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Abstract—The article presents a technique to identify a certain
transfer function in a dynamic network when the input and the
output of the transfer function are influenced by an unmeasured
confounding variable. It is assumed that in an observational
framework, only a subset of the variables of the network are
measured and the topology of the interconnections between the
variables is partially known. The focus of the paper is the
challenging scenario where it is not possible to measure any
variables on the directed paths from the confounding variable
to either the input or the output of the transfer function of
interest. Sufficient conditions are derived to determine a set
of instrumental variables and a set of auxiliary variables that
guarantee consistent identification of the transfer function using
an algorithm based on prediction error method for the class
of acyclic networks. It is also shown that similar ideas could
be applied to cyclic networks. In particular, we show how
consistent estimates of some transfer functions in a network
with feedback loops could be used to identify some other transfer
functions whose inputs and outputs are influenced by unmeasured
confounding variables.

Index Terms—Dynamic networks, Confounding Variables, In-
strumental Variables, Identification

I. INTRODUCTION

In recent years increasing attention has been given to the
development of new tools for the identification of large-
scale interconnected systems. While injecting a suitable input
into a system and measuring the corresponding output is a
standard strategy in system identification [1], [2], studying the
relationship between two nodes of a network using only ob-
servational measurements is critically important for any large
scale network fulfilling critical or uninterruptible functions
(e.g., a power grid, a logistic system). or in situations where it
is impractical (e.g. applications in medicine such as repeated
drug testing, automatically assisted anesthesia, Deep Brain
Stimulation for Parkinson disease ) or too expensive to inject
known probing signals into the system (e.g., a gene network,
a financial network). This paper deals with the scenario where
only observational data is available.

Statistical measures such as Cramer-Rao lower bound are
often used to assess the accuracy of estimations. However, in a
purely observational framework, guaranteeing the consistency
of estimation is already a challenging task. A wealth of
methodologies has been developed to deal with the problem of
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identifying a network of dynamic systems from observational
data [3]-[12].

In several recent results, it has been shown that, by ap-
propriately introducing additional measured variables to a set
of predictor inputs, a consistent estimate of a certain transfer
function can be obtained using prediction error method or
substantially equivalent tools [13]-[16]. This idea has been ex-
plored in the extension of closed-loop identification techniques
to network identification [13], [14], [17] and by applying
graphical model tools [18]-[20].

Within a specific multi-input single-output prediction error
framework , the results in [18] provide sufficient and necessary
conditions, of purely graphical nature, to determine the set
of auxiliary predictor inputs in order to guarantee a consis-
tent identification of a single transfer function in a dynamic
network. By consistent identification it is meant that as the
number of data points used increases indefinitely, the estimated
parameters converge in probability to their actual values [21].

In this paper, we deal with a special challenging scenario
where the conditions required by [18] cannot be satisfied.
Namely, we focus on the scenario where the input and the
output of the transfer function of interest are influenced by
an unmeasured confounding variable and it is not possible
to measure any variables on the directed paths from the
confounding variable to either the input or the output of
the transfer function. We provide sufficient conditions to
determine a set of instrumental variables [22]-[24] and a set
of auxiliary variables that guarantee consistent identification
of the transfer function using an algorithm based on the
prediction error method for the class of acyclic networks.
We also show that similar ideas could be applied to cyclic
networks. In particular, we show how consistent estimates
of some transfer functions in a network with feedback loops
could be used to identify some other transfer functions whose
inputs and outputs are influenced by unmeasured confounding
variables.

The article is organized as follows. Section II reviews the
concepts of dynamic networks, their graphical representations
and some identification results. Section III presents the main
results focusing on identification of a certain transfer function
in an acyclic network in presence of an unmeasured con-
founding variable. Section IV shows that such results could
be extended to networks with feedback loops. Concluding
remarks are given in Section V.

II. CLASS OF NETWORKED SYSTEMS

In this section, we introduce the class of models that is
going to be the object of our investigation along with some



preliminary concepts and notions from the area of graphical
models.

Definition 1. A network ¢ is a pair (H(z),n) where H(z) is
a proper rational discrete-time v X v transfer matrix and n is
a vector of v mutually independent stochastic processes with
a full rank rational power spectral density matrix. The output
signals of the network are defined by the relation

xj=n;+Y Hji(x)x,
eV

for j=1,...;v €))
Using a vector notation and defining V = {1,...,v} we can
represent the model in a more compact way as

2

Models described by (2) lend themselves to be represented
via graphs.

For a directed graph G, defined by the pair (V,E) where
V ={1,2,---,v} is the set of nodes and E CV x V is the set
of edges, we denote an edge (i,j) €E as i — j or j < i and
say that the edge is oriented from i to j.

Xy =ny +H(Z)XV.

Definition 2. Let & = (H,n) be a network with output
processes xy, where V :={l,...,v}. We say that the graph
G = (V,E) is a graphical representation of the network if
(@) i— j¢E implies Hjj(z) =0

In other words, the absence of the edge i — j in a graphical
representation implies that Hj;(z) = 0.

Given a path 7 in a graph G we say that a node j is a
collider, when there exist two consecutive edges in the path
of the form i — j and j <— k. We say that node j is a descendant
of node i if j =i or if there is a directed path from i to j.

O—0 OO
Fig. 1: Representation of a directed graph.

For example, in the graph of Figure 1, node 4 in the path
{3 =4+« 2+« 5} is a collider. Also, node 7 is a descendant
of node 1 because there is a directed path {l -3 —6— 7}
from node 1 to node 7.

Definition 3. In a directed graph G, a path T between nodes
i and j is blocked by a set of nodes Z if there is a non-collider
on T that belongs to Z; or there is a collider ¢ on T such that
Z does not contain any descendants of c.

In the theory of graphical models, a fundamental concept
defined over the nodes of a directed graph is d-separation [25].

Definition 4. In a directed graph G = (V,E) let A, B, and
C be disjoint subsets of V. A and B are d-separated by C if
for all nodes a € A and b € B, all paths between a and b are
blocked by C.

Example 1. In the directed graph depicted in Fig. 1, by
choosing C = {1,3,4}, we make A = {2} and B = {6} d-
separated. Alternatively, C = {3} would have been a smaller
set making A = {2} and B={6} d-separated.

Furthermore we say that a path 7 is j-pointing if the last
edge of m is of the form k — j for some node k [18]. For
example, in the graph of Figure 1, the path {1 -3 — 6 — 7}
is 7-pointing.

Definition 5. Given a probability space, for a set of stochastic
processes x4 where A C'V, we denote the natural filtration
generated by the processes xa up to time t as I5(t).

Denoting the set of real-rational causal transfer functions
that are analytic and invertible on the unit circle by Z ¥, we
can interpret I4(¢) as the rational causal transfer span:

Iy(t) == {CIZ Y P(z) xi | P(z) € ﬁ*}.

icA

3)

By the notation of Definition 5 the estimate £;(r) of x;(r)
in the least square sense based on the information of variables
Xp+ up to time ¢ and the information of variables xp- up to
time ¢ — 1 could be written as

2(t) =E(x;(t) | Ip+(t),Ip- (t —1)). (4)
In the linear Gaussian case Equation (4) reduces to to
£i=Y Wi@u+ Y Wi)x )

keD* keD~

where Wji(z) for k € D' are proper modules and for k € D~
are strictly proper modules.

A. An identification result for the class of networked systems

In the following, we review some relatively recent results
guaranteeing a consistent identification of a transfer function
for the class of networked systems we have just introduced.
These results rely on conditions that can be formulated directly
on the graphical representation of the network. Here, we
briefly summarize these identification results assuming that
the reader is already familiar with standard notions of graph
theory.

Within a specific multi-input single-output prediction error
framework , Theorem III.2 and Theorem V.1 in [18] provide
sufficient and necessary conditions, of purely graphical nature,
to determine the set of auxiliary predictor inputs in order to
guarantee a consistent identification of a single transfer func-
tion in a dynamic network. The following theorem combines
Theorem III.2 and Theorem V.1 of [18].

Theorem I1.1. The application of Procedure 1 in [18] leads to
a consistent estimate of Hji(z) for all networks with graphical
representation G if and only if the predictor inputs set Z of
observed nodes satisfies the following conditions.
(i) Z blocks all the j-pointing paths between i and j with
the exception of i — j; and
(ii) ZU{i} blocks all j-pointing paths from j to itself in G.

Proof. See the appendix. O

The above conditions (i) and (ii) of Theorem II.1 are appli-
cable even in presence of feedback loops and/or confounding
variables affecting the nodes i and j.

In our framework, we say that a node c is a confounding
variable for the problem of identifying H;;(z), when there is



a directed path from c to i and there is a directed path from ¢
to j.

In this paper, however, we focus on a challenging scenario
where Theorem II.1 is not directly applicable because its
conditions cannot be satisfied due to the fact that some of
the nodes are not measured.

IIT. UNMEASURED CONFOUNDERS IN ACYCLIC NETWORKS

We start with a simplistic example to show that it is possible
to leverage our knowledge of some transfer functions that we
can straightforwardly identify to estimate some other transfer
function. Consider a network with a graphical representation
shown in Figure 2. The objective is the identification of the

H—0 :

Fig. 2: Graphical representation of a network where the
objective is the identification of Hp;(z). Node 4 which is a
confounder influencing nodes 1 and 2 is not measured.

transfer function Hp;(z). If all the nodes were measured, we
could apply Theorem II.1. Namely, the predictor inputs set
Z = {4} blocks the 2-pointing path 1+ 4 — 2 and satisfies
the conditions of Theorem II.1.

Suppose, however, that node 4 is not measured. Then, there
is no way to block the 2-pointing path 1 <-4 — 2. Since node
4 is a confounder influencing both nodes 1 and 2, the Wiener
filter corresponding to x; when we estimate x,(¢) using the
information of x; is going to be, in general, a biased estimate
of Hy(2).

We show, however, that node 3 can be used as an instrumen-
tal variable to identify Hpj(z). Observe that Z = {0} satisfies
the conditions of Theorem II.1 for the identification of H;3(z).
Therefore, the transfer function Hj3(z) can be consistently
identified by

Hi3(z) = Wi3(2) (6)

where Wi3(z) is the Wiener filter corresponding to x3 when
estimating x;(¢) from the information of x3 up to time ¢:

E(XI(I) | I3(t)) ZW13(Z)X3(1‘). @)

Similarly, the product of Hj;(z) and Hj3(z), namely the
transfer function Hy;(z)H13(z), can be consistently identified
by Wa3(z) which is the Wiener filter corresponding to x3 when
estimating x,(¢) from the information of x3 up to time #

E(xa(1) | B(1)) = Was(2)x3 (1) ®)
Therefore, Hy;(z) can be consistently identified by
A Wa3(2)
Hy (z) = 9
21(2) W) 9)

The fact that node 4 does not hinder the identification of
H>3(z) in the same way it does for Hp(z) can also be seen

from the algebraic equations governing the network. Indeed,
for the process x» () we can write

x2(1) = na(t) + Hoa(2)xa(t) + Hap (2)x1 (2) (10)
=m(t) + Hz1(2) (mi(¢) + Hiz(2)x3(t) + (11
Hi4(2)x4(1)) + Haa(2)x4(1) (12)

=m(t) + (Hos + Ho1 (2)Hi4) x4 () + (13)
Hyi(2)ni (t) + Ha1(2) Hi3(2)x3 (1) (14)

From the first equality we can see that when we want
to estimate x»(¢) from the information of x;(z) the error
term ny(t) + Haa(z)x4(¢) is not independent of x;(r) and
will introduce bias in our estimation of H;(z). From the
last equality, however, we can see that when we want to
estimate x,(¢) from the information of x3(¢) the error term
na (1) + (Haa(2) + Ha1 (2) H14(2)) x4(1) + Ha1 (z)ni (¢) is indepen-
dent of x3(¢). Therefore our estimation of Ha(z)H;3(z) will
be unbiased.

Now consider a little more complicated network of Figure
3. The difference between the network of Figure 3 and the

Fig. 3: Graphical representation of a more complicated net-
work where the objective is the identification of Hp(z) and
there are multiple paths paths between nodes 2 and 3.

network of Figure 2 is that there are two new paths, {3 —
5—2} and {3 — 7+ 2} , between nodes 2 and 3 in the
network of Figure 3. In this case, the method above cannot be
used to identify Hp;(z) because W3 in (8) is not going to be
a consistent estimate of Hp(z)H3(z).

We will show, however, that using a set of auxiliary vari-
ables that satisfies certain conditions, it would be possible to
determine an instrumental variable and consistently identify
the transfer function of interest based on a prediction error
method.

Theorem IIL.1. Consider an acyclic network with a graphical
representation G. Let G' be the mutilated graph obtained by
removing the edge i — j from G. If a set ZNdeg(j) =0

1) d-separates w from j in G'; and

2) does not d-separate w from i in G,
then, Hji(z) can be consistently identified by

. Wi
Aji() = WJW((;) (1s)
where W,(z) is computed from
ECrj(e) | (), I2(6) = ). Wir(@)x,  (16)

reZU{w}



and Wi, (z) is computed from

E(xi(t) | Iw(t>7 IZ(I)) = Z V_Vir(Z)xrv

reZU{w}

A7)

when the power spectral density matrix of (x;,Xj,Xy,Xz) is
non-singular.

Proof. See the appendix.
O

The condition ZNdeg(j) # 0 in Theorem IIL.1 is a standard
condition in graphical models to avoid creating new spurious
paths. Indeed, Theorem III.1 can be seen as an extension of the
instrumental variable technique [22] in the area of structural
equation models which is only valid for the identification of
simple proportional gains and not general transfer functions.
Moreover, contrary to the the instrumental variable technique
[22], Theorem III.1 can be extended to networks where the
node j is involved in feedback loops.

Using Theorem III.1 we can reconsider the problem of
identifying the transfer function Hp;(z) in the network of
Figure 3.

Example 2. Consider the graph G of the network of Figure 3.
Suppose the objective is the identification of the transfer func-
tion Hy(z). Figure 4 shows the mutilated graph G obtained
by removing the edge 1 — 2 from G. We have that the set

Fig. 4: The mutilated graph of Figure 3 obtained by removing
the edge 1 — 2 where the objective is the identification of
Hy (z).

Z = {5} d-separates nodes w= {3} and 2 in G'. Therefore,
by Theorem IIl.1 we have that

1 (2) = g?: 8

is a consistent estimate of Hy(z) where Wa3(z) is computed
from

(18)

E(xa(r) | B(1), I5(t)) = Waz(2)xz +Was(2)xs,  (19)
and Wy3(z) is computed from
E(x1(r) | B(1), I5(t)) = Wi3(2)x3 +Wis(z)xs.  (20)

IV. APPICATION TO NETWORKS WITH FEEDBACK LOOPS

Consider a network with a graphical representation shown in
Figure 5. It is assumed that the nodes 1,2, and 3 are measured
while node 4 which influences both nodes 1 and 2 is not
measured. Also, it is assumed that the forcing inputs n; are

Fig. 5: Graphical representation of a network where the
objective is the identification of Hy;(z) and nodes 1, 2, and
3 are in a feedback loop. Node 4 which is a confounder
influencing nodes 1 and 2 is not measured.

mutually independent white Gaussian processes. The objective
is to identify the transfer function Hy;(z).

Similar to the motivational example of Section III, the trans-
fer function Hy;(z) cannot be identified using Theorem II.1
because the only way to block the 1-pointing path {2+ 4 — 1}
between nodes 1 and 2 (condition (i) of Theorem II.1) is to
measure the confounder 4 which is hidden.

The difference between the network of Figure 5 and the
acyclic network of Figure 2 is that the new edge 1 — 3 puts
nodes 1, 2, and 3 in a feedback loop {3 —2 — 1 — 3}.

Because of this feedback loop, the results of Section III
which were developed for acyclic networks cannot be applied
and we briefly explain why. First, note that node 4 is now a
confounder influencing both nodes 1 and 3 (this was not the
case in the network of Figure 2). Indeed, node 4 influences
node 1 through the path {4 — 1} and influences node 3 through
the path {4 — 2 — 3}. One might think that it is possible
to get a consistent estimate of Hy3(z) by including 2 in the
predictor inputs, trying to block the path {4 — 2 — 3} and
adjusting for the confounder 4. This is, however, false and
leads, in general, to a biased estimate of H;3(z). Since this is
a very delicate situation , we provide an example to show that
including node 2 in the predictor inputs set will not necessarily
result in a consistent estimate of Hj3(z).

Example 3. Consider a network with a graphical
representation as in Figure 5. Suppose that the external
noises are jointly independent with power spectral density
equal to identity and the transfer functions are given by

Hy(z) = 1, Hxp(z) =0, Hi3() = |, Hu() = Ziz and
H(2) = %
Then, W3 (Z) in
E(x1(2) | 12,3(1‘ —1)) =Wia(2)x2(2) + Wi3(2)x3(2) 21

is a biased estimate of H\3(z). This can also be seen by
Theorem II.1. When the goal is the identification of the transfer
Sunction Hy3(z), the predictor inputs set Z needs to block all
the 1-pointing paths between nodes 1 and 3; and ZU{3} needs
to block all the 1-pointing paths from 1 to itself. It is true
that including node 2 in the predictor inputs set blocks the
1-pointing path 3 < 2 <— 4 — 1 but it unblocks the I-pointing
path 1 — 2+ 4 — 1 from 1 to itself as an activated collider.
Thus, the condition (ii) of Theorem Il.1 is violated.



In what follows, however, we show that it is possible to use
the information about a transfer function that we can consis-
tently identify to identify another transfer function. Namely,
we show that for the network of Figure 5 we can consistently
identify the transfer function Hi;(z) and use the knowledge
about H3;(z) to identify Hi3(z) and use the knowledge about
H,3(z) to, eventually, identify Hjz(z).

Consider the transfer function Hiz;(z) in the network of
Figure 5. There is no 3-pointing path between the nodes 2 and
3 except the target edge 2 — 3 and the 3-pointing paths from
node 3 to itself, {3—+1<+4—2—3}and {3—1—2—3},
are blocked by node 2. Therefore, by Theorem II.1 we can
consistently identify H3;(z) by

H3(2) = W(2) (22)
where W33(z) comes from
E(X3 (t) | 12(1‘ - 1)) =Wz (Z))Q(l‘). (23)

Now we use our knowledge about Hzp(z) to identify the
transfer function Hi3(z). First, we define a new fictitious
variable e, (¢) as follows.
e3|2(t) =Xx3 (t) — 1:132 (Z)Xz (l‘) 24)
Note that e3;(t) which will play the role of an instrumental
variable is the residual of estimating x3(¢) using the past
information of x,(¢) and in the case of the network of Figure
5 is equal to n3(z) (in more general and complex networks
this is not the case). Therefore, we have that
Leg, (1) AL L(1), (25)
where I, (¢) is the information of e3() up to time 7. Thus,
we can consistently identify Hj3(z) by

A

Hy3(z) = Wi3(2) (26)
where W3(z) comes from
E(x1(2) | Iy, (1)) = Wia(2)e3 2 (0)- 27

Now we can use our knowledge about H;3(z) to identify the
transfer function Hy;(z). Note that Wa3(z) in
E(0(t) | Ley, (1)) = Was(2)eza (1) (28)

is a consistent estimate of Ha;(z)H13(z). Therefore, Hy;(z) can

be consistently identified by
A Was(2)
Hy(z) = = (29)
) Wi3(z)

Recalling the subtleties mentioned in the beginning of this
section and in Example 3, the fact that we were able to
identify a transfer function in a feedback loop in presence
of an unmeasured confounder is noteworthy.

V. CONCLUSION

The article considered the problem of identifying a certain
transfer function in a dynamic network when the input and the
output of the transfer function are influenced by an unmea-
sured confounding variable. It was assumed that it was not
possible to measure any variables on the directed paths from
the confounding variable to either the input or the output of
the transfer function of interest. Therefore, recent multi-input
single-output identification results developed in the area of
dynamic network identification were not applicable. A method
based on determining a set of instrumental variables and a set
of auxiliary variables that satisfied some sufficient conditions
was presented to consistently identify the transfer function
for the class of acyclic networks. Applying similar ideas to
cyclic networks, it was shown that estimates of some transfer
functions in a network could be used to identify some other
transfer functions whose inputs and outputs are influenced by
unmeasured confounding variables.
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APPENDIX
Proof of Theorem I1.1

Proof. The sufficiency of conditions (i) and (ii) for consistent
identification of Hj;(z) follows from Theorem IIL2 of [18].
The necessity of conditions (i) and (ii) for consistent identifi-
cation of Hj;(z) follows from Theorem V.1 of [18]. O

To prove Theorem III.1, we first need to provide a few
lemmas.

Lemma V.1. Consider a directed graph G = (V,E). Suppose
ZNdeg(j) = 0. Let G' be be the mutilated graph obtained by
removing the edge i — j from G. Define a new graph G =
(V,E) from G such that

V=VUgqg

E=EU{k—q|keK,q— j}\{k—j| keK}, (30)

where K :={k | k #iand k — j € E}. Then, the set Z d-
separates w from j in G if and only if Z d-separates w from
qinG.

Proof. First we prove that if Z d-separates w from j in G, then
Z d-separates w from ¢ in G. Assume Z d-separates w from j
in G'. By contradiction suppose there is an unblocked path 7
between w and ¢ in G. If 7 is of the form 7 = {w...k — g},
for some k € K, then the path 7’ of the form 7’ = {w...k —
j} is an unblocked path between w and j in G’ which is
a contradiction. Also, note that the paths of the form & =
{w...i = j < ¢} in G are always blocked because j is a
collider in @ and ZNdeg(j) = 0. If T is of the form T =
{w...L <+ j< g}, then the path 7’ of the form @’ = {w... 0+
Jj} is an unblocked path between w from j in G’ which is a
contradiction. Now we prove that if Z d-separates w from

q in G, then, Z d-separates w from j in G'. Assume Z d-
separates w from ¢ in G. By contradiction suppose there is
an unblocked path 7’ between w and j in G'. If 7’ is of the
form n’ = {w...k — j}, for some k € pa/, then the path 7
of the form © = {w...k — ¢} is an unblocked path between
w and ¢ in G which is a contradiction. If &’ is of the form
' ={w...0 <+ j}, then the path T of the form T = {w... +
j < ¢} is an unblocked path between w from ¢ in G which is
a contradiction. O

The following lemma relates the notion of estimating a
certain node in a network and the notion of d-separation.

Lemma V.2. Consider a network with a graphical represen-
tation G. Suppose ZNdeg(j) = 0. If Z d-separates w and q
in G, then we have

Exq(t) | 1o(2), Iz(1)) = E(xq (1) | Iz(2)), 3D
and similarly
B (t) [ 14(1), Iz(1)) = EQx(r) | Iz(2)). (32)

Proof. The results follow from lemmas 15 and 16 of [26]. [

Lemma V.2 states that when estimating a certain node from
the information of a set of other nodes, the notion of d-
separation in the graph translates to the notion of conditional
independence.

We are now ready to present the proof of Theorem III.1.

Proof of Theorem III.1

Proof. Define a new variable x,(r) =x;(r) — H;;(z)x;(r). Since
Z d-separates w from j in G, it follows from Lemma V.1 that

xg(t) L1, (2) | I7(2). (33)
Therefore, we can write

Exj(@) | 1o(2), Iz(1)) = (34)
E(xq(t) + Hji(2)xi(t) | Ln(t), Iz(t)) = (35)
E(xq(r) | 1w(2), Iz(2)) +E(Hji(2)xi(2) | Lo(1), Iz(t)) = (36)
B(xg(r) | 1z(1)) + Hji(2) E(xi(t) | Lo(1), Iz(1)) = (37)
Y War(e)xe(r) + Hji(2) Wir(2)x,(1) = (38)

reZ rezu{w}
Hji(2)Wi (2)x (1) + Y [Wyr(2) + Hji(2) Wi (2)]x,(£), (39)

where the first equality follows from linearity of expecta-
tion and the second equality follows from (33) and Lemma
V.2. Since the power spectral density matrix associated with
(xi,Xj,Xy,Xxz) is non-singular, comparing both expressions for
E(x;(t) | L(r), Iz(t)), namely (16) and the last equality of
(34), we have that

Wi, =Wy (2) + Hji(2)Wir(z)  forreZz (40)

and
Wiw(z) = H;i(2)Wiw(2), (41)
which completes the proof. O



