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Abstract. For the obstacle problem involving a convex fully nonlinear elliptic operator, we show
that the singular set in the free boundary stratifies. The top stratum is locally covered by a C 1-¢
manifold, and the lower strata are covered by C Llog® manifolds. This recovers some of the recent
regularity results due to Colombo—Spolaor—Velichkov (2018) and Figalli—Serra (2019) when the
operator is the Laplacian.

1. Introduction

The classical obstacle problem describes the equilibrium shape of an elastic membrane
being pushed towards an impenetrable barrier. In its most basic form, the height of the
membrane satisfies

Au = x>0y and u > 0in Q.

Here 2 is a given domain in R4, and x E denotes the characteristic function of the set E.
The right-hand side of the first equation has a jump across the a priori unknown interface
d{u > 0}, often called the free boundary.

Apart from its various industrial applications, many ideas and techniques developed
for the classical obstacle problem have been crucial in the study of other free boundary
problems. In this sense, the classical obstacle problem is the prototypical free boundary
problem. As aresult, it has been studied extensively during the past few decades. For many
applications of the classical obstacle problem and some related problems, see Petrosyan—
Shahgholian—Uraltseva [17] and Ros-Oton [18].

As already observed by Brézis—Kinderlehrer [4], the solution u enjoys the optimal
Cl(l)él regularity. The interesting problem is to understand the regularity of the free bound-
ary d{u > 0}. In that direction, Sakai first gave some results for the planar case in [19,20].
The theory in higher dimensions was developed by Caffarelli [5, 6], who showed that
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around points on d{u > 0} the solution u has two possible types of behavior. Either it
1

behaves like a half-space solution, 5 max{x - e, 0} for some e € S4~1, or it behaves like
a quadratic polynomial %x - Ax for some nonnegative matrix A.

The points where the solution behaves like a half-space solution are called regular.
Near such points, Caffarelli [5] showed that the free boundary is an analytic hypersurface.
His method is sufficiently robust that it has been adapted to regular points in many other
problems, including the thin-obstacle problem in Athanasopoulos—Caffarelli—Salsa [3],
the obstacle problem for integro-differential operators in Caffarelli-Salsa—Silvestre [9],
the obstacle problem for fully nonlinear operators in Lee [15], the obstacle problem for
fully nonlinear nonlocal operators in Caffarelli-Serra—Ros—Oton [8], and a very general
class of unconstrained free boundary problems in Figalli-Shahgholian [13] and Indrei—
Minne [14].

The points where the solution behaves like a quadratic polynomial are called singu-
lar. As shown by Schaeffer [22], the free boundary can form cusps near these points.
Nevertheless, certain structural results can be established for singular points.

To be more precise, let %x - Ax,x denote the polynomial modeling the behavior of u
around a singular point x¢. Depending on the dimension of the kernel of Ay, the collec-
tion of singular points can be further divided into d classes (strata), the kth stratum being

Zk(u) = {Xp : X is a singular point with dimker(Ay,) = k}.

The structural theorem by Caffarelli [6] says that ¥ is locally covered by C! mani-
folds of dimension k. His proof was based on the Alt—Caffarelli-Friedman [2] formula.
An alternative proof was later found by Monneau [16], using the monotonicity formula
bearing his name.

Recently there has been quite some interest in improving this result. In two dimen-
sion, Weiss [23] improved the regularity of the manifolds to C* by introducing the
Weiss monotonicity formula. Based on the same formula, Colombo-Spolaor—Velichkov
[10] showed that in higher dimensions the manifolds are C Llog® The best result so far
is in Figalli-Serra [12]. By applying Almgren’s [1] monotonicity formula, they improved
C1g® to C* for the manifolds covering the top stratum X4~ (1). They also showed
that each stratum can be further divided into a ‘good’ part and a ‘bad’ part, where the
former is covered by C L1 manifolds, and the latter is of lower dimension.

Despite these exciting new results, almost nothing is known about singular points
for obstacle problems involving operators other than the Laplacian. Compared with the
robust argument for regular points, all developments on singular points depend on various
monotonicity formulae. These are powerful but restricted, in the sense that they are not
expected to hold for nonlinear operators or even for linear operators with coefficients of
low regularity. The same obstruction lies behind the lack of understanding of singular
points in many other free boundary problems. Consequently, it is important to develop
new tools when monotonicity formulae are not available.

In this work, we develop a method for the study of singular points without relying on
monotonicity formulae. In particular, this method works for the following obstacle prob-
lem involving a convex fully nonlinear elliptic operator F' whose derivatives are Holder
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continuous:

FD2 = u>0)}
{ (D7) = Hw=0r g (1.1)

u >0,

Here 2 is a domain in ]R{d, and the solution u is in the viscosity sense [7, 15]. For a given
boundary data, the solution u is unique and can be obtained either as the least nonnegative
supersolution to F(D?u) < 1, or as the largest subsolution to F(D?u) > y(y>o}-

Even when F is the Laplacian, our method is interesting as it provides a new approach
to the regularity of the singular set. At first reading, it might relieve many technical com-
plications if the reader takes F to be the Laplacian.

For the singular points on the free boundary d{u > 0}, our main result reads

Theorem 1.1. Let u be a solution to (1.1). Fork = 0,1,...,d — 2, the kth stratum of the
singular points, =¥ (), is locally covered by a k-dimensional C %" manifold. The top
stratum, 471 (1), is locally covered by a (d — 1)-dimensional C“* manifold.

Theorem 1.1 states that the singular set of the free boundary in the nonlinear obstacle
problem setting enjoys similar regularity properties as in the linear case. The methods
developed here rely on linearization techniques, and the hypothesis that F € C! is essen-
tial in our analysis.

Let us briefly recall the strategy when the operator is the Laplacian. For each point xo
in the singular set, we study the rescalings uy, »(-) = u(r - +x0)/r?asr — 0.Uptoa
subsequence, they converge to a quadratic polynomial, called the blow-up profile at x.
When the operator is the Laplacian, this polynomial is unique in the sense that it is inde-
pendent of the subsequence r — 0. It models the behavior of our solution ‘at the point x¢’.
A uniform rate of convergence allows the comparison of blow-up profiles at different
points. This gives the desired regularity of the covering manifolds.

Up to now, however, even the proof for the uniqueness of the blow-up profile requires
monotonicity formulae. Due to the unstable nature of singular points, it is not obvious
that the solution cannot behave like completely different polynomials at different scales.
This can be ruled out by monotonicity formulae. Once the solution is close to a parabola
at a certain scale, a monotone quantity shows that the solution stays close to the same
parabola at all smaller scales, leading to uniqueness of the blow-up profile.

Since no monotonicity formula is expected for our problem, we do not have access
to the behavior of u at all small scales. Instead, we proceed using an iterative scheme.
Suppose the solution is very close to a parabola in B;; we need to show that for some
p < 1, it is even closer to a similar parabola in B,. Iterating this argument gives a rate
of convergence to the blow-up profile, which in particular gives its uniqueness. Such a
scheme has been applied to study regularity of solutions of elliptic equations [21] as well
as regular points along free boundaries [11]. To our knowledge this is the first time it has
been applied to singular points along free boundaries.

To be more precise, suppose that 0 is a singular point along d{u > 0}, and that u is
very close to a parabola p in By, in the sense that

lu—p|<e in B
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for some small . Our goal is to show that in B, the solution u can be better approximated.
It is natural to look at the normalized solution

1
u=—(u-—p),
&

which solves an obstacle problem with 0 = —% p as the obstacle. Assume that p takes

the form
1 d
p=5) a4
!

with the coefficients satisfying
ap;>--->ag and ai > e. (1.2)
Then the contact set between 7 and the obstacle concentrates around the subspace
== =0},

From here we need to separate two cases depending on the dimension of this subspace.

When k = 1, this subspace is of codimension 1. In the limit as ¢ — 0, % effectively
solves the thin obstacle problem with 0 as the obstacle along {x; = 0}. Let u denote the
solution to this problem. After developing new technical tools concerning the directional
monotonicity and convexity of solutions, we can show that i is C? at the origin, and the
second order Taylor polynomial of u gives the approximation of u in B, with an error of
the order (1 — B)ep?.

When k > 2, in the limit as ¢ — 0, the effective obstacle lives on a subspace of codi-
mension strictly larger than 1. Here it is more natural to approximate u with the solution
to the unconstrained problem

F(D?h) =1in By, and h = u along dB,.

We show that i ‘almost’ solves the constrained problem, and its second order Taylor
expansion gives the next approximation of u in B, with an error of the order (¢ — &) p?
for some p > 1. For & small, this improvement is much slower than ¢ — (1 — )¢. Con-
sequently, we need a much more delicate argument to keep track of the change in the
polynomials at each step, essentially saying that if the improvement of error is small, then
the change in the polynomials is even smaller.

Combining these two cases together, we get a rate of convergence to the blow-up
profile, which allows us to establish the main result, Theorem 1.1.

To our knowledge, this is the first structural result for singular points in the obstacle
problem with nonlinear operators. We hope that the ideas and techniques developed here
can be applied to other types of free boundary problems.

This paper is structured as follows. In the next section we provide some preliminary
material and introduce some notations. In Section 3 we establish the main new observa-
tions of this paper, the improvement of monotonicity and convexity of the solution. With
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these we prove two lemmata concerning the iterative scheme. In Section 4 we deal with
the case when k = 1 as in (1.2). In Section 5 we deal with the case when k > 2. In the
last section, we combine these to prove the main result.

2. Preliminaries and notations

This section is divided into three subsections. In the first subsection we discuss some reg-
ularity properties of convex elliptic operators. The main reference for these is Caffarelli—
Cabré [7]. In the next subsection we include some known results on the obstacle problem,
mostly from Lee [15]. In the last subsection we recall an expansion of solutions to the
thin obstacle problem.

2.1. Fully nonlinear convex elliptic operators

Let §; denote the space of d-by-d symmetric matrices. Our assumptions on the operator
F:8; — R are:

F(0) =0; F isconvex; 2.1

F is C1*F for some af € (0, 1) with C "*F seminorm [Fletap < Cr; (2.2)

there is a constant 1 < A < 400 such that
1
~IPI < FOM + Py~ F(M) < A|[P| 3

forall M, P € §; and P > 0.

We call a constant universal if it depends only on the dimension d, the elliptic con-
stant A and Cr, oF.

For a C? function ¢, define the linearized operator Ly : S5 — R by

Ly(M) =) F;j(D*p)M;.
ij
where Fj; denotes the derivative of F in the (7, j)-entry, and D?¢ is the Hessian of ¢.
One consequence of convexity is

Ly(w—v) < F(D?*w) — F(D?v) < Ly (w —v). (2.4)
As a result, we have the following comparison principle:
Proposition 2.1. Let u be a solution to (1.1). Suppose the functions ® and V satisfy
F(D*W) <1 inQ,

v >0 in Q,

¥ >y on 0%2.

F(D?®)>1 inQN{d>0),
b <u on 092,

Then ® <u < W¥in Q.
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Proof. Define U = Q N {® > 0}. Then (2.4) implies that inside U, we have
Lo(® —u) > F(D?*®) — F(D?*u) > 0.

Noting that 0U C 92 U {® = 0}, we have ® —u <0on dU sinceu > 0in Q2 and ® <u
on d€2. The maximum principle gives

d—-—u<0 inU.
Again with u > 0, we have ® —u < 0in {® < 0} = U°. Combining these we have
d<u inQ.

To see the comparison between u and W, we define V = Q N {u > 0}. Then (2.4)
implies that inside V', we have

Ly,(¥—u) < F(D?>¥)— F(D*u) <1—-1=0.

With & > 0in Q and ¥ > u on 92, we see that W — u > 0 on V. The maximum principle
leadstoV —u>0inV.InV¢ u=0<WY, thus ¥ > u in Q. [

One cornerstone of the regularity theory of fully nonlinear elliptic operators is the
Evans—Krylov estimate [7]:

Theorem 2.1. Let F : S5 — R be a convex operator satisfying F(0) = 0 and (2.3). If v
solves
F(D?v) = f in By,

then there are universal constants o € (0, 1) and 0 < C < 400 such that

lvliczas, ) = CUlviiges) + I fllca))-

In particular, if u solves (1.1), then in {u > 0} we have enough regularity to differen-
tiate the equation and use convexity of F to get

Lu(Dett) =0, Ly(Deett) <0 in{u > 0. 2.5)

Here e € S?~! is a unit vector. Here and in later parts of the paper, D, denotes dif-
ferentiation in the e-direction, and D, denotes the pure second order derivative in the
e-direction. When differentiating along directions of a standard orthonormal basis of R,
we also write D; = D,, and D;; = D, Dej, where e; is the ith vector in the standard
basis.

A direct application of the previous theorem gives the following estimate:

Proposition 2.2. Let F satisfy assumptions (2.1)—(2.3).
If v solves
F(D*v) =1 in By,
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and p is a quadratic polynomial with F(D? p) = 1, then

[v—="plc2e, ) = Cllv—pllees)

for some universal a € (0,1) and 0 < C < +o0.
If w also solves
F(D*w) =1 in By,

then for a universal constant a € (0, 1) we have
lv = w2, ) < Cllv —wll gy
where C further depends on ||v| goo(B,) and || w| goo(B,)-
Proof. For the first statement, we directly apply the previous theorem to the operator
G(M) = F(M + D?p) — F(D?p).
This satisfies all assumptions in Theorem 2.1. The difference v — p solves
G(D*(v—p)) =0 inB;.
For the second statement, we first apply Theorem 2.1 to v and w, which gives
Ivllic2.0(Bs,4) = Cllvlgom,) and [wlc2.a(s;,,) = Clwlee,).
In B; the difference v — w solves the linear equation
Ay (5) Dyj (v —w) =0
with coefficients
Aij(x) = /01 F;j (tDzv(x) + (- t)Dzw(x)) dt.
By the previous estimate, this is Holder continuous. We apply the standard Schauder
theory to get the desired estimate. ]

Next we give an estimate for solutions to linear equations with coefficients which are
close to being constant in a large portion of the domain. This is relevant in our analysis
since often the linearized operators considered are perturbations of the constant coefficient
operator L.

Proposition 2.3. Let Q be a Lipschitz domain. Suppose v,w are C? solutions to the
uniformly elliptic linear equations

aij(x)vij =0 and bijw,-j =0 inQ, v=w=¢ onds,

with ¢ Hélder continuous, and with the coefficients a”/ (x) measurable, and b" constant.
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If
la’ (x) —bY| <n in Q= {x € Q:dist(x,dQ) > 7},

then
[v—wlgee@ <o),

where w(-) is a modulus of continuity, which depends on the ellipticity constants, the
domain Q and ||¢| ce.

Proof. The proposition follows from the perturbative methods developed in [7]. Here we
only sketch a proof by compactness.

The global version of the Harnack inequality implies that v, w are uniformly Holder
continuous in Q. Now we consider a sequence 7z — 0, and the corresponding solutions
vk, W (for equations with coefficients a;cj (x), b,icj). Then, up to subsequences, they must
converge uniformly to a solution of the same constant coefficient equation. The limit-
ing solutions must coincide since they have the same boundary data, and the conclusion
follows. ]

2.2. Known results for the obstacle problem

In this subsection we include some classical results concerning the obstacle problem (1.1).
Most of the results here can be found in Lee [15].
We begin with the optimal regularity of the solution:

Proposition 2.4. Let u be a solution to (1.1). Then for a compact set K C 2,
lullcrix) =€
for some C depending on universal constants, K, and ||[u| g0 ().

A direct consequence is that in the contact set {u = 0}, we have
Vu=0 and D?u >0 inthe viscosity sense. (2.6)

We have the following almost convexity estimate.

Proposition 2.5. Let u be a solution to (1.1) in Q = By with u(0) = 0. Then for some
universal constants §g > 0 and C,

D*u(x) > —C|log |x||_80 in By /.
The free boundary decomposes into the regular part and the singular part,
d{u > 0} = Reg(u) U X(u),

with Reg(u) given locally by a C1** surface which separates the zero set from the posit-
ivity set.
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Define the thickness function of a set E, §g(+), as
Sg(r) =MD(E N B,)/r,

where MD(E N B, ) is the infimum of distances between two pairs of parallel hyperplanes
such that £ N B, is contained in the strip between them.

Geometrically the singular set X (u) is characterized by the vanishing thickness of the
zero set:

Proposition 2.6. Let u be a solution to (1.1) in By with 0 € X(u). There is a universal
modulus of continuity o1 such that

Stu=0y(r) < o1(r).

In particular, if 0 € X (u), the zero set {u = 0} cannot contain a nontrivial cone with
vertex at 0.

Another characterization of the singular set is that at points in X (u) the solution is
approximated by quadratic polynomials.

For this, we define the following class of polynomial solutions to the obstacle prob-
lem. We also define the class of convex polynomials that do not necessarily satisfy the
nonnegative constraint.

Definition 2.1. The class of quadratic solutions is defined as
Q= {p px) = %x-Ax, A>0, F(A) = 1}.
The class of unconstrained convex quadratic solutions is defined as
uUaQ = {p:p(x) = %x-Ax—i—b-x, A>0, F(A) = 1}.

Here and in later parts of the paper, x - y denotes the standard inner product between
two vectors x and y.

Note that for a polynomial p € U@, D? p > 0. Ellipticity (2.3) then gives D?p < CI,
for some universal C.

For points in ¥ (1), we have the following uniform approximation by quadratic solu-
tions:

Proposition 2.7. Let u be a solution to (1.1) in By with 0 € X (u). There is a universal
modulus of continuity o, such that for each r € (0,1/2), there is p” € @ satisfying

U — p" |l goo(B,) < 02(r)r?.

Combining Propositions 2.5 and 2.7, we know that after some rescaling, our solution
is in the following class:

Definition 2.2. Given ¢,r € (0,1) and p € UQ, we say that u is e-approximated by the
polynomial p in B, and use the notation u € S(p, ¢, r), if

usolves (1.1)in B, and |u — p| < er?in B,,
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and
1

T 16A2°
The universal bound 0 < D? p < CI for p € UQ immediately gives a universal bound
on the size of u whenever u € S(p, ¢, r):

D?u > —cgel in B,, where co 2.7)

0<u<C inB, 2.8)

where C is universal.

2.3. The thin obstacle problem

In this subsection we discuss solutions to the thin obstacle problem. In certain cases, our
solution converges to them after normalization. Readers interested in the thin obstacle
problem may consult Athanasopoulos—Caffarelli-Salsa [3] or Petrosyan—Shahgholian—
Uraltseva [17]. In its most basic form, the thin obstacle problem is the following system:

Av <0 in By,
Av=0 inB;N{v>0}U{x; #0)}), (2.9)
v>0 along {x; = 0}.

Here x; denotes the first coordinate function of R¥.
For solutions to this problem, we have the following effective expansion according to
frequencies at 0:

Proposition 2.8. Let v be a nontrivial solution to (2.9) with v(0) = 0. Then one of the
following three possibilities happens for v:

(1) for some ax € R not both 0,
v(x) = apxy +a_xy +o(jx]) asx — 0;
(2) for somer > 0ande € S~ N {x; =0},
D.v >0 in B, N{x; # 0};
(3) for some A € Sg withe - Ae > 0 foralle € S~ N {x; = 0} and tr(A) = 0,
v(x) = %x “Ax 4+ o(|x]?) asx — 0.

For a real number x, x* and x~ denote the positive and negative parts of x respect-
ively. Recall that D, denotes differentiation in the e-direction.

Proof of Proposition 2.8. The Almgren frequency of v at 0 is well-defined. Denote this
frequency by ¢; then there are three possibilities: ¢ = 1;0r ¢ = 3/2; 0or ¢ > 2.

If ¢ = 1, then v blows up to a 1-homogeneous solution to (2.9). In this case, possib-
ility (1) as in the statement of the lemma holds.
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Similarly, if ¢ > 2, then possibility (3) happens.

If ¢ =3/2, then v blows up to a 3/2-homogeneous solution. In this case v is monotone
in a direction in the hyperplane {x; = 0}. This corresponds to possibility (2).

For details, the reader may consult [3] or [17]. [

3. Improvement of monotonicity and convexity

This section contains some new observations concerning the directional monotonicity
and convexity of solutions to the obstacle problem. They are at the heart of the further
development of the theory.

Roughly speaking, if the solution is ‘almost’ monotone/convex in B; and strictly
monotone/convex away from the free boundary, then the results here imply that the solu-
tion is indeed monotone/convex in By;,. As already evident in the classical work of
Caffarelli [5], it is of fundamental importance to develop such tools to transfer inform-
ation away from the free boundary to the full domain.

Before we state the main results of this section, we begin with the construction of a
barrier function. In the following lemma, y is the constant such that

F(yl)=1. 3.1
Here [ is the identity matrix. By (2.3), 1/A <y < A.

Lemma3.1. For0 <n <r < land N > 8yr?, let w be the solution to the system

F(D?>w)=1 inB,,
w = %y|x|2 along 0B, N {|x1| > n},
w=N along B, N {|x1| < n}.

For xo € B;», define
Wy, (X) = w(x) — w(xo) — Vw(xo) - (x — Xo).

There is 1, depending on r, N and universal constants, such that if n < 1, then for all
Xo € By)2,

Wy, (X) > &ﬂx —xol®> in By, Wy, > %N along 0B, N {|x1| < n}.
Proof. Define p = w — %y|x|2 in B,. Then Proposition 2.2 gives

||(p||C2'O‘(B3r/4) S Cr||(p||ioo(37r/8),

for some C, depending on universal constants and r.
We claim that as n — O,

¢ converges locally uniformly in B, to 0. (3.2)
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Consequently, there is a modulus of continuity w, depending on universal constants, N
and r, such that

C"||¢||$°°(B7r/8) 5 0)(77))

whenever 1 < 7. Thus the previous estimate gives

lellc2.0(Bs,,4) < (@) (3.3)

whenever 1 < 1.
In order to prove (3.2) we notice that ¢ satisfies a linear elliptic equation

aijj (x)(p,'j =0 in Br,

with ellipticity constant A. Also, ¢ vanishes on 0B, except on dB, N {|x1| < n} where
N>¢p> %N . We extend ¢ = 0 outside B,, and by the weak Harnack inequality it follows
that max ¢ decreases geometrically on the outward dyadic regions centered around a point
y € 0B, N {x; = 0},

Byi—«(y)\ By« (y) aslongas 5 <27% <r/4.

We easily obtain the claim (3.2) as we let n — 0.
Define ¢x,(x) = @(x) — ¢(x9) — Ve(xp) - (x — xo). The conclusion follows from
(3.3) by using
Wxy = Pxo + %V|x - x0|27

andqoiOinB,,wz%NonaBrﬂ{|x1|§r]}. |

With this we prove the following improvement of the monotonicity lemma. Recall
the class of solutions S (p, €, r) is defined in Definition 2.2, and that D, is differentiation
along direction e.

Lemma 3.2. Suppose u € S(p, €, r) satisfies the following for some constants K, o, and
0 < n < r, and a direction e € Ssd4-1:

Dou > —Ke in By, Dou > oe in B, N {|x1| > n}.
There is 1, depending on universal constants, r, o and K, such that if n < 1, then
Deu >0 in Byjs.
Proof. Choose ¢ > 0 small, depending on universal constants and o, such that
cllullgo(s,) < o

Then define N = max {4K/c, 10||u| ¢ (p,)}, depending only on K, o and universal con-
stants since we have the universal bound (2.8).

Let 1 be the constant given in Lemma 3.1, depending on N and r. Let wy, be the
barrier as in that lemma. Assume 1 < 7.
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If we define U = B, N {u > 0} and pick xo € B, /> N {u > 0}, then on dU, which is
contained in (0B, N {|x1| > n}) U (3B, N {|x1| < n}) U d{u > 0}, one has

ce(U — Wyx,y)(x) < ceu < oe along dB, N {|x1] > n};
ce(u — wy,y)(x) < ce(u —1N) < ce(—1iN)

< —Ke along 0B, N {|x1] < n};

and
ce(u — wyx,)(x) <0 along d{u > 0}.

Our assumptions on D,u and (2.6) imply
Deu > ce(u — wy,) along dU.

Now with (2.4) and (2.5), we have L, (D.u) = 0 and L, (¥ — wy,) > 0 in U. Thus
the comparison principle gives

Det(xo) = ce(u — wxy) (x0) = ceulxo) = 0.

Since this is true for all xo € B,/ N {u > 0} and D.u = 0 in {u = 0}, it follows that
D.u > 0in B, . [ ]

A slightly different version is also useful:

Lemma 3.3. Suppose u € S(p, €, r) satisfies the following for some constants K, o, and
0 < n < r, and a direction e € Sd-1:

D,u>—Ke in By, (3.4)
Dou=>0 in By N {|x1| = n}, (3.5
D.u >o¢ in B N {u > syr?}. (3.6)

There is 1, depending on universal constants, r, o and K, such that if n < ), then
Deu >0 in Byjp.

Proof. The proof is almost the same as the previous one. The only difference happens for
the comparison along the boundary 9B, N {|x1| > n}.
On 9B, N {|x1] = n} N{u > 2;.—6)/;"2}, we still have D,u > o¢, and the same com-
parison D,u > ce(u — wy,) holds.
On dB, N {|x1| = n}N{u < ﬁyrz}, we invoke
2
U — Wy, 5u—6—14y|x—x0|2 < u—&y(%r) <0
for xo € B, /. Thus along this piece of the boundary we still have
Deu >0 > ce(u —wy,). [

Finally, we have the following improvement of the convexity estimate:
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Lemma 3.4. Suppose u € S(p, e, 1). There is a universal constant C such that if Dee p
> Ce along some direction e € SS9 then

Deeu > 0 in Bl/2-
Proof. Let y be the constant as in (3.1), and ¢¢ be the constant as in Definition 2.2.
For xo € By N {u > 0}, define

) = Deeu() = () = 1yl = xa).

Defining U = B34 N {u > 0}, we have the following
Claim. For some universal constant C, if Deep > Ce, then h > 0 along oU.

Note that by (2.4) and (2.5), L, (h) < 0 in U. Thus once the claim is proved, 2 > 0
in U by the maximum principle. In particular, D..u(x¢) > 0. Together with (2.6), we
have D,.u > 0 in the entire B;/,.

Therefore, it suffices to prove the claim. First we note that along d{u > 0}, Deeu > 0
and ¥ = 0, thus 2 > 0 along this part of dU. We divide the other part 0B3,4 N {u > 0}
into two pieces,

Along the first piece B34 N {u < &y},

64
h(x) > —coe — co

e(u(x) = 37Ix — xo/?)

6460

%

—coé — e(a5y — 357) =0.

It remains to deal with yo € dB3/4 N {u > 6%1)/}. Firstly the universal bound (2.8) and
Proposition 2.4 give a universal ro > 0 such that

dist(yo, {u = 0}) > ry.
In particular F(D?u) = 1 in B,,, and we can apply Proposition 2.2 to get
|D*u(yo) — D*p| < Coe
for a universal constant Cy. Therefore, Deou(yg) > Ce — Coe. Consequently, for yg in
0B3/4 N {u > éV},
h(yo) = (C — Co)e — %Su(yo) > 8(C —Co — &;/ﬁr%a}xu).

Again noting the universal bound on max u as in (2.8), if we choose C universally large,
then /2 > 0 on this last piece of AU .
This completes the proof for the claim. ]
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4. Quadratic approximation of solution: Case 1

In this section and the next, we use the technical tools developed in the previous sections
to study the behavior of our solution near a singular point, say, 0 € X (u).
The classical approach is to study the rescalings of u,

ur(x) = r]—zu(rx)

as r — 0. Proposition 2.4 gives enough compactness to get convergence of u,; to some
quadratic polynomial, say p, along a subsequence r; — 0. If the limit does not depend on
the particular subsequence, then there is a well-defined stratification of X (1) depending
on the dimension of ker(D? p). If there is a rate of convergence of u, — p, then we get
regularity of the singular set near 0 € X (u).

With the help of monotonicity formulae, this program has been executed with various
degrees of success in [6], [10], [12], [16] and [23]. One idea behind these works is that
once Uy, is close to p for a particular ro, then monotonicity formulae imply u, remains
close to p forall r < ry.

Since no monotonicity formula is available in our problem, we do not have access to
all small scales. Instead, we proceed by performing an iterative scheme. Let p € (0, 1).
The building block of this scheme is to study the following question: If u is close to p
in By, can we approximate u better in B,?

Quantitatively, we seek to prove the following:

If |u — p| < e in B; for some small &, then we can find a quadratic polynomial g such
that [u — ¢| < &'p? in B,, where &’ < e.

The rate of decay ¢ — ¢’ is linked to the rate of convergence in the blow-up procedure.

Define the normalized solution 71, = %(u — p), and suppose we can show that 71, — 1i¢
as ¢ — 0. Then the formal expansion

U= p+ety+eco(l)

shows that a better approximation in B, follows if 7ig is C? near 0.

To this end, we need to consider two different cases.

Let Ay > --- > Ay > 0 denote the eigenvalues of D2 p. Depending on their sizes, the
contact set {u = 0} concentrates along subspaces of various dimensions. If 1, < Ceg, then
p~ %(x -¢)? and the contact set concentrates along a (d — 1)-dimensional subspace
{x -e = 0}. When A, > ¢, the contact set concentrates along a subspace with higher
codimension.

In this section, we deal with the first case when A, < Ce. In this case i, converges to
the solution of the thin obstacle problem (2.9), and in particular Proposition 2.8 applies
to the limit 7i¢. To show #ig is C? near 0, we need to rule out possibilities (1) and (2) as
in the statement of Proposition 2.8. This can be achieved using explicit barriers and the
lemmata in the previous section.

In this section, we decompose R = R x R4~! and write

x = (x1,x"),
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where x’ is the projection of x onto the subspace {x; = 0}. Similarly, for E C R?, we
define
E' = EnN{x =0}.

The main result of this section is the following:

Lemma 4.1 (Quadratic approximation of solution: Case 1). Suppose for some k > 0, we
have
ueS(pel) forsomep e @withAy(D?p) < ke,

and
0e€ X(u).

There are constants £, 8 € (0,1) and i € (0,1/2), depending on universal constants and k,
such that if ¢ < &, then

ueS(p.e,r) forsomep €@ & =(1—-PBsandr € (¥,1/2).

The class @ of quadratic solutions and the class S (p, ¢, 1) of well-approximated solu-
tions are defined in Definitions 2.1 and 2.2.

Here and in later parts of the paper, A; (M) denotes the jth largest eigenvalue of the
matrix M.

Remark 4.1. The parameter « will be chosen in the final section, depending only on
universal constants. After that, all constants in this lemma become universal.

We begin with some preparatory lemmata.
Lemma 4.2. Let u and p be as in Lemma 4.1. Then
Vu—p)| < Le inByp,
where L depends only on universal constants and k.

Proof. Define the normalization
.1
u=—-(u-—p).
€
Since F(D?u) < 1and F(D?p) = 1in By, by (2.4) we have
1
Lyt = —L,(u—p)<0 inBj. 4.1)
e
Up to a rotation, the polynomial p is of the form

1
pe) =3 4%

witha; > --- > ay > 0and a, < Cke for some universal constant C. Then D?u > —cge
in By and D, p < Cke foralle € S4~' N {x; = 0} give

Deeil > —C in By foralle € S*™' N {x; =0}
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for some C depending only on universal constants and k. Now the result easily follows
from this and the fact that i € C 1'! satisfies (4.1).

Indeed, after a linear deformation, we can assume that L, = A and the inequality
on D, is still satisfied after relabeling the constant C. Then A#i < 0 implies that we
also have

Dyu<C in B;.

Together with || < 1 in By, these imply
|Vﬁ| §C inBl/z,
for some C depending only on universal constants and «. ]

This lemma provides us with enough compactness for a family of normalized solu-
tions. Actually it even allows us to consider a family of nomalized solutions to the obstacle
problem involving a family of different operators. This is necessary to get uniform estim-
ates.

To fix ideas, let { F;} be a sequence of operators satisfying the same assumptions that
we have on our operator F', namely, (2.1)—(2.3).

For each Fj}, there is a unique y; such that

Fi(yje1 ® er) = 1.
Ellipticity implies y; € [1/A, A]. Define the associated polynomial

q;(x) = 37;x7. (4.2)

Then we have the following lemma, which identifies the problem solved by the limit of
nomalized solutions:

Lemma 4.3. Let F; be a sequence of operators satisfying the same assumptions as in
(2.1)~(2.3). Let u; solve the obstacle problem (1.1) with the operator F; in By. Suppose
for some constant k > 0 and a sequence g; — 0, there are polynomials

and
|uj —pj| =¢gj in Bj.
Then up to a subsequence, the normalized solution Ulj = %(u i — qj) converges locally

uniformly in By to some U, where q; is the polynomial as in (4.2).
Moreover; up to scaling, oo solves the thin obstacle problem as in (2.9).
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Proof. Lemma 4.2 gives a locally uniform C %! bound on the family {i i} Consequently,
up to a subsequence they converge to some 1o locally uniformly in Bj.
Define the operator G; by

1
Gj(M) = —(Fj(e; M + D?q;) — Fj(D?g;)).
J

Then

24 1 1
G;(D%Uj) = —(Xu;>0p — 1) = —— X{u; =0}
&j &j

By a uniform C1*F estimate on the family {F;}, up to a subsequence G; locally
uniformly converges to some linear elliptic operator. Up to a scaling, we assume this
limiting operator is the Laplacian.

Then G;(D?4;) < 0 for all j implies

Alloo <0 in Bj.

If xo € {lio > 0}, then #i; > 0 in a neighborhood of x¢ for large j. Note that g; > 0,
so u; > 0 in a neighborhood of x for large j. Thus G;(D?il;) = 0 in a neighborhood of
xo for all large j. Consequently, Atio(xo) = 0. That is,

Afio =0 in {fiee > O}.

Meanwhile, for x € {x1 # 0}, u;(x) > p;(x) —&; > c|x1|*> — &;, where ¢ is a uni-
versal positive constant. Thus u; > 0 in a neighborhood of x for large j. Consequently,
G;(D?4;) = 0in a neighborhood of x for large j. Thus Atie(x) = 0. That is,

Afioe = 0 in {x1 % 0}.

It remains to show that #io, > 0 along {x; = 0}. For this, simply note that u; > 0 and
g; = Oforall j along {x; = 0}. L]

Now we start the proof of Lemma 4.1. As explained at the beginning of this section,
the normalized solutions converge to a solution to the thin obstacle problem. The key to
the improvement in approximation is to show this limit is C2 at 0, that is, possibilities (1)
and (2) as in Proposition 2.8 cannot happen.

Proof of Lemma 4.1. Letr, B € (0, 1) be small constants to be chosen, depending only on
universal constants and «.

Suppose there is no & > 0 satisfying the statement of the lemma. For a sequence
¢j — 0, and a sequence of operators F; satisfying (2.1)~(2.3), we have a sequence of
solutions to (1.1) with these operators such that

uj € S(pj,ej,1) forsome p; € @ with Ao(D?p;) < ke;,
and 0 € X (u;), but

uj €8(q,(1—-p)ej,r) foranyg e @andr € (r,1/2).
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Up to a rotation, we assume

v

1 ) _ . . . .
p,-(x):EX:aijxi2 w1tha{2aj ---ZaéZO, andaéfksj.

Define

uj = ;(uj —q;). where gj(x) = 3y;x} with Fj(yje; ® e1) = 1.
J

Then up to a scaling, Lemma 4.3 shows that up to a subsequence,
uj — 4 locally uniformly in By,

where # solves the thin obstacle problem (2.9).

Moreover, u; (0) = 0 for all j implies %(0) = 0. Lemma 4.2 gives a Cl?);l (B1) bound
on . Consequently, Proposition 2.8 is applicable for .

We show that possibilities (1) and (2) of Proposition 2.8 cannot happen for .

Step 1. Possibility (1) as in Proposition 2.8 does not happen for u.
Suppose it happens. Then
i =arx; +a_xi +o(x]) asx—0.

First we show that a1 < 0. Assume that a4 > 0; we will use a barrier to show that
u(0) > 0, contradicting 0 € X (u).
For this we choose r small such that

i > %dAzxf — %lx’|2 4.3)
near AU, N {x; > 0} where U, is the cylinder of size r,
U, :== B, x [-r,r].

This means that i; satisfies the same inequality (4.3) above for all j large enough. For
notational simplicity, we omit the subscript j in the computations below.
Define the barrier function

D(x,x) = Ly + A%de)(x; + £%)* — Le|x|
and notice that .
b= 2 (@—q) = 3dA%x] - 31X+ OCe).
We compare u and ® on the boundary of the set
U, N {x; > —82}.

On {x; = —&?} we have u > 0 > ®. On the remaining part U, N {x; > —&2} we have
u > @ since u > ® for all small &. In conclusion, ® < u along the boundary, and Pro-
position 2.1 gives u > @ in the interior of the domain. In particular, #(0) > ®(0) > 0,
contradicting 0 € X (u). Therefore we have at < 0.
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Next we show that a4 cannot be negative. Suppose that a4 < 0, and in this case, we
will use a barrier to prove that {u = 0O} contains a cone with positive opening and with
vertex at 0. With Proposition 2.6, this contradicts 0 € X (u).

Since a_— < 0, we can choose r small such that

u< %a+x1 - %dAzx% + %7’2
near dU,. We compare u and W on the boundary of the set U, where
W(x) = 5(y — A*(d — De)(x1 + Ae)* + Jelx’ — &'
with A4 := a4 /(2y) and |§’| < r/2. Since
U =dapx — 1@ - DA + LY — €7 + 0().
we find that ¥ > 7, hence ¥ > u on dU, for all & small.
Now Proposition 2.1 becomes applicable and gives ¥ < W in U. In particular, this

gives
u(—Ae, & =0 for|¢'| <r/2.

Now note that with u € S(p, ¢, 1), we have D?y > —cpe in B;. Also since e is the
direction corresponding to the largest eigenvalue of D?p, there is a cone of directions
around ey, say K C S9!, with a universal positive opening such that D, p > ¢ > 0 for
all e € K. For small ¢ we can then apply Lemma 3.4 to get

Deeu >0 in By foralle € K.

Together with u(0) = 0 and u(—Ae, £’) = 0 for all |§'| < r/2, this implies that the coin-
cidence set {u = 0} contains a cone of positive opening with vertex at 0, contradicting
Proposition 2.6.

This finishes the proof of Step 1.

Step 2. Possibility (2) in Proposition 2.8 does not happen for .
Suppose it happens; then for some r > 0 and v € S~ N {x; = 0}, we have
Dyt >0 in B, N{x; # 0}.

Therefore, there is some o > 0 such that

1
D,i > 40 in B, N x| > ry.
v i r {l 1|_16\/X}

Noting that |u — p;| < ¢; in By implies {u; = 0} C {|x1| < C ,/&;} for some universal C,
we have {u; > 0} N By — By \ {x; =0}.
Meanwhile, i1; — # locally uniformly in By with G;(D?#i;) = 0in {u; > 0}, where

1
Gj(M) = ;(Fj(é‘jM + D?q;) - 1).
J
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Consequently, #i; — % in C Lo (B1 \ {x1 = 0}). Therefore, for large j,

loc

1
D, >20 in B, N Qx| > ry.
vy — r {| 1|_16\/X}

That is,

1
Dyu; >20g; in B, N q|x1| > ry.
vij — Jj r {| l|— 16\/K }
With [u; — g;j| < Cej in {u; > 5-r}, we have
1

— 2>_2_C.>_
2= 056" TR =50

2
for j large. Consequently,

1, 1
> —r? C > .
{u] > 256r } {|x1| > 16\/Kr}

Thus, we have established

. 1
Dyu; > 20e; in B, N {uj > ﬁrz}.

Also, by Lemma 4.2, we have D,u; > —Leg; in B,.
Now take 1 depending on K = L, r and ¢ as in Lemma 3.3. Note the convergence of
; — @in CL%(By \ {x; = 0}) implies
Dyu; >0 in B, N{|x;| > in} forlarge j.

By the C'*-regularity of u;, there is a cone of directions K C S?~! around v with
positive opening such that for all e € K, we have

Deuj > —Keg; in B,

Douj > o0¢j in B, N {uj > ZIRFZ},

Deuj >0 in B, N {|x1] > n}.

Thus Lemma 3.3 applies and gives

Deuj >0 in B,y foralle € K.

A

With u;(0) =0, u; > 0, this implies that {u; = O} contains a cone in B, 4 in direction — K,
again contradicting Proposition 2.6.

Step 3 (Improved quadratic approximation). We have
V8 >0,3r >0, p} €@ suchthat |uj — p]/| < 38gjr? in B,.

After the previous two steps, we know that the limiting profile # falls into possibil-
ity (3) as in Proposition 2.8. Consequently, for some § > 0 to be chosen later, there is
r > 0 such that

| — %x -Ax| < ér% in B,

where tr(4) = 0, and e - Ae > O forall e € S~ N {x; = 0}.
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Locally uniform convergence of #; — # gives, for large j,
|uj —qj —ej2x - Ax| < 2¢;8r*> in B,.
Here we omit the index j for the sake of simplicity, so we write
|u—q—8%x-Ax| < 28¢r?  in B,. 4.4)

With the Cauchy—Schwarz inequality and e - Ae > 0 forall e € S~! N {x; = 0}, we
see that there is a constant C, depending on | A|, such that

D*q+ As + Ce*> > Lye; ® e (4.5)

for & small.
Now note that we are assuming, after necessary scaling, that Fj; (D%q) = 8;j, where
F;j is the derivative of F in the (i, j)-entry. Thus tr(4) = 0 implies

|F(D%q + Ae + C&2I) — 1] < Celtor
by assumption (2.2). Consequently, there is ¢ € [—C, C] such that the polynomial
p/(-x) =q + %EX . A.)C =+ %C82|x|2 + %t81+aF_x%

solves
F(D?p) = 1.

Meanwhile, by (4.5) we have
D2p' = D*q + Ae + C&®I + 1'% ¢ @ ¢
> tre1®e —Ce' e ®@e; 20

for & small. Thus D2p’ > 0 and p’ € Q.
Finally, (4.4) implies that in B,,

|u _P/| = |u —q —S%X -Ax‘ + Ce%r? + %|l|81+a1’x%
528872+C81+aF7'2

< 38er?
for all & small.
Step 4 (Improved convexity). We have
u€S(p' (1-Pe.r)
with 8 > 0 depending on k and universal constants.
It remains to show that (see (2.7))

D?*u > —co(1 — B)el in B,,
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where c is the constant as in Definition 2.2. For fixed e € S9-1 define
w = Dgou + coé.

Thenu € §(p, ¢, 1) implies w > 0in Bj.
Now for small &, u > 0 in Br/4(%rel). Thus Proposition 2.2 implies

[Deett — Deep'| < Cer? in Br/g(%rel)

for a universal C.
Now fix §, depending on universal constants and «, such that the right-hand side is
less than %cos. Then
lu—p'| <ier® inB,

and
1 - 1
Decut = —3coe  in Byjg(3req).

In particular,
w > %coe in B,/g(%rel). 4.6)

If we solve
ME(®) =0 in B\ Bys(irer).
d=0 along 0B,

o = %co along B,/g(%rel),
where MI is the maximal Pucci operator [7], then
w>e® along 0By U 3B, /s(ire).

Meanwhile, along d{u > 0},
w > coe 4.7

by (2.6). Thus w > ¢® along d{u > 0}. In conclusion,
w>e® along d({u > 0} N By \ B,js(3rer))-
With L, (w) < 0in {u > 0}, the comparison principle gives
w>¢ed in{u >0}N By \ Br/g(%r€1).
Together with (4.6) and (4.7), this implies
w>ed in B;.

Meanwhile, there is a constant 8’ € (0, 1), depending on universal constants and &,
such that
® > 1p'co inB,.

Thus
Deett = w — coe = coe(—1+ 1B’) in B;.
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Define 8 = %/3’ Then in B, we have
D*u > —(1—PB)coel and |u—p'| < (1 —B)er?.

That is, u € S(p, (1 — B)e, r) for p’ € @. This contradicts our construction of u at the
beginning of this proof. ]

5. Quadratic approximation of solution: Case 2

In this section, we prove a version of Lemma 4.1 foru € $(p, &, 1) where A,(D?p) > .
Here the situation is different since the zero set {# = 0} concentrates around subspaces of
codimension at least 2, say

(X =0eRF), k=>2, where x':=(x1,....xk), x":=Xkq1.....%q). (5.1)
This brings technical challenges as the normalized solution 11 = %(u — p) now solves an

obstacle problem with an obstacle 0= —% p whose capacity converges to 0 as € — 0.
We define / to be the solution to the unconstrained problem

{ F(D%h) =1 in By, 52

h=u on 0B;.
We will show that # is well approximated in L° by the corresponding function h,
A 1
h:=—(h—p),
€

but only away from a tubular neighborhood around the (d — k)-dimensional subspace
above (see Lemma 5.2). Inside this neighborhood, the difference between h and @i could
be of order 1, and 1 has no longer a uniform modulus of continuity (as ¢ — 0) in By, as
in the codimension 1 case.

Heuristically, as ¢ — 0, we end up with limiting functions i, O and h such that |ﬁ|,
|i7| and max O are all bounded by 1 in By, and

e h is a solution to a constant coefficient elliptic equation,

e the obstacle O is a concave quadratic polynomial supported on the x” subspace, exten-
ded to —oo outside its support,

e it = max {h, O}, which can be discontinuous.

The improved quadratic error for ## cannot be deduced right away from the C2*
estimate of /1 at the origin. This will follow after we show that 0 € X (u) essentially
implies that h and O are tangent of order 1 at the origin in the x” direction and O can
only separate on top of h in this direction by a small quadratic amount.

It turns out that the improvement in convexity and approximation is much slower.
Instead of ¢ — (1 — B)e as in Lemma 4.1, we only have an improvement of the form
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& — & — g/, where ;> 1 is universal. This is consistent with C 1"'°¢° -regularity of covering
for lower strata in the classical obstacle problem [10].

This slow rate of improvement could a priori break the convergence of the poly-
nomials pr and the uniqueness of the blow-up profile, as well as the iteration scheme.
Suppose py is the approximating quadratic polynomial in the kth iteration. Then a rate of
e — (1 — B)e implies

|D? pry1 — D2 p| < C(1 = B)¥eq.

The summability of this sequence implies the convergence of D2 p;. When the rate is
& — & — ¢, this is not true anymore.

In the next section, we establish the convergence of D2 p; by working instead with
the corresponding approximations D2/ (0). These are not necessarily positive definite,
but still approximate u quadratically with error proportional to &x. The main point is that
the series

> D%k (0) — D?hies1(0))] (5.3)

is convergent, which is a consequence of the main result of this section, Lemma 5.1 below.
This lemma provides a dichotomy concerning the rate of the quadratic improvement
between two consecutive balls. Essentially it says that either we have a fast improve-
ment as in Lemma 4.1, or the difference between consecutive errors g is bounded below
by the difference between u and & at some point away from the x” subspace, which could
be as small as /.

We recall that by Definition 2.2, u € §(p, €, 1) means that u solves (1.1), and

lu—p|<er? and D?*u > —coel in B,.

Here ¢co = 1/(16A?) and p € U@ (see Definition 2.1), which means that p is a convex
quadratic polynomial that satisfies p(0) = 0 and F(D?p) = 1.

Lemma 5.1 (Quadratic approximation of solution: Case 2). Suppose u € S(p, &, 1) with
0 € X(u) and p € UQ. There are universal constants ko large, & small, and p € (0,1/2)
such that if ¢ < € and

A2(D?p) = Koe,

then
uesS(p,e,p) forsomep € UQ,
and either
(1) & < (1 — B)e for a universal 8 € (0,1), or
2) & <e—¢etand (u— h)(%pel) < C(e — &') for some universal constants 1, C > 1,

where h is the solution to (5.2).

The dichotomy is dictated by the behavior of the matrix D2k (0) along the x” sub-
space. If Di,,h(O) > —%81 , then we end up in alternative (1), otherwise we end up
in (2).
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Suppose that we are in the slow improvement situation (2). Let &’ denote the solution
to (5.2) in the ball B,. By the maximum principle, we have u > h’ > h in the common
domain. The Harnack inequality for the difference A’ — h and Proposition 2.2 imply

|D*1'(0) = D2h(0)| < Cpllh" — hllL

< C(I' — h)(3pe1)

< C(u—h)(3pe1)

<Ci(e—¢)
for some universal C;. Iteratively, the series in (5.3) is bounded from above by a telescop-
ing sum. Thus its convergence is justified.

Recall that A, (M) denotes the second largest eigenvalue of a matrix M. A technical

point is that we are working in the class of quadratic polynomials p € U@ defined in

Definition 2.1 which have a linear part as well.
Up to a rotation, p takes the form

plx) = %Zajxf + ijxj

witha; > --->ag > 0,a, > koe and F(}_aje; ® ej) = 1. Throughout this section we
assume that p is of this form.
Then since p > u — ¢ > —e in By we have

%aj)cj2 +bjx; > —e forx; e[-1,1]and1 < j <d.

If a; > 2¢, we have
|bJ| < ‘/Zajs. (5.4)
For a positive constant 7, we define the cylinder
€y = {|(x1,x2)| < n}.
We first show that u is well approximated by /4 outside this cylinder.

Lemma 5.2. Let u, p, h be as in Lemma 5.1. Given n small, there is ky, depending on
universal constants and n, such that if ay > kye, then

v —hllc2(s, ,\e,) < n€
for all € small, depending on 1.

Proof. Let 0 < i’ < 1 to be chosen, depending on 7. There is «, large such that |u — p|
< e¢and ay > Ky e imply
u >0 outside €.

Consequently, Proposition 2.2 gives

D?u — D?p locally uniformly in By \ €,y ase — 0. (5.5)
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Now let ¢ > 0 be a smooth function such that ¢ = 2 in €5, ¢ = 0 outside €3, and
|[Vo| < 2/n'. We solve the following equations:

Lp(v) =0 in Bl \€2ﬂ/’
V=9 along 9(B1 \ Cayy);

and
Lu(ﬁ) =0 in Bl \8277"
V=9 along 9(B1 \ Cayp).

Since v solves a constant coefficient equation and vanishes on dB; outside the thin
cylinder Cs, around the codimension 2 set {x; = x, = 0}, there is a modulus of con-
tinuity w(-), depending only on 71, A, d, such that

0<v=w() inBsys\Cy.
We use (5.5) together with Proposition 2.3, and estimate
v =0 =@(e) inBsy\Cyo,

with & (&) a modulus of continuity which depends also on 7’.
Note that > 0 outside €,, and we have L, (u — &) > 0in B; \ €. Consequently,
the comparison principle gives

u—h<eb <elw')+ o) inBza\Cypm.
On the other hand, we always have u — h > 0. Therefore, Proposition 2.2 gives
It = Rllcas, ven < CODE@O) + @)

Now, we first choose 7’ such that C(n)w(n’) < %n, and then choose ¢ such that C(n)®(e)
< %n. This gives the desired estimate. ]

We now give the proof of the main result in this section:

Proof of Lemma 5.1. As discussed above, we define the normalizations
.1 ~ o1 A~ 1
u=-u—-—p), h=-(h—-—p) and O =-(0-p).

& e £

Then in By, we have

<>

—l<h<a<1, 0(0)=0(0)=0,

and Proposition 2.2 implies
Il c2.e s, < C (5.6)

for some universal constant C.
We divide the technical proof into six steps. Here we give an outline first.
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We decompose the space x = (x’, x”’) according to the curvatures of the obstacle 0.
The curvatures are very negative along the directions in the x’ subspace, and are uniformly
bounded in the x” subspace. In Steps 1-2 we show that h and O are ‘essentially tangent’ in
the x” direction at the origin, and deduce that O can only slightly separate quadratically
on top of h near the origin. In Step 3, we show that the same is true for #. In Step 4,
we use the C2 estimate for / to approximate u quadratically in B, by a polynomial
p’ € UQ with an improved error £/2. The convexity estimate for D?u in B, (see (2.7)
in Definition 2.2) is given in Steps 5 and 6, according to whether or not the obstacle 0
separates quadratically on top of h along some direction in the x” subspace. This leads to
our dichotomy.

Throughout this proof, there are several parameters to be fixed in the end.

The radius p € (0, 1/2) depends only on universal constants. The parameter § > 0
can be made arbitrarily small, and will be chosen to be universal. The parameter 7 from
Lemma 5.2, which depends on 8, allows us to make % and h very close to each other. This
n imposes the choice of kg = k5 as in Lemma 5.2. The parameter € is chosen after all
these.

We introduce some notations. For § small to be chosen, let k € {1,...,d} be such that
ar > 287% > ag4q. (5.7)
Then we decompose the entire space R? as x = (x’, x”), where x’ = (x1,...,x) and
"
X" = Xg41,--.,Xa)-

The obstacle O is changing rapidly in the x’ direction, and we denote by x’ the point
in this direction where its maximum is achieved, which is the same as the minimum point
for p in the x’ direction.

More precisely, let x” be the minimum point of x” — p(x’,0). Then by (5.4) and (5.7),
x’ is close to the origin,

|x'| <82, and —e < p(x/,0) <0.
We write p as the sum of two quadratic polynomials in the x” and x” variables,
p(x',x") = pr(x’ = x) = p1(x) + p(0,x"),
where p; > 0 is a homogeneous polynomial of degree 2,
)= St
j<k
The obstacle O satisfies
Ve Ol,|D2,0] < Cs, O((x',0)) > 0.

Step 1. If n and ¢ are small depending on §, then

|V (h — 0)(0)] < 6. (5.8)
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The idea is to show that otherwise u is monotone in a cone of directions near the x”
subspace, and we contradict 0 € X (u).

Suppose there is i > k such that D; (ﬁ - é)(O) > 4.

From | D;; é| < Cjs and the universal estimate (5.6), we have

Di(h—0) > 1§ in B, (0)

for some r > 0 depending only on §.
Meanwhile, since D?u > —coe and | D2, p| < Cse in By, we have

D;iu > —2Cs in Bj.
Together with || < 1, this implies

|D;i| < 5Cs.

=

As a result,
Di(i— 0) = —3Cs in By),.

By continuity, there exists of a cone of directions, K c S9!, with positive opening
around e;, such that foralle € K,

D.(li — 0) > —2Cs in By s,

and
D.(h—0) > 1§ in B.(0).

Define the constant 7 as in Lemma 3.2 depending on r, K = —2Cs, and 0 = %8 If
we choose 1 < min {7, %8}, then Lemma 5.2 gives

Deu = e(De(h— 0)—1) = 385 in B, \ €,
and D.u > —2Cge in B,. Lemma 3.2 gives
Deu>0 inB,/, forallee K.

This implies that {u = 0} contains a cone of positive opening with vertex at 0, contradict-
ing Proposition 2.6.

Step 2. If n and ¢ are small depending on §, then
h(x',0) = O(x',0)] < 6. (5.9)

If O is a bit larger than h at (x’,0) we show that # coincides with the obstacle Oina
small neighborhood of (x’, 0), hence u = 0 in this neighborhood. On the other hand, by
Lemma 3.4, u is convex in the directions close to the x” subspace, and we find that {u = 0}
contains a cone with vertex at the origin and reach a contradiction. Next we provide the
details.

Note that ﬁ(O) <u(0) = 0 and 0@’ ,0) > 0, and then the upper bound for h—0 at
(x’, 0) follows from |x’| < §2 and (5.6).
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Suppose f;(g’, 0) — O(x’,0) < —§. We show thatu = O in a neighborhood of (x’, 0)
by using barriers. Since % has universal Lipschitz norm, and | D~ O, | < Cg, there is r > 0
depending on § such that

h(x) < O(x',x")— 1§ in B,(x,0).

That is,
h(x) < p1(x' —x') — 8¢ in B,(x",0).

Consequently, for n small, Lemma 5.2 implies
u(x) < pi(x’' —x')— 18e in B.(x'.0)\ €.
Let Q := {|x1]| < n} N Br(x’,0). We define the barrier
W(x', x") = p1(x" = x) + 3Be(lx — (2. 0)> —2A% (x1 — x})?)
for some B depending on § and r. Note that ¥(x’,0) = 0, and
W > pi(x' = x) = ABe(x1 — x})* = 3(a1 —2A%Be)(x1 — x)%,
thus W > 0 if ¢ is small. We choose B large such that by ellipticity (2.3),
F(D?*W) < F(D?p1) — BsA < F(D*p) =1,
and on 92 N 9B, (x’, 0), for n sufficiently small,
> p(x —x)+ %Bs(r2 —2A%?) = pi(x — X)) + %Ber2
> p1(x" —x') + p(x'.0) + p(0.x") + 26 = p(x) + 2e.

Consequently,
W >y+e ondQNaB.(x',0).

Meanwhile, on {|x1| = 1} N B,(x’,0),
u < pi(x' —x')— 38
=W — 16— 1Be(|lx — (x'.0)]* —2A%(x; — x})?)
SWU— 18+ BeA%n?.

Thus if 7 is small, then
u < \D—%Ss on 092.

Consequently, we can apply Proposition 2.1 to W in 2 to get ¥ < W in 2. In particular,
we have u(x’,0) = 0.

Now note that along d€2, we have u < ¥ — %58. Thus we can translate W a small
amount and still preserve the comparison u < W along d2. This gives

{u =0} D By(x',0) forasmallr" > 0.
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With a; > 28*¢ for j < k, we can apply Lemma 3.4 to get
Deeu >0

for all directions in a cone around the subspace {(x’, x”) : x” = 0}. With u(0) = 0 and
{u = 0} D B,/ (x',0), this generates a cone with positive opening and vertex at 0 in
{u = 0}, contradicting Proposition 2.6.

Step 3. For § universally small, and e, 1 small depending on 8, we have
0 <h+colx")? + 48 in By (5.10)

The inequality holds outside €, by Lemma 5.2. It remains to establish it in €.
First we use Steps 1 and 2 to show that a similar inequality holds for O:

O <h+colx"|>+38=:g inBy,. (5.11)

Then we use barriers to extend the inequality from O toi.
Note that in B;/, \ €;, Lemma 5.2 gives

D2h —D?*0 > D*i — D*0 —nl = éDzu — I > —(co + ).
By choosing 7 snAlall, and using the fact that D20 is constant together with the Holder
continuity of D2h (see (5.6)), we extend the estimate to the full ball
D*(h— 0) = =2¢col in Bys. (5.12)
Moreover, Di,OA < 28747, D)zc,x//OA =0and |D2i;| < C universal imply
D%(h—0) =841, |D2 ., (h—0)<C inBy». (5.13)

Since x’ is an extremal point of x’ — O(x',0), we see that V,» O(x’,0) = 0. Together
with (5.6), we have
[V (h = 0)(x',0)] < C. (5.14)

Also, the conclusion (5.8) of Step 1 together with the second estimate in (5.13) and
|x'| < 82 give
[V (h — 0)(x', 0)] < 26. (5.15)

Now it is easy to check that estimates (5.12)—(5.15) together with the conclusion (5.9)
of Step 2 imply the claim (5.11).

Next we show 2 < g + § in B4 N €, with g defined in (5.11). To this end, pick a
point x* € By/4 N €, and r > 0 depending on § such that

g(x*) + 18 > max {g.h +n}.
By (x*)
Define Q = B,(x*) N {|x1| < n}, and
v=g(x*) + 8+ B(|x — x> = 2A%|x; — x] %),

where B is a large constant such that Br? > 2.



O. Savin, H. Yu 32

We compare u and the barrier function

W(x', x") = p(x', x") +ev

in the set 2. We have v > g + %8 — 2AzBr;2 > g if n is small, thus
lIsz—i-eng—i-eé:O.

Along 0B, (x*) N 9,

v>g(x*)+ 8+ B(r? —2A%0%) > g(x*)+ 8 +2—2BA*p* > 1
if 7 is small. Thus on dB,(x*) N 9L2,
U>p+e>u.

Along B, (x*) N {|x1 =n},v > h+ %8 + n>ubyLemma5.2. Again ¥ > p + et = u.
Since F(D?W) < F(D?p) = 1, we can apply Lemma 2.1 to ¥ and  to get ¥ > u
in Q. In particular, u(x*) < v(x*) = g(x*) + §, which is the desired estimate.

Step 4.
3p € UQ suchthat |u—p'| < (¢/2)p* in B,, (5.16)

with p universal, provided that § is chosen sufficiently small, depending on universal
constants.

Define A A
q(x) = %x - D?h(0)x 4+ Vh(0) - x.

Then (5.6) implies
|h —h(0) —gq| < Co**® < cop® in By,

if we choose p universally small. Here ¢y is the constant in Definition 2.2.
With h <@l < h + co|x”|* + 48 in By/4 from Step 3 and %1(0) = 0, this implies

[l — q| < 2cop® + 85 in B,
Fixing § universally small such that 8§ < cop?, we have
lu — p —qe| < 3coep® in B,.

Define p = p + ge. Then D?p = D?p + eD?q = D?h(0). Thus F(D?p) = 1. Next
we perturb p slightly into a convex polynomial p’ € UQ.

From (5.12) we know D2p > —2c¢ge. We denote by M := (D?p)™ the positive part
of D?p, hence (2.3) gives

1< F(M)<1+2Acoe, and 1/A < |M] <2A.
Consequently, we can pick ¢ € [0,2¢coA?||M||~!] such that

F((1—te)M) = 1.
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Denote the new quadratic polynomial
p(x):=(1—r1e)ix- Mx + Vh(0)-x.
Then clearly p’ € UQ, and
|p' — Pl < (Aco + A?*co + Ce)ep® in B,.
Thus, by recalling the definition of ¢ in Definition 2.2, we have
lu — p'| < 3coep” + 3A%coep® < 1ep> in B,,.

Next we improve the convexity of u. There are two cases to consider, corresponding
to the two alternatives as in Lemma 5.1.

Step 5. If D2, (7 — 0)(0) = —Lcol, then D*u > —(1 — B)coel in By, for some B uni-

x//
versal.

The inequality at the origin can be extended to a fixed neighborhood by continuity
and then, by Lemma 5.2, transferred to D?u away from the cylinder €,. This can be
further extended to the whole domain by using the fact that pure second derivatives of u
are global supersolutions.

More precisely, our hypothesis together with (5.6) and the fact that D20 is constant
implies that the inequality holds in a small ball B,, ¢ universal, with —%col as the right-
hand side. Using (5.13), we can extend the inequality to the full Hessian,

D2(h—0) > —2col inB,.
By choosing 1 small, Lemma 5.2 gives
D*u > —1coel in Beja(3cer).
Now we can apply the same argument as in Step 4 of the proof for Lemma 4.1 to get
D?u > —(1 — B)coel in B,.
This corresponds to the first alternative as in Lemma 5.1.

Step 6. If Dee (ﬁ —0)(0) < —éCo for some unit direction £ in the x" subspace, then the
conclusion (2) of Lemma 5.1 holds.

The key observations are that ¥ — / is a subsolution and D..u + cg¢ is a supersolution
for the same linearized operator L,,, and that the two functions can be compared in the
domain By N {u > 0}. On the other hand, u — / is a global supersolution for Ly, and so
its minimum in Bj, is controlled below by its value at any given point that is not too
close to €,. The hypothesis at the origin is used to guarantee that this minimum value for
u — h in By, is at least ¢*. Now we provide the details.

By (5.6) and the fact that Dg¢ O is constant, we conclude D (h—0) < —i=coin Be
for a universal ¢ > 0. Together with Step 2, this implies the existence of some x* € By /4
such that (l; — 0)(x*) < —c for some universal c, that is, h(x*) < —ce.
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With the universal Lipschitz regularity of &, we get
h < —ce for some small universal ¢ > 0.
Consequently, for some universal ¢’ > 0, we have
u—h>ce in Byg(x™).

Note that Ly(u — h) < 0in By asin (2.4), and u = h on dB,. We compare u — /h to
the corresponding solution of the maximal Pucci operator in By \ B¢/¢(x*) and obtain as
a consequence of the Harnack inequality

M—hzé‘u inBl/z,

for some universal i > 1. Moreover, since u — 4 solves a linear equation away from €,
the same argument combined with the Harnack inequality implies that

u—h=c—nh)(ipe) =ce” inBy,. (5.17)
As in Step 4 of the proof for Lemma 4.1, for e € S9-1, we define
w = Dgo.u + coe.

This is a nonnegative function satisfying L, (w) < 0in By N {u > 0}. Note that w > co¢
along d{u > 0}, and 2¢ > u — h in By, hence

w > %O(u —h) along d(By N {u > 0}).
Since Ly (w) <0 < L,(u—h) in By N {u > 0}, we have
w > %O(u—h) in By N {u > 0}.
Combining this with (5.17) we find
w > c(u— h)(%pel) in By,

which means
Deett = —coe + c(u — h)(3pey) in Byys.

Define the right-hand side to be —co&’. Then
c
e =e——u—h)(3pe1) <e&— e
co

Also, (u — h)(% peg) = C(e — &) as in the second alternative in Lemma 5.1. |

6. Iteration scheme and proof of main result

Lemmata 4.1 and 5.1 form the basic building blocks of the iteration scheme that we per-
form to prove the main result. As mentioned in the Introduction and at the beginning of
Section 4, the iteration scheme compensates the absence of monotonicity formulae.
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In the following proposition, we give the details of this iteration when the approx-
imating polynomial p satisfies A,(D?p) > &. Again A,(M) denotes the second largest
eigenvalue of the matrix M. The proposition implies that once this condition is satisfied,
it holds true for all approximating polynomials in the iteration.

Proposition 6.1. Supposeu € S(p,¢,1) for some p € UQ. There are universal constants
g,¢ > 0 small and k, C large such that if ¢ < & and )Lz(sz) > ke, then there is g € @
with |D?q — D?p| < Ce such that

u—gl(x) < Clx[*[log |x||™* in Byja.

Proof. We will take € as in Lemma 5.1, and take « to be much larger than k¢ as in that
lemma.
Define ug = u, pg = p, and g9 = ¢. Let h be the solution to

F(Dzh()) =1 in Bl,
ho = ugp along 0B;.
We apply Lemma 5.1 to geta p’ € UQ and &’ such thatug € S(p’, &, p).
In general, once ug, pi, & are found satisfying uy € S(pg, ek, 1) with g < & and

A2(D?py) > koe as in Lemma 5.1, we apply that lemma to get p’ € U@ such that
ur € S(p’, €, p). Then we update and define

1 1 1
ekt1 =€, U1 (x) = ?“k([’x), Pr+1(x) = 7% D*p'x + ;VP/(O) - X.

This gives ug 11 € S(Pk+1,Ek+1, 1). And we solve

F(Dzhk_;,_l) =1 in Bl,
N1 = U1 along 0B

to get fig 4.
In particular, Proposition 2.2 gives

|D?hi41(0) — D? py1] < Cegp (6.1

for universal C.

This is called a step of the iteration.

Suppose the assumptions in Lemma 5.1 are always satisfied at each step. Then we get
a sequence of {ex }. We then divide all steps into different srages depending on &.

The Oth stage begins at the Oth step, and terminates at step kg if & > (1 — B)gg for
all k < ko and

eko+1 < (1 = B)eo.,

where f is the constant in Lemma 5.1. Then we define

1
e® = Eko+1-
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The 1st stage begins with step ko + 1, and terminates at step k; if & > (1 — B)e®
for all k <k and

e +1 < (1= ).

Then we define @ = &k, +1 and begin the second stage.
In general, once we have &) = ek,_,+1 and begin the sth stage at step ks_1 + 1, this
stage terminates at step kg if ex > (1 — B)e® for all k < kg and

eryt1 < (1= ).

Then we define e+ = €ky+1 and begin the (s + 1)th stage.
Note that within the same stage, each step falls into alternative (2) in Lemma 5.1.
Also, within the sth stage,

k1 < ek — & < e — (1= B

In particular, each stage terminates within finite steps.
Also, suppose k and k + 1 are two steps within the same stage. Define

() = p—ihkmx).

Then by definition ﬁk(x) < %uk(px) = hg41(x) along 0B;. Thus hy < hg41 in By.
Meanwhile, since within each stage, each iteration falls into alternative (2) as in
Lemma 5.1, we have

(i =) (ber) = G =) (3er) = = e = ho) (Jper)
< C(ex — €k+1)-
Consequently, with the Harnack inequality and Proposition 2.2, we get
|D?hye11(0) = D?hye(0)] < Clex — ex41) (6.2)

for a universal C.

Now we focus on the sth stage, which consists of steps {ks, ks + 1, ks +2,...}, and
PG gk, < &.

Suppose the first approximating polynomial in this stage, p,, satisfies

A2(piy) = (ko + A)eg,, (6.3)

where k¢ is the constant as in Lemma 5.1 and A is a universal constant to be chosen. Then
for any kth step within this stage, we can apply (6.1) and (6.2) to get

|D? pr. — D? pi|
= |D?pr = D>hg (0)| + | D? i, — D>y, (0)| + [ D*hy (0) — D2hye—1 (0)]
+ |D?hg—1(0) = D*hy—2(0)| + -+ + | D>hy11(0) — D2hy (0)]
<Cer +Cer, +C(ex — k-1 + €k—1 + Ek—2 — "+ + €k, — €ky+1) < Cey,
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for a universal C. Consequently,
A2(D?pr) = (ko + A = C)eg, = (ko + A — C)ey.
If A is chosen universally large, then
A2(D?pi) = Kotk

Consequently, the assumptions in Lemma 5.1 are always satisfied.
Note that the same estimate gives

Iszn - szm| < Cep

for n > m in the same stage.
Now for general n, suppose # is in the sth stage. Suppose k; is the starting step in the
Jjth stage. Then

|D?pn — D?pol| < |D?pp — D?piy| + |D?piy — D?prey_, | + -+ + [D?p, — D?po
s
<Ce® 4 Ce¥ V4 Ce@ =D (1) 0
Jj=1

since between different stages, e+t < (1 — B)e®.
Therefore,
|D2pn — D2p0| < Ceg

for some universal C for all n. Consequently, if we choose « universally large, then
A2(D?pp) = A2(D?po) — Ceg > (k — C)eg > Kotn

for all n, and the assumptions in Lemma 5.1 are always satisfied.
A similar estimate gives

|D?p, — D?pp| < Ce,,  whenever n > m.
As a result, there will be a quadratic polynomial g defined as
q(x) = 3x - Mx,

where D?p, — M and |M — D?p,| < Ce,.
Note in particular that g € @ and |D?q — D?p| < Ce.
Inside Bym,
lu—¢q—Vpm(0)- x| < Csmpzm‘

This implies |V pmi1(0) — Vpm(0)| < Cepmp™ . In particular, V p,,(0) — b for some
b € R? as m — oo. By passing to the limit in the previous estimate, we have

lu—q—b-x| <Cemp*™ in Bym.

This forces b = 0. Consequently, |u — g| < Cemp®™ in Bym. Combining this with

em < &m—1 — s,‘fl_l, we obtain the desired estimate, where ¢ depends on pu. [
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Now the parameter « is fixed depending on universal constants, the constants in
Lemma 4.1 become universal. See Remark 4.1.

We can now give a full description of the iteration scheme:

Letu € S(p, ¢, 1) with ¢ < &, where ¢ is the smaller of the constants in Lemma 4.1
and Proposition 6.1.

Define vy = u, po = p and g9 = &. Once we have uy € S(pg, €k, 1) we apply
Lemma 4.1 or Lemma 5.1, depending on the comparison between A, (D? py) and ke,
to get px+1 such that

up € S(pr+1.€.1x).

Here ry = p if we are applying Lemma 5.1, and ry € (¥, 1/2) if we are applying
Lemma 4.1.
Then we define ug41(x) = rizuk(rkx) and eg 1 = ¢&. This gives
k

Uk+1 € S(Pk+1:€k+1, 1)

and completes a generic step in this iteration.

If there is some ko such that A5(D? pg,) > ke, then we apply Proposition 6.1 to see
that a similar comparison holds for all py with k > k. This gives a polynomial g with
A2(D?q) > Ceg such that

lu —q| §C|x|2|10g|x||_c in By ». (6.4)

If Ao (D? pr) < kg for all k, then we are always in the case described by Lemma 4.1,
where each time the improvement is ¢ — (1 — )e. Here a standard argument gives a
polynomial ¢ € @ such that

lu—q| < C|x|*** in By, (6.5)

for a universal « € (0, 1). Moreover, in this case, we have A,(D2%gq) = 0.
Once we have the explicit rates of approximation as in (6.4) and (6.5), it is standard
that we have the uniqueness of blow-up:

Theorem 6.1. Suppose u solves (1.1) and xo € X(u). Then there is a unique quadratic
solution, denoted by px, € @, such that rizu(xo + 1) = Dx, locally uniformly in R? as
r— 0.

In particular, there is no ambiguity in the following definition of the strata of the
singular set:

Definition 6.1. Suppose u solves (1.1). For an integer k € {0,1,...,d — 1}, the kth
stratum of the singular set X (u) is defined as

S (u) = {x € (u) : dim(ker(D?px)) = k}.
Here p, is the blow-up profile at x as in Theorem 6.1.

Now we can give the proof of the main result:
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Proof of Theorem 1.1. Let K C 2 be a compact set. From Propositions 2.7 and 2.5 we
know that there is rg > 0 such that for any x¢ € X(u) N K,

[u(xo + ) — p| < érg in By,

for some p € @, and
D?u(xo ++) > —col in By,.

Define 1(x) = r%u(xo + rgx). Then we start the iteration as described before The-
K

orem 6.1.
We have xo € 2971 (u) if and only if A, (D2 py) < ke for all k in the iteration. In
this case we have

|2+a

lit — pxol < Clx in By .

Scaling back, we have
lu(xo +) = pxo| < Clx*** in By,

for some C depending on rx but nevertheless uniform on the set K.

After this, it is standard to apply Whitney’s extension theorem and get the C ¢
covering of £¢~!(u) N K. For details of this argument, see Theorem 7.9 in Petrosyan—
Shahgholian—Uraltseva [17].

A similar argument works for xo € >k (u) fork =1,...,d — 2. Instead of (6.5), we
have (6.4), which gives the C "°¢° _regularity of covering for lower strata. For the details
see [12]. [
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