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Abstract—The paper presents systematic tests to determine
if a particular transfer function in an interconnected system is
strictly proper or has a feedthrough. Considering a strictly proper
module between two nodes in a networked system, if only the data
of the two nodes are used, there are situations where numerical
tests to determine if the module is strictly proper will fail. It
is shown, however, that marginalizing some of the nodes of a
networked system under certain conditions preserves delays and
feedthroughs in certain links. Therefore, using a set of auxiliary
nodes that satisfies certain conditions, it is possible to design a
systematic test to determine if a module in the networked system
is strictly proper. The conditions are proven to be sufficient.
Similar ideas are used to formulate a systematic test to determine
if a module has a feedthrough.

Index Terms—Networked systems, Delays, Feedthroughs

I. INTRODUCTION

An active line of research in studying interconnected sys-
tems is the identification of a particular module between two
variables of a network. A main category of methods that at-
tempt to address this problem are based on the prediction error
method that predicts the output node using the information of
a predictor inputs set containing the input node together with a
set of auxiliary variables [1]-[6]. These techniques, however,
assume that some a priori knowledge regarding the location
of delays (strictly proper modules) and feedthroughs in the
network is available. This paper deals with the problem of
obtaining such information directly from data.

In a networked system, if a module of interest is strictly
proper and only the data of the input node and the output node
are used, there are situations where numerical tests will fail to
determine that the module is strictly proper. This occurs, for
example, when there is another parallel path between the two
nodes containing modules with feedthroughs or when there
is a confounding variable that influences both nodes through
directed paths that contain modules with feedthroughs.

There has been some attempts in literature to test for the
presence of delays and feedtroughs in networked systems
directly from data [7]-[9]. While [7] proposes a two-test tech-
nique with the objective of detecting delays and feedthroughs,
no theoretical guarantees are provided. On the other hand, the
main goals of [8] and [9] are identification of the structure and
dynamics of a networked system with direct feedthroughs.
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This article focuses on the problem of detecting from
observational data whether a module embedded inside a net-
worked system is strictly proper or has a direct feedthrough.
A strictly proper module is a module where the degree of
the numerator is less than the degree of the denominator.
Considering a strictly proper module between two nodes in
a networked system, if only the data of the two nodes are
used, there are situations where numerical tests to determine
if the module is strictly proper will fail. It is shown, however,
that marginalizing some of the nodes of a networked system
under certain conditions preserves delays and feedthroughs
in certain links. Therefore, using a set of auxiliary nodes
that satisfies certain conditions, it is possible to design a
systematic test to determine if a module in the networked
system 1is strictly proper. The conditions are proven to be
sufficient. Similar ideas are used to formulate a systematic
test to determine if a module has a feedthrough. The results
could be seen as an extention and modification of the results of
[8] and [9]. In particular, while the results of [8] and [9] treat
delays and feedthroughs by attempting to obtain a “recursive
graphical representation” of the network for the objective of
identification, this paper provides sharper theoretical results
mainly focused on detection of strict causality of a module
in the network directly from data. Moreover, the proposed
conditions are less restrictive than the conditions required for
consistent identification.

The article is organized as follows. Section II reviews some
definitions and background information introducing networked
systems and their associated graphs. In Section III, a motivat-
ing example is presented. Section IV presents the main result
of the paper providing conditions under which marginalization
of some of the nodes of a networked system preserves delays
and feedthroughs in certain links. Section V presents a test
for determining if a module has a delay. Section VI presents a
test for determining if a module has a feedthrough. Concluding
remarks are given in Section VII.

II. PRELIMINARIES

In this section we briefly review some definitions and
introduce our notation. We assume the reader is familiar with
dynamic network identification literature and graph theory.
The readers are referred to [4], [8], [10], [11] for more details.

A. A Model Class for Dynamic Networks

The class of networked systems considered in this paper is
similar to the models studied in [3]-[5], [8], [9], [12].



Definition 1. A nerworked system ¢ is a pair (H(z),n) where
elements of the matrix H(z) are causal discrete-time transfer
functions, z is, in general, a complex number, and n is a vector
of v mutually independent stochastic processes with rational
power spectral density. The output signals x(t) for j=1,...,v
are given by

xj(t) =n;j(t) + Y Hj(2)xi(1),

icV

for j=1,....,v (1)

Note that the noise process 7;(¢) could be colored. Net-
worked systems described by (1) could be represented via
graphs. In a directed graph, a path between i and j is a
sequence of distinct edges such that the first edge contains
i, the last edge contains j and each two consecutive edges
in the sequence are adjacent. Furthermore, if the edges have
all the same orientation (as in {1 —3 — 4 — 5}) the path is
called a dipath or a chain.

Definition 2. Let & = (H,n) be a networked system with a set
of nodes V :={1,...,v}, and let E| be the set of single-headed
edges and E, be the set of double-headed edges representing
strictly proper modules such that

(@) i— j¢ E UE,; implies Hj,'(Z) =0

(b) i— j ¢ E implies Hji(z) is strictly proper.

We say that the multi-arrowed graph G = (V,E\,E;) is a graph
of the networked system [4].

Definition 3. We say that the multi-arrowed graph G =
(V,E|,E,) is recursive if in every directed loop there is at
least one double-headed edge.

In a graph G, we say

e node j is a child of node i if i — j € E{ UE, which is the
same as node i being a parent of j. We denote the set of
children of node j by chg(j)={veV|jo>veEE UE}
and the set of parents of i by pag(i) ={veVjy—ic
E|UE}.

o node j is a descendant of i if j =1 or if there is a dipath
from i to j. In such a case, node i is an ancestor of node
J- The set of descendants of i is denoted by deg(i) and
the set of ancestors of i is denoted by ang(i).

Definition 4. Given a graph G = (V,E|,E»), the graph of
instantaneous propagations G’ is the subgraph obtained by
removing all the double-headed edges of G.

Definition 5. A node j in a path @ in a graph G is a
o a fork, when m is of the form i< j—k
o collider, when m is of the form i — j <k
e a chain link, when 7 is of the form i — j — k

Definition 6. Given a graph G, we say that a set of nodes Z
block the path & if

o there exists a non-collider i on w such that i € Z; or

o there exists a collider ¢ on Tt such that deg(c)NZ = 0.

Definition 7. We say that a path 7 is j-pointing if the last
edge of & is of the form k — j for some node k.

Definition 8. The natural filtration generated by a set of
stochastic processes xa, up to time t is denoted by I4(t).

By the notation of Definition 8 the estimate £;(r) of x;(r)
in the least square sense based on the information of variables
Xp+ up to time ¢t and the information of variables xp- up to
time ¢ — 1 could be written as

£j(t) =E(xj(0) | Ip+ (), Ip- (£ = 1)). 2)

where Wji(z) for k € D are proper modules and for k € D~ are
strictly proper modules. In the linear Gaussian case Equation
(2) reduces to to

Xj= Z ij(z)xk—i- Z ij(z)xk
keDt keD~

3)

B. Marginalization in dynamic networks

Here, we explain the notion of marginalizing [13] certain
nodes of the the networked system. The marginalization of
a node in a networked system is the process of defining
a new system with the same variables, but such that the
incoming links in the marginalized node are removed [13].
For example, consider the network of Figure 1 where node 4
is not measured. For the process x;(f) we can write

1 2

\_/

@

Fig. 1. Graphical representation of the network discussed in Section II-B

x2(t) = ma(t) + Hoa(2)x4(t) + Ha1 (2)x1(2)
n2(t) +Ha1 (z) (ni (1) + Hi3(2)x3(t) + Hia(2)xa(t)) + Hoa(2)xa
= (t) + (Ha4(2) + Ha1 (2) H14(2) ) x4(t)
+Ho1(2)m (1) + Ho1 (2) Hiz(2)x3(t) - (4)

If we marginalize nodes 3 and 4 and reduce the network

My =ny + Hiywy + Hizes fip = ng + Hogy N3 =n3 iy =ny+ (Hoy + Hy Hyg)wy + Haymy

Hoyy i : Hyy Hyz : :
(a) (b)

Fig. 2. (a) Marginalizing nodes 3 and 4 (b) Marginalizing nodes 1 and 4

to nodes 1 and 2 we will have a network with a graphical
representation G of Figure 2 (a). In this new network we have
T1(t) = x1(1), %2(r) = x2(t), H21(2) = Ha1(2),

fl](l‘):I’l](l‘)+H|4(Z)X4(I)(Z)+H13(Z)X3(l‘), )

, and 71y (1) = np(¢) + Hp4(2)x4(2). In the following we explain
further why the unmeasured confounding variable node 4 does
not hinder the identification of H»3 in the same way it does
for Hy;. Since 71;(¢) and 7i,(t) are correlated (because of the
terms associated with x4(¢)) when we use the information of
x1(f) to estimate x(z), we get a biased estimate for Ha(z).

However, if we marginalize nodes 1 and 4 and reduce the
network to nodes 2 and 3 we will have a network with a



graphical representation G of Figure 2 (b). In this new network
we have (1) = x2(t), X3(t) = x3(t), Ha3(z) = Ha1(z) Hi3(2),

fip(t) = na(t) + (Haa(2) + Ha1 (2)Hia(2) ) x4 (1) + Har (2)na (1)
(6)
and 73(t) = n3(r). Since nz(¢) and 73(¢) are uncorrelated
when we use the information of x3(f) to estimate x»(z), we

get a consistent estimate for Hy3(z) which is equivalent to
Hy(z) Hi3(z).

III. MOTIVATING EXAMPLE

Consider a simple two-node network with a block diagram
depicted in Figure 3 (a). A recursive graph of the network is
depicted in Figure 3 (b). Suppose the objective is the identifica-

Hj =?

Hy

Fig. 3. (a) Block diagram of a two-node networked system (b) A recursive
graph of the networked system containing two nodes in a feedback loop

tion of module Hj;(z). Note that nodes i and j are involved in a
feedback loop. Since the edge from i to j is double-headed, we
know that the module Hj;(z) is strictly proper. This information
is crucial for the identification. Indeed, considering a standard

.. . N Wii
prediction error method, the quantity Hj; = 17‘-,/‘,(_?22)
J]

where
W;i(z) and W;;(z) are computed from

E(xj(0)l1j(r = 1), 1(2)) = Wjjxj + Wiixi.

when we include the information of x; up to time ¢, is a biased
estimate of H;(z). However, if we include the information of
X; up to time 7 — 1

E(x; (1)1,
Wii(z)

the quantity H;; = =W, is a consistent estimate of Hj;(z).

The above example shows one instance of why it is im-
portant to be able to obtain information about delays and
feedthroughs in modules embeded in a networked system
when such information is not available.

For a simple two node networked system described by
xj(t) = Hji(z)xi(t) +nj(t), it is possible to use the information
of variables x; and x; to consistently identify the module H;(z)
and, consequently, observe if it is has a delay or not. However,
if the networked system is more complex, the information
of variables x; and x; would not, in general, be sufficient
to consistently identify Hji(z) or to determine if it has a
delay. Many works [2], [9], [13]-[15] have tried to provide
sufficient conditions for a set of additional auxiliary variables
to guarantee consistent estimation of a particular module in
a dynamic networked system. All these techniques, however,
require a priori information about the location of delays
and feedthroughs. Indeed, it is crucial to know whether to
include in the estimator the information of a certain auxiliary
variable up to time ¢ or up to time # — 1, as was shown in

1 j(t = 1)) = Wijx; + Wjixi.

the motivating example of Section III. Similarly, when the
objective is merely determining if a particular module Hj;(z)
has a delay or not, using the information of variables x; and
x; would not, in general, be sufficient. For example, if H ji(z)
has a delay and there is another parallel path between the
two nodes i and j containing modules with feedthroughs or
when there is a confounding variable that influences both
nodes i and j through directed paths that contain modules
with feedthroughs, the information of x; and x; would not be
sufficient to determine whether Hj;(z) has a delay.

IV. MAIN RESULT

This section presents the main result of the paper provid-
ing conditions to investigate whether a certain module in a
networked system has a delay or not. Although blocking all
the j-pointing paths between two nodes i and j does not
guarantee the consistent identification of the module Hj;(z) in
a networked system, the following theorem shows it suffices
to analyze whether Hj;(z) has a delay or not (for consistent
identification we need more conditions, see [3], [4]). This is
done through the analysis of marginalizing [13] certain nodes
of the the networked system. The marginalization of a node in
a networked system is the process of defining a new system
with the same variables, but such that the incoming links in
the marginalized node are removed [13].

Theorem IV.1. Consider a networked system (H(z),n) with
no algebraic loops and with graphical representation G =
(V,E\,E,). Assume the set Z blocks all the j-pointing paths
between i and j with the exception of i — j in G. Let Q be a
set of nodes such that QN (ZU{i, j}) =0. Let G" = (V,E} ,E})
be a graph obtained from G in the following way.

1) if there is at least one dipath from k to L € V\Q in G
with all internal nodes in Q and all single-headed edges,
then k— (€ V\Q isin E|

2) if all the dipaths from k to £ in G with all internal nodes
in Q have at least one double-headed edge, then k — /¢
is in E}

3) if there is no dipath from k to £ in G with all internal
nodes in Q, or £ € Q, then k = { ¢ E{UE}

We have that

o G" is a graphical representation of the network (H"(z),n)
obtained by marginalizing Q, (see Lemma 15 in [13])

o ZNdey:(j) =ZNdeg ()

o ZNang (j) =ZNang:(j)

o Hj;(z) is strictly proper if and only if Hji(z) is strictly
proper

e all j-pointing paths between i and j except i — j are
blocked by Z in G"

Proof. See the appendix. [

One of the main points that Theorem IV.1 shows is that
when a set of nodes Z blocks all the j-pointing paths between
nodes i and j with the exception of i — j in a graph of a
networked system, if we reduce the networked system to i,
J, and Z by marginalization, the module between i and j in
the new system has a delay (or feedthough) if and only if the



module between i and j in the original system had a delay (or
feedthough).

V. DETECTION OF DELAYS IN NETWORKED SYSTEMS

The following result, however, provides a test that using
a set of auxiliary variables determines if a particular module
has a delay. The sufficient conditions that the set of auxiliary
variables needs to satisfy are less restrictive than the conditions
required for consistent identification.

Theorem V.1. Consider a set of nodes A that blocks all the
J-pointing paths between nodes i and j with the exception of
i — j in the graph G of a networked system. If the Wiener
filter Wji(2) in

E(xj(t) [ Ijp0a- (6= 1), Ig+ugy (1) =
reA-UAT Ui j)

had a delay for all possible combinations of disjoint A~ and
AT with A~ UA" = A, then Hji(z) would have a delay.

Proof. See the appendix. O

The following example shows how Theorem V.l can be
applied to determine if a module in a networked system has
a delay.

Example 1. Consider a networked system with an unknown
true graph depicted in Figure 4 (a). It is assumed that node
5 which is depicted with dashed lines is not measured. It can
be seen from Figure 4 (a) that modules Hz(z) and Hy3(z)
have delays. This available graph of the network is depicted
in Figure 4 (b). As can be seen in Figure 4 (b), the information
that modules H3y(z) and Ha3(z) have delays is not available.
Suppose the objective is to obtain this information directly
from data of the nodes of the network, namely, to determine if
the modules Hz)(z) and Hyy(z) have delays from I 23 4 5(t).

(a) (b)

Fig. 4. (a) The true recursive graph of the networked system of Example 1
which is not known. It is assumed that node 5 which is depicted with dashed
lines is not measured.; (b) The available graph of the networked system of
Example 1. The goal is to determine whether the modules Hz;(z) and Hyy(z)
have delays or not.

Applying Theorem V.1 on the module H3;(z) we can see that
there is no 3-pointing paths between nodes 2 and 3 except
2 — 3. That is, the set A ={0}. Since the Wiener filterWs,(z)
in

E(xs(t) [ 3t —1),L(t) = Wi(z)xa(t) + Waz(2)xa () (8)

is strictly proper; it follows from Theorem V.1 that Hz,(z) has a
delay. On the other hand, Applying Theorem V.1 on the module

Hy3(z) we can see that the set A= {2} blocks all the 4-pointing
paths between the nodes 3 and 4, namely, {3+ 2+ 1 —4}.
By Theorem V.1 we have to consider two cases for AT and
A" The first possible combination is At = {2} and A~ = {0}.
In this case, the Wiener filter Wy3(z) in

E(a(t) | Ia(t=1),h3(0) = ), Warl2)x (1)
re{2,3,4}

€))

turns out to have a delay. The second possible combination is
AT ={0} and A= = {2}. In this case, the Wiener filter Wa3(2)
in

E(xa(t) | balt—1),55(1) = (10)

Z War(2)x,(1)

re{2,3,4}

also turns out to have a delay. Therefore, it follows from

W;r(2)x:(t) Theorem V.1 that Hx(z) has a delay.

O VI. DETECTION OF FEEDTHROUGHS IN NETWORKED

SYSTEMS

In the previous result we saw how we can infer if a module
has a delay. The following result, on the other hand, provides
a test to determine if a module has a nonzero feedthrough.

Theorem VI.1. Consider a set of nodes A that blocks all the
i-pointing and j-pointing paths between nodes i and j with
the exception of i — j and j— i in the graph G = (V,E},E3)
of a networked system. If the Wiener filter W;;(z) in

E(x;(t) | Ijvoa- (t— 1)71A+U{i}(t)) =

Wir(2)x,(1)
reA—UA+U{i,j}

and the Wiener filter Wj(z) in

Exi(t) | Iyua- (1= 1), Li+ugjy (1) =

Y

Wir(2)x(1)
teA~UATU{i,j}

12)

have a feedthrough for all possible combinations of disjoint
A~ and A" with A~ UA" = A, then either the transfer function
Hji(z) has a feedthrough or the transfer function H;j(z) has a
feedthrough.

Proof. See the appendix. O

The following example shows how Theorem VI.1 can be
applied to determine if a module in a networked system has
a feedthrough.

Example 2. Consider a networked system with an unknown
graph depicted in Figure 5 (a). What is available, however,
is the graph of Figure 5 (b). It is known that the networked
system does not have any algebraic loops. The objective is to
determine whether the module Hy3(z) has a feedthough or not.
It can be seen that, the set A= {1} blocks all the 2-pointing
and 3-pointing paths between the nodes 2 and 3. Following
Theorem VLI, we consider two possible combinations of A™
and A~. In the first combination, we consider AT = {1} and
A~ ={0}. In this case, the Wiener filter Wa3(z) in

E(o() | b—1).03(0) =), Wal(o)x(r)

re{l,2,3}

13)



(a) )

Fig. 5. (a) The true recursive graph of the networked system of Example
2 which is not known; (b) The available graph of the networked system
of Example 2. The goal is to determine whether the module H»3(z) has a
feedthrough.

and Wy (z) in

E(x3(t) | B(t—1),5 (1) = W3, (2)x(2)
re{1.2,3}

(14)

turn out to have feedthroughs. In the second combination, we
consider AT = {0} and A~ = {1}. In this case, the Wiener
Silter Wa3(2) in

E(x(t) | ba(t—1),5(t)) = War(2)x, (1) (15)
ref1,2,3}
and Ws,(z) in
E(s(t) | ha(t—1),0,0)= Y, W()x()  (16)

re{1,2,3}

also turn out to have feedthroughs. Therefore, based on
Theorem VI.I we can conclude that Hy3(z) has a feedthrough.

VII. CONCLUSION

The paper dealt with the problem of determining whether a
particular module in an interconnected system has a delay or
a feedthrough. It was shown that when marginalizing some of
the nodes of the network and reducing the network to the target
nodes and a set of auxiliary variables that satisfies certain
conditions, delays and feedthroughs will be preserved on the
particular module connecting the target nodes. This enabled
designing a statistical test that determined if a particular
module in the networked system had a delay. Another test
which required more complicated conditions was developed
to determine if a module has a feedthrough. The provided
sufficient conditions are less restrictive compared to conditions
required for consistent identification.
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APPENDIX
A. Proof of Theorem 1V.1

Proof. Following the proof of property 2) of Lemma 15 in
[13] (Node Marginalization Lemma), we find that the graph
G’ is a graphical representation of the reduced model. In the
graph G’, the nodes in Q are not descendants of any node
since they have no incoming edges. Furthermore, we have that
degr (k) =deg(k)\ Q for all k ¢ Q. Indeed, if there is a dipath
7 in G from k to £ ¢ Q, replace every sequence in 7 of the
form v — a; — ... = ay — w where {ay,....,ay} C Q with
v —w € E” to obtain the dipath 7". We have that 7" is a dipath
in G from k to £. To establish that ZNdey(j) =ZNdegr ()
we show that ZNdegs(j) € ZNdegrs(j) and ZNdeg (j) 2
ZNdeg:(j). Suppose y € ZNdeg(j). That is, there exists
a dipath 7 with all single-headed edges from j to y in G.
If no internal node on 7 is in Q, then the very same path
exists in G". If some of the nodes on 7 are also in Q, then
7 has the form j---k—a; —---a, — £--- —y, where k and
£ are not in Q and a; ---a,;; € Q. Then by condition 1) of the
Lemma, there exists a single-headed edge from k to ¢ in G”
that can be used to replace k —a; — ---ay, — £ to k — /.
We can iterate this procedure to eliminate all internal nodes
in Q. Eventually, we find a path 7’ = j-- -k — £--- — y with
all single-headed edges from j to y in G". Therefore, we have
that y € ZNdegr (), giving ZNdeg (j) € ZNdegr(j). Now
suppose, y € ZNdeg+ (). That is, there exists a dipath with all
single-headed edges from j to y in G". Then, it follows from



condition 1) of the Lemma that there exists a dipath with all
single-headed edges from j to y in G. Therefore, we have
that y € ZNdeg (j), giving ZNdeg (j) 2 ZNdeg(j). The
assertion ZNang (/) =ZNang«(j) can be established using
analogous steps swapping the roles of j and y. We prove that
all j-pointing paths between i and j except i — j are blocked
by Z in G" by contradiction. By contradiction assume that
there exists a path " between i and j that is not blocked by
Z in G". Construct a new path 7 from 7" in the following
way: for all edges k — ¢ in ©" such that k — ¢ ¢ E, replace
k — ¢ with sequence of edges k — a; — ... = ay — ¢ with
{ai,...,apy} C Q. Such a sequence of edges k —a; — ... =
ay — ¢ is always a dipath in G because of the way G” has
been constructed. Observe that 7 is a path in G. Furthermore,
7 and 7" have the same colliders. We now want to show that
7 is not blocked by Z in G. If " has no colliders, then 7
has no colliders either. Hence, since 7" is not blocked by Z,
7 is not blocked by Z leading to a contradiction. Consider,
then, the case where m” has all active colliders, and no non-
colliders in Z. Because of the way m was obtained, 7 has
no non-colliders in Z. Also, a collider ¢ in ©" is a collider
in . Because degr(c) =deg(c)\Q and ZNQ =0 we have
degr(c)NZ =deg(c) NZ. Hence a collider on " activated by
Z in G’ is also a collider on 7 activated by Z in G. This again
leads to a contradiction. O

B. Proof of Theorem V.1

Proof. First we consider the scenario where all j-loops are
blocked by A. Let G = (V,EV,EY) be the perfect graphical
representation of the network. Since the network has no alge-
braic loops, G” is recursive. Build a new graphical represen-
tation G = (V,E1,E») of the network by adding single-headed
edges from all nodes k € Z* to j in GP. That is, E; = E}
and E| = E{ Upez+ {k — j}. This implies that Z* C an ().
Note that G is recursive because for all edges k — j that we
added to E{ to obtain E;, we have that k ¢ deéf (7). Assume,
by contradiction that Hji(z) is not strictly proper. Define
Z:={teA:lgany(j)}, Zt :={keA:k¢gdex () }\Z,
and A:=A\(Z UZ").Since Z~ :={{ € A: L Zang(j)}, we
have that Z~ Nang,(j) = 0. Since Z~ does not contain any
ancestor of Z* in G, it also follows that Z~ Man. (j)=0.

Hence, applying Theorem III.2 of [9] on G, we get that
Z~ C D~. On the other hand, since ZT C an. (), we have

that Z* C D*. Since i is a parent of j in 61, which is a
recursive graph, there is one choice of A~ and A" where
D™ =Z UA U{j} and D" = Z" UAT U {i} meeting the
conditions of Theorem II1.2 of [9] on G. For those A~ and
AT Theorem IIL.2 of [9] gives

Wii(e) = (1= Wjj(2) ™ Hji(2)- an
Since W;j;(z) is strictly proper, we necessarily have that Hj;(z)
is strictly proper which is a contradiction. If A does not block
all j-loops, then marginalize the network (H(z),n) with respect
to the nodes V \ (AU{i, j}) and obtain the reduced network
(H"(z),n") as in Theorem IV.1. Since the original network
(H(z),n) has no algebraic loops, the reduced network has no

algebraic loops either. Again because of Theorem IV.1, all j-
pointing paths between i and j that are not the edge i — j are
blocked by A in G". Furthermore, since the only nodes in G"
are AU{i, j}, all j-loops are blocked by AU {i}. Hence, we
can apply the same argument to the reduced network (H",n")
and conclude that H]’l(z) is strictly proper. Again, because of
Theorem IV.1, the module Hj;(z) is going to be strictly proper
if and only if H;(z) is strictly proper proving the assertion. [
C. Proof of Theorem VI.I

Proof. Without any loss of generality, assume that {j — i} €
E,, otherwise we can redefine E; and E, respectively as Ey U
{j—i}, and E»\ {j — i}, since this would still give us a (non-
necessarily recursive) graphical representation of the network.
Let G? = (V, E{’ ,Ef ) be the perfect graphical representation of
the network. Since the network has no algebraic loops, G” is
recursive. Since G” is recursive it holds that (i) every dipath
from j to i has at least a double headed edge or (ii) every dipath
from i to j has at least a double headed edge. Consider first
case (i). As in the proof of Theorem V.1, we first assume that
AU{i} blocks all j-loops. Define Z~ :={¢€A:{ Zany(j)},
Zt:={ke€A:k¢dey(j)}\Z ,and A:=A\(Z"UZ").
Then, build a graphical representation G = (V,E,E;) of the
network by adding the single headed edge i — j and single-
headed edges from all nodes k € Z* to j in GP. That is, E,=
E} and Ey = EP U{i — j}Uscz+ {k — j}. This implies that
Z" U{i} Can(j). Since Z™ does not contain any ancestor of
Z* in G, it also follows that Z~ Nan(j) = 0. Observe also

that because of (i) and the definition of Z*, G is recursive.
Hence, by applying Theorem IIL.2 of [9] on G, we get that
there exist disjoint A~ and A* such that D~ =A~UZ U{,}
and DT = AT UZ" U{i} giving a consistent estimate of the
module Hj;(z). Since for all choices of A~ and A™ the module
estimate that would result from Equation (11) has a non-zero
feedthrough component, Hj;(z) needs to be non-strictly proper
under scenario (i) when all j-loops are blocked by AU {i}. If
AU{i} does not block all j-loops then marginalize the network
(H(z),n) with respect to the nodes A =V \ (AU{i,/}) and
obtain the reduced network (H"(z),n") as in Theorem IV.1.
Since the original network (H(z),n) has no algebraic loops, the
reduced network has no algebraic loops either. Again because
of Theorem IV.1, all j-pointing paths between i and j that are
not the edge i — j are blocked by A in G”". Furthermore, since
the only nodes in G" are AU{i, j}, all j-loops are blocked by
AU{i}. Hence we can apply the same argument to the reduced
network (H",n") and conclude that H;(z) is not strictly proper.
Again, because of Theorem IV.1, the module Hj;(z) is going
to be strictly proper if and only if HJ;(z) is strictly proper
proving the assertion. If instead scenario (ii) holds, we build
a graphical representation G = (V,E|,E;) of the network by
adding the single headed edge j — i and single-headed edges
from all nodes k € Z™ to i in G”. By repeating steps similar
to scenario (i) with reversed roles for the nodes i and j, we
would find that, in scenario (ii), because of Equation (12) the
module H;j(z) needs to be non-strictly proper. Now, we do
not know if scenario (i) or scenario (ii) holds, thus, we can
only conclude that either H;(z) is strictly proper or H;;(z) is
strictly proper. O



