Downloaded from https://royalsocietypublishing.org/ on 19 March 2023

PHILOSOPHICAL
TRANSACTIONS B

royalsocietypublishing.org/journal/rsth

L)

ReView Check for

updates

Cite this article: Van Cleve J. 2023
Evolutionarily stable strategy analysis and its
links to demography and genetics through
invasion fitness. Phil. Trans. R. Soc. B 378:
20210496.
https://doi.org/10.1098/rsth.2021.0496

Received: 16 November 2022
Accepted: 7 February 2023

One contribution of 18 to a theme issue ‘Half a
century of evolutionary games: a synthesis of
theory, application and future directions’.

Subject Areas:
evolution, behaviour, theoretical biology

Keywords:

evolutionarily stable strategy, lineage fitness,
kin selection, group selection, reduction
principle, variable environments

Author for correspondence:
Jeremy Van Cleve
e-mail: jvancleve@uky.edu

THE ROYAL SOCIETY

PUBLISHING

Evolutionarily stable strategy analysis and
its links to demography and genetics
through invasion fitness

Jeremy Van Cleve

Department of Biology, University of Kentucky, Lexington, KY 40506 USA
JVC, 0000-0003-3656-4257

Evolutionarily stable strategy (ESS) analysis pioneered by Maynard Smith and
Price took off in part because it often does not require explicit assumptions
about the genetics and demography of a population in contrast to population
genetic models. Though this simplicity is useful, it obscures the degree to
which ESS analysis applies to populations with more realistic genetics and
demography: for example, how does ESS analysis handle complexities such
as kin selection, group selection and variable environments when phenotypes
are affected by multiple genes? In this paper, I review the history of the ESS
concept and show how early uncertainty about the method lead to important
mathematical theory linking ESS analysis to general population genetic
models. I use this theory to emphasize the link between ESS analysis and
the concept of inwvasion fitness. 1 give examples of how invasion fitness can
measure kin selection, group selection and the evolution of linked modifier
genes in response to variable environments. The ESSs in these examples
depend crucially on demographic and genetic parameters, which highlights
how ESS analysis will continue to be an important tool in understanding evol-
utionary patterns as new models address the increasing abundance of genetic
and long-term demographic data in natural populations.

This article is part of the theme issue ‘Half a century of evolutionary
games: a synthesis of theory, application and future directions’.

1. Introduction

Although Richard Lewontin was the first to introduce game theory into biology
in 1961 [1], very few papers on the topic of game theory and biology were pub-
lished in the following decade. It was not until 1973 when John Maynard Smith
and George Price introduced the evolutionarily stable strategy (ESS) and
applied it to the study of animal behaviour [2] that biologists more widely
came to appreciate the relevance and use of game theoretic concepts and
tools for questions in evolution biology and ecology. Specifically, Maynard
Smith and Price posited that individual fitness could be viewed as an analogue
of the game-theoretic notion of utility or pay-off, which is the quantity that
measures what agents optimize in pursuit of their objectives [3]. Viewed this
way, the ESS is a refinement of the famous Nash equilibrium [4]. Maynard
Smith explained the ESS concept in more detail in an important paper in
1974 [5], introduced the famous Hawk-Dove game in his study of asymmetric
games in 1976 [6], and summarized the nascent field of evolutionary game
theory in his now classic 1982 book [7]. In the 50 years since the 1973 paper,
evolutionary game theory has become an essential tool in evolutionary and be-
havioural ecology and includes rich theoretical work that delves into
foundational evolutionary and game-theoretic concepts and mathematical
and simulation models that predict ESSs for many specific biological systems.
Evolutionary game theory has also strongly influenced the social sciences
including, economics, political science, psychology and anthropology and has
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drawn applied mathematicians, computer scientists and
physicists into mathematical biology.

The role of evolutionary game theory and the ESS method
specifically in evolutionary biology has been at the crux of
some of the most important conceptual debates in the field
including the role of natural selection and adaptation vis-a-
vis other evolutionary forces (e.g. [8-14]) and the importance
of kin and group selection relative to individual selection
(e.g. [15-28]). These debates might be captured in part by
the following two questions: (i) how do ESS models that
focus on individual fitness capture the effects of kin selection
or group selection? and (ii) how do ESS models account for
recombination, mutation, migration and other evolutionary
forces? In this work, I will describe how conceptual advances
in evolutionary theory since Maynard Smith & Price [2] have
shed light on both of these questions and have led to a broader
understanding of the ESS method and a more integrative fra-
mework for understanding how multiple evolutionary forces
in complex populations can lead to diverse phenotypes.

Question (i) derives in part from how Maynard Smith
introduced his work on ESSs; he argued that an ESS could
provide an explanation for the evolution of behaviours
where ‘selection acts entirely at the individual level, but in
which the success of any particular strategy depends on
what strategies are adopted by other members of the popu-
lation” [5, p. 210] and is not ‘due to group or species
selection” [2, p. 15] or selection on ‘close relatives’ ([5],
p- 210) as might be the case for kin selection [29]. In setting
up this dichotomy, Maynard Smith implied that the ESS
method may not apply when kin or group selection are
involved. As I will describe below, evolutionary theorists
have since realized (including Maynard Smith himself [8,
p- 33D that the issue of the applicability of the ESS method
is really orthogonal to issues of individual versus group
versus kin selection and instead captures in what sense evol-
ution via natural selection optimizes fitness given a specific
measure of fitness. Issues of individual versus group versus
kin selection are about the units or levels at which selection
acts and how fitness should be measured to account for selec-
tion at those levels. Lewontin also hints at the levels of
selection question in his 1961 game theory paper when he
discusses the relative merits of individual-level measures of
fitness like intrinsic or Malthusian growth rate » versus popu-
lation-level measures like mean fitness w [1, pp. 400-401] as
analogues of utility. The levels of selection question became
a major topic of study in evolutionary theory (e.g. [30-37])
and philosophy of biology [38—45] and continues to generate
substantial research (e.g. [46—-48]). For the purpose of explain-
ing how an ESS can capture selection at multiple levels and
among relatives or kin, I will argue below that the right
measure of utility is the invasion fitness [49,50] or lineage fitness
[51-53] of a mutant allele at a single genetic locus, which can
be shown to be functionally equivalent to a measure of
inclusive fitness [53,54], which is a concept originally
proposed by W. D. Hamilton in relation to kin selection [29].

The origin of question (ii) rests in a different set of debates
in evolutionary biology regarding the relative role of natural
selection vis-a-vis other evolutionary forces, such as mutation,
recombination and migration, in explaining organismal
phenotypes. Early in the twentieth century, R. A. Fisher’s
‘fundamental theorem of natural selection” (FTNS) [55] estab-
lished a mathematical expression of the importance of natural
selection. The FTNS states that the increase in the mean

fitness of a population is equal to the genetic variance in fit- [ 2 |

ness and thus seems to imply that populations always
become better adapted to their environments (since genetic
variance is always non-negative) and even that fitness is
maximized over the long term. It is hard to overstate the
importance of the FTNS in shaping the direction of evolution-
ary theory. The FINS came to typify the idea that
evolutionary change is dominated by natural selection as a
fitness optimizing force. Hamilton appealed to this idea in
his original paper on kin selection [29] and theorized that
inclusive fitness is the fitness quantity that is maximized.

Subsequent work by population geneticists revealed the
weakness of this understanding of the FTNS by showing
that mean fitness can decrease owing to frequency-dependent
selection [30,56] or recombination among multiple genetic loci
[57-60]. Further, studies in the 1960s of the rates of molecular
evolution [61,62] and levels of polymorphism [63,64] in a
number of species spurred the development of the neutral
[65,66] and nearly neutral [67,68] theories [69] of molecular
evolution. These theories posited that many mutations are
only weakly affected by natural selection, and thus their fate
is governed mostly by genetic drift [66]. Consequently, by
the 1970s, evolutionary biologists were heavily debating the
relative role of natural selection versus other forces in shaping
evolutionary patterns [70,71], and some biologists including
Lewontin specifically questioned the importance of fitness
maximization [9,59]. Maynard Smith was a clear proponent
of fitness maximization and viewed it natural to ‘[assume]
that evolution has occurred by natural selection” [8, p. 31].
He proposed the ESS method developed by Price and himself
as the appropriate tool for predicting phenotypic evolution
and particularly for social traits. While Maynard Smith
acknowledged that ESS models make a number of biological
assumptions including that traits have a simple genetic basis
and that appropriate genetic variation exists [8], he believed
that the limitations imposed by these assumptions are biologi-
cally reasonable. This view that simplifying away genetic
complexities or constraints is generally reasonable was
termed the “phenotypic gambit’ by Grafen [72] and came to
dominate evolutionary theory in behavioural and evolutionary
ecology [73]. The near-singular focus of evolutionary game
theory and the ESS method on natural selection has become
less defensible given the recent and increasing abundance of
genomic and transcriptomic data for a diverse set of species
(e.g. [74-78]); specifically, some have argued that understand-
ing these data requires moving beyond the gambit with more
explicit consideration of complex genetic and demographic
mechanisms (e.g. [79-82]). Question (ii) arises here and asks
whether the ESS method can be modified to accommodate
other evolutionary forces such as mutation and recombination.
I will argue below that the ESS method is more general than
originally imagined by Maynard Smith & Price [2] in that it
can in fact be incorporated into an evolutionary framework
where natural selection and other evolutionary forces combine
to shape the short- and long-term evolution of traits. Though
this framework is quite general, it does have assumptions
and limitations that are discussed in §§8 and 9.

The definition of an ESS is relatively simple and only involves
a set of phenotypes, a measure of fitness (the evolutionary
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measure of pay-off), and a stability condition. Suppose that
two individuals interact and the phenotypes that characterize
their behaviour in the interactions are measured with the
variables x and y. The phenotypes can be drawn from a set
of discrete or continuous values that represents a single
trait like body size or propensity to cooperate. For the pur-
pose of explaining the theory more concretely, assume that
individuals can choose one of two possible behaviours in
the interaction, C and D. The phenotypes x and y measure
the probability that individuals in an interaction with those
phenotypes choose behaviour C, and 1 —x and 1—y are the
probabilities those individuals choose behaviour D instead
(probabilistic phenotypes are called mixed strategies in game
theory [83]). For example, the behaviour C could be
cooperation in the interaction and D could be a lack of
cooperation. Let w(x, y) be the fitness that an individual
with phenotype or strategy x receives when interacting
with an individual with phenotype or strategy y. Fitness w
for the moment is simply the survival rate (i.e. viability selec-
tion) but as we will see we can define much more general
fitness measures. The stability condition [2,5] says that a phe-
notype x* is an ESS, or is evolutionarily stable (ES), when one
of two scenarios occurs. For any alternative strategy 1, either y
receives less fitness when interacting with x* than x* receives
when interacting with itself:

w(x*, x*) > w(y, x), (2.1a)

or y gets the same fitness interacting with x* as x* does with
itself and x* receives more fitness interacting with y than y
does with itself:

w(x*,y) > w(y,y) when w(x*, x*) =w(y, x*). (2.1b)

The two conditions in equations (2.1) are together equivalent
to requiring that phenotype x* receives higher average fitness
than any alternative phenotype y when y is rare in the popu-
lation [5,84]. The phenotype x* is called a strict ESS when
condition (2.1a) holds and a weak ESS when condition (2.1b)
holds.

To make the ESS method more concrete, consider a scen-
ario where C and D correspond to cooperating and doing
nothing, respectively. We might start with the two determi-
nistic or pure strategies: x =1 individuals always cooperate
and x =0 individuals never cooperate. There are four possible
interaction pairs and their pay-offs can be collected into the
pay-off matrix:

_ (w(1,1) w(1,0)
W= (z(o, 1 w0, 0))' 22)

Individuals benefit from having a partner who cooperates,
which translates into w(1, 1) >w(1, 0) and w(0, 1) >w(0, 0).
Since cooperation is personally costly, an individual has less
pay-off when it cooperates than when it does not given its
partner also does not cooperate, or w(1, 0) <w(0, 0). More-
over, that cost is pervasive enough so that cooperation is
more costly than non-cooperation even when the partner
does cooperate, or w(1, 1) <w(0, 1). Finally, two individuals
that cooperate do better than two individuals that do
not, or w(1, 1)>w(0, 0). These pay-off inequalities can be
summarized as w(0, 1) >w(1, 1) >w(0, 0)>w(1, 0) and they
characterize the famous Prisoner’s Dilemma game [85],
which often involves public goods. Applying the ESS con-
ditions, equation (2.1) shows that noncooperation is the ESS

or x*=0 for the prisoner’s dilemma. For an example of a [ 3 |

mixed-strategy ESS where 0 <x*<1, assume that the pay-
offs obey the conditions w(0, 1) >w(1, 1) >w(1, 0)>w(0, 0),
which characterize a Hawk-Dove [2,6] or Snowdrift game
[86]. The only change from the Prisoner’s Dilemma con-
ditions is the reversal of the last inequality so that now w(1,
0) >w(0, 0). This inequality indicates that cooperation in the
Hawk-Dove game yields enough pay-off to the cooperator
so that both individuals prefer that at least one of them
cooperates. A Hawk-Dove game might describe two individ-
uals foraging for resources where its beneficial for at least one
individual to expend the effort to search. Applying the ESS
conditions in equations (2.1) reveals that neither pure strategy
x=1nor x=0 is an ESS. Rather, the Hawk-Dove game has a
mixed strategy ESS where individuals cooperate with prob-
ability x*=(w(1, 0)—w(0, 0))/@w(, 0)—w(©, 0)+w(, 1) -
w(l, 1).

3. How is an evolutionarily stable

strateqy related to population genetic

dynamics?

The ESS conditions in equations (2.1) do not reference the
genetic basis of the trait x nor do they describe how the fre-
quency or mean value of the trait changes over time.
Population genetics models, on the other hand, are built to
measure the dynamical process of evolution via the com-
bined effects of natural selection and segregation,
recombination, mutation, genetic drift and other evolutionary
forces [87,88]. A natural question then is how the long-run be-
haviour of a population genetic model (e.g. its equilibrium
genotypes and induced phenotypes) compares to the equili-
brium phenotypes obtained from an analogous ESS model.
This question was tackled by mathematical population biol-
ogists beginning in the late 1970s and through 1980s and
1990s (e.g. [89-101D).

Early mathematical analyses began by using the simplest
population genetic model, which is one that assumes a hap-
loid asexual population with two genotypes. Assume the
two genotypes correspond to the phenotypes x=1 that
chooses C with certainty and x=0 that chooses D with
certainty, respectively. The fitness of each of the four inter-
action pairs is given in the pay-off matrix W in
equation (2.2). Suppose that p measures the frequency of
the phenotype x =1 that always chooses C. Pairs are assumed
to form randomly according to the frequencies p and 1 —p of
the two types. The equilibria of this model are either fixation
of one of the two genotypes resulting in a population of indi-
viduals that always chooses C, p =1, or always chooses D, p =
0 or a polymorphism of both genotypes, 0 <p <1, resulting in
a population where some choose C and some choose D. The
analogous ESS model of this scenario applies condition (2.1)
to the four possible fitness values in the pay-off matrix W in
equation (2.2) and determines which phenotype, x=1 or x =
0, is ESS or whether a mixed strategy (0 <x <1) is ESS. These
early analyses showed that the values of x that are an ESS are
also values of p that produce stable equilibria in the haploid
asexual population genetic model [89-91,102].

This correspondence between the population genetic and
ESS models is not particularly surprising since natural selec-
tion is the only evolutionary force acting in the haploid
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asexual model. However, a similar correspondence between
ESSs and population genetic models also applies to a diploid
sexual population reproducing in discrete time where
Mendelian segregation breaks up diploid genotypes every
generation [92,96]. For this scenario, the phenotype is con-
trolled by a single genetic locus with a possible alleles A,
..., Aq. Diploid genotype A; A; chooses behaviour C with
probability x; and behaviour D with probability 1—x;. If
there are no restrictions on the x;;, then dominance is possible
between the alleles. Like the asexual haploid model, diploid
individuals interact in pairs according to their probability in
the population and mating is random. Let p=(py, ..., p,) be
the vector of allele frequencies for alleles Ay, ..., A, in the par-
ental generation. The mean phenotype or probability of
choosing C in the population after reproduction is then

x=x(p) = > _ pipjxi.
if

Eshel & Lessard showed [92,96] that ESSs x* of the pay-off
matrix W are stably maintained in the diploid population
model when those ESSs are produced by some vector of
allele frequencies p* such that x* = x(p*). This correspondence
between ESSs and population genetic equilibria also holds for
continuous-time diploid models [97,98,102,103] and for
models with multiple loci when the probability of a genotype
choosing a phenotype is an additive function of effects from
each locus (i.e. additive non-epistasis) [92].

4. Evolutionarily stable strategies and long-term
evolution

An important limitation of the above results connecting ESS
phenotypes x* to equilibria in diploid single and multilocus
population genetic models is that the genotype—-phenotype
map may not produce phenotypes that are ESS and thus
those ESS phenotypes are unattainable in the short-term.
Specifically, the x; may have values so that no population
composition p of alleles A; can produce the ESS phenotype
x*. Moreover, as mentioned above, multilocus systems more
generally (i.e. systems with non-additive interactions or epis-
tasis) do not guarantee that genotypes with higher marginal
fitness' increase in frequency, which is a requirement for the
correspondence between ESS and population genetic equili-
bria described above [92,102]. Thus, the genetic system may
impose constraints on either the range of possible phenotypes
or on the ability of selection to increase the frequency of high
marginal fitness genotypes.

Intriguingly, Eshel, Feldman and others discovered that
these constraints might not be so important on longer-term
evolutionary timescales. The important idea is that the con-
ditions under which a genetic equilibrium is stable given a
fixed set of alleles or genotypes does not determine whether
a new and rare allele or genotype outside of that fixed set
might invade the population. When an equilibrium is stable
given a fixed set of alleles or genotypes, it is called internally
stable [99]. If that equilibrium also resists invasion by new
alleles or genotypes outside the fixed set, it is called externally
stable [99,104]. Equilibria that are internally stable may not be
externally stable. For example, suppose there is heterozygote
advantage in a population with two alleles at a single diploid
locus. The internally stable equilibrium is a polymorphism

where both alleles are present in positive frequency. How-
ever, a new allele can invade the population if it generates
the original heterozygote fitness in a heterozygote with
either original allele and in a homozygote with itself.
Hence, the internally stable polymorphism is not externally
stable. The invasion of this new allele will lead to its fixation,
which is a new internally stable equilibrium that may or may
not be externally stable to further invasions depending on the
genotype-phenotype map (i.e. how the genotypes A; A; gen-
erate fitness values w;;). Given a fixed set of genotypes, the
evolution of those genotypes to an internally stable equili-
brium is called short-term evolution, whereas the process of
new mutant invasions that move the population from one
internally stable equilibrium to another is called long-term
evolution [99-101,105-108] and eventually leads to an exter-
nally stable equilibrium. The process of long-term evolution
assumes that mutations are infrequent enough so that a
new mutation has sufficient time to either go extinct or
reach a new short-term equilibrium before additional
mutations occur. Exactly how infrequent this is depends on
additional parameters such as the strength of selection and
the population size and requires analysing the stochastic
interaction between mutation, drift and selection [109-112].
Long-term evolution involving sequential substitution of
genotypes is sometimes called the ‘streetcar process” [100]
or the ‘trait substitution sequence’ [49,113,114] and is the fun-
damental evolutionary model of the adaptive dynamics
approach [115-117] described in §9.

Remarkably, despite the additional complexity of the
long-term process, the equilibria of the long-term evolution
process, not the short-term process, are what most closely
align to what is predicted by the ESS criteria in
equations (2.1). Eshel, Feldman, Lessard and others demon-
strated that externally stable equilibria are those that
generate phenotypes x* that are ESS [95,99-101,104,106,118].
Specifically, suppose that the probability of selecting between
behaviours C and D is determined by two loci A and B with
alleles Ay, ..., A, and By, ..., By, respectively, and with recom-
bination rate 0 < R <1/2 between the loci. The vector p=¢(...,
pij, ---) tracks the frequencies of the chromosomes (e.g. A; B;)
after selection and recombination. Individuals with diploid
genotype A;B;/AiB; chooses behaviour C with probability
Xii and behaviour D with probability 1 — x;. The mean fre-
quency of phenotype x in the population after reproduction is

x=x(p) = Zpijpklxijkh

ikl

If we assume that the fitness function w(x, y) is linear in the
phenotypes x and y (which is a reasonable assumption
given the phenotypes are probabilities of selecting among
behaviours C and D), then the mean or marginal fitness of
an individual with genotype A;B;/A:B; interacting with
other individuals in the population according to their fre-
quencies is w(xjy, x). Likewise, the mean fitness in the
population is then

w= Z w(Xip, X)pijpu = W(X, x).
ijkl

Now, assume that a new mutant allele A, (increasing the total
number of alleles at locus A from a to a + 1) arrives at low fre-
quency in a population at an internally stable equilibrium p
with resident or wild-type mean phenotype X = x(p). An
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individual with this new allele chooses behaviour C with
probability x, if its genotype is A,B;/AB; and behaviour
D with probability 1 — x,;. A linear stability analysis shows
that this allele will either initially increase or decrease in fre-
quency at a geometric rate A that is the magnitude of the
largest eigenvalue of a Jacobian matrix [119]. The eigenvalue
A has an associated normalized eigenvector u whose elements
u; measure the frequency of mutant chromosomes
(i.e. chromosomes A, B;) once the invasion process has stabil-
ized (i.e. has reached stationarity [120]). Eshel & Feldman
[95,106] showed that this geometric growth rate is
w(xy, X)

TR (4.1)

where 2 >0 and

XI_L = Z 1/[]' f?klx#]-k;, (42)
ikl

is the average probability of choosing behaviour C among
mutant individuals once the invasion process has stabilized.
Note that since the mutant allele is rare, mutant individuals
can have only one mutant chromosome; the other chromo-
some has no mutant alleles at locus A and remains at the
internal equilibrium frequency p,. A sufficient condition
for the equilibrium with phenotype % to be externally stable
is that 2 <1 or from equation (4.1):

w(x,, X) < w(X, %),

for all possible mutants A, that generate mutant phenotype
x,. This condition is in fact the condition for a strict ESS
from equation (2.1a) and can be used to prove the following
result for large, randomly mating, diploid populations with
two-locus genetic systems [95,99,106].

Result 4.1. Any phenotype % generated by an externally
stable equilibrium is an ESS. Moreover, if an ESS x* is gener-
ated by an internally stable equilibrium p, p is externally
stable.

Work by Liberman [104] on more than two loci probably
extends Result 4.1 to any finite number of loci. Result 4.1
shows that ESSs determined by the condition (2.1) of May-
nard Smith & Price [2,5] are stable states of the long-term
evolutionary process. Assuming that long-term evolution is
a reasonable model of phenotypic evolution, Result 4.1
demonstrates the importance of natural selection on pheno-
types in determining the course of phenotypic evolution
and provides a robust mathematical justification for the use
of the ESS method in building phenotypic evolution models.

While Result 4.1 emphasizes the role of the ESS and natural
selection on phenotypes in phenotypic evolution, the external
stability approach used to prove Result 4.1 reveals a more
general viewpoint where ESSs can depend in important
ways on the genetic and demographic parameters of a popu-
lation. External stability analysis assumes that the population
is at some genetic equilibrium where new mutant alleles can
invade at low frequency and looks for a genetic equilibrium

and its resulting phenotype that resists invasion by any
mutant allele (within a set of possible phenotypic effects).
Before the mathematical machinery of external stability was
developed, Hamilton appreciated the conceptual importance
of uninvadable phenotypes in his study of the sex ratio, and
he called sex ratios that resisted invasion by any alternative
sex ratio unbeatable phenotypes [121]. As we saw above, deter-
mining whether a phenotype can be unbeatable and its
genetic equilibria externally stable involves calculating the
magnitude of the eigenvalue A associated with the linear
dynamical system that approximates the dynamics of the
mutant allele frequency when rare. The magnitude of the
eigenvalue A measures the geometric growth rate (e.g.
equation (4.1)) of all mutant genotypes in a population of
resident genotypes. If there are multiple possible genotypes
with the mutant allele, as is the case for the two-locus
model in §4 where there may be many possible alleles at
the non-mutant locus, then mutant genotype frequencies
during the invasion process are given by the normalized
right eigenvector u of the linear system. Thus, A really
measures the fitness of the whole mutant genetic lineage
that originates from the original invading mutants. The
growth rate A is often called the invasion fitness [49,50]* and
sometimes called the lineage fitness [51-54]. In effect, the inva-
sion or lineage fitness measures the average number of
offspring copies produced by a mutant allele sampled ran-
domly from among all the genotypes in the mutant lineage
[53]. Assuming that >0, the phenotype x* is unbeatable
whenever

My, x) <1 forally # x. (5.1)

Regardless of the complexity of the genetics, demography or
ecology of a population, we can in principle perform an exter-
nal stability analysis® and use invasion fitness to determine
whether there are unbeatable phenotypes.

It should already be evident given Result 4.1 that the
unbeatable phenotypes obtained via external stability are clo-
sely connected to phenotypes obtained via an ESS analysis
using condition (2.1). In the general case for an arbitrary gen-
etic and demographic scenario, we assume only that we have
the invasion fitness A(y, x*) of a rare mutant y in the popu-
lation that otherwise has mean phenotype x*. Starting with
the condition for a strict ESS, w(x*, x*) >w(y, x*) for y #x*
from equation (2.1a), we can convert that condition to one
in terms of relative fitness by dividing by the mean population
fitness w(x*, x*) to obtain
M:w(y x)<1 forally # x* (5.2)
w(x*, x*) ’ ’ ’
where o(y, x*) is the relative fitness of a rare mutant allele
with phenotype vy in a population with mean phenotype x*.
The strict ESS condition in equation (5.2) using relative fitness
is identical to the condition for uninvadability in condition
(5.1) using invasion fitness, which means that unbeatable or
uninvadable phenotypes are strict ESSs.*

Since we can in principle calculate invasion fitness for
populations with complex genetics and demography, we
can obtain strict ESSs in those populations even though
Result 4.1 may not apply. However, those ESSs will almost
certainly depend on genetic and demographic parameters
of the population as the invasion fitness captures the effect
of genetic and demographic processes on the growth of
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invading mutant lineages.” For example, the ESS for the sex
ratio of a population depends on the genetic structure of
the population: in a large, randomly mating population, the
sex ratio is 1:1 when the ratio is determined by a diploid auto-
somal gene [121,123,124], but it can take other values when
the gene is sex-linked or the genetic system is more complex
like in insects that are haplodiploid [121,125]. The fact that
ESSs can incorporate genetic and demographic forces along-
side natural selection shows that the ESS method is a more
general tool than potentially originally envisioned by May-
nard Smith and other proponents of the phentoypic gambit.
Below, we will describe two cases that capture this flexibility:
group- and class-structured populations with kin selection
and populations in variable environments with variable
phenotypes.

6. Inclusive fitness, group-structured populations
and evolutionarily stable strategies

In a populations where individuals live in groups and
migration (or dispersal) is limited, individuals are more
genetically related to their groupmates than to individuals
in different groups [126-128], which means there is a possi-
bility for kin selection to drive the evolution of prosocial
phenotypes [29,129,130]. Moreover, group structure allows
for competition among groups for resources and the possi-
bility of selection among groups favouring more prosocial
groups given sufficient group integrity [131-135]. In fact,
the Price equation [17,136] can be used to show that kin
and group selection perspectives on fitness both lead to the
same predictions when applied to the same population
model [20,137-141]. Thus, we should expect that predicting
an ESS for prosocial behaviour in a group structured popu-
lation by calculating invasion fitness will capture the effects
of both kin and group selection. To see this, we will outline
the invasion fitness analysis of this scenario performed by
Lehmann and colleagues [53,54]. This analysis also provides
a formal justification for the intuition of Maynard Smith [8]
and others that a correct fitness measure for ESS analysis is
Hamilton’s inclusive fitness [29] by showing that inclusive
fitness is monotonically related to invasion fitness.

Suppose that a population is composed of an infinite
number of groups each containing n individuals; groups
can be thought as demes or patches each equally connected
to one another at some rate of migration (ie. Wright's
island model [142]). Each individual can belong to one of ¢
demographic classes, such as age, sex or caste (e.g. as workers
and queens in social insects). Phenotypes are produced by
alleles at a single haploid genetic locus. Alleles can be pleio-
tropic and code for a specific phenotype for each class:
phenotype x = (x1, ..., x,) where x; is the phenotype for class
s. We assume that once at a genetic and demographic equili-
brium with phenotype X, the population stabilizes at 1,
individuals in class s in each group where the group size is
just the sum of all the individuals in each class or n =Y n,.

We introduce a mutant phenotype y at low frequency into
a population where all individuals have the resident pheno-
type x. One way to track the number of mutant individuals
in the whole population is to track the number of groups
with k mutants. Since each individual belongs to a specific
class, we actually track how many mutant individuals k;
are in each class s in a group or k=(ky,..., k) where

k=>" k. The number of possible states for k increases [ 6 |

quickly with the group size n and the number of classes c
but is finite. For simplicity of notation, we assume there is
an ordering of these states so that we can use k to index vec-
tors and matrices below. When the mutant phenotype is rare,
growth of the mutant population can be modelled using a
matrix population model [120] or multitype branching pro-
cess [143] with a projection matrix A(y, X)=[awi(y, %]
where the ;i (y, X) element measures the expected number
of groups with k’ mutants with phenotype y that result
from the reproduction occurring in a group with k mutants
in a population resident for phenotype x. The largest eigen-
value A(y, X) of the projection matrix A(y, X) is the invasion
or lineage fitness in this population and satisfies

Aly, x)u(y, x) = Ay, X)u(y, x), (6.1)

where the associated eigenvector u(y, X) has elements u that
measure the relative frequency of groups with k mutants
when the invasion process has stabilized. The elements a;(y,
x) of the projection matrix can be rewritten in terms of an
individual relative fitness function wy(y, X), which measures
the number of class s’ mutant offspring in the population in
the next generation produced by a class s mutant individual
in a group with k mutants. Relative fitness is the right
measure here since we measure offspring production after
migration, density-dependent survival and all other life-
cycle events. The projection matrix and fitness function are
then related through the expression for the total number of
class s’ offspring produced by mutant individuals in a
group with k mutants:

D Ky, %) =) kos(y, X). (6.2)
K s

Lehmann et al. [53,54] use equation (6.2) to show that the
invasion or lineage fitness of mutant phenotype y in a
resident population with phenotype X is given by

Ay, %) = oy, sy, %), (6.3)

k,s,s

where g, (y, X) is the probability (wWhen the invasion process
has stabilized) a randomly sampled mutant allele from the
mutant lineage is in a class s individual in a group with k
mutants and is given by

o = e
Jis(y, X) = Sk kst (y, %)

The invasion fitness expression in equation (6.3) for a group-
and class-structured population is conceptually identical to
the one for a single population with two loci in equation
(4.1): both expressions show that the mutant successfully
invades when mutant alleles more than replace themselves
when averaged across all the genetic contexts (i.e. possible
alleles at other loci) and demographic contexts (i.e. possible
group compositions in terms of mutant allele frequency in
each class) in which the mutant lineage occurs during the
invasion process.

The invasion fitness in equation (6.3) can also be
expressed in terms of inclusive fitness in order to isolate the
effect on fitness of mutant allele expression in the focal indi-
vidual (direct effect) and in genetically related individuals
(indirect effect). There are some important technical subtleties
as to how this can be accomplished that we will leave out to

96701707 ‘8LE § 0S "y "Supif “iyd  qisi/jeusnol/ba0°buiysiigndKianosiedol



Downloaded from https://royalsocietypublishing.org/ on 19 March 2023

keep the presentation simple (see ‘Supplement B’ in [54], for
details). The essence of the method is the same as the one
found in many analyses that derive inclusive fitness using
the Price equation (e.g. [20,137,144,145]): the fitness of a
focal individual, here wyq(y, X), is decomposed into cost
and benefit terms reflecting the marginal effects on fitness®
of expressing the mutant phenotype y; relative to the resident
phenotype X;. The cost term cy(y, X) measures the marginal
decrease in class s’ offspring produced by a class s individual
owing to expression of the mutant allele in that individual.
The benefit term by,.(y, X) measures the marginal increase
in the number of class s’ offspring produced by individuals
of class o owing to the mutant allele expression by a group-
mate of class s. The invasion fitness can then be expressed
as (using an inclusive fitness or actor-modulated approach) [54]:

/\(y, f() =1+ Z%(Y/ )A()US’ (yr f()

x (—Csfs(y, %)+ b s (¥, i (¥, f<)>, (6-4)

which is the inclusive fitness [29] of the mutant allele. In
equation (6.4), 7,5(y, X) is the genetic relatedness in a group
and is the probability that a random groupmate of class o
has the mutant allele given an individual of class s has the
mutant allele, v4(y, X) is the normalized reproductive value
of class s, and gs(y, X) is the probability that a mutant individ-
ual in the invasion process is in class s and is the sum of gy s(y,
x) over k (see [54] for technical definitions of these quantities).
Equation (6.4) shows how invasion fitness can be partitioned
into the direct effects of mutant allele expression, which are
cost terms, and the indirect effects, which are the benefit
times relatedness terms. Thus, kin selection and the evolution
of altruistic traits are easily captured with an ESS analysis of
invasion fitness.

Given that previous work using the Price equation has
shown that kin selection and group selection partitions of fit-
ness are simply alternative ways of expressing genotype
frequency change in a population [20,137,139-141], it
should be possible to rewrite invasion fitness so as to group
terms that constitute between-group selection, wgy(y, X),
and those that constitute selection,
0acys(y, X). In fact, if we apply a neighbour-modulated
approach from [20,137] to the results from [54], we obtain

within-group

Ay, %) =1+ gs(y, %)vs (y, %) (@cs(y, X) + 0acs(y, X)),
(6.5)

where, dropping the dependence on X and y for ease of
presentation:

1 n,—1
WG,s5 = (bS,SHS - Cs’s)< + s rs\s) + Z bs’SHa'rrr|s

1s s T#s

ns — 1

and  wacss = —(bsss + cs5) - rs|s)~

S

(6.6)

We can see immediately that if mutant allele expression is
costly to the individual itself, cy; >0, helps others, by >0
for all classes o, and the benefits outweigh the costs within
a class, byss —cys>0, then the mutant allele expression is
positively selected by between-group selection and nega-
tively selected by within-group selection. Since both the kin

selection and group selection partitions of invasion fitness
(equations (6.4) and (6.5), respectively) are expressed using
the same benefit, cost and relatedness functions, a single
ESS analysis using invasion can answer questions derived
from both perspectives.

7. Variable environments, recombination and
evolutionarily stable strategies

One of the important features of Result 4.1 is that it shows
how under some genetic and demographic scenarios (i.e. a
large, randomly mating population in a constant environ-
ment) an ESS phenotype maybe independent of some
genetic parameters like the recombination rate between the
loci affecting the phenotype. Another example of this kind
of result is the ‘reduction principle’ of Feldman, Liberman
and colleagues [146-150], which says that for large, randomly
mating populations with viability selection in a constant
environment, the only uninvadable or unbeatable rates of
recombination, mutation and migration are the lowest poss-
ible rates (typically zero). Like Result 4.1, the reduction
principle is proved by analysing the external stability of an
internally stable equilibrium and calculating the invasion fit-
ness of a rare mutant allele. However, alleles at the genetic
locus where external stability is tested, which is called the
modifier locus, do not directly affect fitness and instead
modify rates of recombination, mutation or migration.
Given the connection between invasion fitness and ESS
analysis, the reduction principle shows that rates of zero
recombination, mutation, or migration are strict ESSs. In
effect, the reduction principle says natural selection on popu-
lations at equilibrium in constant environments acts to reduce
genetic and demographic processes that increase genetic vari-
ation; this is intuitive as such genetic variation must result in
lower fitness genotypes since the population is already at an
equilibrium and the environment is constant. Like Result 4.1,
the reduction principle holds independent of the recombina-
tion rate between the modifier locus and major loci that affect
fitness. Since the reduction principle assumes large popu-
lation size, forces like local competition that might generate
positive ESS values of migration are not a factor [144].

In environments that are not constant, the reduction prin-
ciple does not hold as genetic variation can be beneficial
depending on the environmental state. Thus, natural selec-
tion may favour genetic and demographic mechanisms that
generate genetic variation like positive rates of recombina-
tion, mutation and migration. In fact, environmental
variation, particularly over time, is one of the most well
studied and important factors supporting the evolution of
genotypic and phenotypic variation through mechanisms
that promote such variation like recombination [151-153],
mutation [154-156], migration [157-159], phenotypic plas-
ticity [160-163] and bet-hedging [164-167]. Recent work
shows that not only are the ES recombination, mutation
and migration rates positive in variable environments, but
they also depend on genetic parameters like the recombina-
tion rate between the major and modifier loci. In the case of
mutation rate evolution, Liberman et al. [168] used an analy-
sis of the external stability of the mutation rate to show that
the ES mutation rate depends on the recombination rate
between phenotypic locus and the modifier locus. For
example, figure 1 shows pairwise invasibility plots for the
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Figure 1. Pairwise invasibility plots for the mutation rate model of [168] when alternation between each of the two environments occurs every T =50 generations.
The fitness costs of being in the wrong environments are s; = 0.01 and s, = 0.015 and the recombination rate between the phenotypic locus and the modifier is
given above each plot. White regions are where a mutant modifier allele with a mutation rate given on the vertical axis can invade a population fixed for a modifier
allele with a mutation rate given on the horizontal axis, and black regions are where the mutant cannot invade; in other words, the leading eigenvalue of external
stability matrix Le, in eqn. (17) of Liberman et al. [168] is greater than one in the white regions and less than one in the black regions.

mutation rate with different recombination rates and given
weakly asymmetric selection in two different environments
that alternate every T=50 generations. White regions are
where mutant alleles with a mutation rate on the vertical
axis can invade a population with a resident mutation rate
given by the horizontal axis; black regions are when such a
mutant cannot invade. The plots show that a mutation rate
of approximately 1/50 is ES when the recombination rate
with the modifier locus is zero, similar to older results
[154,156] that show the ES mutation rate is approximately 1/
T. The ES mutation rate decreases as recombination with the
modifier locus increases until there is a discontinuous shift to
an ES rate of zero switching. Carja ef al. [169] generalize this
approach to the evolution of recombination, mutation and
migration in fluctuating environments. They first show that
the rate of environmental fluctuation has the same effect on
ES recombination and migration rates as it does on ES
mutation rates, namely that slower rates of fluctuation lead
to slower recombination, mutation and migration rates (see
fig. 1 in [169]). In other words, as the rate of environmental
change slows, so do the ES rates of genetic and demographic
processes that generate genetic variation. Carja et al. [169] also
show that these ES rates all decrease with increasing rates of
recombination between the major and modifier loci (see fig.
S5 in [169]). This can be understood as owing to the fact
that the strength of indirect selection at the modifier locus
decreases as increased recombination erodes linkage disequi-
librium between the major and modifier loci.

8. Assumptions of long-term evolution and
evolutionarily stable strategies

The previous sections show how ESS analysis using invasion
fitness can be used to predict the long-term outcomes of phe-
notypic evolution in scenarios with both genetic and
demographic structure. However, the generality of these
results ultimately depends on the assumptions made in
developing Result 4.1 in §4, which relates the ESS condition
to equilibria of the long-term evolution process. These
assumptions are’:

(i) phenotypes are probabilities of selecting among two
behaviours or strategies;

(ii) fitness (i.e. pay-off) is a linear function of phenotype;

(iii) individuals interact in pairs that form randomly;

(iv) populations are large enough to ignore stochastic
forces including genetic drift;

(v) mutations are infrequent enough so that a new
mutation reaches a short-term equilibrium before
additional mutations occur; and

(vi) phenotypes are determined by two (or more) haploid
or diploid loci.

Some of these of these assumptions are probably less restric-
tive than others. For example, assumption (vi) may not be
very limiting as many organisms are haploid or diploid
and ESS models of other genetic systems like haplodiploidy
can be studied by adding demographic structure using
matrix population models [144,170,171] like the one
described in §6 on ESS and inclusive fitness. The large popu-
lation size assumption (iv) also can be relaxed by using
stochastic population models that allow for genetic drift
and use fixation probability as a fitness measure instead of
invasion fitness [107,172-175]. Assumption (v) is more diffi-
cult to relax since doing so allows multiple mutants to
occur at a time. Analysis of such multi-mutant invasions is
beyond the scope of the mathematical tools typically used
in evolutionary analysis. One potential route forward for
such analyses might be to follow Luo and Cooney who
used non-local integro-differential partial differential
equations to study the evolution of cooperation via multilevel
selection [47,176-179].

Assumption (i) that there are two behaviours or strategies
is particularly important. In practice, games like rock paper
scissors [89,91,102,180] involving three or more strategies
may have more complex evolutionary dynamics resulting in
equilibria that may or may not be ESSs. Support for this possi-
bility comes from examples of three strategy interactions like
rock paper scissors where the ESS strategy is actually an intern-
ally unstable equilibrium [180,181]. Weissing sees this issue as a
potentially serious limitation for using ESS to describe long-
term phenotypic evolution [101]. Interestingly, much of the
mathematical machinery developed for analysing external
stability can be generalized to three or more strategies (e.g.
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[95,101,102,106]), and ESS is an appropriate determinant for
stability for some three strategy population genetic models
(e.g. single-locus three-allele models in continuous time [98]).
Thus, future theoretical work might yield conditions under
which the two strategy assumption can be relaxed.

The linear fitness function assumption (ii) is also an
important restriction. It arises naturally from assuming that
the fitness of an individual using a mixed strategy phenotype
is the expected fitness that individual would obtain using
pure strategies with probabilities given by the mixed strategy.
Linear fitness functions are convenient in part because they
simplify interactions involving more than two individuals:
fitness in such interactions can be expressed as a linear com-
bination of the fitnesses of pairwise interactions. This means
the pairwise interaction assumption (iii) is unnecessary for
linear fitness functions. However, phenotypes often involve
continuous quantities like body size or metabolic rate and
nonlinear fitness functions are the norm in these cases. Study-
ing nonlinear fitness functions, Eshel, Taylor and others
[115,116,182-186] showed that evolutionary stability involves
two qualitatively different kinds of stability. The first kind is
the ability of a population with mean phenotype x* to resist
invasion by any mutant genotypes with phenotype not
equal to x* which is the condition captured by the strict
ESS condition (2.1a). This is the classic notion of evolutionary
stability evoked by verbal descriptions of the ESS concept.
The second kind of stability is called convergence stability
[99,116,185].

9. Convergence of long-term evolution and
evolutionarily stable strategies

Convergence stability refers to populations with mean phe-
notype x near an ESS x* that are invaded by mutants that
bring the population closer to x* and that resist invasion by
mutants that move the population further from x* [183,184].
Thus, populations near a convergence stable phenotype x*
will evolve towards x*. If an ESS x* is to really represent
the outcome of a long-term evolution process, then it
should be convergence stable as well as an ESS. The
evolutionary and convergence stability conditions for con-
tinuous phenotypes and nonlinear fitness functions are
expressed in terms of partial derivatives of the fitness func-
tion with respect to the mutant and resident phenotypes
[116,183,184]. However, we can still get a sense of a formal
statement of the convergence stability condition without the
partial derivative expressions by examining the first inequal-
ity in the weak ESS condition (2.1b), w(x*, y) > w(y, y), which
says that x* should invade a population with an alternative
phenotype y. In a sense then, the original Maynard Smith
& Price definition of an ESS [2,5] contained the notion of con-
vergence stability but did not distinguish it from
evolutionary stability more generally. Only by examining
continuous phenotypes and nonlinear fitness functions did
convergence stability emerge clearly as an essential and
distinct condition.

Given there are two kinds of stability to assess, evolution-
ary stability sensu condition (2.14) and convergence stability, a
phenotype x* that is not long-term stable might fail either one
of them. If x* is an ESS but not convergence stable, then a
population with mean phenotype x* will resist invasion by
mutants with alternative phenotypes but populations with

mean phenotypes near x* will eventually evolve away from
x*. Such ESSs are unattainable under long-term evolution
and are sometimes called ‘Garden of Eden’ phenotypes
because no predecessor population could evolve towards
them [187]. Even more interesting are the cases where the
phenotype x* is convergence stable but not an ESS. This
possibility was not explored much before Metz, Geritz,
Kisdi and colleagues laid out in detail how such cases
should lead to the evolution of phenotypic polymorphisms
as the population mean approaches x* [115,116]. This work
spawned the field of adaptive dynamics [117] where the emer-
gence of phnenotypic polymorphism at convergence stable
points x* that are not ESSs is called ‘evolutionary branching’
since the polymorphism evolves as a dimorphism of pheno-
types on either side of x* in phenotype space [115,116].
Studies of evolutionary branching have been important for
theories of adaptive speciation [188,189], evolutionary
rescue [190] and other areas of evolutionary ecology [117].
While evolutionary branching reveals the limits of long-
term evolution since long-term evolution can only predict
stable monomorphic phenotypes, the long-term process is
still an important tool as it identifies where these branching
points occur so that further analysis can study the evolution
of the resulting phenotypic diversity.

10. Conclusion and the future of evolutionarily

stable strategy analysis

When Maynard Smith & Price [2,5] introduced ESS analysis,
the revolutions in molecular genetics and genomics were still
two and three decades off, respectively, and evolutionary
biology was being roiled by questions and debates regarding
the role of natural selection in the evolution of phenotypic
novelty broadly [9] and in the evolution of animal and
human behaviour specifically [191,192]. These debates drew
sharp lines between proponents of evolutionary theory
derived from explicit genetic and demographic assumptions
and theories of phenotypic change based on natural selection
alone, namely fitness optimization and ESS analysis. Even
among those who agreed that ESS analysis was an important
approach, questions remained about what measure of fitness
to optimize, individual or inclusive fitness and how to
incorporate multilevel selection. In the decades following May-
nard Smith & Price [2] however, mathematical analysis
bridged some of the division by showing how ESSs can be
viewed as the evolutionary attractors of a long-term evolution-
ary process that builds on short-term evolutionary change
owing to natural selection, mutation, recombination and
other evolutionary forces. Mathematical analysis of the long-
term process also revealed that invasion fitness as a measure
of external stability is the appropriate way to measure evol-
utionary success and that it can incorporate kin and group
selection effects in group structured populations.

One of the initial goals of the long-term evolution
approach was to determine the degree to which ESS analyses
can be independent of the underlying genetics and demogra-
phy of populations. Put another way, how justifiable is the
phenotypic gambit? Result 4.1 shows that for large and ran-
domly mating populations, ESSs can be fairly independent
of genetic parameters like mutation and recombination rates
and even the number of loci. At the time, this independence
was important for supporting the use of ESS analysis across
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a broad range of species with different genetics and demogra-
phy. However, this independence may no longer be as useful
given the growing abundance of genomic, transcriptomic and
long-term demographic data for natural populations. Instead,
we might rather want to make use of these data to refine
our evolutionary models, and the ESS may be a less useful
approach if it cannot take advantage of these data. However,
long-term evolution and consequently ESSs are in fact sensi-
tive to genetics and demography for many traits and
populations more complex than Result 4.1 assumes. The
threshold for such complexity can be quite low as in the case
of sex ratio evolution where details of the genetic system can
be crucial [121,125,193,194], in the case of kin and group struc-
tured populations where demography determines the fate of
genes with social effects, and in the case of recombination,
mutation and migration rate evolution in variable environ-
ments where the ES rates depend on the recombination rate
between the major and modifier loci.

All of the ESS analysis so far has concerned a single pheno-
typic trait. However, the principle of invasion fitness can also
be applied to multiple coevolving traits [195-197]. When mul-
tiple traits coevolve, issues of pleiotropy and genetic constraint
immediately arise as mutations may not cause independent
effects along the different phenotypic dimensions. Thus,
even in the case of two coevolving traits, genetic constraints
owing to the underlying genetic architecture can have strong
effects on long-term evolution and the resulting ESSs. The
study of coevolving traits is nothing new to quantitative gen-
etics [198-200] where the importance of genetic constraints
has long been emphasized. In fact, recent work by Mullon &
Lehmann [197] ties together the quantitative genetic and inva-
sion fitness approaches for coevolving traits. By building from
an invasion fitness perspective that is comfortable with fitness
as a complex function of species ecology and behaviour, this
synthetic approach shows how pleiotropy, demography and
behaviour can interact to shape the coevolution of two syner-
gistic social traits [197].

Many conceptual divides in evolutionary theory have
been bridged in recent decades including divides surround-
ing ESS analysis and its role in genotypic and phenotypic

evolution and in kin and group selection. Given these
advances, it is hard to be pessimistic about the prospect
that evolutionary theory can tackle big open questions
about the emergence and persistence of biodiversity. Even
questions with global consequences like climate change, bio-
diversity loss and global conflict may yet be advanced by a
more unified evolutionary theory that can address the simul-
taneous action of genetic, phenotypic, social and cultural
change.

MATLAB code for generating figure 1 is available on
Zenodo: https:/ /doi.org/10.5281/zenodo.7644630.
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The marginal fitness of a genotype or allele is the mean fitness of
that genotype or allele among all contexts in which it occurs in the
population. For example, the marginal fitness of one allele at a
single diploid locus in the mean fitness of that allele in combination
with all other alleles according to their frequencies.

*When invasion occurs at more complex attractors like cycles, the
invasion exponent is used, which is log |41 [122].

3This is also referred to as an evolutionary invasion analysis.

*The relationship between invasion fitness and non-strict ESSs is
more complex and depends on specific details of the genetics of
the population. For example, see the section entitled ‘Long-term Stab-
ility of an ESS’ in [106].

®See also the discussion of ‘evolutionary genetic stability’ in [99,
pp- 505-506].

®Marginal effects in this context are additive effects of the phenotype
on fitness and are often measured with partial regression coefficients.
7For additional discussion of these assumptions, see [99-101].
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