitable algebraic character of M,
(e.g., |x|° = |det|*"Y/2 @ |det |'/27° if ¢ = 2). One can then define entire sections
of V®(1), i.e., functions ¢ on C x H such that for all s, p(s,-) € V®(s,7), and
s +— (s, h) is entire, and also meromorphic sections, Kpy-finite sections, etc. (see
§2.3).

Let m(s,7) be the composition of the operators m(s, T, w);, it has finitely many
poles in D. Since P(s)Z(s,w, f) is holomorphic in D, we can assume for the proof
that [Im(s)] > A > 0, so that m(s,7) is holomorphic for s € Dy = {s € D :
[Im(s)| > A}. Put f/ = m(s,7)f.

We combine the integrations over the unipotent (resp., compact) subgroups into
one subgroup Y (resp., K x K¢). This is possible by reversing the passage from
(5.19) to (5.21) once we apply the Iwasawa decomposition to the inner integral over
the Levi subgroup of G. In fact each K¢, is a maximal compact subgroup of a Levi
subgroup Mp,, where R = Ry > Ry > ... > R,, = B¢ is a finite decreasing chain of
standard parabolic subgroups of GG, hence we can simply integrate over Kg X Kg.
As for the unipotent subgroups, observe that the subgroups O; are all subgroups of
Up (on which ¢y is trivial), and V; all originate from the realization of Wy (pc(7)).
Combining them here amounts to writing the identity (4.3) with respect to induction
from Bg, instead of going through maximal parabolic subgroups (as described in
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§ 5.3). In this process we also shift the Weyl elements w; and * from each reduction
to the right, thereby conjugating the unipotent subgroups O; and V; and the images
of Kg, x "Kg, in H. The subgroup Y is taken to be the product of subgroups O;
and V;, each conjugated by the appropriate Weyl elements. Then Y < U, . Let w
denote the product of Weyl elements. We obtain, first in Re(s) > 0,

[ ] | reomano e

KexKe Y GLY UOFC/2T

x e’ (a)(e(g1), 9" (g92)) dug da dy d(g1, g2).
Here GLY and U}’ are the direct products of n copies of the groups GL; and Uy
for the GL; x GLj doubling integrals; § is the product of n elements § from § 2.4
occurring in these integrals, and an element ¢ for the Whittaker functional if ¢ is
odd; €¥(a) = [[i-, 7; "(a;); and if ¢ is odd, the additional inner integral over Up
is a Jacquet integral constituting the evaluation of a Whittaker functional at the
identity (see after (5.33)).

We start “peeling oft” the outer integrals, each time regarding an inner integral
as a meromorphic function on C (as opposed to Re(s) > 0); then the outer integral
is defined for all s except at the poles of the inner integral.

Since (“(g1,'92))w € Ky and f is Kp-finite, it remains to bound the dupdady-
integral with (*(g1,'g2))-f’ replaced by f§ = m(s, 7) fo for an arbitrary standard Kp-
finite section fp. Arguing as explained above, the dy-integration can be traded for a
sum of convolution sections, by a repeated application of Corollary A.3 (more details
appear below). Note that the equivariance properties of the inner doubling integrals
with respect to unipotent subgroups are preserved, even though the inner integrals
are each further reduced to GL; x GLj doubling integrals, and these equivariance
properties are all that is needed in order to obtain (6.36). Eventually one obtains a
finite sum of integrals of the form

¢ (f5)(s,6uo(1,a)) vy (uo)e” (a) dug da, (6.39)
GLY yfe/2]

where f; is a section and ¢;(f;)(s, h) = [y fi(s, hy)¢;(y)dy for some Schwartz func-
tion ¢; (compactly supported or otherwise).

To describe f;, first note that for any hy € Kg, f{(s,ho) is a product of a
rational function of s (depending on hg) and fixed quotients of twisted classical
Gamma functions due to the normalization factors of Langlands ([Art89, Theo-
rem 2.1 and § 3]). Hence there is a constant » > 0 such that for all hy € Kp,
14(s, ho) is holomorphic of order at most r in D4. We can then adapt the arguments
of Appendix A to deduce that in the application of Corollary A.3, f} = Y. ¢i(fi)
where each f; is also holomorphic of order at most r in Dy (i.e., s — f(s, hg) is of
order < r for all hy € Kp). Specifically, with the notation of Appendix A, W con-
sists of holomorphic functions from D4 into the space of Indgﬁm My, (@ Wy ()@
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Xrx)lKupnm,, ), and the semi-norms [[f[|;, are replaced with [[f[;, =

maxep, {v(f(s))e 5"} where m varies over N — 0; then W is still a Fréchet
space which is a continuous, smooth representation of moderate growth of H (argue
as in [Jac09, § 3.3], but instead of compact subsets 2 C C consider D4). We repeat-
edly apply Corollary A.3, each time obtaining new holomorphic sections f; of order
at most 7 in Dy (though no longer Kp-finite).

It remains to bound the integrals (6.39). Since the Rankin—Selberg integrals for
GL; x GLgj are bounded at infinity in D ([Jac09, Theorem 2.1(ii)]), Claim 6.4 and
the proof of Claim 6.3 imply that the product of n integrals over GL; and Up is
bounded by a polynomial in D (the polynomial is needed because of the mediating
v-factor). When ¢ is odd, the Whittaker functional is entire of finite order in D
(in fact in the entire plane) by a result of McKee [McK13]. It remains to consider
|¢j(f;i)(s,1)|, where 1 denotes the identity element of H. Note that we can assume
A > 0 so that the Rankin—Selberg integrals are holomorphic in D4 (because the
representations of GL; and GLgy are already determined).

Write y = wvtb using the Iwasawa decomposition, with v € Ng, t € Ty and
b € K. Each coordinate of ¢ can be bounded by a polynomial in ||y||, where || - ||
is a fixed norm on H. Specifically, there are dy > 0, d; > 0 and an integer M > 0
such that do|ly||™™ < |t;| < di||y||M for all 1 < i < ke (if H = GSpiny,,, we write
the decomposition in Spiny,.). See e.g., [Jac09, § 5.2] and [Sou93, § 7.3, Lemma 3].
If t = diag(by,...,b.) with bj € TaL,,

IX|°(t) = (H | det b1 [*1/%| det byj| /%) | det bopa |2,
=1

Since ||y|| > 1, we can bound this character from above by ||y||Y* where N > 0 is an
integer depending on s. Moreover, since D is a vertical strip of finite width, we can
take a uniform bound N for all s € D. In addition because the representation of M,
on ®¢_; Wy () is of moderate growth, we can take a large N and a semi-norm on the
space of f;(s) = f;(s,-) such that for all y, maxp,cr, |fi(s,vho)| < |[yl[Mv(f;(s)).
Then

|65 (f5)(s, 1)] SV(fj(S))/HyHNlcfﬁj(y)\dy-
Y

The norm v(f;(s)) is of finite order for s € D4, completing the proof. 0

REMARK 6.12. Note that P(s) exists and can be taken independently of w and f.
Indeed as we have seen in the discussion above (see (6.37)), the poles of the integrals
together with their multiplicities are bounded independently of the data.

6.11 Archimedean property. Using (4.2)—(4.3) and the twisting property we
reduce to the case where m and 7 are square-integrable. Now we apply Casselman’s
subrepresentation theorem [Cas80a], to regard both 7 and 7 as quotients of principal
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series representations. Then we can certainly use (4.2)—(4.3)and (4.8) to reduce to
GL; x GLy factors, which are Tate ~-factors, but it is a priori not clear how they
relate to the Langlands parametrization.’

Recall that when the representations are generic, Shahidi [Sha85] computed the
local coefficients and equated them with the corresponding Artin factors. The results
of Knapp and Wallach [KW76] on extensions of roots, and Knapp and Zuckerman
[KZ82] who related the inducing data from Casselman’s result to the Harish-Chandra
parameter (here — of 7 ® ), were crucial to his proof.

Shahidi expressed the local coefficient as a product of Tate factors involving
Casselman’s inducing data and simple reflections [Sha85, Lemma 1.4]. Then in a
sequence of lemmas (loc. cit., § 3),he used the results of [KW76, KZ82] to prove that
this product is equal to the product of y-factors defined using Artin’s root number
and L-factor for the homomorphism ¢ (attached to 7 ® 7). The relation between
these products is formal, and the lemmas from [Sha85, § 3] can be applied to the
Tate factors we obtain (using multiplicativity). Note that in our setting, since we
only treat split groups, only the SLo case of [Sha85, Lemma 1.4] appears in the
computation, and we only obtain the factors for the standard representation r (the
local coefficient consists of the finite list of representations r;, see [Sha85]). This
completes the proof of (4.9).

7 L- and e-factors

Theorem 4.2 enables us to define the local L- and e-factors, using the y-factor. This
was carried out in [LRO5] for & = 1 (following [Sha90]), and we briefly recall the
construction.

For G = GL,, define the L- and e-factors as the products of Rankin—Selberg
L- and e factors for m x x79 and 7 x 79 defined in [JPSS83, JS90] (see (4.8)).
Henceforth we assume G # GL,,, until the end of this section.

Over p-adic fields we follow Shahidi [Sha90]. When 7 and 7 are both tempered,
define L(s, ™ x 7) = P(q~*)~!, where P(X) € C[X] is the polynomial such that the
zeros of P(q™*) are those of y(s,m x 7,1) and such that P(0) = 1. This does not
depend on v, by (4.7). Then by (4.6),

v(s,m X T, ) L(s,m X T)
L(1—s,7mv xT1VY)

e(s,mx 1,0) =

is invertible in C[g™*, ¢®]. The final form of the functional equation is

L(1—s,7¥ x71Y)
L(s,mxT)

V(8T X T, 0) = €(s,m X T, 1) (7.1)

! There was a gap in the proof in the first version of this manuscript; we would like to thank
Freydoon Shahidi for pointing it out to us, and indicating the applicability of his results from
[Sha85].
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The general definition of the L- and e- factors for an arbitrary irreducible representa-
tion 7 and irreducible generic 7 is now given in terms of the Langlands’ classification,
using the unramified twisting and multiplicativity properties in Theorem 4.2, and
using the GL,, case above. In more detail, assume 7 is the unique irreducible quotient
of a representation parabolically induced from og @ 7', where ' is a d’ parts compo-
sition of [ < n, og = ®?/:1ai, each o; is essentially tempered, 7’ is tempered unless
GG = GSpin,, then it is essentially tempered, and 7 = Indg;’c (®;l:17'j) where each 7;
is essentially tempered. For each pair n’ x 75, if |Y|*7’ = 7, and |det |7, = 705
are tempered, where 7’ = 7(, and sop = 0 when G # GSpin,, L(s, 7, x 79;) is defined
using the zeros of (s, m(, x 79,j,%) and

L(S,T[', X Tj) = L(s+ so +Tj77r6 x TOJ)?

(s, x 7j,0) = €(s + so + 1§, T X 70,4, V).

Then by definition

L(s,mx 1) = HL(S,O’i x xx7j)L(s, 07 x 7;) HL(S,?T/ X Tj),
1,] J
6(877( X T:w) = H€(87 g; X Xﬂ-Tj,w)E(S,U;/ X Tj7¢) HG(S,’R’/ X Tjﬂﬁ)-
1, J
Now (7.1) holds in general. In addition by Corollary 4.5, for generic representations
the local factors defined here agree with Shahidi’s.

In particular when data are unramified, we obtain the L-function defined using
the Satake isomorphism, and the e-factor is trivial: for tempered representations this
follows from (4.4) because for tempered unramified representations, the inducing
data is unitary; the general case then follows from the definition and the tempered
case.

Over archimedean fields we define the L- and e-factors by the Langlands cor-
respondence [Bor79, Lan89] (for details see [CKPSS04, § 5.1]). Specifically, if II
is the local functorial lift of m to GLy, we define L(s,m x 7) = L(s,II x 7) and
e(s,m x 1,1) = €(s,II x 7,1). Then (7.1) holds because of (4.9).

If 7 is unramified, we also consider its functorial lift II to GL, defined by virtue
of the Satake isomorphism [Sat63, Bor79, Hen00, HT01] (see [CKPSS04, § 5.2]). The
local 4-, L- and e-factors of IT x 7 are defined by [JPSS83].

LEMMA 7.1. If 7 is unramified, the v-, L- and e-factors of m x 7 and Il X T coincide.

Proof. This follows as in [CKPSS04, Proposition 5.2, which was stated for generic
representations, but extends to this setting using Theorem 4.2. We provide a proof.
The multiplicativity properties (4.2)—(4.3) imply that the ~-factors coincide, then
by (7.1) it suffices to prove L(s,m x 7) = L(s,II x 7). Both L-factors can be defined
as the products of L-factors for essentially tempered representations, and by the
unramified twisting property we may assume 7 is tempered.
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Assume that 7 is an irreducible quotient of an unramified principal series rep-
resentation, induced from an unramified character ®}' ;m; of T if G is a classical
group, or from ®_;m; ® x for GSpin, as explained in Remark 4.4. Also write 7 as a
quotient of a representation parabolically induced from oz @ 7', where o3 = ®§l':102~,
o; (resp., 7') is an unramified essentially tempered representation of GLg (resp., G').

The representations o; and 7’ are also quotients of unramified principal series
representations. If the unramified character corresponding to o; is ®;o0; j, and the
one corresponding to 7’ is ®;m) or @7 ® Xx, up to reordering ®; jo;; @; T is the
character ®;m;.

By definition

d/
L(s,mx 1) = L(s,7" x 1) HL(S,O’Z‘ X (T ® xa217)).
i=1
(Recall xr = 1 for G # GSpin,.) Again, by definition
L(s,0i x (1@ x;'7)) = L(s,04 X xxT)L(s,0; x T),

where on the r.h.s. these are Rankin—Selberg L-functions for generic representations,
and the description in [JPSS83, § 8.4] implies

L(s,0; x (T®@x,; 7)) = HL(S,UZ‘J X XWT)L(S,U;].I X T).
J

Regarding 7/, by virtue of our definition we can already assume it is tempered.
Then L(s, 7" x 7) is defined by the zeros of (s, 7" x 7,1), which by (4.3) are the
zeros of

(s, 7 0] [T 75, ] % xwm, )78 (s, x 7, 00). (7.2)
l

Here [...] appears only for G = Sp,,,. Since the inducing character of 7’ is unitary,
when we write each v-factor in (7.2) as a quotient of L-functions multiplied by the
e-factor, there are no cancellations, in each quotient as well as between pairs of
quotients corresponding to pairs of v-factors. Thus the zeros of (7.2) are precisely
the poles of

[L(s,7)] HL(S,TrZ X XFT)L(S,T(;_l X T).
l

We deduce

L(s,m x 1) = [L(s,7)] [ [ L(s, mi x xxT)L(s, 7, % 7). (7.3)
=1

According to [JPSS83, § 8 and § 9.4], this identity is also satisfied by L(s,II x 7). O
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COROLLARY 7.2. Let m be tempered and T be unitary generic, and if the field is
p-adic also assume w is unramified. Then L(s, 7 x T) is holomorphic for Re(s) > 1/2.
If 7 is tempered, L(s, 7 x 7) is holomorphic for Re(s) > 0.

Proof. Since 7 is unitary (and generic), 7 & Indg;’“ (@, | det |"i7;) for square-integ-
rable 7; and r; > —1/2 for all i ([Vog86, Tad86]). Over a p-adic field, since the
inducing character of 7 is unitary, II is tempered (it is a full induced representation).
Thus L(s, mx7) = L(s,IIx7) factors as the product of L-functions for unitary twists
of | det |"7; ([JPSS83, § 8.4, § 9.4]), each holomorphic for Re(s) > 1/2 because L(s, 7;)
is holomorphic for Re(s) > 0 ([GJ72]) and r; > —1/2. Over archimedean fields we
can directly deduce that L(s,m x 7) is a product of L-functions L(s + 7, 7™ X 7;),
each known to be holomorphic for Re(s) +r; > 0. The case of a tempered 7 follows

at once since then r; = 0. O

Assume F' is p-adic. We prove a stability result which essentially follows from
the stability result of Rallis and Soudry [RS05] for the doubling method. Let 7 be
an irreducible representation of GG. Let II be an irreducible generic representation of
GLy, where for G # GSpin, we assume II has a trivial central character, and for
GSpin, we assume II is unramified with a central character Xﬁ/ 2
Satake parameter takes the form (4.11)).

(e.g., take IT whose

LEMMA 7.3. Ifn is a sufficiently highly ramified character of F*, depending on 7 and
II, then for any T = nty where 1y is an irreducible generic unramified representation
of GLy, the -, L- and e-factors of m x T and II x T coincide and moreover, L(s, mXT) =
L(s,II x 7) = 1. (Other than the condition on the central character for GSpin
and II are not related in any way.)

C’7T

Proof. Let mgen be an irreducible generic representation of G. If G = GSpin,, Tgen
must in addition have the same central character as 7. This can be obtained, e.g., by
taking meen to be an irreducible principal series with an inducing character (®]; x;)®
Xr, then it is automatically generic and if ¢ is even, we can take ®;';x; such that
[T xi(—1) = m([—1I,,1]) (in this case Cg = C& [[[—1In, 1]CR).

Assume k = 1. According to the stability results [RS05, Wag] (see Remark 4.3),
for a sufficiently highly ramified n (independent of 7p), v(s, 7 X 7,) is equal to the
y-factor y(s, Tgen X 7,1) of Shahidi [Sha90]. The latter coincides with (s, II x 7,)
and moreover belongs to C[g™*,¢°|*, i.e., is invertible in C[g~*,¢°] (because it is
equal to the e-factor), by the stability results of [CKPSS04, § 4.5-4.6] for classical
groups and [AS06, § 4] for general spin groups. By (4.2) we deduce that for all k,

v(s,m x T,) = (s, 11 x 7,9) € Clg™*, ¢°]". (7.4)

Now write 7 as the irreducible quotient of a representation parabolically induced
from o ® 7', where 03 = ®;04, and all o; and 7’ are essentially tempered. For a
sufficiently highly ramified n (still, depending only on ), by [JPSS83, 2.13],

L(s,04 X XrT) = L(S,O’;/ X T) = L(S,O’;/ X X;ITV) = L(s,0; X TV) =1
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for all 4, then v(o; x (T@x, '7V), %) € Clg~*, ¢°]*. Therefore by (4.3), (s, 7' x 7,9) =
(s, X7, 1) up to factors in C[qg~*, ¢°]*. By (7.4), v(s, 7' x7,v) € Clg*, ¢°]*, thus by
definition L(s, 7’ x7) = 1. Hence L(s,mx7) = 1 as a product of trivial L-factors. Also
L(s,IIx71) =1 ([JPSS83, 2.13]), whence (7.1) implies €(s, 7 x 7,1) = €(s, I x 7,1).
O

Until the end of this section assume F' is archimedean. The following lemma sum-
marizes several basic properties of the L-function, which follow from known results
on the classical Gamma functions.

LEMMA 7.4. (1) L(s,m x 7) has finitely many poles in Re(s) > 1/2.
(2) There is an e > 0 (usually small) such that the poles of L(s, 7 x T) are contained
in {s:|Im(s)| < €}.
(3) L(s,m x 7) decays exponentially in |Im(s)].
(4) Write s = o + it with o,t € R. Fix o, and let ¢ > 0. There are constants
A, B > 0 such that for all |t| > e, |L(1—s,7" x7V)/L(s,mx7)| < A(1+]t])".

Proof. By (4.9) and the definitions of the Artin factors,

L(s,mx 1) =C(s) H D(ris + d;), L(s,m" x V) = C(s) H T(ris + dy),
i=1 =1

where C(s) and C(s) are complex-valued functions such that |C(s)| and |C(s)| are
fixed when Re(s) is fixed; 7; € {1,1/2} and di,d; € C (see e.g., [Sha85, § 3]). In
particular r; > 0. The first two assertions follow immediately, and the third follows
from Stirling’s approximation for I'(s). For the last, observe that again by Stirling’s
approximation, under the assumption [t| > eo, [T(ri(1 — s) + d;)/T(res + dy)| <

A;|t|Pi=?"i9 where A; > 0, B; € R and both depend on r;, d; and d;. O

PROPOSITION 7.5. Both ¥(s,c, T ® Xx,%) and C(s,c,T @ xr,v) are bounded by a
polynomial in vertical strips of finite width away from their poles.

Proof. For any two meromorphic functions ¢(s) and ¢'(s), denote ¢(s) =< ¢/(s) if
q(s) = €(s)q'(s) for an entire function €(s), which is also invertible and bounded at
infinity on vertical strips of finite width. E.g., ¥(s, ¢, 7® xr, %) < 1 unless G = Sp,,,,
in which case ¥(s, ¢, 7 ® xr, ) = (s, 7,%). The assertion on (s, ¢, 7 ® X, 1) is now
clear by Lemma 7.4 (4).

Next we claim

le/2]
Clsie,m @ xm ) % (s, )Y [ 725 —c+2j — L V2@ xnyt)  (7.5)
j=1
[c/2]

X H (25 — ¢4+ 2§ — 2,7, A2 @ X, 1),
j=1
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where [...] appears only when H = Spy,,.. This will complete the proof by the afore-
mentioned lemma. To prove (7.5), one reduces to the case k = 1 using Casselman’s
subrepresentation theorem [Cas80a] and (5.6), then it is essentially implied by the
proof of [Yam14, Lemma B.1] (see also [Swe95, Yam11] and the conclusive [GI14,
Appendix A.3]). In more detail, one argues by a globalization argument using (6.3),
(6.13) and § 6.6. In our setup (as opposed to [Yaml4]), at the p-adic places we
can always compute C(s, ¢, T ® xr, ) using (6.10) (see § 6.5), unless c is odd then
(6.10) is valid when |2| =1 (see § 2.2). In the remaining case we can still determine
C(s,¢, T ® Xr,) using unramified sections and the multiplicative formulas for the
functional A on both sides of (3.4), given in § 5.3.2 (see also § 5.3.3). 0

8 Global Theory: The Completed L-function

Assume G # GL,, (the results of this section are known for GL,). Let F' be a
number field and A be its ring of adeles. Denote the set of infinite places of F' by
Seo- Let m and 7 be cuspidal representations of G(A) and GL;(A). If G = GSpin,
let xx = 7o (a), otherwise x; is trivial. Also let x, : F*\A* — C be the central
character of 7.

Theorem 8.1. Let S be a finite set of places of F', such that outside S, all data are
unramified. The partial L-function L°(s,7 x 7) admits meromorphic continuation
to the plane.

Proof. The Lh.s. of (6.15) admits meromorphic continuation, and on the r.h.s. for
any given s, by Proposition 2.6 and Corollary 6.9 we can choose data such that each
integral at a place v € S is holomorphic and nonzero. |

In § 7 we defined local L- and e-factors. Now we may define the global (completed)
L-function L(s, 7 x 7) and e-factor €(s, ™ x 7), as the Euler products of local factors
over all places of F. Note that €(s, 7 x 7) does not depend on 9 by (4.7).

COROLLARY 8.2. The L-function L(s,m x T) admits meromorphic continuation to
the plane.

Proof. By Theorem 8.1, and since the local L-factors admit meromorphic continua-
tion. O

Theorem 8.3. The global functional equation holds:
L(s,mx 1) =¢(s,m x T)L(1 — 8,7 x 7).
Proof. This follows from (4.10) with (7.1). 0

We turn to proving boundedness in vertical strips.
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Theorem 8.4. Let S be a finite set of places of F, such that outside S, all data
are unramified. Assume L°(s, 7 x 1) and L°(s, 7" x 1) have finitely many poles in
Re(s) > 1/2, and all of them are real. For any ¢ > 0, there are constants A, B > 0
such that |L°(s,m x 7)| < A(1 + |s|)? for all s with Re(s) > 1/2 and |Im(s)| > e.

Proof. We closely follow the arguments of [GL06, Proposition 1]. Let Sy C S be the
subset of finite places. Using (7.1), we may write (4.10) in the form

L3(s,m x T)
Lg,(1—s,mV xT1V)

Ls_ (1—s,7¥ x1tV)L5(1 —s,7¥ x V)

Lg(s,mx )

=eg(s,m X T,1) ,
where the subscript Sy (resp., S, So) denotes the finite product of factors over the
places in Sy (resp., S, Se). According to our assumptions on the finiteness of poles,
the Lh.s. has finitely many poles in Re(s) > 1/2, and L%(1 —s,7¥ x 7¥) has finitely
many poles in Re(s) < 1/2. By Lemma 7.4 (1), Lg_(1—s,7¥ x 7) also has finitely
many poles in Re(s) < 1/2. The remaining factors on the r.h.s. do not contribute
(any) poles. Therefore, there is a polynomial P(s) such that

L3(s,m x T)

L(s) = P(s) Lg,(1—s,mv x 1Y)

is entire.

Next, we can find r; < 0 < 79 such that L(s) is bounded on the boundary of
the half-strip {s : 71 < Re(s) < ro,Im(s) > €} by A(1 + |s|)® (by assumption the
poles of L(---) are real, therefore any € > 0 suffices).

Indeed, on the right boundary, this follows since L°(s, 7 x 7) is absolutely con-
vergent for Re(s) > 0 hence bounded there, and for v < oo, L,(s,m, x 7,)7* is
bounded on any vertical line Re(s) = o depending only on o. On the left, this is
because L%(1—s, 7" x 1) is absolutely convergent for Re(s) < 0, L, (s, m, x7,) "' is
again bounded on vertical lines for v < oo, and |Lg_(1—s, 7Y x7Y)/Ls_(s,mx7)| <
A(1 + |s|)? by Lemma 7.4 (4).

Moreover, by [GL06, Theorem 2| (stated also for non-generic representations)
L%(s,m x 7) is a meromorphic function of finite order, whence so is L(s). Now the
Phragmén-Lindel6f principle implies |L(s)| < A(1 + |s|)® on the half-strip, thereby
on {s:r; < Re(s) < ro} (with possibly different constants A, B) because L(s) is
entire.

To obtain the bound for L° (s,m x T) we apply the maximum modulus principle
exactly as in [GL06, Proposition 1]. O

COROLLARY 8.5. If L(s,7m x 7) and L(1 — s, 7" x 7V) are entire, they are bounded
in vertical strips of finite width.

Proof. Let S and Sy be as in Theorem 8.4. Since L(s, 7 x 7) is entire, it is enough to
prove boundedness in D = {s : r; < Re(s) < ra,|Im(s)| > €}, where 1 < 0 < 79,
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and e is sufficiently large such that Lg (s, 7 x 7) is analytic in D (see Lemma 7.4
(2)). Put

L(s) = Lg,(s,m x 7) "' L(s,m x 7) = Lg_ (s, 7 X T)LS(S,TF X T).

Since L(s,m x 7) and L(1 — 5,7 x 7V) are entire, so are L%(s,m x 7) and L%(1 —
s,m x V). Hence we may apply Theorem 8.4 without restricting to Re(s) > 1/2
(see [GLO6, Remark 2]), and deduce that L°(s,m x 7) is bounded by A(1 + |s|)?
in D. This bound is now polynomial in | Im(s)|, while the L-functions appearing in
Lg_ (s, mxT1) decay exponentially in | Im(s)| (Lemma 7.4 (3)). Hence L(s) is bounded
in D.

As in [GLO6, Proposition 1], let C be the (discrete) union of discs of fixed radius
r > 0 around the poles of Lg, (s, x 7). Since Lg, (s, x 7) is bounded in D — C, so
is L(s,m x 7), hence by the maximum modulus principle L(s, 7 X 7) is bounded in
D, completing the proof. O
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Appendix A. Technical results on analytic families of representations
(Dmitry Gourevitch)

Let 2 H be a real reductive group. Fix a maximal compact subgroup Ky of H. Let
P be a parabolic subgroup of H, and Mp be its Levi quotient. Let p be a (com-
plex) smooth Fréchet representation of Mp, of moderate growth. For an algebraic
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character y of Mp and s € C', let V (s, p) be the space of the smooth induced repre-
sentation Ind® (|x|*p) (I is determined by Mp). For example H is a classical group,
P is a Siegel parabolic subgroup of H, Mp is isomorphic to GL,(R) or GL,(C), p is
in addition admissible of finite length, x is the determinant character and s € C.
By virtue of the Iwasawa decomposition, the spaces V (s, p) where s varies are all iso-
morphic as representations of Kz to the smooth induction V:= Ind]\K/l’; Ak (PlMpnK L )-
Let W denote the space of functions from C! to V that are holomorphic in the
sense that their composition with every continuous functional on V' is a holomorphic
function. This notion was discussed by Grothendieck [Gro53, § 2]. Since V is a
Fréchet space, by [Gro53, § 2, Remarque 1 and footnote 4] a function f : Ct — V is
holomorphic if and only if it is continuous, and in addition % o f is a holomorphic
function C! — C for every v in a separating set X of functionals on V. Separating
here means that they have no common zeros on V. For example, we can take X to
be the set of all functionals of the form v — (w,v(k)), where k € Ky (thus v(k)
belongs to the space of p), and w is a K;-finite vector in the space of the continuous
dual representation of p. Here, Kj; is a maximal compact subgroup of M.

Define a topology on W by the system of semi-norms ||f||}, := maxscp v(f(s)),
where D runs over all closed balls in C!, and v over all the semi-norms on V. Note
that this family of semi-norms defines a Fréchet topology on W. Indeed, the topology
stays equivalent if we keep only balls with rational centers and radii, and thus can be
given by a countable family of semi-norms. Furthermore, the topology is complete
since for any Cauchy sequence f, and any s € C!, the sequence of vectors f,(s)
converges, and the limit f(s) is holomorphic in s by the Cauchy formula, since for
every continuous functional ¢ on V, the holomorphic functions ¥(f,(s)) converge
to 1(f(s)) uniformly on compact sets.

Note that W is naturally a continuous representation of H of moderate growth
(see e.g., [Jac09, § 3.3]). Furthermore, W is a smooth representation of H. Indeed,
V (s, p) is smooth for every s, and for every X in the Lie algebra of H and f € W, the
functions ¢~ (exp(tX)f(s) — f(s)) converge when t — 0 to the derivative X (f(s))
uniformly on compact sets. The latter follows from the definition of the topology on
the smooth induction (see e.g., [Cas89] for this definition).

Let R be a Lie subgroup of H. Let C*°(R) denote the space of smooth functions on
R, and let C2°(R) be the subspace of compactly supported functions. Fix a (non-
zero) left-invariant measure dr on R. For any ¢ € C°(R) and any f € W, define

¢(f) € W by

Equivalently, we can define ¢( f) using the action of ¢ on the representation W, rather
than separately on V (s, p) for each s. The Dixmier-Malliavin Theorem [DMT78] (see
also [Cas] for a modern exposition and [Dor]| for an extension to bornological spaces)
applied to W implies the following statement.
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Theorem A.1. For any f € W there exist m € N, ¢1,...¢,m € CP(R) and
Jiooo oo fm € Wosuch that f =" ¢i(fi), dee., f(s)=>0"1 ¢i(fi)(s) for all s.

REMARK A.2. As a rule, even if f does not depend on s, the sections f; will still
depend on s, unless R < K.

In the discussion above, and in the theorem, one can restrict the domain of the
functions to any open subset U of C'. One can also define meromorphic sections
of W as functions f from U \ S to V for some discrete set S such that for some
holomorphic function a : U — C, the product af extends to an element of W.
Multiplying by «, Theorem A.1 implies the following corollary.

COROLLARY A.3. For any meromorphic section f € W there existm € N, ¢1,...,dm
€ C°(R) and meromorphic sections fi,..., fm € W such that for all s for which
f(s) is defined, each f;(s) is also defined and we have f(s) =Y """, ¢:i(fi)(s).

Consider f € W (a holomorphic section), and let D C C' be a domain (in the paper
I =1 and the domains are vertical strips of finite width). We say that f is of finite
order in D if for every continuous functional 1) on V, the holomorphic C! — C
function v o f has a finite order in D.

Theorem A.4. For any f € W there exists a sequence f, € W that converges to f,
and for every n, f, is a finite sum of the form fn, = > 0" Ui fni with the following
properties:

(1) Each fn; € W is a standard section, in the sense that fy i(s) is independent of
s.

(2) Each fpn; is Kg-finite.

(3) Each 9, : C' — C is holomorphic.

(4) If f is of finite order in D, so are all the functions Oy, ;.

Proof. According to Bishop [Bis62, Theorem 1], there exists a sequence pj of con-
tinuous mutually annihilating projections on V', whose ranges are one dimensional
subspaces of V, such that f = >, py o f. Choosing for each k a nonzero vector
v € V in the image of py, we can write f = ), oy, where each ay, : C! - Cis
holomorphic.

The vectors v, uniquely define standard sections hy. We then approximate each hy
by a sequence of standard K g-finite vectors h};. Since f = Y 32, aghy, and the
sequences h}'C converge to hy for every k, there exist sequences of indices k, and i,
such that the sequence f, := Zg’;l ozkh? converges to f.

Finally if f is of finite order (in D), each py o f is of finite order, then so are the
functions . O
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Appendix B. Proof of Theorem 3.2 (Eyal Kaplan)

We prove the result by adapting the arguments from [GK] to the present setup. We
use the notation of § 1.1 and § 3. For brevity and to simplify the comparison to [GK],
we put D =Y}, . and ¥p = ¢y (D of loc. cit. is a different subgroup but plays the
same role). Let p be a (k,c) representation of finite length, not necessarily of the
form p.(7). We prove dim Homp(V (s, p),v¥p) < 1 by analyzing distributions on the
orbits of the right action of D on the homogeneous space P\H. For h,h' € H, write
h ~ ' if PhD = Ph'D, otherwise h + h'. Denote P, ="' PN D. By the Frobenius
reciprocity law, the space of distributions on the orbit PhD is given by

H(h) = Homp, (" (|det |"Y2p) @ 5! @ Ap, Op). (B.1)

Here Aj, is the trivial one dimensional representation if F' is p-adic or h ~ &g
(0p was defined in § 2.4), otherwise for each integer v > 0, Ap,, is the algebraic
dual of the symmetric v-th power of the normal bundle to PhD, and 0y(x) =
op, (:c)&Bl(a;)(S;/z(hx) (x € Py). We prove H(h) = 0 when h # &y, and dim H(dp) =
1. The local analysis on the orbits implies the result: in the non-archimedean case
this follows from the theory of Bernstein and Zelevinsky [BZ76] of distributions on
[-sheafs, note that the action of D is constructive; in the archimedean case the anal-
ysis is far more involved, but now follows transparently from Kolk and Varadarajan
[KV96] and Aizenbud and Gourevitch [GK, Appendix], exactly as explained in [GK,
§ 2.1.3]. Note that for the vanishing arguments we only use the equivariance prop-
erties with respect to unipotent subgroups of P, and for these the representations
Ap,, can be ignored (see [GK, § 2.1.1]).
Fix H = Spyj,.. At the end of the proof we explain how to adapt it to SO, and
GSpingy,. (for GLg, the result already follows from [CFGoK, Proposition 2]).
Since V(ery X Up = D < P, we have P\H/D =[], PhD with h = wu, where w is a
representative from W(Mp)\W (H) and v € Ny N M) < Mp. Identify w with a
kc-tuple of 0’s and 1’s, where the i-th coordinate corresponds to
Ikc—i
0 1
Iagi-1y
€o 0
Tye—i
Eg, w = (1,0 ) = diag(lp._1, (60 1) o Ire—1). Writing v € D in the form
(’U@j)lgiﬂ'g 2k with Vi € Mat,., let B; be the i-th block Vi i41, 1 < i <k, then
Br € DN Up. Note that B; takes arbitrary coordinates in Mat,. for ¢ < k, while
By € {X € Mat, : J.(*X)J. = X}. Also ¥p|p, = 1 o tr for each i.
As shown in [GK, § 2.1.2], the condition

¢D‘Dmh*1UP #1 (B.2)

implies H(h) = 0 (in loc. cit. 1y was restricted to U N""Up).
Let h = wu. We have the following analog of [GK, Lemma 2.6].
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LEMMA B.1. Condition (B.2) is implied by

plpre i, # 1 (B.3)

Proof. By (B.3), there exists a root in D such that for the subgroup Y < D generated
by this root, Y < Up and ¢pl|y # 1. Since u normalizes D, it remains to show
Ypl.-1y # 1. If this root belongs to B; for i < k, it is identified by a diagonal
coordinate d of B;, and if i = k, by two diagonal coordinates (d,d) and (c—d+1,c—
d+1) of B;. In both cases, since u € Ny N M., the conjugation by u only changes
coordinates above or to the right of these diagonal coordinates, whence ¥p|.-1y # 1
(cf. the proof of [GK, Lemma 2.6]). 0

Recall the embedding G:LCA of GL. in GLj,., and further embed GLCA in Mp by ¢© —
diag(g”, (9)*). We see that GLZ stabilizes the restriction of ¥p to By,..., Br_1.
Since (9" ¢p)|p, (X) = w(tr(Jtg~ ' J.g~ X)), the stabilizer of 1p in Mpis {g° : g €
GLc,'gJeg = J.}. In particular, the stabilizer contains W(O,) (the Weyl group of
O.) regarded as a subgroup of permutation matrices. The following result simplifies
the structure of w, at the cost of slightly modifying u. See [GK, Propositions 2.7-2.8].

PROPOSITION B.2. We have H(h) = 0, unless h ~ wiao such that for an integer
0<l<n,

= (1"0"" 1wy, . wy), V1 <i<k,
w; = (17,00 di ey 0 < gy < <dj_y <n—1,

o= UOA for oo € W(O,) and o4 e Ny n Mery.

Proof. Put w = (wy,...,wy) with w; € {0,1}¢ and denote the j-th coordinate of w;
by w;[j]. For 1 < j <mn, if wi[j] = wi[c—j+1] =0, (B.3) holds, then by Lemma B.1
(B.2) holds whence H(h) = 0. This already describes the first ¢ coordinates of @ up
to a permutation. E.g., [ is the number of coordinates with wy[j] = wi[c—j+1] = 1.
Assume w;[j] = 1 for some 1 < i < k and 1 < j < ¢. Hence the j-th column of By_;
is permuted into Up, and if w;1[j] = 0, the j-th row of By_; is not permuted. Thus
the (7, j)-th coordinate of Bj_; is permuted into Up, and as above (B.3) implies
H(h) = 0.

Now as in the proof of [GK, Proposition 2.8], we can choose a suitable permutation
o= O'OA with g € W(O,) such that @ = “w satisfies the required properties, then
clearly so does 4 = u, and h ~ ch = wuo. O

Re-denote w = w and u = 4 with the properties of the proposition, then h = wuo.
To compute "D N Mp note that *D = *D. We can further multiply & on the left by
elements of Mp, to change the blocks J, appearing in the matrix corresponding to
w to blocks I, then conjugate "D N Mp by permutation matrices in Mp to obtain a
subgroup of Ny, (see [GK, (2.26)] and the discussion after [GK, Proposition 2.8]).
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ExamMpPLE B.3. For k = 2, we first multiply h on the left by elements in Mp to
obtain

Iiya,
In—1-ay

I

eol;

I'n,—lfdl
€olz+d1

then conjugate "D N Mp by

In—l—dl In—L—dl
I._, I. Ioe—1—ay
I, I, Iiya, :
Inyita, litay

We see that "D N Mp = Vj for the composition 3 of kc given by
B=mn—-1l—dg1,....n—=l—dy,n—In+ln+l+dy,....,n+1+dpq1). (B.4)

(Cf. [GK, (2.27)].) Denote by, = "ply,. First we describe “4p|y,, then handle uo.
For

In—i—q,_, b

Lni—a; be—1
Iy by
Lty brya

(S Vg,

In+l+dk.72 bor—1

In+l+dk71

2
w Oaj—d;_qxn—i-d; Odq xn—1—dy
bplo) =9 | > tr (bk;_j( I, )) + tr (bk_l( e ))

j=k—1
len l In Onxl
+ tr I, —tr | br1 | Oarxn Oayxi
Orxn—1 Oixn Iy
k— Onxa;_y+1
— E tr bk+] Odj—dJ,IXn Oaj—a; yxd;_1+1 . (B5)
=2 Oa;_141xn Ta; 1

(The sum Z?:k_l is omitted if k < 2.)
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PROPOSITION B.4. Assume k > 1 and | < n. If H(h) # 0, ¥y, belongs to the orbit
of

2

v | Y (bk,j (*dj‘iiiif’;j_"dj )) +tr (b (F)) b (bk Cﬁifl ))

) *ixn—1
j=k—1

I, Ot k—1 I, Onxdj_1+l
—tr bk:—i—l *dy xn *dyxi — E tr bk+j *dj—dj_qxn Fdj—dj_qxd;_q+1
*ixn *1 =2 *dj_14+ixn *dj_ 141

Here x means undetermined block entries. When uo is the identity element, all
coordinates were computed above and (B.6) coincides with (B.5).

(B.6)

Proof. The proof is a simplified version of [GK, Proposition 2.11]. We need some
notation. Set dy = 0 and dy = dj_1. For each 1 < ¢ < k — 1, write B; as the upper
right block of

1,1 1,2 1,3 1,4
Lipa, ., B! B! B! B!
2,1 2,2 2,3 2,4
I d B; B> B> B>
‘k—i T Yk—i—1 K i i i
3,1 3,2 3,3 3,4
In*l*dk,i Bi, Bi’ Bi, Bi’
4,1 4,2 4,3 4,4
I, B; B; B; B;
Tivay ;4

Loy, _—ap_; 4
Ln—i—ay_,

I

and Bj as the upper right block of

I, By' By? B;v? By*
I._, By B}® B} B
I._, BY'  B}* B} B}
I, By By BY B
1,
Iy
I,
I,

Wit,h this notation ¢ p is given by 1/1(2?21 Z?‘:l tr(Bf 7)). Denote the lists of blocks
Bf’t conjugated by w into Mp, Up and U, by .#p, %p and %, (resp.). We have
AMp ={BS", B B B B B B B 1 <i<k -1}

[1{B:% B0 B2 B By B
Up ={B},B}* 1 <i<k-1}[[{B"}
and the remaining blocks belong to % .
Recall h = wuo. Since o fixes ¥p, "pp = Y1) p, thus we can already assume h = wu

(but wu is still given by Proposition B.2). Write u = diag(z1,...,2r) € M) with
z; = %°v; and v; € Ngr,, (recall o' e Ny N Micxy). We can simplify the form of z;
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as follows. If z; = zjm; such that * diag(z1,..., 2, 2", ..., 2{") € Mp, then because
h ~ ph for any p € P, we can already assume z; = m;. We take for 1 <i <k,

Iz+dk_i+M,;lMi2 M} 0
m’b = sz Infl*dk,i-i_MiSM? MLS E GLC,

0 M} I,
1 2 3 4
Iiva,_, + M; M; € GLiyqg,_,, Lyi—a,_, + M7 M; € GLyp—j—q, _, -

These matrices are invertible because m; € °°Ngr., and so are the matrices
Ln—i—a,_, + M?M} (see the proof of [GK, Proposition 2.11]). Then

Tiyay, —M} M} M}
mit = —M?  Loae +MEM} ~(In—i—ay_,+MZM})M? ,
MEAM? Mgy +MEMY) LA ME (L iy +MEM)M?

Also set for X € Matgyp, X' = —J' X J,.
To determine vy, we compute “¢bp on the blocks of D conjugated by w into
bk, bkt1s .-, bog—1. First, by = (B} B»* B*). To compute “/p on by we consider
my, ' By(J.!m 1 J.). Note that
: T+ (ME) (I (M )" (M) ) (M) (M) (In—1+(My )" (Mg)') (M) (M)’
Jemy e = (T (M) (M) ) (M) L+ (M) (MR (M)’
(M) (M) (M) I
Since Yplp, = ¥ o tr, “Yplp, = Y(tr(Jlm, ' Jom, *By)). The restriction of “yp
to Bz,s is given by the product of rows n+ 1,...,¢c—1 of JctmlzlJc and columns
[+1,...,n of m,;l, and because Bi’?’ € %p, we have
— M}
(T (M (ME)YMEY Lo+ (ME) (MR (M})") ( T+ MR My, > =0, (B.7)
—ME(In 1 +MEM})

otherwise H(h) = 0 by (B.2). Since the restriction of “i)p to (By*,B}?) is given by
the product of rows 1,...,n of Jctmlzljc and columns [ +1,...,n of mlzl,

(In+(M£?)’(Infz+(M;i)’(M;?)’)(M;?)’ (MS)’(Ianr(Mé)’(M%)’))
(M) (M)

— M1

X < L4 M2M} ) = (M), (B.8)
=M (In1+ME M)

where a = I, —I—M%M,i € GLy,—. Set dy = diag(I(j—1)cq15 @ Le, a*, L(k—1yet1) € Mp.

Since “d, € Mp, h ~ wd,u and when we repeat the computation above we obtain

(_J‘I/l’%'_a;l ), hence “1)p belongs to an orbit of a character which agrees with (B.6) on

by.
For1<i<k-—1,

(B (BRLY (B
b’“*"((Bzf»' (B2, (Bi,fg’)' (B.9)
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To compute “¢p on bg; consider m,;_lin,imk,iH. Since ¥pl|p,_, = ¥ o tr,
“Pplp,_, = p(tr(my—i1mit, Bi—i))-

This restriction must be trivial on Bi’fi € %p, otherwise H(h) = 0 by (B.2). Thus

we obtain, if H(h) # 0,

—My_;
(On><1r+di,1 M}§711+1 In) Inflfdi"l_M)gfiM]%fi - O-
7Ml?—i(1"*l*di+Mlg—iMli—i)

Hence

My M _;
(O"XH'di—l Mlj—t‘-%—l I") _(I"—l—di—i_le—iM%fi)Mg—i = In
I7L+M;cl—i(1”*l*di+MI§—iMI:—i)MI§—i
Then the restriction of “¢)p to B:fi, which corresponds to the bottom right n x n
-1 . .. 3,1
block of my_j1my _,, is ¢ otr = ¢D|Bifi’ Similarly, because B, € %p, H(h) =0
unless

_M%ﬂ'
(Il+di_1+Mli—i+1ME—i+l M1 Otgd;_y xn ) Tni—a, +ME_ Mj_; =0.
_M;Lfi(]"_l_di—"_MI?—iMli—i)

Hence

Mli—7Mi3—7
(Il+di71+M;71:+1M1371:+1 Mli—i+l Ol+d'i—1><" ) _(I”*l*di—‘rME—iMllfi)Mg—i = O
InJFMlg—i(Inflfdi+M1§—11M1%—i)M1§—7‘,

Therefore “1)p and ¢p are both trivial on Béfi. It then follows from (B.9) that “¢p
is given on the blocks which w conjugates into bg; by

¢(t1‘( Bty (BRtiy) (B, I, Onxitd; ))
(Bili) (Bt (Bilily) Kitdipyxn  Fidbdipqgxitd; )

We conclude vy, belongs to the orbit of (B.6). O

PrOPOSITION B.5. Ifl < n, H(h) = 0.

Proof. The proof is a simplified version of [GK, Proposition 2.12]. The definitions
imply any morphism in H(h) factors through Jy, .y, (p) (see [GK, § 2.1.1]). The
pair (Vj3,1v,) defines a degenerate Whittaker model in the sense of [MW87]. Let
¢ be the transpose of the nilpotent element defined by t)y,, which is an upper
triangular nilpotent matrix in Matg.. We show ¢ is nilpotent of order at least k+ 1.
Since p is (k,c), we deduce Jy,y, (p) = 0 by [GGS17, Theorem E] (which over
non-archimedean fields is based on [BZ76, 5.9-5.12]).
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By Proposition B.4 we can assume 1)y, is given by (B.6), then the block b; of ¢ is
the transpose of the block appearing to the right of b; in (B.6), up to the signs +1.
Consider the blocks b, ...,bop—1 of ¢: for ¢ > k, the (n,n)-th coordinate of b; is
nonzero and is the only nonzero coordinate in its column, and the same applies to
the (n — I,n)-th coordinate of by. These are k coordinates, and it follows that ¢ is
nilpotent of order at least k + 1. O

REMARK B.6. The above reasoning in [GK] only implied d; = n — [; we had to use
a third method to deduce vanishing (see [GK, Proposition 2.14]), and lose a discrete
subset of s.

The remaining case to consider is [ = n, which means i ~ . Now since Ps, = V()
and ¥p|p,, is the (k,c) character (1.1)(see(B.5)),

H(dg) = HOIHV(C,C) (66 P& ¢517 1) = Hom‘/(ck) (p ®Yp, 1) = HOHlv(Ck) (p7 d)E)l)a

which is one dimensional (but the space in the theorem can still vanish) because p
is (k,c) and 1[)51 belongs to the orbit of vy, wgl = dr.eqpy. The proof is complete.
We now explain the case of H = SOgg.. The main difference is that here the restric-
tion of ¥p to the block By is given by X +— ¢ (tr(*AX)) (A was defined in § 2.1,
now A # I.).

Assume momentarily that kc is even. First, for the kc-tuple representing the element
w, the sum of coordinates must be even. Lemma B.1 remains valid, but now for the
proof if the root belongs to By and c¢ is odd, it is determined by a pair of coordinates
(d,d+1) and (¢ —d,c —d+1) where 1 < d < n.

The stabilizer of ©p in Mp does not contain W (O,), but GL% still fixes the re-
striction of ¢¥p to the blocks By, ..., By_1. We argue as in Proposition B.2: Using
conjugations by elements o = O'OA for og € diag(W (Oay,), Ic—2n), we first deduce w =
(a1le—on, 17,0771 10wy, ... wy) for some 0 < I < nand w; = (a;l_ay,, 17, 0711,
1+di-1) for 4 > 1. Here a1, ..., a; € {0,1} only appear when c is odd, and a; < ... <
ag. If ¢ is odd we now conjugate w by diag(Z,, (In 1))A. Let 0 > 1 be minimal such
that a, = 1, where if a; = 0 we set o = k + 1. Then, for j < o we have w; =
(1n’0n+1—l—dj,1’ 1l+dj,1) (dO _ O) and for j > o, w; = (1n+170n—l—dj,1’ 1l+dj,1)‘

It follows that in the even case 3 is still given by (B.4). In the odd case the leftmost
k— o+ 1 parts of g are (n — 1 — dg_1,...,n — 1 — dy—1), the next o — 1 parts are
n+1—=10—dy—2,...,n+1—1—dp), the following o — 1 parts are (n+1+dp,...,n+
[+ dy—2), and the rightmost k —o+1 parts are (n+1+1+dp—1,...,n+1+1+dj_1).
Now consider Proposition B.4. Besides minor modifications to the sizes of the parts
of § in the odd case, the main difference concerns the restriction of (B.6) to by. This
is because for i # k, ¥y, [y, depends only on +p|p, for j < k and then “+p|p, =
Yp|p,. However, o does not fix ¥p|p, (which determines 1y, ). We can write
“Yplp, (X) = ¥(tr(pX)) for o € Mat,, o = diag(o1,- . ., 0c) where g; = £1 for all i if
¢ is even, and when ¢ is odd g; = £1 for all 7 # n + 1 and 9,41 = 0. The important
observation is that ¢ p|p, will still be nonzero on n root subgroups. To determine
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“epp on by, we multiply the rows of JctmglJCQ by columns of m,;l. On the Lh.s of
both (B.7) and (B.8) we “inject” g into the product. The r.h.s. of (B.7) still vanishes
because Bz’?’ € Up (ifo > 1, Bi’s is taken to be an n—[+1xn—1[+1 block), and the
r.hus. of (B.8) becomes (1,  0)o(~M:) (if o = 1, I, here is replaced by I,,41). The
only change to (B.6) (and in particular, to (B.5)) concerns the block I,,_; appearing
in the restriction to by which is replaced by ¢° = diag(;+1,-- ., 0n) When ¢ is even,
by (¢ 0) & Maty,_;xnt1-; if 0 > 1 and by (%0) € Maty,, 1 1_jxpn—; for o =1.

This change does not cause any new complications in the proof of Proposition B.5
and we conclude [ = n. When c is even this implies h ~ dy and we complete the proof
as above. When c is odd the remaining compositions 3 are uniquely determined by
o0, which varies over the numbers 1, ..., k41 such that k—o0+1 is even. For each such
B, the associated partition is pg = (k4+0—1, k*=1 k —o0+1) and the character Py,
is generic. For o > 1 the partition pg is greater than (k°), thus H(h) = 0 (because p
is (k,c)). Since we are still considering the case where kc is even, k — o+ 1 is even
for o = 1. Then h ~ §p again, and the result holds. Lastly, when kc is odd we write
w = w'y; with detw’ = —1. Since now D = V() x 2Up (see § 3), the same proof
is applicable. In addition, since the proof only involves unipotent subgroups and the
properties of (k,c) representations, the case of H = GSpiny, is now clear as well.
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