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Abstract. For the obstacle problem involving a convex fully nonlinear elliptic operator, we show
that the singular set in the free boundary stratifies. The top stratum is locally covered by a C 1;˛

manifold, and the lower strata are covered by C 1;log" manifolds. This recovers some of the recent
regularity results due to Colombo–Spolaor–Velichkov (2018) and Figalli–Serra (2019) when the
operator is the Laplacian.

1. Introduction

The classical obstacle problem describes the equilibrium shape of an elastic membrane
being pushed towards an impenetrable barrier. In its most basic form, the height of the
membrane satisfies

�u D �¹u>0º and u � 0 in �.

Here � is a given domain in Rd , and �E denotes the characteristic function of the set E.
The right-hand side of the first equation has a jump across the a priori unknown interface
@¹u > 0º, often called the free boundary.

Apart from its various industrial applications, many ideas and techniques developed
for the classical obstacle problem have been crucial in the study of other free boundary
problems. In this sense, the classical obstacle problem is the prototypical free boundary
problem. As a result, it has been studied extensively during the past few decades. For many
applications of the classical obstacle problem and some related problems, see Petrosyan–
Shahgholian–Uraltseva [17] and Ros-Oton [18].

As already observed by Brézis–Kinderlehrer [4], the solution u enjoys the optimal
C
1;1
loc regularity. The interesting problem is to understand the regularity of the free bound-

ary @¹u > 0º: In that direction, Sakai first gave some results for the planar case in [19,20].
The theory in higher dimensions was developed by Caffarelli [5, 6], who showed that
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around points on @¹u > 0º the solution u has two possible types of behavior. Either it
behaves like a half-space solution, 1

2
max¹x � e; 0º2 for some e 2 Sd�1, or it behaves like

a quadratic polynomial 1
2
x � Ax for some nonnegative matrix A.

The points where the solution behaves like a half-space solution are called regular.
Near such points, Caffarelli [5] showed that the free boundary is an analytic hypersurface.
His method is sufficiently robust that it has been adapted to regular points in many other
problems, including the thin-obstacle problem in Athanasopoulos–Caffarelli–Salsa [3],
the obstacle problem for integro-differential operators in Caffarelli–Salsa–Silvestre [9],
the obstacle problem for fully nonlinear operators in Lee [15], the obstacle problem for
fully nonlinear nonlocal operators in Caffarelli–Serra–Ros–Oton [8], and a very general
class of unconstrained free boundary problems in Figalli–Shahgholian [13] and Indrei–
Minne [14].

The points where the solution behaves like a quadratic polynomial are called singu-
lar. As shown by Schaeffer [22], the free boundary can form cusps near these points.
Nevertheless, certain structural results can be established for singular points.

To be more precise, let 1
2
x � Ax0x denote the polynomial modeling the behavior of u

around a singular point x0: Depending on the dimension of the kernel of Ax0 , the collec-
tion of singular points can be further divided into d classes (strata), the kth stratum being

†k.u/ D ¹x0 W x0 is a singular point with dim ker.Ax0/ D kº:

The structural theorem by Caffarelli [6] says that †k is locally covered by C 1 mani-
folds of dimension k. His proof was based on the Alt–Caffarelli–Friedman [2] formula.
An alternative proof was later found by Monneau [16], using the monotonicity formula
bearing his name.

Recently there has been quite some interest in improving this result. In two dimen-
sion, Weiss [23] improved the regularity of the manifolds to C 1;˛ by introducing the
Weiss monotonicity formula. Based on the same formula, Colombo–Spolaor–Velichkov
[10] showed that in higher dimensions the manifolds are C 1;log" . The best result so far
is in Figalli–Serra [12]. By applying Almgren’s [1] monotonicity formula, they improved
C 1;log" to C 1;˛ for the manifolds covering the top stratum †d�1.u/. They also showed
that each stratum can be further divided into a ‘good’ part and a ‘bad’ part, where the
former is covered by C 1;1 manifolds, and the latter is of lower dimension.

Despite these exciting new results, almost nothing is known about singular points
for obstacle problems involving operators other than the Laplacian. Compared with the
robust argument for regular points, all developments on singular points depend on various
monotonicity formulae. These are powerful but restricted, in the sense that they are not
expected to hold for nonlinear operators or even for linear operators with coefficients of
low regularity. The same obstruction lies behind the lack of understanding of singular
points in many other free boundary problems. Consequently, it is important to develop
new tools when monotonicity formulae are not available.

In this work, we develop a method for the study of singular points without relying on
monotonicity formulae. In particular, this method works for the following obstacle prob-
lem involving a convex fully nonlinear elliptic operator F whose derivatives are Hölder
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continuous: ´
F.D2u/ D �¹u>0º;

u � 0;
in �. (1.1)

Here � is a domain in Rd , and the solution u is in the viscosity sense [7,15]. For a given
boundary data, the solution u is unique and can be obtained either as the least nonnegative
supersolution to F.D2u/ � 1, or as the largest subsolution to F.D2u/ � �¹u>0º.

Even when F is the Laplacian, our method is interesting as it provides a new approach
to the regularity of the singular set. At first reading, it might relieve many technical com-
plications if the reader takes F to be the Laplacian.

For the singular points on the free boundary @¹u > 0º, our main result reads

Theorem 1.1. Let u be a solution to (1.1). For k D 0; 1; : : : ; d � 2, the kth stratum of the
singular points, †k.u/, is locally covered by a k-dimensional C 1;log" manifold. The top
stratum, †d�1.u/, is locally covered by a .d � 1/-dimensional C 1;˛ manifold.

Theorem 1.1 states that the singular set of the free boundary in the nonlinear obstacle
problem setting enjoys similar regularity properties as in the linear case. The methods
developed here rely on linearization techniques, and the hypothesis that F 2 C 1 is essen-
tial in our analysis.

Let us briefly recall the strategy when the operator is the Laplacian. For each point x0
in the singular set, we study the rescalings ux0;r .�/ D u.r � Cx0/=r

2 as r ! 0. Up to a
subsequence, they converge to a quadratic polynomial, called the blow-up profile at x0.
When the operator is the Laplacian, this polynomial is unique in the sense that it is inde-
pendent of the subsequence r! 0: It models the behavior of our solution ‘at the point x0’.
A uniform rate of convergence allows the comparison of blow-up profiles at different
points. This gives the desired regularity of the covering manifolds.

Up to now, however, even the proof for the uniqueness of the blow-up profile requires
monotonicity formulae. Due to the unstable nature of singular points, it is not obvious
that the solution cannot behave like completely different polynomials at different scales.
This can be ruled out by monotonicity formulae. Once the solution is close to a parabola
at a certain scale, a monotone quantity shows that the solution stays close to the same
parabola at all smaller scales, leading to uniqueness of the blow-up profile.

Since no monotonicity formula is expected for our problem, we do not have access
to the behavior of u at all small scales. Instead, we proceed using an iterative scheme.
Suppose the solution is very close to a parabola in B1; we need to show that for some
� < 1, it is even closer to a similar parabola in B�. Iterating this argument gives a rate
of convergence to the blow-up profile, which in particular gives its uniqueness. Such a
scheme has been applied to study regularity of solutions of elliptic equations [21] as well
as regular points along free boundaries [11]. To our knowledge this is the first time it has
been applied to singular points along free boundaries.

To be more precise, suppose that 0 is a singular point along @¹u > 0º, and that u is
very close to a parabola p in B1, in the sense that

ju � pj < " in B1
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for some small ". Our goal is to show that inB�, the solution u can be better approximated.
It is natural to look at the normalized solution

Ou D
1

"
.u � p/;

which solves an obstacle problem with OO D �1
"
p as the obstacle. Assume that p takes

the form

p D
1

2

dX
jD1

ajx
2
j

with the coefficients satisfying

a1 � � � � � ad and ak � ": (1.2)

Then the contact set between Ou and the obstacle concentrates around the subspace

¹x1 D � � � D xk D 0º:

From here we need to separate two cases depending on the dimension of this subspace.
When k D 1, this subspace is of codimension 1. In the limit as "! 0, Ou effectively

solves the thin obstacle problem with 0 as the obstacle along ¹x1 D 0º. Let Nu denote the
solution to this problem. After developing new technical tools concerning the directional
monotonicity and convexity of solutions, we can show that Nu is C 2 at the origin, and the
second order Taylor polynomial of Nu gives the approximation of u in B� with an error of
the order .1 � ˇ/"�2.

When k � 2, in the limit as "! 0, the effective obstacle lives on a subspace of codi-
mension strictly larger than 1. Here it is more natural to approximate u with the solution
to the unconstrained problem

F.D2h/ D 1 in B1, and h D u along @B1:

We show that h ‘almost’ solves the constrained problem, and its second order Taylor
expansion gives the next approximation of u in B� with an error of the order ." � "�/�2

for some � > 1. For " small, this improvement is much slower than "! .1 � ˇ/". Con-
sequently, we need a much more delicate argument to keep track of the change in the
polynomials at each step, essentially saying that if the improvement of error is small, then
the change in the polynomials is even smaller.

Combining these two cases together, we get a rate of convergence to the blow-up
profile, which allows us to establish the main result, Theorem 1.1.

To our knowledge, this is the first structural result for singular points in the obstacle
problem with nonlinear operators. We hope that the ideas and techniques developed here
can be applied to other types of free boundary problems.

This paper is structured as follows. In the next section we provide some preliminary
material and introduce some notations. In Section 3 we establish the main new observa-
tions of this paper, the improvement of monotonicity and convexity of the solution. With
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these we prove two lemmata concerning the iterative scheme. In Section 4 we deal with
the case when k D 1 as in (1.2). In Section 5 we deal with the case when k � 2: In the
last section, we combine these to prove the main result.

2. Preliminaries and notations

This section is divided into three subsections. In the first subsection we discuss some reg-
ularity properties of convex elliptic operators. The main reference for these is Caffarelli–
Cabré [7]. In the next subsection we include some known results on the obstacle problem,
mostly from Lee [15]. In the last subsection we recall an expansion of solutions to the
thin obstacle problem.

2.1. Fully nonlinear convex elliptic operators

Let �d denote the space of d -by-d symmetric matrices. Our assumptions on the operator
F W �d ! R are:

F.0/ D 0I F is convexI (2.1)

F is C 1;˛F for some ˛F 2 .0; 1/ with C 1;˛F seminorm ŒF �C1;˛F � CF I (2.2)

there is a constant 1 � ƒ < C1 such that

1

ƒ
kP k � F.M C P / � F.M/ � ƒkP k (2.3)

for all M;P 2 �d and P � 0:
We call a constant universal if it depends only on the dimension d , the elliptic con-

stant ƒ and CF , ˛F .
For a C 2 function ', define the linearized operator L' W �d ! R by

L'.M/ D
X
ij

Fij .D
2'/Mij ;

where Fij denotes the derivative of F in the .i; j /-entry, and D2' is the Hessian of '.
One consequence of convexity is

Lv.w � v/ � F.D
2w/ � F.D2v/ � Lw.w � v/: (2.4)

As a result, we have the following comparison principle:

Proposition 2.1. Let u be a solution to (1.1). Suppose the functions ˆ and ‰ satisfy´
F.D2ˆ/ � 1 in � \ ¹ˆ > 0º,

ˆ � u on @�,

8̂̂<̂
:̂
F.D2‰/ � 1 in �,

‰ � 0 in �,

‰ � u on @�.

Then ˆ � u � ‰ in �:
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Proof. Define U D � \ ¹ˆ > 0º. Then (2.4) implies that inside U , we have

Lˆ.ˆ � u/ � F.D
2ˆ/ � F.D2u/ � 0:

Noting that @U � @�[ ¹ˆD 0º, we haveˆ� u � 0 on @U since u � 0 in� andˆ � u
on @�: The maximum principle gives

ˆ � u � 0 in U .

Again with u � 0, we have ˆ � u � 0 in ¹ˆ � 0º D U c . Combining these we have

ˆ � u in �:

To see the comparison between u and ‰, we define V D � \ ¹u > 0º: Then (2.4)
implies that inside V , we have

Lu.‰ � u/ � F.D
2‰/ � F.D2u/ � 1 � 1 D 0:

With‰ � 0 in� and‰ � u on @�, we see that‰� u� 0 on @V . The maximum principle
leads to ‰ � u � 0 in V . In V c , u D 0 � ‰, thus ‰ � u in �.

One cornerstone of the regularity theory of fully nonlinear elliptic operators is the
Evans–Krylov estimate [7]:

Theorem 2.1. Let F W �d ! R be a convex operator satisfying F.0/ D 0 and (2.3). If v
solves

F.D2v/ D f in B1;

then there are universal constants ˛ 2 .0; 1/ and 0 < C < C1 such that

kvkC2;˛.B1=2/ � C.kvkL1.B1/ C kf kC˛.B1//:

In particular, if u solves (1.1), then in ¹u > 0º we have enough regularity to differen-
tiate the equation and use convexity of F to get

Lu.Deu/ D 0; Lu.Deeu/ � 0 in ¹u > 0º: (2.5)

Here e 2 Sd�1 is a unit vector. Here and in later parts of the paper, De denotes dif-
ferentiation in the e-direction, and Dee denotes the pure second order derivative in the
e-direction. When differentiating along directions of a standard orthonormal basis of Rd ,
we also write Di D Dei and Dij D DeiDej , where ei is the i th vector in the standard
basis.

A direct application of the previous theorem gives the following estimate:

Proposition 2.2. Let F satisfy assumptions (2.1)–(2.3).
If v solves

F.D2v/ D 1 in B1;
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and p is a quadratic polynomial with F.D2p/ D 1, then

kv � pkC2;˛.B1=2/ � Ckv � pkL1.B1/

for some universal ˛ 2 .0; 1/ and 0 < C < C1:

If w also solves
F.D2w/ D 1 in B1;

then for a universal constant ˛ 2 .0; 1/ we have

kv � wkC2;˛.B1=2/ � Ckv � wkL1.B1/

where C further depends on kvkL1.B1/ and kwkL1.B1/:

Proof. For the first statement, we directly apply the previous theorem to the operator

G.M/ D F.M CD2p/ � F.D2p/:

This satisfies all assumptions in Theorem 2.1. The difference v � p solves

G.D2.v � p// D 0 in B1:

For the second statement, we first apply Theorem 2.1 to v and w, which gives

kvkC2;˛.B3=4/ � CkvkL1.B1/ and kwkC2;˛.B3=4/ � CkwkL1.B1/:

In B1 the difference v � w solves the linear equation

Aij .x/Dij .v � w/ D 0

with coefficients

Aij .x/ D

Z 1

0

Fij
�
tD2v.x/C .1 � t /D2w.x/

�
dt:

By the previous estimate, this is Hölder continuous. We apply the standard Schauder
theory to get the desired estimate.

Next we give an estimate for solutions to linear equations with coefficients which are
close to being constant in a large portion of the domain. This is relevant in our analysis
since often the linearized operators considered are perturbations of the constant coefficient
operator Lp .

Proposition 2.3. Let � be a Lipschitz domain. Suppose v,w are C 2 solutions to the
uniformly elliptic linear equations

aij .x/vij D 0 and bijwij D 0 in �; v D w D ' on @�,

with ' Hölder continuous, and with the coefficients aij .x/ measurable, and bij constant.
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If
jaij .x/ � bij j � � in �� WD ¹x 2 � W dist.x; @�/ > �º;

then
kv � wkL1.�/ � !.�/;

where !.�/ is a modulus of continuity, which depends on the ellipticity constants, the
domain � and k'kC˛ .

Proof. The proposition follows from the perturbative methods developed in [7]. Here we
only sketch a proof by compactness.

The global version of the Harnack inequality implies that v, w are uniformly Hölder
continuous in �. Now we consider a sequence �k ! 0, and the corresponding solutions
vk , wk (for equations with coefficients aij

k
.x/, bij

k
). Then, up to subsequences, they must

converge uniformly to a solution of the same constant coefficient equation. The limit-
ing solutions must coincide since they have the same boundary data, and the conclusion
follows.

2.2. Known results for the obstacle problem

In this subsection we include some classical results concerning the obstacle problem (1.1).
Most of the results here can be found in Lee [15].

We begin with the optimal regularity of the solution:

Proposition 2.4. Let u be a solution to (1.1). Then for a compact set K � �,

kukC1;1.K/ � C

for some C depending on universal constants, K, and kukL1.�/:

A direct consequence is that in the contact set ¹u D 0º, we have

ru D 0 and D2u � 0 in the viscosity sense. (2.6)

We have the following almost convexity estimate.

Proposition 2.5. Let u be a solution to (1.1) in � D B1 with u.0/ D 0: Then for some
universal constants ı0 > 0 and C ,

D2u.x/ � �C
ˇ̌
log jxj

ˇ̌�ı0 in B1=2:

The free boundary decomposes into the regular part and the singular part,

@¹u > 0º D Reg.u/ [†.u/;

with Reg.u/ given locally by a C 1;˛ surface which separates the zero set from the posit-
ivity set.
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Define the thickness function of a set E, ıE .�/, as

ıE .r/ D MD.E \ Br /=r;

where MD.E \Br / is the infimum of distances between two pairs of parallel hyperplanes
such that E \ Br is contained in the strip between them.

Geometrically the singular set†.u/ is characterized by the vanishing thickness of the
zero set:

Proposition 2.6. Let u be a solution to (1.1) in B1 with 0 2 †.u/: There is a universal
modulus of continuity �1 such that

ı¹uD0º.r/ � �1.r/:

In particular, if 0 2 †.u/, the zero set ¹u D 0º cannot contain a nontrivial cone with
vertex at 0.

Another characterization of the singular set is that at points in †.u/ the solution is
approximated by quadratic polynomials.

For this, we define the following class of polynomial solutions to the obstacle prob-
lem. We also define the class of convex polynomials that do not necessarily satisfy the
nonnegative constraint.

Definition 2.1. The class of quadratic solutions is defined as

Q D
®
p W p.x/ D 1

2
x � Ax; A � 0; F.A/ D 1

¯
:

The class of unconstrained convex quadratic solutions is defined as

UQ D
®
p W p.x/ D 1

2
x � Ax C b � x; A � 0; F.A/ D 1

¯
:

Here and in later parts of the paper, x � y denotes the standard inner product between
two vectors x and y.

Note that for a polynomial p 2UQ,D2p � 0. Ellipticity (2.3) then givesD2p � CI ,
for some universal C .

For points in †.u/, we have the following uniform approximation by quadratic solu-
tions:

Proposition 2.7. Let u be a solution to (1.1) in B1 with 0 2 †.u/. There is a universal
modulus of continuity �2 such that for each r 2 .0; 1=2/, there is pr 2 Q satisfying

ku � prkL1.Br / � �2.r/r
2:

Combining Propositions 2.5 and 2.7, we know that after some rescaling, our solution
is in the following class:

Definition 2.2. Given "; r 2 .0; 1/ and p 2 UQ, we say that u is "-approximated by the
polynomial p in Br , and use the notation u 2 �.p; "; r/, if

u solves (1.1) in Br and ju � pj � "r2 in Br ;
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and
D2u � �c0"I in Br ; where c0 D

1

16ƒ2
: (2.7)

The universal bound 0�D2p �CI for p 2UQ immediately gives a universal bound
on the size of u whenever u 2 �.p; "; r/:

0 � u � C in Br (2.8)

where C is universal.

2.3. The thin obstacle problem

In this subsection we discuss solutions to the thin obstacle problem. In certain cases, our
solution converges to them after normalization. Readers interested in the thin obstacle
problem may consult Athanasopoulos–Caffarelli–Salsa [3] or Petrosyan–Shahgholian–
Uraltseva [17]. In its most basic form, the thin obstacle problem is the following system:8̂̂<̂

:̂
�v � 0 in B1,

�v D 0 in B1 \ .¹v > 0º [ ¹x1 ¤ 0º/,

v � 0 along ¹x1 D 0º:

(2.9)

Here x1 denotes the first coordinate function of Rd .
For solutions to this problem, we have the following effective expansion according to

frequencies at 0:

Proposition 2.8. Let v be a nontrivial solution to (2.9) with v.0/ D 0. Then one of the
following three possibilities happens for v:

(1) for some a˙ 2 R not both 0,

v.x/ D aCx
C
1 C a�x

�
1 C o.jxj/ as x ! 0I

(2) for some r > 0 and e 2 Sd�1 \ ¹x1 D 0º,

Dev > 0 in Br \ ¹x1 ¤ 0ºI

(3) for some A 2 �d with e � Ae � 0 for all e 2 Sd�1 \ ¹x1 D 0º and tr.A/ D 0,

v.x/ D 1
2
x � Ax C o.jxj2/ as x ! 0.

For a real number x, xC and x� denote the positive and negative parts of x respect-
ively. Recall that De denotes differentiation in the e-direction.

Proof of Proposition 2.8. The Almgren frequency of v at 0 is well-defined. Denote this
frequency by '; then there are three possibilities: ' D 1; or ' D 3=2; or ' � 2:

If ' D 1, then v blows up to a 1-homogeneous solution to (2.9). In this case, possib-
ility (1) as in the statement of the lemma holds.



Regularity of the singular set 11

Similarly, if ' � 2, then possibility (3) happens.
If �D 3=2, then v blows up to a 3=2-homogeneous solution. In this case v is monotone

in a direction in the hyperplane ¹x1 D 0º. This corresponds to possibility (2).
For details, the reader may consult [3] or [17].

3. Improvement of monotonicity and convexity

This section contains some new observations concerning the directional monotonicity
and convexity of solutions to the obstacle problem. They are at the heart of the further
development of the theory.

Roughly speaking, if the solution is ‘almost’ monotone/convex in B1 and strictly
monotone/convex away from the free boundary, then the results here imply that the solu-
tion is indeed monotone/convex in B1=2. As already evident in the classical work of
Caffarelli [5], it is of fundamental importance to develop such tools to transfer inform-
ation away from the free boundary to the full domain.

Before we state the main results of this section, we begin with the construction of a
barrier function. In the following lemma, 
 is the constant such that

F.
I / D 1: (3.1)

Here I is the identity matrix. By (2.3), 1=ƒ � 
 � ƒ:

Lemma 3.1. For 0 < � < r < 1 and N > 8
r2, let w be the solution to the system8̂̂<̂
:̂
F.D2w/ D 1 in Br ,

w D 1
2

 jxj2 along @Br \ ¹jx1j > �º,

w D N along @Br \ ¹jx1j � �º.

For x0 2 Br=2, define

wx0.x/ D w.x/ � w.x0/ � rw.x0/ � .x � x0/:

There is N�, depending on r , N and universal constants, such that if � < N�, then for all
x0 2 Br=2,

wx0.x/ �
1
64

 jx � x0j

2 in Br , wx0 �
1
2
N along @Br \ ¹jx1j � �º:

Proof. Define ' D w � 1
2

 jxj2 in Br . Then Proposition 2.2 gives

k'kC2;˛.B3r=4/ � Crk'kL1.B7r=8/;

for some Cr depending on universal constants and r .
We claim that as �! 0,

' converges locally uniformly in Br to 0. (3.2)
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Consequently, there is a modulus of continuity !, depending on universal constants, N
and r , such that

Crk'kL1.B7r=8/ � !. N�/

whenever � < N�: Thus the previous estimate gives

k'kC2;˛.B3r=4/ � !. N�/ (3.3)

whenever � < N�:
In order to prove (3.2) we notice that ' satisfies a linear elliptic equation

aij .x/'ij D 0 in Br ;

with ellipticity constant ƒ. Also, ' vanishes on @Br except on @Br \ ¹jx1j � �º where
N � ' � 3

4
N . We extend ' D 0 outsideBr , and by the weak Harnack inequality it follows

that max ' decreases geometrically on the outward dyadic regions centered around a point
y 2 @Br \ ¹x1 D 0º,

B21�k .y/ n B2�k .y/ as long as � � 2�k � r=4:

We easily obtain the claim (3.2) as we let �! 0.
Define 'x0.x/ D '.x/ � '.x0/ � r'.x0/ � .x � x0/. The conclusion follows from

(3.3) by using
wx0 D 'x0 C

1
2

 jx � x0j

2;

and ' � 0 in Br , ' � 3
4
N on @Br \ ¹jx1j � �º.

With this we prove the following improvement of the monotonicity lemma. Recall
the class of solutions �.p; "; r/ is defined in Definition 2.2, and that De is differentiation
along direction e.

Lemma 3.2. Suppose u 2 �.p; "; r/ satisfies the following for some constants K, � , and
0 < � < r , and a direction e 2 Sd�1:

Deu � �K" in Br ; Deu � �" in Br \ ¹jx1j � �º:

There is N�, depending on universal constants, r , � and K, such that if � � N�, then

Deu � 0 in Br=2.

Proof. Choose c > 0 small, depending on universal constants and � , such that

ckukL1.Br / � �:

Then defineN Dmax ¹4K=c; 10kukL1.Br /º, depending only onK;� and universal con-
stants since we have the universal bound (2.8).

Let N� be the constant given in Lemma 3.1, depending on N and r . Let wx0 be the
barrier as in that lemma. Assume � < N�:
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If we define U D Br \ ¹u > 0º and pick x0 2 Br=2 \ ¹u > 0º, then on @U , which is
contained in .@Br \ ¹jx1j � �º/ [ .@Br \ ¹jx1j < �º/ [ @¹u > 0º, one has

c".u � wx0/.x/ � c"u � �" along @Br \ ¹jx1j � �º;

c".u � wx0/.x/ � c"
�
u � 1

2
N
�
� c"

�
�
1
4
N
�

� �K" along @Br \ ¹jx1j � �º;

and
c".u � wx0/.x/ � 0 along @¹u > 0º.

Our assumptions on Deu and (2.6) imply

Deu � c".u � wx0/ along @U .

Now with (2.4) and (2.5), we have Lu.Deu/ D 0 and Lu.u � wx0/ � 0 in U . Thus
the comparison principle gives

Deu.x0/ � c".u � wx0/.x0/ D c"u.x0/ � 0:

Since this is true for all x0 2 Br=2 \ ¹u > 0º and Deu D 0 in ¹u D 0º, it follows that
Deu � 0 in Br=2.

A slightly different version is also useful:

Lemma 3.3. Suppose u 2 �.p; "; r/ satisfies the following for some constants K, � , and
0 < � < r , and a direction e 2 Sd�1:

Deu � �K" in Br ; (3.4)

Deu � 0 in Br \ ¹jx1j � �º; (3.5)

Deu � �" in Br \
®
u > 1

256

r2

¯
: (3.6)

There is N�, depending on universal constants, r , � and K, such that if � � N�, then

Deu � 0 in Br=2.

Proof. The proof is almost the same as the previous one. The only difference happens for
the comparison along the boundary @Br \ ¹jx1j � �º:

On @Br \ ¹jx1j � �º \ ¹u > 1
256

r2º, we still have Deu � �", and the same com-

parison Deu � c".u � wx0/ holds.
On @Br \ ¹jx1j � �º \ ¹u � 1

256

r2º, we invoke

u � wx0 � u �
1
64

 jx � x0j

2
� u � 1

64


�
1
2
r
�2
� 0

for x0 2 Br=2: Thus along this piece of the boundary we still have

Deu � 0 � c".u � wx0/:

Finally, we have the following improvement of the convexity estimate:
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Lemma 3.4. Suppose u 2 �.p; "; 1/: There is a universal constant C such that if Deep
� C" along some direction e 2 Sd�1, then

Deeu � 0 in B1=2.

Proof. Let 
 be the constant as in (3.1), and c0 be the constant as in Definition 2.2.
For x0 2 B1=2 \ ¹u > 0º, define

h.x/ D Deeu.x/ �
64c0



"
�
u.x/ � 1

2

 jx � x0j

2
�
:

Defining U D B3=4 \ ¹u > 0º, we have the following

Claim. For some universal constant C , if Deep � C", then h � 0 along @U .

Note that by (2.4) and (2.5), Lu.h/ � 0 in U . Thus once the claim is proved, h � 0
in U by the maximum principle. In particular, Deeu.x0/ � 0. Together with (2.6), we
have Deeu � 0 in the entire B1=2.

Therefore, it suffices to prove the claim. First we note that along @¹u > 0º, Deeu � 0
and u D 0, thus h � 0 along this part of @U . We divide the other part @B3=4 \ ¹u > 0º
into two pieces,

@B3=4 \ ¹u > 0º D
�
@B3=4 \

®
u � 1

64


¯�
[
�
@B3=4 \

®
u > 1

64


¯�
:

Along the first piece @B3=4 \ ¹u � 1
64

º,

h.x/ � �c0" �
64c0



"
�
u.x/ � 1

2

 jx � x0j

2
�

� �c0" �
64c0



"
�
1
64

 � 1

32


�
D 0:

It remains to deal with y0 2 @B3=4 \ ¹u > 1
64

º: Firstly the universal bound (2.8) and

Proposition 2.4 give a universal r0 > 0 such that

dist.y0; ¹u D 0º/ � r0:

In particular F.D2u/ D 1 in Br0 , and we can apply Proposition 2.2 to get

jD2u.y0/ �D
2pj � C0"

for a universal constant C0: Therefore, Deeu.y0/ � C" � C0": Consequently, for y0 in
@B3=4 \ ¹u >

1
64

º;

h.y0/ � .C � C0/" �
64c0



"u.y0/ � "

�
C � C0 �

64c0



max
B1

u

�
:

Again noting the universal bound on maxu as in (2.8), if we choose C universally large,
then h � 0 on this last piece of @U .

This completes the proof for the claim.
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4. Quadratic approximation of solution: Case 1

In this section and the next, we use the technical tools developed in the previous sections
to study the behavior of our solution near a singular point, say, 0 2 †.u/:

The classical approach is to study the rescalings of u,

ur .x/ D
1

r2
u.rx/

as r ! 0. Proposition 2.4 gives enough compactness to get convergence of urj to some
quadratic polynomial, say p, along a subsequence rj ! 0: If the limit does not depend on
the particular subsequence, then there is a well-defined stratification of †.u/ depending
on the dimension of ker.D2p/. If there is a rate of convergence of ur ! p, then we get
regularity of the singular set near 0 2 †.u/:

With the help of monotonicity formulae, this program has been executed with various
degrees of success in [6], [10], [12], [16] and [23]. One idea behind these works is that
once ur0 is close to p for a particular r0, then monotonicity formulae imply ur remains
close to p for all r < r0.

Since no monotonicity formula is available in our problem, we do not have access to
all small scales. Instead, we proceed by performing an iterative scheme. Let � 2 .0; 1/.
The building block of this scheme is to study the following question: If u is close to p
in B1, can we approximate u better in B�?

Quantitatively, we seek to prove the following:
If ju� pj < " in B1 for some small ", then we can find a quadratic polynomial q such

that ju � qj < "0�2 in B�, where "0 < ".
The rate of decay "! "0 is linked to the rate of convergence in the blow-up procedure.
Define the normalized solution Ou"D 1

"
.u�p/, and suppose we can show that Ou"! Ou0

as "! 0. Then the formal expansion

u D p C " Ou0 C "o.1/

shows that a better approximation in B� follows if Ou0 is C 2 near 0.
To this end, we need to consider two different cases.
Let �1 � � � � � �d � 0 denote the eigenvalues of D2p. Depending on their sizes, the

contact set ¹uD 0º concentrates along subspaces of various dimensions. If �2 � C", then
p � 1

2
.x � e/2 and the contact set concentrates along a .d � 1/-dimensional subspace

¹x � e D 0º: When �2 � ", the contact set concentrates along a subspace with higher
codimension.

In this section, we deal with the first case when �2 � C". In this case Ou" converges to
the solution of the thin obstacle problem (2.9), and in particular Proposition 2.8 applies
to the limit Ou0: To show Ou0 is C 2 near 0, we need to rule out possibilities (1) and (2) as
in the statement of Proposition 2.8. This can be achieved using explicit barriers and the
lemmata in the previous section.

In this section, we decompose Rd D R �Rd�1 and write

x D .x1; x
0/;
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where x0 is the projection of x onto the subspace ¹x1 D 0º: Similarly, for E � Rd , we
define

E 0 D E \ ¹x1 D 0º:

The main result of this section is the following:

Lemma 4.1 (Quadratic approximation of solution: Case 1). Suppose for some � > 0, we
have

u 2 �.p; "; 1/ for some p 2 Q with �2.D2p/ � �";

and
0 2 †.u/:

There are constants N";ˇ 2 .0;1/ and Nr 2 .0;1=2/, depending on universal constants and �,
such that if " < N", then

u 2 �.p0; "0; r/ for some p0 2 Q, "0 D .1 � ˇ/" and r 2 . Nr; 1=2/:

The class Q of quadratic solutions and the class �.p; "; 1/ of well-approximated solu-
tions are defined in Definitions 2.1 and 2.2.

Here and in later parts of the paper, �j .M/ denotes the j th largest eigenvalue of the
matrix M .

Remark 4.1. The parameter � will be chosen in the final section, depending only on
universal constants. After that, all constants in this lemma become universal.

We begin with some preparatory lemmata.

Lemma 4.2. Let u and p be as in Lemma 4.1. Then

jr.u � p/j � L" in B1=2,

where L depends only on universal constants and �.

Proof. Define the normalization

Ou D
1

"
.u � p/:

Since F.D2u/ � 1 and F.D2p/ D 1 in B1, by (2.4) we have

Lp Ou D
1

"
Lp.u � p/ � 0 in B1: (4.1)

Up to a rotation, the polynomial p is of the form

p.x/ D
1

2

X
ajx

2
j

with a1 � � � � � ad � 0 and a2 � C�" for some universal constant C . ThenD2u � �c0"

in B1 and Deep � C�" for all e 2 Sd�1 \ ¹x1 D 0º give

Dee Ou � �C in B1 for all e 2 Sd�1 \ ¹x1 D 0º
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for some C depending only on universal constants and �. Now the result easily follows
from this and the fact that Ou 2 C 1;1 satisfies (4.1).

Indeed, after a linear deformation, we can assume that Lp D � and the inequality
on Dee Ou is still satisfied after relabeling the constant C . Then � Ou � 0 implies that we
also have

D11 Ou � C in B1.

Together with j Ouj � 1 in B1, these imply

jr Ouj � C in B1=2;

for some C depending only on universal constants and �:

This lemma provides us with enough compactness for a family of normalized solu-
tions. Actually it even allows us to consider a family of nomalized solutions to the obstacle
problem involving a family of different operators. This is necessary to get uniform estim-
ates.

To fix ideas, let ¹Fj º be a sequence of operators satisfying the same assumptions that
we have on our operator F , namely, (2.1)–(2.3).

For each Fj , there is a unique 
j such that

Fj .
j e1 ˝ e1/ D 1:

Ellipticity implies 
j 2 Œ1=ƒ;ƒ�: Define the associated polynomial

qj .x/ D
1
2

jx

2
1 : (4.2)

Then we have the following lemma, which identifies the problem solved by the limit of
nomalized solutions:

Lemma 4.3. Let Fj be a sequence of operators satisfying the same assumptions as in
(2.1)–(2.3). Let uj solve the obstacle problem (1.1) with the operator Fj in B1: Suppose
for some constant � > 0 and a sequence "j ! 0, there are polynomials

pj .x/ D
1

2

X
a
j
i x

2
i

with aj1 � � � � � a
j

d
� 0, aj2 � �"j ,

Fj

�X
a
j
i ei ˝ ei

�
D 1;

and
juj � pj j � "j in B1.

Then up to a subsequence, the normalized solution Ouj D 1
"j
.uj � qj / converges locally

uniformly in B1 to some Ou1, where qj is the polynomial as in (4.2).
Moreover, up to scaling, Ou1 solves the thin obstacle problem as in (2.9).
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Proof. Lemma 4.2 gives a locally uniform C 0;1 bound on the family ¹ Ouj º. Consequently,
up to a subsequence they converge to some Ou1 locally uniformly in B1.

Define the operator Gj by

Gj .M/ D
1

"j
.Fj ."jM CD

2qj / � Fj .D
2qj //:

Then
Gj .D

2
Ouj / D

1

"j
.�¹uj>0º � 1/ D �

1

"j
�¹ujD0º:

By a uniform C 1;˛F estimate on the family ¹Fj º, up to a subsequence Gj locally
uniformly converges to some linear elliptic operator. Up to a scaling, we assume this
limiting operator is the Laplacian.

Then Gj .D2 Ouj / � 0 for all j implies

� Ou1 � 0 in B1.

If x0 2 ¹ Ou1 > 0º, then Ouj > 0 in a neighborhood of x0 for large j . Note that qj � 0,
so uj > 0 in a neighborhood of x0 for large j . Thus Gj .D2 Ouj /D 0 in a neighborhood of
x0 for all large j . Consequently, � Ou1.x0/ D 0: That is,

� Ou1 D 0 in ¹ Ou1 > 0º.

Meanwhile, for x 2 ¹x1 ¤ 0º, uj .x/ � pj .x/ � "j � cjx1j2 � "j , where c is a uni-
versal positive constant. Thus uj > 0 in a neighborhood of x for large j . Consequently,
Gj .D

2 Ouj / D 0 in a neighborhood of x for large j . Thus � Ou1.x/ D 0: That is,

� Ou1 D 0 in ¹x1 ¤ 0º.

It remains to show that Ou1 � 0 along ¹x1 D 0º. For this, simply note that uj � 0 and
qj D 0 for all j along ¹x1 D 0º.

Now we start the proof of Lemma 4.1. As explained at the beginning of this section,
the normalized solutions converge to a solution to the thin obstacle problem. The key to
the improvement in approximation is to show this limit is C 2 at 0, that is, possibilities (1)
and (2) as in Proposition 2.8 cannot happen.

Proof of Lemma 4.1. Let Nr;ˇ 2 .0; 1/ be small constants to be chosen, depending only on
universal constants and �.

Suppose there is no N" > 0 satisfying the statement of the lemma. For a sequence
"j ! 0, and a sequence of operators Fj satisfying (2.1)–(2.3), we have a sequence of
solutions to (1.1) with these operators such that

uj 2 �.pj ; "j ; 1/ for some pj 2 Q with �2.D2pj / � �"j ,

and 0 2 †.uj /, but

uj 62 �.q; .1 � ˇ/"j ; r/ for any q 2 Q and r 2 . Nr; 1=2/:
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Up to a rotation, we assume

pj .x/ D
1

2

X
a
j
i x

2
i with aj1 � a

j
2 � � � � � a

j

d
� 0; and aj2 � �"j :

Define

Ouj D
1

"j
.uj � qj /; where qj .x/ D 1

2

jx

2
1 with Fj .
j e1 ˝ e1/ D 1:

Then up to a scaling, Lemma 4.3 shows that up to a subsequence,

Ouj ! Ou locally uniformly in B1,

where Ou solves the thin obstacle problem (2.9).
Moreover, uj .0/ D 0 for all j implies Ou.0/ D 0: Lemma 4.2 gives a C 0;1loc .B1/ bound

on Ou: Consequently, Proposition 2.8 is applicable for Ou.
We show that possibilities (1) and (2) of Proposition 2.8 cannot happen for Ou.

Step 1. Possibility .1/ as in Proposition 2.8 does not happen for Ou.

Suppose it happens. Then

Ou D aCx
C
1 C a�x

C
1 C o.jxj/ as x ! 0:

First we show that a˙ � 0. Assume that aC > 0; we will use a barrier to show that
u.0/ > 0, contradicting 0 2 †.u/:

For this we choose r small such that

Ou > 1
2
dƒ2x21 �

1
2
jx0j2 (4.3)

near @Ur \ ¹x1 � 0º where Ur is the cylinder of size r ,

Ur WD B
0
r � Œ�r; r�:

This means that Ouj satisfies the same inequality (4.3) above for all j large enough. For
notational simplicity, we omit the subscript j in the computations below.

Define the barrier function

ˆ.x1; x
0/ D 1

2
.
 Cƒ2d"/.x1 C "

2/2 � 1
2
"jx0j2:

and notice that
Ô D

1

"
.ˆ � q/ D 1

2
dƒ2x21 �

1
2
jx0j2 CO."/:

We compare u and ˆ on the boundary of the set

Ur \ ¹x1 � �"
2
º:

On ¹x1 D �"2º we have u � 0 � ˆ. On the remaining part @Ur \ ¹x1 � �"2º we have
u � ˆ since Ou > Ô for all small ". In conclusion, ˆ � u along the boundary, and Pro-
position 2.1 gives u � ˆ in the interior of the domain. In particular, u.0/ � ˆ.0/ > 0,
contradicting 0 2 †.u/: Therefore we have a˙ � 0:
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Next we show that a˙ cannot be negative. Suppose that aC < 0, and in this case, we
will use a barrier to prove that ¹u D 0º contains a cone with positive opening and with
vertex at 0. With Proposition 2.6, this contradicts 0 2 †.u/:

Since a� � 0, we can choose r small such that

Ou < 1
2
aCx1 �

1
2
dƒ2x21 C

1
8
r2

near @Ur . We compare u and ‰ on the boundary of the set Ur where

‰.x/ D 1
2
.
 �ƒ2.d � 1/"/.x1 C A"/

2
C

1
2
"jx0 � � 0j2

with A WD aC=.2
/ and j� 0j � r=2. Since

O‰ D 1
2
aCx1 �

1
2
.d � 1/ƒ2x21 C

1
2
jx0 � � 0j2 CO."/;

we find that O‰ > Ou, hence ‰ > u on @Ur for all " small.
Now Proposition 2.1 becomes applicable and gives u � ‰ in U . In particular, this

gives
u.�A"; � 0/ D 0 for j� 0j � r=2:

Now note that with u 2 �.p; "; 1/, we have D2u � �c0" in B1. Also since e1 is the
direction corresponding to the largest eigenvalue of D2p, there is a cone of directions
around e1, say K � Sd�1, with a universal positive opening such that Deep > c > 0 for
all e 2 K. For small " we can then apply Lemma 3.4 to get

Deeu � 0 in B1=2 for all e 2 K.

Together with u.0/ D 0 and u.�A"; � 0/ D 0 for all j� 0j � r=2, this implies that the coin-
cidence set ¹u D 0º contains a cone of positive opening with vertex at 0, contradicting
Proposition 2.6.

This finishes the proof of Step 1.

Step 2. Possibility .2/ in Proposition 2.8 does not happen for Ou.

Suppose it happens; then for some r > 0 and � 2 Sd�1 \ ¹x1 D 0º, we have

D� Ou > 0 in Br \ ¹x1 ¤ 0º.

Therefore, there is some � > 0 such that

D� Ou � 4� in Br \
²
jx1j �

1

16
p
ƒ
r

³
.

Noting that ju�pj j � "j inB1 implies ¹uj D 0º � ¹jx1j � C
p
"j º for some universal C ,

we have ¹uj > 0º \ B1 ! B1 n ¹x1 D 0º.
Meanwhile, Ouj ! Ou locally uniformly in B1 with Gj .D2 Ouj / D 0 in ¹uj > 0º, where

Gj .M/ D
1

"j
.Fj ."jM CD

2qj / � 1/:
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Consequently, Ouj ! Ou in C 1;˛loc .B1 n ¹x1 D 0º/. Therefore, for large j ,

D� Ouj � 2� in Br \
²
jx1j �

1

16
p
ƒ
r

³
:

That is,

D�uj � 2�"j in Br \
²
jx1j �

1

16
p
ƒ
r

³
:

With juj � qj j � C"j in ¹uj > 1
256
r2º, we have

1

2

x21 �

1

256
r2 � C"j �

1

512
r2

for j large. Consequently,²
uj >

1

256
r2
³
�

²
jx1j �

1

16
p
ƒ
r

³
:

Thus, we have established

D�uj � 2�"j in Br \
²
uj >

1

256
r2
³
:

Also, by Lemma 4.2, we have D�uj � �L"j in Br .
Now take � depending on K D L, r and � as in Lemma 3.3. Note the convergence of

Ouj ! Ou in C 1;˛loc .B1 n ¹x1 D 0º/ implies

D�uj > 0 in Br \
®
jx1j >

1
2
�
¯

for large j .

By the C 1;˛-regularity of uj , there is a cone of directions OK � Sd�1 around � with
positive opening such that for all e 2 OK, we have

Deuj � �K"j in Br ,

Deuj � �"j in Br \
®
uj >

1
256
r2
¯
,

Deuj > 0 in Br \ ¹jx1j > �º:

Thus Lemma 3.3 applies and gives

Deuj � 0 in Br=2 for all e 2 OK:

With uj .0/D 0, uj � 0, this implies that ¹uj D 0º contains a cone inBr=4 in direction� OK,
again contradicting Proposition 2.6.

Step 3 (Improved quadratic approximation). We have

8ı > 0; 9r > 0; p0j 2 Q such that juj � p0j j � 3ı"j r
2 in Br .

After the previous two steps, we know that the limiting profile Ou falls into possibil-
ity (3) as in Proposition 2.8. Consequently, for some ı > 0 to be chosen later, there is
r > 0 such that

j Ou � 1
2
x � Axj < ır2 in Br ,

where tr.A/ D 0, and e � Ae � 0 for all e 2 Sd�1 \ ¹x1 D 0º:
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Locally uniform convergence of Ouj ! Ou gives, for large j ,ˇ̌
uj � qj � "j

1
2
x � Ax

ˇ̌
< 2"j ır

2 in Br .

Here we omit the index j for the sake of simplicity, so we writeˇ̌
u � q � "1

2
x � Ax

ˇ̌
< 2ı"r2 in Br . (4.4)

With the Cauchy–Schwarz inequality and e �Ae � 0 for all e 2 Sd�1 \ ¹x1 D 0º, we
see that there is a constant C , depending on jAj, such that

D2q C A"C C"2 � 1
4

e1 ˝ e1 (4.5)

for " small.
Now note that we are assuming, after necessary scaling, that Fij .D2q/ D ıij , where

Fij is the derivative of F in the .i; j /-entry. Thus tr.A/ D 0 implies

jF.D2q C A"C C"2I / � 1j � C"1C˛F

by assumption (2.2). Consequently, there is t 2 Œ�C;C � such that the polynomial

p0.x/ D q C 1
2
"x � Ax C 1

2
C"2jxj2 C 1

2
t "1C˛F x21

solves
F.D2p0/ D 1:

Meanwhile, by (4.5) we have

D2p0 D D2q C A"C C"2I C t "1C˛F e1 ˝ e1

�
1
4

e1 ˝ e1 � C"

1C˛F e1 ˝ e1 � 0

for " small. Thus D2p0 � 0 and p0 2 Q:

Finally, (4.4) implies that in Br ,

ju � p0j �
ˇ̌
u � q � "1

2
x � Ax

ˇ̌
C C"2r2 C 1

2
jt j"1C˛F x21

� 2ı"r2 C C"1C˛F r2

� 3ı"r2

for all " small.

Step 4 (Improved convexity). We have

u 2 �.p0; .1 � ˇ/"; r/

with ˇ > 0 depending on � and universal constants.

It remains to show that (see (2.7))

D2u � �c0.1 � ˇ/"I in Br ,
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where c0 is the constant as in Definition 2.2. For fixed e 2 Sd�1, define

w D DeeuC c0":

Then u 2 �.p; "; 1/ implies w � 0 in B1.
Now for small ", u > 0 in Br=4.12re1/. Thus Proposition 2.2 implies

jDeeu �Deep
0
j � Cı"r2 in Br=8

�
1
2
re1

�
for a universal C .

Now fix ı, depending on universal constants and �, such that the right-hand side is
less than 1

2
c0". Then

ju � p0j < 1
2
"r2 in Br

and
Deeu � �

1
2
c0" in Br=8

�
1
2
re1

�
:

In particular,
w � 1

2
c0" in Br=8

�
1
2
re1

�
: (4.6)

If we solve 8̂̂<̂
:̂

MCƒ.ˆ/ D 0 in B1 n Br=8
�
1
2
re1

�
;

ˆ D 0 along @B1,

ˆ D 1
2
c0 along Br=8

�
1
2
re1

�
,

where MCƒ is the maximal Pucci operator [7], then

w � "ˆ along @B1 [ @Br=8
�
1
2
re
�
:

Meanwhile, along @¹u > 0º,
w � c0" (4.7)

by (2.6). Thus w � "ˆ along @¹u > 0º. In conclusion,

w � "ˆ along @
�
¹u > 0º \ B1 n Br=8

�
1
2
re1

��
:

With Lu.w/ � 0 in ¹u > 0º, the comparison principle gives

w � "ˆ in ¹u > 0º \ B1 n Br=8
�
1
2
re1

�
.

Together with (4.6) and (4.7), this implies

w � "ˆ in B1.

Meanwhile, there is a constant ˇ0 2 .0; 1/, depending on universal constants and �,
such that

ˆ � 1
2
ˇ0c0 in Br :

Thus
Deeu D w � c0" � c0"

�
�1C 1

2
ˇ0
�

in Br .
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Define ˇ D 1
2
ˇ0. Then in Br , we have

D2u � �.1 � ˇ/c0"I and ju � p0j � .1 � ˇ/"r2:

That is, u 2 �.p; .1 � ˇ/"; r/ for p0 2 Q. This contradicts our construction of u at the
beginning of this proof.

5. Quadratic approximation of solution: Case 2

In this section, we prove a version of Lemma 4.1 for u 2 �.p; "; 1/ where �2.D2p/� ":

Here the situation is different since the zero set ¹uD 0º concentrates around subspaces of
codimension at least 2, say

¹x0 D 0 2Rkº; k � 2; where x0 WD .x1; : : : ; xk/; x00 WD .xkC1; : : : ; xd /: (5.1)

This brings technical challenges as the normalized solution Ou D 1
"
.u � p/ now solves an

obstacle problem with an obstacle OO D �1
"
p whose capacity converges to 0 as "! 0.

We define h to be the solution to the unconstrained problem´
F.D2h/ D 1 in B1,

h D u on @B1.
(5.2)

We will show that Ou is well approximated in L1 by the corresponding function Oh,

Oh WD
1

"
.h � p/;

but only away from a tubular neighborhood around the .d � k/-dimensional subspace
above (see Lemma 5.2). Inside this neighborhood, the difference between Oh and Ou could
be of order 1, and Ou has no longer a uniform modulus of continuity (as "! 0) in B1=2 as
in the codimension 1 case.

Heuristically, as "! 0, we end up with limiting functions Nu, NO and Nh such that j Nhj,
j Nuj and max NO are all bounded by 1 in B1, and

� Nh is a solution to a constant coefficient elliptic equation,

� the obstacle NO is a concave quadratic polynomial supported on the x00 subspace, exten-
ded to �1 outside its support,

� Nu D max ¹ Nh; NOº, which can be discontinuous.

The improved quadratic error for Ou cannot be deduced right away from the C 2;˛

estimate of Nh at the origin. This will follow after we show that 0 2 †.u/ essentially
implies that Nh and NO are tangent of order 1 at the origin in the x00 direction and NO can
only separate on top of Nh in this direction by a small quadratic amount.

It turns out that the improvement in convexity and approximation is much slower.
Instead of " ! .1 � ˇ/" as in Lemma 4.1, we only have an improvement of the form
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"! "� "�, where�>1 is universal. This is consistent withC 1;log" -regularity of covering
for lower strata in the classical obstacle problem [10].

This slow rate of improvement could a priori break the convergence of the poly-
nomials pk and the uniqueness of the blow-up profile, as well as the iteration scheme.
Suppose pk is the approximating quadratic polynomial in the kth iteration. Then a rate of
"! .1 � ˇ/" implies

jD2pkC1 �D
2pkj � C.1 � ˇ/

k"0:

The summability of this sequence implies the convergence of D2pk : When the rate is
"! " � "�, this is not true anymore.

In the next section, we establish the convergence of D2pk by working instead with
the corresponding approximations D2hk.0/. These are not necessarily positive definite,
but still approximate u quadratically with error proportional to "k . The main point is that
the series X

jD2hk.0/ �D
2hkC1.0/j (5.3)

is convergent, which is a consequence of the main result of this section, Lemma 5.1 below.
This lemma provides a dichotomy concerning the rate of the quadratic improvement
between two consecutive balls. Essentially it says that either we have a fast improve-
ment as in Lemma 4.1, or the difference between consecutive errors "k is bounded below
by the difference between u and h at some point away from the x00 subspace, which could
be as small as "�.

We recall that by Definition 2.2, u 2 �.p; "; 1/ means that u solves (1.1), and

ju � pj � "r2 and D2u � �c0"I in Br .

Here c0 D 1=.16ƒ2/ and p 2 UQ (see Definition 2.1), which means that p is a convex
quadratic polynomial that satisfies p.0/ D 0 and F.D2p/ D 1.

Lemma 5.1 (Quadratic approximation of solution: Case 2). Suppose u 2 �.p; "; 1/ with
0 2 †.u/ and p 2UQ: There are universal constants �0 large, N" small, and � 2 .0; 1=2/
such that if " < N" and

�2.D
2p/ � �0";

then
u 2 �.p0; "0; �/ for some p0 2 UQ,

and either

(1) "0 � .1 � ˇ/" for a universal ˇ 2 .0; 1/, or

(2) "0 � " � "� and .u � h/.1
2
�e1/ � C." � "

0/ for some universal constants �;C > 1,
where h is the solution to (5.2).

The dichotomy is dictated by the behavior of the matrix D2h.0/ along the x00 sub-
space. If D2

x00h.0/ � �
c0
8
"I , then we end up in alternative (1), otherwise we end up

in (2).
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Suppose that we are in the slow improvement situation (2). Let h0 denote the solution
to (5.2) in the ball B�. By the maximum principle, we have u � h0 � h in the common
domain. The Harnack inequality for the difference h0 � h and Proposition 2.2 imply

jD2h0.0/ �D2h.0/j � C�kh
0
� hkL1

� C.h0 � h/
�
1
2
�e1

�
� C.u � h/

�
1
2
�e1

�
� C1." � "

0/

for some universal C1. Iteratively, the series in (5.3) is bounded from above by a telescop-
ing sum. Thus its convergence is justified.

Recall that �2.M/ denotes the second largest eigenvalue of a matrix M . A technical
point is that we are working in the class of quadratic polynomials p 2 UQ defined in
Definition 2.1 which have a linear part as well.

Up to a rotation, p takes the form

p.x/ D
1

2

X
ajx

2
j C

X
bjxj

with a1 � � � � � ad � 0, a2 � �0" and F.
P
aj ej ˝ ej / D 1: Throughout this section we

assume that p is of this form.
Then since p � u � " � �" in B1 we have

1
2
ajx

2
j C bjxj � �" for xj 2 Œ�1; 1� and 1 � j � d:

If aj � 2", we have
jbj j �

p
2aj ": (5.4)

For a positive constant �, we define the cylinder

C� D ¹j.x1; x2/j � �º:

We first show that u is well approximated by h outside this cylinder.

Lemma 5.2. Let u; p; h be as in Lemma 5.1. Given � small, there is �� , depending on
universal constants and �, such that if a2 � ��", then

ku � hkC2.B1=2nC�/ � �"

for all " small, depending on �:

Proof. Let 0 < �0 � � to be chosen, depending on �. There is ��0 large such that ju� pj
< " and a2 � ��0" imply

u > 0 outside C�0 .

Consequently, Proposition 2.2 gives

D2u! D2p locally uniformly in B1 n C�0 as "! 0: (5.5)
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Now let ' � 0 be a smooth function such that ' D 2 in C2�0 , ' D 0 outside C3�0 and
jr'j � 2=�0: We solve the following equations:´

Lp.v/ D 0 in B1 n C2�0 ,

v D ' along @.B1 n C2�0/;

and ´
Lu. Qv/ D 0 in B1 n C2�0 ,

Qv D ' along @.B1 n C2�0/.

Since v solves a constant coefficient equation and vanishes on @B1 outside the thin
cylinder C3�0 around the codimension 2 set ¹x1 D x2 D 0º, there is a modulus of con-
tinuity !.�/, depending only on �, ƒ, d , such that

0 � v � !.�0/ in B3=4 n C�=2.

We use (5.5) together with Proposition 2.3, and estimate

jv � Qvj � Q!."/ in B3=4 n C�=2,

with Q!."/ a modulus of continuity which depends also on �0.
Note that u > 0 outside C�0 , and we have Lu.u� h/ � 0 in B1 n C2�0 . Consequently,

the comparison principle gives

u � h � " Qv � ".!.�0/C Q!."// in B3=4 n C�=2:

On the other hand, we always have u � h � 0. Therefore, Proposition 2.2 gives

ku � hkC2.B1=2nC�/ � C.�/".!.�
0/C Q!."//:

Now, we first choose �0 such that C.�/!.�0/ < 1
2
�, and then choose " such that C.�/ Q!."/

< 1
2
�. This gives the desired estimate.

We now give the proof of the main result in this section:

Proof of Lemma 5.1. As discussed above, we define the normalizations

Ou D
1

"
.u � p/; Oh D

1

"
.h � p/ and OO D

1

"
.0 � p/:

Then in B1, we have

�1 � Oh � Ou � 1; Ou.0/ D OO.0/ D 0;

and Proposition 2.2 implies
k OhkC2;˛.B3=4/ � C (5.6)

for some universal constant C .
We divide the technical proof into six steps. Here we give an outline first.
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We decompose the space x D .x0; x00/ according to the curvatures of the obstacle OO .
The curvatures are very negative along the directions in the x0 subspace, and are uniformly
bounded in the x00 subspace. In Steps 1–2 we show that Oh and OO are ‘essentially tangent’ in
the x00 direction at the origin, and deduce that OO can only slightly separate quadratically
on top of Oh near the origin. In Step 3, we show that the same is true for Ou. In Step 4,
we use the C 2;˛ estimate for Oh to approximate u quadratically in B� by a polynomial
p0 2 UQ with an improved error "=2. The convexity estimate for D2u in B� (see (2.7)
in Definition 2.2) is given in Steps 5 and 6, according to whether or not the obstacle OO
separates quadratically on top of Oh along some direction in the x00 subspace. This leads to
our dichotomy.

Throughout this proof, there are several parameters to be fixed in the end.
The radius � 2 .0; 1=2/ depends only on universal constants. The parameter ı > 0

can be made arbitrarily small, and will be chosen to be universal. The parameter � from
Lemma 5.2, which depends on ı, allows us to make Ou and Oh very close to each other. This
� imposes the choice of �0 D �� as in Lemma 5.2. The parameter N" is chosen after all
these.

We introduce some notations. For ı small to be chosen, let k 2 ¹1; : : : ; dº be such that

ak � 2ı
�4" > akC1: (5.7)

Then we decompose the entire space Rd as x D .x0; x00/, where x0 D .x1; : : : ; xk/ and
x00 D .xkC1; : : : ; xd /:

The obstacle OO is changing rapidly in the x0 direction, and we denote by x0 the point
in this direction where its maximum is achieved, which is the same as the minimum point
for p in the x0 direction.

More precisely, let x0 be the minimum point of x0 7! p.x0; 0/. Then by (5.4) and (5.7),
x0 is close to the origin,

jx0j � ı2; and �" � p.x0; 0/ � 0:

We write p as the sum of two quadratic polynomials in the x0 and x00 variables,

p.x0; x00/ D p1.x
0
� x0/ � p1.x

0/C p.0; x00/;

where p1 � 0 is a homogeneous polynomial of degree 2,

p1.x
0/ D

1

2

X
j�k

ajx
2
j :

The obstacle OO satisfies

jrx00 OOj; jD
2
x00
OOj � Cı ; OO..x0; 0// � 0:

Step 1. If � and " are small depending on ı, then

jrx00. Oh � OO/.0/j < ı: (5.8)
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The idea is to show that otherwise u is monotone in a cone of directions near the x00

subspace, and we contradict 0 2 †.u/.
Suppose there is i > k such that Di . Oh � OO/.0/ > ı:
From jDi i OOj � Cı and the universal estimate (5.6), we have

Di . Oh � OO/ >
1
2
ı in Br .0/

for some r > 0 depending only on ı:
Meanwhile, since D2u � �c0" and jD2

x00pj � Cı" in B1, we have

Di i Ou � �2Cı in B1:

Together with j Ouj � 1, this implies

jDi Ouj �
1
2
Cı :

As a result,
Di . Ou � OO/ � �

3
2
Cı in B1=2.

By continuity, there exists of a cone of directions, OK � Sd�1, with positive opening
around ei , such that for all e 2 OK,

De. Ou � OO/ � �2Cı in B1=2,

and
De. Oh � OO/ >

1
4
ı in Br .0/:

Define the constant N� as in Lemma 3.2 depending on r , K D �2Cı , and � D 1
8
ı. If

we choose � < min ¹ N�; 1
8
ıº, then Lemma 5.2 gives

Deu � ".De. Oh � OO/ � �/ �
1
8
ı" in Br n C� ,

and Deu � �2Cı" in Br . Lemma 3.2 gives

Deu � 0 in Br=2 for all e 2 OK:

This implies that ¹uD 0º contains a cone of positive opening with vertex at 0, contradict-
ing Proposition 2.6.

Step 2. If � and " are small depending on ı, then

j Oh.x0; 0/ � OO.x0; 0/j < ı: (5.9)

If OO is a bit larger than Oh at .x0; 0/ we show that Ou coincides with the obstacle OO in a
small neighborhood of .x0; 0/, hence u D 0 in this neighborhood. On the other hand, by
Lemma 3.4, u is convex in the directions close to the x0 subspace, and we find that ¹uD 0º
contains a cone with vertex at the origin and reach a contradiction. Next we provide the
details.

Note that Oh.0/ � Ou.0/ D 0 and OO.x0; 0/ � 0, and then the upper bound for Oh � OO at
.x0; 0/ follows from jx0j � ı2 and (5.6).
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Suppose Oh.x0; 0/ � OO.x0; 0/ < �ı. We show that u D 0 in a neighborhood of .x0; 0/
by using barriers. Since Oh has universal Lipschitz norm, and jDx00 OO2j � Cı , there is r > 0
depending on ı such that

Oh.x/ < OO.x0; x00/ � 1
2
ı in Br .x0; 0/.

That is,
h.x/ < p1.x

0
� x0/ � 1

2
ı" in Br .x0; 0/.

Consequently, for � small, Lemma 5.2 implies

u.x/ < p1.x
0
� x0/ � 1

4
ı" in Br .x0; 0/ n C�:

Let � WD ¹jx1j < �º \ Br .x0; 0/. We define the barrier

‰.x0; x00/ WD p1.x
0
� x0/C 1

2
B"
�
jx � .x0; 0/j2 � 2ƒ2.x1 � x

0
1/
2
�

for some B depending on ı and r . Note that ‰.x0; 0/ D 0, and

‰ � p1.x
0
� x0/ �ƒ2B".x1 � x

0
1/
2
�

1
2
.a1 � 2ƒ

2B"/.x1 � x
0
1/
2;

thus ‰ � 0 if " is small. We choose B large such that by ellipticity (2.3),

F.D2‰/ � F.D2p1/ � B"ƒ � F.D
2p/ D 1;

and on @� \ @Br .x0; 0/, for � sufficiently small,

‰ � p1.x
0
� x0/C 1

2
B".r2 � 2ƒ2�2/ � p1.x

0
� x0/C 1

4
B"r2

� p1.x
0
� x0/C p.x0; 0/C p.0; x00/C 2" D p.x/C 2":

Consequently,
‰ � uC " on @� \ @Br .x0; 0/.

Meanwhile, on ¹jx1j D �º \ Br .x0; 0/,

u < p1.x
0
� x0/ � 1

4
ı"

D ‰ � 1
4
ı" � 1

2
B"
�
jx � .x0; 0/j2 � 2ƒ2.x1 � x

0
1/
2
�

� ‰ � 1
4
ı"C B"ƒ2�2:

Thus if � is small, then
u < ‰ � 1

8
ı" on @�.

Consequently, we can apply Proposition 2.1 to ‰ in � to get u � ‰ in �: In particular,
we have u.x0; 0/ D 0:

Now note that along @�, we have u < ‰ � 1
8
ı". Thus we can translate ‰ a small

amount and still preserve the comparison u � ‰ along @�. This gives

¹u D 0º � Br 0.x
0; 0/ for a small r 0 > 0:
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With aj > 2ı�4" for j � k, we can apply Lemma 3.4 to get

Deeu � 0

for all directions in a cone around the subspace ¹.x0; x00/ W x00 D 0º: With u.0/ D 0 and
¹u D 0º � Br 0.x

0; 0/, this generates a cone with positive opening and vertex at 0 in
¹u D 0º, contradicting Proposition 2.6.

Step 3. For ı universally small, and "; � small depending on ı, we have

Ou � OhC c0jx
00
j
2
C 4ı in B1=4: (5.10)

The inequality holds outside C� by Lemma 5.2. It remains to establish it in C� .
First we use Steps 1 and 2 to show that a similar inequality holds for OO:

OO � OhC c0jx
00
j
2
C 3ı DW g in B1=2: (5.11)

Then we use barriers to extend the inequality from OO to Ou.
Note that in B1=2 n C� , Lemma 5.2 gives

D2 Oh �D2 OO � D2
Ou �D2 OO � �I D

1

"
D2u � �I � �.c0 C �/I:

By choosing � small, and using the fact that D2 OO is constant together with the Hölder
continuity of D2 Oh (see (5.6)), we extend the estimate to the full ball

D2. Oh � OO/ � �2c0I in B1=2. (5.12)

Moreover, D2
x0
OO � �2ı�4I , D2

x0x00
OO D 0 and jD2 Ohj � C universal imply

D2
x0.
Oh � OO/ � ı�4I; jD2

x0x00.
Oh � OO/j � C in B1=2. (5.13)

Since x0 is an extremal point of x0 7! OO.x0; 0/, we see that rx0 OO.x0; 0/D 0: Together
with (5.6), we have

jrx0. Oh � OO/.x
0; 0/j � C: (5.14)

Also, the conclusion (5.8) of Step 1 together with the second estimate in (5.13) and
jx0j � ı2 give

jrx00. Oh � OO/.x
0; 0/j � 2ı: (5.15)

Now it is easy to check that estimates (5.12)–(5.15) together with the conclusion (5.9)
of Step 2 imply the claim (5.11).

Next we show Ou � g C ı in B1=4 \ C� with g defined in (5.11). To this end, pick a
point x� 2 B1=4 \ C� and r > 0 depending on ı such that

g.x�/C 1
2
ı > max

Br .x�/
¹g; OhC �º:

Define � D Br .x�/ \ ¹jx1j < �º, and

v D g.x�/C ı C B.jx � x�j2 � 2ƒ2jx1 � x
�
1 j
2/;

where B is a large constant such that Br2 > 2:
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We compare u and the barrier function

‰.x0; x00/ WD p.x0; x00/C "v

in the set �. We have v � g C 1
2
ı � 2ƒ2B�2 � g if � is small, thus

‰ � p C "g � p C " OO D 0:

Along @Br .x�/ \ @�,

v � g.x�/C ı C B.r2 � 2ƒ2�2/ � g.x�/C ı C 2 � 2Bƒ2�2 � 1

if � is small. Thus on @Br .x�/ \ @�,

‰ � p C " � u:

Along Br .x�/\ ¹jx1 D �º, v � OhC 1
2
ıC �� Ou by Lemma 5.2. Again‰ � pC " OuD u.

Since F.D2‰/ � F.D2p/ D 1, we can apply Lemma 2.1 to ‰ and � to get ‰ � u
in �. In particular, u.x�/ � v.x�/ D g.x�/C ı, which is the desired estimate.

Step 4.
9p0 2 UQ such that ju � p0j � ."=2/�2 in B�; (5.16)

with � universal, provided that ı is chosen sufficiently small, depending on universal
constants.

Define
q.x/ D 1

2
x �D2 Oh.0/x Cr Oh.0/ � x:

Then (5.6) implies
j Oh � Oh.0/ � qj � C�2C˛ � c0�

2 in B�,

if we choose � universally small. Here c0 is the constant in Definition 2.2.
With Oh � Ou � OhC c0jx00j2 C 4ı in B1=4 from Step 3 and Ou.0/ D 0, this implies

j Ou � qj � 2c0�
2
C 8ı in B�.

Fixing ı universally small such that 8ı < c0�2, we have

ju � p � q"j � 3c0"�
2 in B�.

Define QpD pC q". ThenD2 QpDD2pC "D2q DD2h.0/: Thus F.D2 Qp/D 1:Next
we perturb Qp slightly into a convex polynomial p0 2 UQ.

From (5.12) we know D2 Qp � �2c0". We denote by M WD .D2 Qp/C the positive part
of D2 Qp, hence (2.3) gives

1 � F.M/ � 1C 2ƒc0"; and 1=ƒ � kMk � 2ƒ:

Consequently, we can pick t 2 Œ0; 2c0ƒ2kMk�1� such that

F..1 � t "/M/ D 1:
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Denote the new quadratic polynomial

p0.x/ WD .1 � t "/1
2
x �Mx Crh.0/ � x:

Then clearly p0 2 UQ, and

jp0 � Qpj � .ƒc0 Cƒ
2c0 C C"/"�

2 in B�:

Thus, by recalling the definition of c0 in Definition 2.2, we have

ju � p0j � 3c0"�
2
C 3ƒ2c0"�

2
�

1
2
"�2 in B�:

Next we improve the convexity of u. There are two cases to consider, corresponding
to the two alternatives as in Lemma 5.1.

Step 5. If D2
x00.
Oh � OO/.0/ � �1

8
c0I , then D2u � �.1 � ˇ/c0"I in B�, for some ˇ uni-

versal.

The inequality at the origin can be extended to a fixed neighborhood by continuity
and then, by Lemma 5.2, transferred to D2u away from the cylinder C� . This can be
further extended to the whole domain by using the fact that pure second derivatives of u
are global supersolutions.

More precisely, our hypothesis together with (5.6) and the fact that D2 OO is constant
implies that the inequality holds in a small ball Bc , c universal, with �1

4
c0I as the right-

hand side. Using (5.13), we can extend the inequality to the full Hessian,

D2. Oh � OO/ � �3
8
c0I in Bc :

By choosing � small, Lemma 5.2 gives

D2u � �1
2
c0"I in Bc=4

�
1
2
ce1

�
:

Now we can apply the same argument as in Step 4 of the proof for Lemma 4.1 to get

D2u � �.1 � ˇ/c0"I in B�:

This corresponds to the first alternative as in Lemma 5.1.

Step 6. IfD��. Oh� OO/.0/ < �18c0 for some unit direction � in the x00 subspace, then the
conclusion .2/ of Lemma 5.1 holds.

The key observations are that u� h is a subsolution andDeeuC c0" is a supersolution
for the same linearized operator Lu, and that the two functions can be compared in the
domain B1 \ ¹u > 0º. On the other hand, u � h is a global supersolution for Lh, and so
its minimum in B1=2 is controlled below by its value at any given point that is not too
close to C� . The hypothesis at the origin is used to guarantee that this minimum value for
u � h in B1=2 is at least "�. Now we provide the details.

By (5.6) and the fact thatD�� OO is constant, we concludeD��. Oh� OO/ < � 1
16
c0 in Bc

for a universal c > 0. Together with Step 2, this implies the existence of some x� 2 B1=4
such that . Oh � OO/.x�/ < �c for some universal c, that is, h.x�/ < �c":
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With the universal Lipschitz regularity of h, we get

h < �c" for some small universal c > 0:

Consequently, for some universal c0 > 0, we have

u � h � c" in Bc0".x�/:

Note that Lh.u � h/ � 0 in B1 as in (2.4), and u D h on @B1. We compare u � h to
the corresponding solution of the maximal Pucci operator in B1 n Bc0".x�/ and obtain as
a consequence of the Harnack inequality

u � h � "� in B1=2,

for some universal � > 1. Moreover, since u � h solves a linear equation away from C� ,
the same argument combined with the Harnack inequality implies that

u � h � c.u � h/
�
1
2
�e1

�
� c"� in B1=2. (5.17)

As in Step 4 of the proof for Lemma 4.1, for e 2 Sd�1, we define

w D DeeuC c0":

This is a nonnegative function satisfying Lu.w/ � 0 in B1 \ ¹u > 0º: Note that w � c0"
along @¹u > 0º, and 2" � u � h in B1, hence

w �
c0

2
.u � h/ along @.B1 \ ¹u > 0º/.

Since Lu.w/ � 0 � Lu.u � h/ in B1 \ ¹u > 0º, we have

w �
c0

2
.u � h/ in B1 \ ¹u > 0º:

Combining this with (5.17) we find

w � c.u � h/
�
1
2
�e1

�
in B1=2,

which means
Deeu � �c0"C c.u � h/

�
1
2
�e1

�
in B1=2.

Define the right-hand side to be �c0"0. Then

"0 D " �
c

c0
.u � h/

�
1
2
�e1

�
� " � "2�:

Also, .u � h/.1
2
�e0/ D C." � "

0/ as in the second alternative in Lemma 5.1.

6. Iteration scheme and proof of main result

Lemmata 4.1 and 5.1 form the basic building blocks of the iteration scheme that we per-
form to prove the main result. As mentioned in the Introduction and at the beginning of
Section 4, the iteration scheme compensates the absence of monotonicity formulae.
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In the following proposition, we give the details of this iteration when the approx-
imating polynomial p satisfies �2.D2p/� ". Again �2.M/ denotes the second largest
eigenvalue of the matrix M . The proposition implies that once this condition is satisfied,
it holds true for all approximating polynomials in the iteration.

Proposition 6.1. Suppose u 2 �.p; "; 1/ for some p 2UQ: There are universal constants
N"; c > 0 small and �, C large such that if " < N" and �2.D2p/ � �", then there is q 2 Q

with jD2q �D2pj < C" such that

ju � qj.x/ � C jxj2
ˇ̌
log jxj

ˇ̌�c in B1=2.

Proof. We will take N" as in Lemma 5.1, and take � to be much larger than �0 as in that
lemma.

Define u0 D u, p0 D p, and "0 D ". Let h0 be the solution to´
F.D2h0/ D 1 in B1,

h0 D u0 along @B1.

We apply Lemma 5.1 to get a p0 2 UQ and "0 such that u0 2 �.p0; "0; �/.
In general, once uk , pk , "k are found satisfying uk 2 �.pk ; "k ; 1/ with "k < N" and

�2.D
2pk/ � �0" as in Lemma 5.1, we apply that lemma to get p0 2 UQ such that

uk 2 �.p0; "0; �/. Then we update and define

"kC1 D "
0; ukC1.x/ D

1

�2
uk.�x/; pkC1.x/ D

1

2
x �D2p0x C

1

�
rp0.0/ � x:

This gives ukC1 2 �.pkC1; "kC1; 1/: And we solve´
F.D2hkC1/ D 1 in B1,

hkC1 D ukC1 along @B1

to get hkC1:
In particular, Proposition 2.2 gives

jD2hkC1.0/ �D
2pkC1j � C"kC1 (6.1)

for universal C .
This is called a step of the iteration.
Suppose the assumptions in Lemma 5.1 are always satisfied at each step. Then we get

a sequence of ¹"kº. We then divide all steps into different stages depending on "k .
The 0th stage begins at the 0th step, and terminates at step k0 if "k � .1 � ˇ/"0 for

all k � k0 and
"k0C1 < .1 � ˇ/"0;

where ˇ is the constant in Lemma 5.1. Then we define

".1/ D "k0C1:
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The 1st stage begins with step k0 C 1, and terminates at step k1 if "k � .1 � ˇ/".1/

for all k � k1 and
"k1C1 < .1 � ˇ/"

.1/:

Then we define ".2/ D "k1C1 and begin the second stage.
In general, once we have ".s/ D "ks�1C1 and begin the sth stage at step ks�1 C 1, this

stage terminates at step ks if "k � .1 � ˇ/".s/ for all k � ks and

"ksC1 < .1 � ˇ/"
.s/:

Then we define ".sC1/ D "ksC1 and begin the .s C 1/th stage.
Note that within the same stage, each step falls into alternative (2) in Lemma 5.1.

Also, within the sth stage,

"kC1 � "k � "
�

k
� "k � .1 � ˇ/

�.".s//�:

In particular, each stage terminates within finite steps.
Also, suppose k and k C 1 are two steps within the same stage. Define

Qhk.x/ D
1

�2
hk.�x/:

Then by definition Qhk.x/ � 1
�2
uk.�x/ D hkC1.x/ along @B1: Thus Qhk � hkC1 in B1:

Meanwhile, since within each stage, each iteration falls into alternative (2) as in
Lemma 5.1, we have

.hkC1 � Qhk/
�
1
2
e1
�
� .ukC1 � Qhk/

�
1
2
e1
�
D

1

�2
.uk � hk/

�
1
2
�e1

�
� C."k � "kC1/:

Consequently, with the Harnack inequality and Proposition 2.2, we get

jD2hkC1.0/ �D
2hk.0/j � C."k � "kC1/ (6.2)

for a universal C .
Now we focus on the sth stage, which consists of steps ¹ks; ks C 1; ks C 2; : : :º, and

".s/ D "ks < N":

Suppose the first approximating polynomial in this stage, pks , satisfies

�2.pks / � .�0 C A/"ks ; (6.3)

where �0 is the constant as in Lemma 5.1 and A is a universal constant to be chosen. Then
for any kth step within this stage, we can apply (6.1) and (6.2) to get

jD2pk �D
2pks j

D jD2pk �D
2hk.0/j C jD

2pks �D
2hks .0/j C jD

2hk.0/ �D
2hk�1.0/j

C jD2hk�1.0/ �D
2hk�2.0/j C � � � C jD

2hksC1.0/ �D
2hks .0/j

� C"k C C"ks C C."k � "k�1 C "k�1 C "k�2 � � � � C "ks � "ksC1/ � C"ks
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for a universal C . Consequently,

�2.D
2pk/ � .�0 C A � C/"ks � .�0 C A � C/"k :

If A is chosen universally large, then

�2.D
2pk/ � �0"k :

Consequently, the assumptions in Lemma 5.1 are always satisfied.
Note that the same estimate gives

jD2pn �D
2pmj � C"m

for n � m in the same stage.
Now for general n, suppose n is in the sth stage. Suppose kj is the starting step in the

j th stage. Then

jD2pn �D
2p0j � jD

2pn �D
2pks j C jD

2pks �D
2pks�1 j C � � � C jD

2pk1 �D
2p0j

� C".s/ C C".s�1/ C � � � C C".0/ � C

sX
jD1

.1 � ˇ/j "0

since between different stages, ".iC1/ � .1 � ˇ/".i/:
Therefore,

jD2pn �D
2p0j � C"0

for some universal C for all n. Consequently, if we choose � universally large, then

�2.D
2pn/ � �2.D

2p0/ � C"0 � .� � C/"0 � �0"n

for all n, and the assumptions in Lemma 5.1 are always satisfied.
A similar estimate gives

jD2pn �D
2pmj � C"m whenever n � m:

As a result, there will be a quadratic polynomial q defined as

q.x/ D 1
2
x �Mx;

where D2pn !M and jM �D2pnj � C"n:

Note in particular that q 2 Q and jD2q �D2pj � C":

Inside B�m ,
ju � q � rpm.0/ � xj � C"m�

2m:

This implies jrpmC1.0/ � rpm.0/j � C"m�m�1: In particular, rpm.0/! b for some
b 2 Rd as m!1: By passing to the limit in the previous estimate, we have

ju � q � b � xj � C"m�
2m in B�m :

This forces b D 0: Consequently, ju � qj � C"m�2m in B�m : Combining this with
"m � "m�1 � "

�
m�1, we obtain the desired estimate, where c depends on �.
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Now the parameter � is fixed depending on universal constants, the constants in
Lemma 4.1 become universal. See Remark 4.1.

We can now give a full description of the iteration scheme:
Let u 2 �.p; "; 1/ with " < N", where N" is the smaller of the constants in Lemma 4.1

and Proposition 6.1.
Define u0 D u, p0 D p and "0 D ". Once we have uk 2 �.pk ; "k ; 1/ we apply

Lemma 4.1 or Lemma 5.1, depending on the comparison between �2.D2pk/ and �"k ,
to get pkC1 such that

uk 2 �.pkC1; "
0; rk/:

Here rk D � if we are applying Lemma 5.1, and rk 2 . Nr; 1=2/ if we are applying
Lemma 4.1.

Then we define ukC1.x/ D 1

r2
k

uk.rkx/ and "kC1 D "0. This gives

ukC1 2 �.pkC1; "kC1; 1/

and completes a generic step in this iteration.
If there is some k0 such that �2.D2pk0/ � �"k0 , then we apply Proposition 6.1 to see

that a similar comparison holds for all pk with k � k0: This gives a polynomial q with
�2.D

2q/ � C"0 such that

ju � qj � C jxj2
ˇ̌
log jxj

ˇ̌�c in B1=2. (6.4)

If �2.D2pk/ � �"k for all k, then we are always in the case described by Lemma 4.1,
where each time the improvement is " ! .1 � ˇ/". Here a standard argument gives a
polynomial q 2 Q such that

ju � qj � C jxj2C˛ in B1=2 (6.5)

for a universal ˛ 2 .0; 1/: Moreover, in this case, we have �2.D2q/ D 0:

Once we have the explicit rates of approximation as in (6.4) and (6.5), it is standard
that we have the uniqueness of blow-up:

Theorem 6.1. Suppose u solves (1.1) and x0 2 †.u/. Then there is a unique quadratic
solution, denoted by px0 2 Q, such that 1

r2
u.x0 C r �/! px0 locally uniformly in Rd as

r ! 0:

In particular, there is no ambiguity in the following definition of the strata of the
singular set:

Definition 6.1. Suppose u solves (1.1). For an integer k 2 ¹0; 1; : : : ; d � 1º, the kth
stratum of the singular set †.u/ is defined as

†k.u/ D ¹x 2 †.u/ W dim.ker.D2px// D kº:

Here px is the blow-up profile at x as in Theorem 6.1.

Now we can give the proof of the main result:
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Proof of Theorem 1.1. Let K � � be a compact set. From Propositions 2.7 and 2.5 we
know that there is rK > 0 such that for any x0 2 †.u/ \K,

ju.x0 C �/ � pj � N"r
2
K in BrK

for some p 2 Q, and
D2u.x0 C �/ � �c0 N"I in BrK .

Define Qu.x/ D 1

r2
K

u.x0 C rKx/. Then we start the iteration as described before The-

orem 6.1.
We have x0 2 †d�1.u/ if and only if �2.D2pk/ � �"k for all k in the iteration. In

this case we have
j Qu � px0 j � C jxj

2C˛ in B1=2.

Scaling back, we have

ju.x0 C �/ � px0 j � C jxj
2C˛ in B 1

2 rK

for some C depending on rK but nevertheless uniform on the set K.
After this, it is standard to apply Whitney’s extension theorem and get the C 1;˛

covering of †d�1.u/ \ K: For details of this argument, see Theorem 7.9 in Petrosyan–
Shahgholian–Uraltseva [17].

A similar argument works for x0 2 †k.u/ for k D 1; : : : ; d � 2: Instead of (6.5), we
have (6.4), which gives the C 1;logc -regularity of covering for lower strata. For the details
see [12].
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