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Abstract: The ubiquitin-26S proteasome system and autophagy are two major protein degradation
machineries encoded in all eukaryotic organisms. While the UPS is responsible for the turnover
of short-lived and/or soluble misfolded proteins under normal growth conditions, the autophagy-
lysosomal/vacuolar protein degradation machinery is activated under stress conditions to remove
long-lived proteins in the forms of aggregates, either soluble or insoluble, in the cytoplasm and
damaged organelles. Recent discoveries suggested an integrative function of these two seemly inde-
pendent systems for maintaining the proteome homeostasis. One such integration is represented by
their reciprocal degradation, in which the small 76-amino acid peptide, ubiquitin, plays an important
role as the central signaling hub. In this review, we summarized the current knowledge about the
activity control of proteasome and autophagosome at their structural organization, biophysical states,
and turnover levels from yeast and mammals to plants. Through comprehensive literature studies,
we presented puzzling questions that are awaiting to be solved and proposed exciting new research
directions that may shed light on the molecular mechanisms underlying the biological function of
protein degradation.

Keywords: ubiquitin; proteasome; autophagy; ubiquitylation; protein degradation; liquid-liquid
phase separation; biophysical state; development; stress

1. Introduction

Protein misfolding is a harmful post-translational process that could permanently
damage the activity of individual proteins and protein complexes, thus reducing cellular
fitness [1]. Many aberrant intracellular processes, including genetic mutations, incomplete
translation, abnormal folding after translation, mis-regulated post-translational modifi-
cations, oxidative damage, and defective assembly of protein complexes, can lead an
intracellular peptide to fold abnormally [2]. In many cases, protein misfolding exposes
the main chain and the hydrophobic patches of a protein that are largely buried internally
within the normally folded structure. The exposure of these regions triggers aggregation,
but can also sequester normally folded proteins, thus perturbing the proteome function [3].
An unhealthy proteome has catastrophic consequences at the organismal level, such as caus-
ing numerous human proteinopathies [4,5], and resulting in stress and even developmental
termination in plants [6].

Since protein misfolding is an inevitable and generic feature of polypeptides due to a
crowded and busy intracellular environment [3], eukaryotic cells have developed multi-
layers of protein quality control (PQC) machineries to defend protein misfolding [7]. The
forefront layer relies on chaperone-assisted refolding or the direct turnover of abnormally
folded proteins through the ubiquitin-26S proteasome system (UPS) to prevent them from
aggregation. However, aggregation can still occur if misfolded proteins are overwhelmed
and beyond to be repaired or degraded individually. At this point, an autophagy-mediated
lysosomal/vacuolar degradation system would be activated to serve as the last defense
system to remove potentially toxic protein aggregates [2].

Int. . Mol. Sci. 2023, 24, 2221. https:/ /doi.org/10.3390/ijms24032221

https:/ /www.mdpi.com/journal/ijms


https://doi.org/10.3390/ijms24032221
https://doi.org/10.3390/ijms24032221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-1177-1612
https://doi.org/10.3390/ijms24032221
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24032221?type=check_update&version=2

Int. . Mol. Sci. 2023, 24, 2221

2 of 24

Since the seminal work of Finley et al. in 1984 on the discovery of ubiquitin-dependent
protein turnover and the later discovery of proteasomal degradation of ubiquitylated
proteins by Heinemeyer et al. in 1991 [8,9], the UPS-mediated protein degradation has
been widely appreciated as the major protein degradation machinery in all eukaryotic
organisms. It was estimated that as much as 80-90% of protein turnover in cultured
mammalian cells was accounted for by UPS-mediated protein degradation under optimal
nutritional conditions [10], further suggesting the strong evolutionary selection against
protein aggregation [3]. As an alternative degradative system, inhibitor studies have also
demonstrated the contribution of an autophagy-mediated lysosomal/vacuolar degradation
system in 10-20% of long-lived protein degradation upon nutrient (serum) deprivation [11].

Throughout the past 40 years of research, overwhelming studies have concluded the
tight connection between the activities of the UPS and autophagy and numerous human
protein aggregation diseases. Not only are a vast number of abnormal and short-lived
proteins, including 30% of newly synthesized cellular proteins, targeted by the UPS, but
also multitype autophagy substrates, such as protein aggregates and defective organelles,
have been identified for lysosomal/vacuolar degradation. It was also found that the two
systems coordinate and interplay in the surveillance of PQC. For example, the inhibition of
one system may upregulate the other or vice versa. For detailed mechanisms of each system,
the readers are referred to excellent review articles in the field [12-24]. Because of space
limitation, in this review, we focus on the current knowledge about how the two systems
are regulated through their structural organization and reciprocal degradation. Whenever
possible, we referred to the studies in plant biology research, with some knowledge gaps
filled with the discoveries in other systems, such as yeast and mammalian cell lines.

2. Quality Control of the 26S Proteasome
2.1. Structure and Activity Control of the 26S Proteasome

The 26S proteasome is one of the largest multi-subunit protein complexes that is
composed of two functionally distinguished subcomplexes (Figure 1). The proteolytic
part is attributed to a barrel-shaped 20S core particle (CP) that comprises four axially
stacked heteroheptameric rings (two outer o- and two inner f3-rings) [25]. Among the
four rings, three of the seven pairs of the 3 subunits (1, 32, and 35) possess six catalytic
sites that have caspase-like (cleave after acidic amino acid), trypsin-like (post-basic), and
chymotrypsin-like (post-hydrophobic) specificities, giving the proteolytic function of the
26S proteasome [26]. These subunits utilize the hydroxyl group of the terminal threonine
residue as the catalytic nucleophile for attacking peptide bonds of a substrate [10]. However,
the 20S CP alone does not have the proteolytic function, because the N-termini of the seven
pairs of the a-ring subunits completely blocks the accessibility of unregulated substrates to
the proteolytic chamber by sealing the entrance pore (“gate”) on both sides of the internal
(-rings [27-30].

The 19S5 regulatory particle (RP) is designed to recognize the substrate, remove ubiqui-
tin modifications, control the opening of the substrate entrance pore, unfold, and translocate
the substrate into the 20S core. It binds to either or both ends of the 20S CP to assemble
a 265 or 30S proteasome holo-complex, respectively, based on their sedimentation coeffi-
cients [31,32]. According to organization and function, a typical RP can be further divided
into a base and a lid subcomplex [33-35].
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Figure 1. Cryo-electron microscopy (Cryo-EM) structure of the 26S proteasome. The spherical
structure is generated based on PDB 6MSK [36] and 3JCP [37] for humans (A) and yeast (B) 265
proteasome, respectively. Two mirror images were shown for the detailed organization of base and
lid subunits of the 19S RP subcomplex in each proteasome. The parts of N-ring and ATPase motor
ring of RPT hexameric complex are indicated. The subunits of a-ring and p-ring of the 20S CP are
highlighted with different colors. The human 26S proteasome structure does not include RPN13.

The base is made up of 10 subunits, including four Regulatory Particle Non-ATPase
(RPN)1 [38], RPN2 [39,40], RPN10 [41], and RPN13 [42], and a hexameric ATPase motor
ring composed of six Regulatory Particle Triple-A ATPases (RPT) 1-6 [43,44] (Figure 1).
In addition to the ATP hydrolysis function of the Triple-A ATPases active domain, the
RPT subunits carry an N-terminal oligonucleotide/oligosaccharide-binding (OB)-fold do-
main [45-47] and a C-terminal HbYX motif (where Hb stands for a hydrophobic residue; Y
for tyrosine; and X for any amino acid) [48]. The OB domains form a rigid N-terminal ring



Int. . Mol. Sci. 2023, 24, 2221

4 of 24

that is stacked on top of the AAA-domain ring [38,44,46]. Upon recognition, a ubiquityla-
tion substrate needs to go through the N-ring before engaging with the AAA-ATPases that
convert ATP hydrolysis energy into mechanical pulling for its unfolding and translocation
into the 20S core [47,49,50]. It was shown that an unstructured initiation region with at least
20-25 amino acids is required for a substrate to be engaged with the ATPase motor [47,51-57].
This necessity may provide the second degradation code for a ubiquitylation substrate in ad-
dition to the topology of polyubiquitin chains. The C-terminal HbYX motif of an RPT subunit
binds to a pocket between the 20S CPs « subunits functioning as a “key in a lock” to induce
gate opening and allow substrate entry [48,58,59]. Two of the four RPN subunits, RPN10 and
RPN13, function as the receptors of ubiquitylation substrates [42,43]. RPN1 and RPN2 are
the two paralogues with the largest size among the entire group of the 265 subunits [60,61].
Their central x-turn-« proteasome/cyclosome (PC) motifs form a toroid structure that is
further extended by their divergent flexible N- and C-terminal regions. The large size and
the toroid structure give them a role in functioning as flexible scaffolds between the base
and the lid [40,62-64] (Figure 1A). The different positions of RPN1 and RPN2 within the
19S RP also fulfil their specific functions. For example, RPN1 also functions as the third
receptor for the poly-ubiquitin chain to facilitate deubiquitylation [38,43,60], while RPN2
tightly interacts with RPN13 and a proteasome-associated DUB, UCH37 /UCH-L5 [65-67]
(Figure 1B). RPN2 was also shown to bind with importin a3 for mediating nuclear imports
of proteasomal components [68].

The RP lid contains nine subunits that include RPN3, RPN5-9, RPN11-12, and
RPN15 [69] (Figure 1). Among them, RPN11 is a Zn?*-dependent deubiquitylase
(DUB) [44,70,71], forming a hetero-dimeric complex with RPN8 [72,73]. The six Proteasome—
CSN-elIF3 (PCI) domains containing subunits, RPN3, 5, 6, 7, 9, and 12, assemble a horse-
shoe structure playing a scaffolding function to facilitate inter-subunit binding [34,35,61]
(Figure 1A,B, right panel). RPNS sits in the horseshoe through interacting with RPN3 and
RPNO. It also forms a heterodimer with RPN11, projecting the active site of RPN11 near the
N-ring of RPTs (Figure 1A-B, left panel). The C-terminus of RPN3 was shown to contact the
N-ring of the RPT base proposed to form a composite active site for substrate deubiquitylation
and unfolding [61,73]. Thus, the C-terminus of RPN3 may function as a sensor of substrates
engaged in the N-ring for initiating conformational changes of the lid to activate RPN11 and
the composite active site [61,74].

2.2. Composition of the Plant 265 Proteasome

The past decade of structural studies have shed rich insights into the dynamic func-
tion of substrate recognition, engagement, and degradation in a functional proteasome of
yeast [34,47,74-79], humans [36], and mammals [80]. Unfortunately, no structural informa-
tion has been available for a plant proteasome, although it has been clearly demonstrated
that the UPS plays a tremendous importance in plant evolution, growth, and develop-
ment [15,17,81-84]. The lack of such a critical study in understanding the kinetics and
structure of the major degradation machinery in plants is reminiscent of a continuing issue
of the weak attention on recognizing plant science as an important discipline for discoveries
in basic biology [85]. Nevertheless, the pioneering work conducted in the Vierstra lab has
uncovered multiple conserved and specific mechanisms of plant proteasomes, including
the first discovery of proteaphagy (see below).

Through early genomic studies, 23 genes encoding a complete list of 14 20S CP pro-
teasome subunits [86], 11 genes for RPT1-6 [87], and 6 genes for non-ATPase subunits
(RPN1, 2, 6, 8, 10, and 11) [88], were identified in Arabidopsis, primarily in the represen-
tative Columbia-0 accession. In addition to gene identification, genomic DNA analysis
by Southern blotting confirmed gene duplications for multiple CP and RP genes [86,87].
The biochemical function of some gene products, including three CP genes, PACI («x3),
PAE1(o5), and PBC2 (33) [86], and five RPT genes, RPT1 and 3-6, were confirmed by com-
plementation assay in yeast that lacked the expression of a corresponding orthologous gene.
However, the big picture about the Arabidopsis holo-proteasome complex was lacking
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by this assay, due to an incomplete genome sequence database and the unavailability of
comprehensive evolutionary studies.

Using an improved bioinformatic analysis pipeline, we were able to find genes de
novo for 30 out of all 34 proteasome subunits in seven flowering plants that include two
evolutionary distant genera, Oryza and Arabidopsis, each with three species, and the basal
flowering plant, Amborella trichopoda [89]. RPN11, 12, 13, and 15 were not studied because
the simplicity of their domain structures was not helpful for distinguishing them from mem-
bers of the elF3 and CSN complexes. Our genomic and evolutionary studies uncovered a
genus/species-specific feature of plant proteasomes. For example, no orthologues of RPN§
were identified in three Oryza species. Since the Oryza sativa Nipponbare reference genome
represents the second best-annotated plant genome [90], the failure in finding an RPN8
orthologue in the rice genome is not likely due to genome sequence errors. We also discov-
ered that most proteasome members from the two genera form an independent subclade
with strong statistical significance support, further suggesting the functional diversification
of plant proteasomes [89] (Figure 2). How this evolutionary divergence contributes to the
biochemical and functional specialization of proteasomes requires further investigation.

It was a breakthrough discovery in proteosome biochemistry studies to functionally
replace a proteosome subunit with a tagged recombinant version [91]. This replacement
not only allows for the affinity purification of proteome complexes in vivo for proteomics
studies, but also develops proteasomal reporters for monitoring intracellular dynamics
of proteasomes through live cell imaging. For example, the Vierstra lab has developed
three different Arabidopsis transgenic lines, in which the endogenous CP subunit PAG1
(«7) and two isoforms of the RP subunit RPT4 were replaced with FLAG-tagged fusions.
Using a C-terminal tagged PAG1-FLAG in conjugation with in-depth mass spectrometry
proteomic sequencing, the two duplicated isoforms of most 26S subunits were identified,
suggesting the presence of a heterogeneous population of 26S proteasome particles in
Arabidopsis [92]. This raised an intriguing question as to whether the plant proteasomes
are assembled in an isoform-specific manner. To address this question, the group cleverly
designed two N-terminal FLAG-tagged RPT4 isoforms to develop FALG-RPT4a rpt4a-1 and
FALG-RPT4b rpt4b-2 transgenic Arabidopsis plants. Utilizing these two transgenic plants
and a similar affinity purification-based mass spectrometry proteomics, the authors failed
to identify 265 proteasome isotypes that are specific to the RPT4 paralogues. This seems
to be contradictory to the case of mammalian proteasomes, in which different paralogues
of 31, 32, and P35 subunits were found in specialized proteasome isoforms with varied
proteolytic activities, such as immunoproteasomes and thymoproteasome [93,94]. Since
these specialized mammalian proteasomes are present in a tissue, organ, and physiology-
specific manner [93], the failure of discovering paralogue-specific 265 proteasome isotypes
in Arabidopsis seedlings does not mean that there is an absence of such types of protea-
somes in plants. Indeed, we recently discovered that the proteasomes in seedlings and
developing siliques possess different catalytic activities and sensitivities to the inhibition
of MG132, strongly indicating their presence in plants [95]. Nevertheless, such an affinity
for purification-based proteomic studies have discovered the complete set of Arabidopsis
proteasome subunits that are orthologous to the yeast and mammalian counter partners
as well as a rich group of proteasome-associated proteins, including proteasome assembly
chaperons, a PA200/BIm10 regulator that caps the CP, and a ubiquitin-binding shuttle
factor DSK2 [92,96].
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Figure 2. Phylogenetic relationship of 26S proteasome subunits among Arabidopsis, rice, yeast,
and humans. The sequences and sequence identifications of Arabidopsis and rice 26S proteasome
subunits were retrieved from Hua and Yu, 2019 [89], and those for yeast and human 26S proteasomes
were obtained from Luan et al. (2016) [37] and Dong et al. (2019) [36], respectively. The RP (A)
and CP (B) phylogenetic trees were separately generated using RAXML (Version 8.1) with the
PROTGAMMAJTT substitution model [97]. A significant clade is indicated with a bootstrap value
greater than 70% that was calculated based on 1000 replications. Independent clades are labeled and
shaded with yellow ((A): lid subunits; (B): & subunits) or cyan ((A): base subunits; (B): B subunits)
color. Scale bar: average substitutions per site. Ara: Arabidopsis; Osa: Oryza sativa; Hs: Homo sapiens;

Sc: Saccharomyces cerevisiae.
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2.3. Post-Assembly Regulation of Proteasomes

Due to the space limit, this review does not focus on the dynamic synthesis of a
26S proteasome complex. For this topic, the readers are referred to recent review ar-
ticles written by Marshall and Vierstra [98], Yedidi et al. [99], Enenkel [31], Mao [100],
Budenholzer et al. [101], and Kato and Satoh [102]. Given the large composition, it is en-
ergetically costive to assemble and maintain the equal stoichiometry of a minimum of
34 proteasome subunits in a holo-complex (Figures 1 and 2). The requirements of a high-
energy investment can inevitably result in errors in both assembling the complete complex
and maintaining the functionality of the holo-complex when unfavorable conditions oc-
cur. Such stress conditions include, but are not limited to, nutrient starvations, oxidative
damages, inhibitory effects, defective subunits resulting either from genetic mutations
or translational errors, and subunit misassembly [103]. In this section, we discuss how
post-assembled proteasomes with different biophysical states are regulated to meet the
requirements of cellular growth and development.

2.3.1. Proteasome Storage Granules (PSGs)

Through labelling a proteosome subunit with a fluorescent marker, such as a green
fluorescent protein (GFP), it is possible to monitor the dynamic localization of a proteasome.
For example, most yeast proteasomal subunits can be chromosomally replaced with a
GFP-tagged variant. Using this strategy, it was shown that ~80% of the 26S proteasomes
were nucleus-localized in actively dividing yeast and mammalian cells [31,104,105]. The
nuclear presence of the GFP-labeled proteasome maturation factor Ump1 suggests that
some particles represent 20S CP precursor complexes that are in the process of maturation
in the nucleus. Thus, the major proportion of both mature and immature proteasomes are
present in the nucleus.

Cells are growing under a dynamic shifting environment, which are in many cases
suboptimal or even unfavorable. These stress environmental signals can trigger different
responsive programs to reprogram intracellular metabolism. The proteasome activities
are unequivocally regulated by these signals. Upon carbon starvation, yeast cells enter
quiescence [106]. Along with a large fraction of metabolic proteins forming reversible
macroscopic foci in quiescent cells [107], nucleus-localized proteasomes were also dis-
covered to dissociate into CP and RP particles to be exported into the cytoplasm to form
so-called proteasome storage granules (PSGs) [108]. It was shown that both CP and RP
are required to form PSGs [109,110]. However, no holo-complexes are assembled due to
declined ATP levels [111]. Thus, PSGs are inactive. In yeast, CP is found to be associated
with Blm10, which may also prevent its reassembly with RP [112].

Through high-throughput microscopy on a collection of yeast null-mutants in combi-
nation with proteomic studies, the yeast PSGs were discovered to contain not only disas-
sembled CP and RP particles, but also a significant proportion of free ubiquitin molecules
that are essential for the nuclear export and sequestration of proteasomes into PSGs [113].
Because all components in the PSGs can revert their biological functions upon the onset
of cell proliferation or growth, the PSGs are considered as reservoirs for both proteasome
and ubiquitin, for cells to survive under an austerity budget of energy [113]. PSGs rep-
resent one type of protein droplets formed through a process now widely recognized as
liquid-liquid phase separation (LLPS) [114]. However, because LLPS often requires the
presence of intrinsically disordered protein—protein interaction domains that are rare in
proteasome subunits [115], the detailed mechanism in the formation of PSGs remain an
enigma [116]. It is also unclear whether plants utilize PSGs as a defensive mechanism to
overcome carbon starvation. Plant proteasomes seem to be equally localized in both the
nucleus and cytoplasm for actively growing seedlings [117,118]. Whether and how the CP
and RP subcomplexes in the nucleus and cytoplasm are dissembled simultaneously and
intermingled into the cytoplasmic PSGs remains largely unknown.
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2.3.2. Proteaphagy

Unlike carbon starvation, nitrogen starvation triggers the autophagy-mediated vac-
uolar and lysosomal degradation of proteasomes in plants/yeast and mammalian cells,
respectively [118-120]. It was also found in plants that the treatment of a tri-peptide alde-
hyde proteasome inhibitor, carbobenzoxy-Leu-Leu-leucinal (MG132), induced the degra-
dation of the holo-proteasome complex that requires the intact autophagic activity [118].
The discovery of nutrient starvation, genetic aberration, and chemical inhibition-induced
autophagic degradation of whole proteasomes in plants led to the term “proteaphagy”,
first coined by Marshall et al. [118]. Further studies from the group found that nitrogen
depletion-induced proteaphagy differed from that induced by MG132 inhibition. While
the authors speculated that nitrogen depletion-induced proteaphagy is regulated through
a general bulk autophagy pathway, they uncovered RPN10 as a new selective receptor
that specifically bridges the MG132-inhibited proteasomes into autophagosome through
interaction with both heavily ubiquitylated proteasomes and AuTophaGy (ATG)8 [118].
The discovery of proteaphagy provides new evidence showing the integration of the two
major protein degradation pathways in PQC [1].

However, many unaddressed questions remain. For example, the nitrogen depletion-
induced plant proteaphagy is independent on known autophagy cargo receptors, including
next to BRCA1 (NBR1) and RPN10, which is suggestive of a general autophagy process [118].
However, P62, a receptor binding both polyubiquitin chains and microtubule-associated
protein 1 light chain 3 (LC3; the mammalian ATGS8 orthologue) proteins, is required for
amino acid starvation-induced proteaphagy in mammalian cells [119]. Through both
pharmacological treatment and nitrogen starvation assays, proteaphagy in yeast was also
discovered to be selective and it required factors not involved in general autophagy [120].
Plant proteaphagy can be hijacked by bacteria for enhancing virulence through degrading
proteasomes. This type of proteaphagy was shown to be induced by a type III effector,
HopM]1, from bacterial cells, and was activated in a manner comparable to MG132 in-
hibition. However, whether RPN10 functions as a receptor is yet unclear. Interestingly,
NBRI1-dependent selective autophagy, albeit activated by bacterial infection, counteracts
disease progression. The authors suggested that NBR1 contributes to the turnover of
ubiquitylated substrates that were hyperaccumulated during bacterial infection [121]. Plant
proteaphagy can also be activated developmentally. Through monitoring the daily changes
of proteasome subunits, ubiquitylated proteins and autophagy activities in developing
siliques upon pollination for an 8-day developmental period, we recently discovered a
relay model of the two degradation pathways in regulating silique/seed development in
Arabidopsis. We uncovered that proteaphagy is activated when late heart embryos are
developed. Given the same developmental trend of silique proteaphagy in wild types and
the rpn10-1 mutant (expressing a truncated RPN10 unable to bind ubiquitylated substrates),
the silique proteaphagy is not likely to be selected by RPN10 either. Whether this is due to
a general bulk autophagy degradation or NBR1-dependent selective autophagy requires
further investigation [95].

The detailed upstream signaling of proteaphagy is not clear either. For example, why
do nitrogen depletion and carbon starvation result in different outcomes of proteasome
regulation, although both activate autophagy pathways through the master nutrient sensor
TORC1? The former induces proteasome degradation through proteaphagy [118,119,122],
while the latter prevents the elimination of proteasomes through PSGs [108]. Interestingly,
proteaphagy upon nitrogen starvation in yeast involves CP and RP dissociation, nuclear
export, and the independent vacuolar targeting of CP and RP subcomplexes. The inhibition
of proteaphagy leaves most RPs in the nucleus but discharges CPs into cytosol either as
free forms or to be localized into the granular structures within the cytosol [122]. Since
the formation of PSGs requires both CP and RP complexes [109,110], can these granular
structures be PSGs formed upon carbon starvation? It is yet unknown whether nitrogen
starvation, like amino acid starvation in mammalian cells, enhances the ubiquitylation of
proteasomes in yeast and plants. Affinity-purified proteasomes in seedlings treated with
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or without nitrogen starvation did not result in any significant changes of proteasome
ubiquitylation [118]. Does this difference result from sequence divergence of proteasome
subunits across different species and kingdoms?

2.3.3. Aggrephagy

Misfolded or malfunctioning proteins may coalesce into perinuclear and MTOC-
localized aggresomes through dynein-dependent retrograde transport on microtubes in
mammalian cells [7]. In addition, they have also been found in both yeast and mam-
malian cells to form two other MTOC-independent aggresome-like structures, a soluble
juxtanuclear quality control (JUNQ) compartment and an insoluble protein deposit (IPOD)
compartment [123]. Since misfolded proteins are cytotoxic, sequestering them into pro-
teinaceous compartments not only provides cytoprotective functions, but also accelerates
their clearance by activating UPS and/or autophagy-lysosome/vacuole degradation ma-
chineries [2,7,123]. Clearance of cytosolic aggregated by autophagy-lysosomal/vacuolar
degradation is generally termed as aggrephagy [2].

Impaired proteasomes by either MG132 reverse inhibition or partially genetic muta-
tions have been found in mammalian aggresomes and yeast IPOD droplets, respectively.
Both inclusions were targeted by autophagy-mediated lysosomal or vacuolar degrada-
tions [124,125]. The formation of proteasome-containing aggresomes and IPOD droplets
was verified by the requirements of HDAC6- and dynein-mediated transport and the colo-
calization with IPOD markers (Hsp104 and Rnql), respectively [124,125]. Although JUNQ
and IPOD were initially defined by the presence and absence of ubiquitylated proteins, re-
spectively [123], ubiquitylated proteasomes were found to be sequestered into IPODs when
the proteasome functions were completely blocked by genetic aberration in yeast [125].

Interestingly, the proteasome-containing aggresomes formed by reversible MG132
inhibition in mammalian cells are under both autophagy clearance and proteasome rever-
sion processes, suggesting that they are JUNQ-like fluidic foci, but not IPODs [124]. Given
that PSGs function as cytoplasmic storage foci for normal proteasomes that can be fully re-
verted when carbon starvation is removed [108], these MG132-induced proteasome fluidic
aggresomes may function as a temporary storage place for malfunctioning proteasomes
awaiting recovery (Figure 3). The requirement of proteasomal ubiquitylation by STUB1
in the aggresomal formation of inhibited proteasomes may play a similar role of the free
ubiquitin in PSGs, which are not only essential for the formation but also for keeping the
fluidity. Given the presence of DUB activities by RPN11 and other DUB enzymes associated
with proteasomes, a high concentration of free ubiquitin could be enriched in these foci.
However, prolonged or more severed stresses, such as proteasome inhibition by irreversible
inhibitors, epoxomicin and carfilzomib, or genetic aberrations, would completely block the
activity of the holo-complex, thus changing the fluidity of the aggresome for converting
into IPODs.

The presence of two fluidity statuses of mammalian proteasome-containing aggre-
somes, JUNQ and IPOD, implies that plant proteasome aggregates may have similar
versions. For example, early plant growth inhibition by MG132 can be rapidly recov-
ered upon being transferred to normal growth media. This may reflect the presence of
JUNQ:-like proteasome aggregates that are targeted by RPN10-medaited proteaphagy in
MG132-treated seedlings [118] (Figure 3). Up to now, we still do not know how plant
proteasome aggregates are formed. Clearly, RPN10 is not essential, since proteasome-
containing vacuolar aggregates were detected at least upon nitrogen starvation treatment
in the RPN10-1 mutant [118]. However, in mammalian cells, the autophagy receptor, p62, is
essential for both the formation of proteasome-containing aggresomes and the subsequent
autophagy-lysosomal degradation [119,124]. Other proteins, such as the scaffold protein
ALFY (autophagy-linked FYVE) and aggrephagy receptor NBR1, were discovered to be
present in the protein aggregates thought to have a similar function to p62 for assisting
aggregation and mediating autophagy degradation [2]. It is yet an unresolved question
why both NBR1 and RPN10, the two hitherto plant autophagy receptors identified, are not
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essential to the formation of proteasome aggregates [118,126]. In yeast, Hsp42 chaperone
proteins were found to be essential for the aggregation of genetically impaired proteasomes
into IPODs [125]. Whether Hsp42 or yet unknown chaperone proteins are required for
plant proteasome aggregates requires further investigation (Figure 3).
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Figure 3. A biophysical dynamic module of intracellular proteasomes with different functional activi-
ties and stabilities. In normal cellular growth conditions, the UPS and its substrates may develop
concentrated liquid droplets through LLPS for efficient proteolysis of ubiquitylation substrates [127].
Upon different stresses, the soluble proteasomes may either form PSG or JUNQ condensates, depend-
ing on whether the RP and CP subcomplexes are dissociated in yet unknown mechanisms [108,124].
The substances, including damaged proteasomes, in the highly fluidic JUNQ body are still under
active ubiquitylation reactions. Ubiquitylated proteasome subunits may be extracted out of the
JUNQ body for degradation by a functioning 26S proteasome, or directly targeted for autophagy-
lysosomal/vacuolar degradation in either piecemeal or wholesale versions via autophagy receptors,
e.g., p62 [128]. Continuing structure disruption by harsh or prolonged stresses may terminally
sequester proteasome aggregates into IPOD foci, which are mediated by Hsp4 and only recognized
by autophagy for selective degradation [125]. Proteasomes targeted by proteaphagy could be from
either JUNQ or IPOD aggregates.
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In addition to the presence of soluble and insoluble substances in cells, proteinaceous
and membraneless subcellular structures are now considered as a third biophysical state
of proteins assembled through LLPS. LLPS not only develops protein aggregates, but also
forms many functional subcellular structures, such as centrosome, the nucleolus, Cajal
bodies, and P-bodies [1]. Interestingly, p62 has been recently found to form proteolyt-
ically active nuclear condensates in mammalian cells that are generated through LLPS.
Within these condensates, ubiquitylated substrates, 26S proteasomes, three enzymes in-
volved in ubiquitylation, and DUBs are assembled along with p62 into a concentrated
droplet for the efficient proteolysis of nuclear proteins and unassembled proteasomal
subunits [127]. Therefore, active proteasome condensates, PSGs, JUNK-like proteasome
aggregates, and proteasome IPODs, may represent LLPS-regulated biophysical dynamicity
of proteasomes [114] (Figure 3).

3. Proteolytic Control of Autophagy Flux

Proteasome-containing condensates are enriched with ubiquitin and ubiquitin-chains
given that many of its subunits are ubiquitylation substrates [118,124,125,129]. Since
polyubiquitin chains can be recognized by autophagy receptors, such as p62, NBR1, and
RPN10, for proteaphagy degradation. This is evolutionarily harmful to normal cellular
growth, under which the UPS controls the most protein turnover events [10]. Therefore, the
activity of the autophagy is tightly controlled at multi-levels that include transcriptional,
post-transcriptional, and post-translational regulations [130]. Since this review focuses on
the reciprocal regulation between the UPS and autophagy-mediated degradations, we have
updated below the current research state regarding the proteolytic control of autophagy
flux by the UPS.

In general, autophagy is referred to as macroautophagy that involves the de novo for-
mation of double-membraned vesicles, i.e., autophagosomes, for delivering autophagy
cargo into lysosomes in mammalian cells or vacuoles in yeast and plant cells, where
the substances are degraded by the resident proteases [19]. Proteaphagy belongs to
this type. The formation of autophagosomes undergoes several steps of membrane
processing that can be sequentially divided into phagophore initiation, nucleation,
elongation, maturation, and fusion with the lysosome or vacuole [19,131] (Figure 4).
According to the biochemical functions, six entities involving about 20 ATG proteins
can be temporally and spatially separated: (1) ATG1-ATG13-protein kinase complex, (2)
ATGY-containing vesicles, (3) ATG9-ATG2-ATG18 transmembrane complex, (4) phos-
phatidylinositol 3-kinase (PI3K) complex composed of ATG6-ATG14-VPS15-VPS34, and
(5-6) two ubiquitin-like conjugation pathways involving one E1 (ATG7), two E2s (ATG3
and ATG10), one E3 (ATG5-ATG12-ATG16), and two ubiquitin-like proteins (ATG8 and
ATG12) [18,19]. Interestingly, many members involved in these entities have been dis-
covered as a ubiquitylation substrate for degradation in the 26S proteasome (Figure 4,
Table 1), further demonstrating a role of the ubiquitin signal in switching the stress
response [82].
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Figure 4. A schematic diagram showing the structural assembly of phagophore and UPS-mediated
stability control. Please refer to the text for the detailed process of phagophore initiation, nucleation,
and expansion. The UPS-mediated stability control of each component is also described in the text.

Table 1. List of ATG proteins identified as a UPS substrate.

E3 Ligase
Protein Biochemical Function Organism  Reference
Name Type
1. Members in phagophore initiation
ULK1 ATG1-ATG13 complex TRAF6 RING Human [132]
ULK1 ATG1-ATG13 complex Cul3-KLHL20 Cul3-BTB Human [133]
ULK1 ATG1-ATG13 complex NEDD4L HECT Human [134,135]
ATG13 ATG1-ATG13 complex SINAT1/2 RING Arabidopsis  [136,137]
ATG101 ATG1-ATG13 complex HUWE1 HECT Human [138]
AMBRA1 Cul5 suppressorTRAF6 activator ~ Cul4-DDB1-AMBRA1 Cul4-DDB1 Human [139]
ATG9 Phospholipid scramblase SCF-Met30 SCF Yeast [140]
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Table 1. Cont.

E3 Ligase
Protein Biochemical Function Organism Reference
Name Type
2. Members in phagophore nucleation and expansion
VPS34 PI3K SCF-FBXL20 SCF Human [141]
VPS34 PI3K Cul3-KLHL20 Cul3-BTB Human [133]
Beclinl/ATG6 PI3K RNF216 RING Human [142]
Beclinl/ATG6 PI3K Nedd4 HECT Human [143]
Beclinl/ATG6 PI3K Cul4-DDB1-AMBRA1 Cul4-DDB1 Human [144]
Beclinl/ATG6 PI3K TRAF6 RING Human [145]
Beclinl/ATG6 PI3K SINAT1/2 RING Arabidopsis [146]
ATG14L PI3K Cul3-ZBTB16 Cul3-BTB Human [147]
WIPI2/ATG18 PI3K Cul4-DDB1 Cul4-DDB1 Human [148]
3. Members in ATGS8/LC3 lipidation
ATG4B Protease RNF5 RING Human [149]
ATGI16L E3 Cul3-Gigaxonin Cul3-BTB Human [150]
ATG7 E1 — — Arabidopsis [95]

3.1. Members in Phagophore Initiation
3.1.1. ATG1-ATG13 Kinase Complex

The ATG1-ATG13 kinase complex is the first upstream factor that senses nutritional
cues and recruits downstream ATG proteins, such as ATGY, to initiate autophagy [18,19,151].
The plant ATG1-ATG13 complex is formed by ATG1, ATG11, ATG13, and ATG101 [152,153].
The ATG1 orthologue in mammals is termed ULK1 (Unc51-Like Kinasel). The ULK1-
ATG13 complex comprises ULK1, ATG13, FIP200 (focal adhesion kinase family interacting
protein of 200 kDa), and ATG101 [154-156]. Under nutrient-rich conditions, the ATG1-
ATG13 complex is dissembled due to ATG13 phosphorylation by target of rapamycin
(TOR), a master negative nutrient sensor [157,158]. However, TOR is deactivated by
starvation or rapamycin inhibition [159]. TOR inhibition dephosphorylates ATG13, thus
promoting and stabilizing the assembly of the ATG1-ATG13 complex, which in turn initiates
autophagy [158]. In addition to phosphorylation regulation by TOR, the function of the
ATG1-ATG13 kinase complex in both plants and mammals has been discovered under the
control of UPS-mediated degradation.

In mammals, at least two components of the ULK1-ATG13 complex have been identi-
fied as ubiquitylation substrates. Two ubiquitin-E3 ligases, a mono-subunit RING E3 Tumor
necrosis factor Receptor-Associated Factor (TRAF) 6 and a Cul3-BTB E3 Cul3KLHL20) target
ULKT1 for K63 and K48 polyubiquitylation, respectively [132,133]. The former ubiquitylation
stabilizes ULK1 and is promoted by AMBRA1 (Autophagy and Beclinl Regulator 1) [132].
AMBRAL1 is a WD40-repeat domain-containing proteins with broader binding partners,
including Cul4 and Cul5 E3 ligases. Association with Cul4 promotes the autoubiquitylation-
mediated degradation of itself. Upon the initiation of autophagy, the activity of ULK1
activates the dissociation of AMBRA1 from a Cul4 E3 ligase complex [139]. Free AMBRA1
is either recruited by TRAF6 to function as a cofactor for enhancing TRAF6-mediated K63
ubiquitylation of ULK1 [144], or inhibits a Cul5 E3 to stabilize the mTOR inhibitor DEP-
TOR [139]. This positive feedback mediated by AMBRA1 enhances autophagy induction.

However, prolonged autophagy activity would lead to unrestrained cellular degra-
dation, including proteaphagy, resulting in detrimental effects on cell survival [160,161].
ULKI1 turnover is activated by Cul3XHL20-mediated K48 ubiquitylation upon the extension
of the starvation period, which provides a negative feedback loop to control the autophagy
activity [133]. ULK1 is also targeted for degradation by a third ubiquitin E3 ligase (HECT
type), NEDDAL (neural precursor cell-expressed developmentally down-regulated 4-like),
for fine-tuning oscillatory activation of autophagy during prolonged stress [134,135]. Like
the turnover of ULK1 in controlling the activity of the ULK1-ATG13, the stability of ATG101
is also controlled by a UPS pathway. A HECT E3 ligase, termed the HECT, UBA, and WWE
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domain containing E3 ubiquitin protein ligase (HUWE)1, was found to target ATG101 for
ubiquitylation and degradation in cancer cells for suppressing autophagy [138].

In plants, two mono-subunit RING E3 ligases, SEVEN IN ABSENTIA of Arabidopsis
thaliana (SINAT1,2), have been discovered to target the ubiquitylation and degradation of
ATG13 under nutrient-rich conditions [136]. Upon the degradation of ATG13, the ATG1-
ATG13 complex is destabilized, thus terminating autophagy. On the contrary, SINAT6, a
RING-truncated SINAT paralog with no ubiquitin E3 ligase activity, stabilizes the ATG1-
ATG13 complex by competing SINAT1/2 for binding with ATG13 through the TRAF
domain [136]. Further studies of the same group showed that two additional ATG13-
interacting proteins, 14-3-3A and 14-3-3k, are involved in the turnover of ATG13 [137].
Under nutrient-rich conditions, phosphorylation of ATG13 by TOR facilitates its association
with 14-3-3 proteins, which promotes the recruitment of SINAT1/2 for ubiquitination
and degradation [137] (Figure 4). However, starvation-induced deactivation of TOR ki-
nase dephosphorylates and stabilizes ATG13 by blocking its interactions with 14-3-3 and
SINAT1/2. Interestingly, two TRAF-domain containing homologous proteins, TRAFla and
b (also known as MUSE14 and MUSEL13, respectively), interact with ATG13 and SINAT6
to form a stable TRAF1-SINAT6-ATG13 complex that is promoted by ATG1-mediated
phosphorylation [137]. This positive feedback loop accelerates the initiation of autophagy
upon nutrient depletion.

3.1.2. ATG9-Containing Vesicles

ATG9 is the only membrane protein among the ATG proteins. It has six transmem-
brane domains with its N- and C-terminal ends that are both present in the cytosol [162].
ATGY-containing vesicles provide the source of membranes in initiating and/or growing
phagophore through trafficking between a phagophore assembly site (PAS) and peripheral
organelle sites, such as the Golgi apparatus, endosomes, and mitochondria [162-165]. In
yeast, the interaction between the scaffolding protein ATG17 (FIP200) and ATG9 tethers
ATG9 vesicles where it acts as a central hub for gathering multiple ATG proteins, such
as the PI3K complex for forming the PAS [166]. This interaction is inhibited by the two
regulatory subunits ATG31 and ATG29 but is activated by the ATG1-ATG13 subcomplex.
Although ATG13 does not interact with the conserved region of ATGY, its interaction with
ATG17 opens the ATG9-binding site on ATG17 [166]. In mammals, starvation-induced
ATGOYA vesicles deliver the phosphatidylinositol-4-phosphate (PI4P) kinase, PI4KIIIf3, to
an autophagosome initiation site on ER for promoting local PI4P production. PI4KIII{3
and PI4P were proposed to recruit the ULK1-ATG13 complex into the autophagosome
initiation site [167]. In plants, the autophagosome initiation site was reported to emerge
on ER driven by ATG9 vesicles [168]. However, the detailed mechanism underlying plant
autophagosome initiation is still missing [169]. A recent study on Arabidopsis showed that
PI4P produced by a plasma membrane-localized PI4K«1 is involved in the assembly and
the elongation of the phagophore. Lacking PI4P suppresses ATG8 lipidation, but not the
assembly of early phagophore initiation complexes [170].

Consistent with the role in initiating autophagy, a UPS-mediated degradation of ATG9
by SCFMet30 in yeast significantly attenuates the autophagy activity [140]. Interestingly,
the recognition of ATGY by the F-box protein, Met30, explicitly occurs at the peripheral
sites rather than at the PAS, probably blocked by other ATG9-interacting partners, such as
ATG17 [166]. The ubiquitylation and degradation of ATG9 is only activated under nutrient-
rich conditions and is profoundly limited during nitrogen starvation. Therefore, SCFMet30-
mediated ATG9 ubiquitylation and degradation serves as a switch of autophagy [140].

3.2. Members in Phagophore Nucleation and Expansion
3.2.1. PI3K Complex

The PI3K complex is composed of four members, a class III phosphatidylinositol-3-
kinase (PI3K) vacuolar protein sorting 34 (VPS34), ATG6/VPS30/Beclinl, ATG14/VPS38,
and VPS15 [18,19]. In mammals, its activity is regulated by ULK1 through multiple path-
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ways from recruitment to activation. Activation of VPS34 allows the local production
of phosphatidylinositol 3-phosphate (PI3P), which is necessary for nucleation and ex-
pansion of autophagosome membranes by recruiting multiple downstream autophagy
components [171,172].

Among this complex, VPS34 and ATG14 are targeted by SCFFBXL20 and Cul3#BTB16
for ubiquitylation and degradation in response to DNA damage and G protein-coupled
receptor signaling, respectively [141,147]. VPS34 was also discovered to be ubiquitylated
by Cul3KMH20 i Hel a cells [133]. In addition, two E3 ligases, including one HECT Nedd4
and one mono-subunit RING RNF216, recognize Beclinl for K11 and K48 ubiquitylation and
subsequent degradation [142,143]. Interestingly, Cul4-DDB1-AMBRA1 and TRAF6 E3 ligases
target Beclinl for K63-ubiquitylaiton, preventing its degradation in proteasome [144,145].

It is not uncommon that one ubiquitin E3 ligase can target multiple substrates. Like
TRAF6 and Cul3XEH20 the two E3 ligases, SINAT1 and SINAT?2, were found to target
not only ATG13 but also the plant Beclin 1 orthologue, ATG6, for ubiquitylation and
degradation [136,137,146]. It is yet unknown how and whether these E3 ligases ubiquitylate
different ATG proteins locally in phagophore or separately in free cytosolic forms before
they are recruited into each complex. Both cases could be possible, because SCFMet30 g
found to target ATG9 ubiquitylation at the peripheral sites while Cul3¥M20 seems to work
locally in the phagophore site [133,140]. If the latter case happens, it would be intriguing
to further investigate whether other members in each complex could also be targeted for
ubiquitylation and/or degradation by TRAF6 and SINAT1/2 in mammals and plants,
respectively. For example, Cul3XMH20 not only directs ULK1 and VPS34, but also directs
members in each complex, including ATG13, Beclinl, and ATG14, for ubiquitylation and
degradation [133]. Nedd4 was also co-immunoprecipitated with VPS34 by Myc-tagged
Beclinl proteins in HeLa cells [143]. However, Nedd4 has no effect on the stability of VPS34,
suggesting a functional specificity of different E3 ligases. However, how this specificity
is regulated remains elusive. Furthermore, how the K11 and K48 ubiquitylated proteins
are released from the phagophore and delivered into the proteasome for degradation is
also unknown.

3.2.2. ATGY9-ATG2-ATG18 Complex

The ATG9-ATG2-ATG18 complex is not only important for establishing the
phagophore-ER contact site, but also for phagophore expansion through Atg2-Atgl18-
mediated lipid transfer [173,174]. In mammals, the WIPI2/ATG18B family positively
regulates LC3 lipidation [175].

A Cul4PPBl E3 ligase has been found to target WIPI2 (mammal version of ATG18) for
ubiquitylation and degradation via its DDB1 (damage-specific DNA binding protein 1) sub-
strate receptor upon mitosis induction. Consequently, the autophagy is suppressed [148].

3.3. Members in ATG8/LC3 Lipidation

Two ubiquitylation-like pathways are present in yeast, mammals, and plants, designed
for the lipidation of the ubiquitin-like protein, LC3 (mammals) or ATGS (yeast and plants),
onto the phosphatidylethanolamine (PE) of the phagophore. In addition to cargo selection
through interacting with autophagy receptors [176], the conjugation of LC3/ATGS is
essential for the expansion, closure, and delivery of autophagosomes [177,178]. At the
beginning of these two pathways, the ATG8 precursor needs to be proteolytically processed
by the protease ATG4 for exposing its C-terminal end glycine [179]. Both processed
ATGS8s and another ubiquitin-like protein, ATG12, are activated through their C-terminal
end glycine residue by the ATP-dependent El-like ATG7 enzyme. Activated ATGS is
then conjugated with an E2-like ATG3 to make a heteromeric ATG8-ATG3 intermediated
conjugate, while ATG12 is covalently linked onto ATG5 by another E2-like protein, ATG10.
Two copies of ATG5-ATG12 conjugate and ATG16 bind together to form a hexameric ligase
for targeting ATGS8 from its ATG8-ATG3 intermediated conjugate onto PE via an ether
linkage (Figure 4).
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Up to now, ATG4, ATG7, and ATG16 have been found as a ubiquitylation substrate
subject to proteasomal degradation. A membrane-associated mono-subunit RING E3
ligase, RNF5, involved in ER-associated protein degradation (ERAD), was discovered in
Caenorhabditis elegans and mice. Given the link between autophagy and ER stress, it has been
proposed that some of the ubiquitin ligases responsible for the ER stress response could
also affect distinct phases of the autophagy process. Interestingly, RNF5 was discovered to
target the major mammalian ATG4 isoform, ATG4B, for ubiquitylation and degradation
in mice [149]. This process is primarily limited to the membrane domains since RNF5 is
membrane-associated. However, the RNF5-mediatied control of ATG4B and the subse-
quent LC3 processing significantly suppresses the basal level of autophagy under normal
growth conditions [149]. On the contrary, a UPS-mediated stability control of ATG16 is
essential for LC3 lipidation [150]. Deletion of an ATG16-binding BTB protein, Gigaxonin,
induces ATG16L1 aggregation, due to its stabilization, and impairs LC3 lipidation, which
results in an altered lysosomal fusion and the elimination of p62 degradation [150]. This is
consistent with a previous discovery showing that the overexpression of ATG16L inhibits
autophagosome formation. An over-accumulation of ATGL16 probably depletes the hypo-
thetical ATG16L-binding factor that is required for membrane localization of the ATG16L
complex, rather than affects the stoichiometry of the hexameric ATG5-ATG12-ATG16 E3
ligase [180]. In addition to ATG4 and ATG16 that are found to be ubiquitylated in mam-
mals, we recently discovered that ATG?7 is subject to ubiquitylation-mediated proteasomal
degradation, although the identification of its ubiquitin E3 ligase(s) is still awaiting [95].

4. Conclusions

With the advance in genomics sequencing technology, it is not a bottleneck any longer
to identify the most, if not all, of the protein-coding genes of an organism. However,
due to complicated gene expression regulation, various types of post-translational mod-
ifications, complex and dynamic interaction networks, and other levels of yet unknown
mechanisms, the plasticity of cellular and organismal growth and its development is far
more complicated than what we have known. The recently discovered interplay between
the two major protein degradation systems, the UPS and the autophagy, may provide an
excellent platform to systematically explore how the intracellular proteome is dynamically
balanced through various degradation-mediated checkpoint processes. The emerging new
biophysical state of proteasomes and the UPS in reaction to condensate droplets provides
an intriguing new direction for further understanding of the molecular and biochemical
mechanisms underlying the biological function of the UPS and the dynamics of the pro-
teasome. Given its size and abundance, the 26S proteasomes may dynamically shift in
its different forms of liquid droplets via LLPS. In the future, it is worth investigating the
role of ubiquitin, different types of ubiquitin chains, and numerous proteasome-associated
proteins, including chaperons, in this shift. It was discovered that Cdc48/p97, a highly
conserved AAA+ ATPase, collaborates with the proteasome by extracting ubiquitylated
proteins from macromolecular complexes and membranes with its unfoldase activity [181].
This activity may be active in the proteasomal degradation of proteasome subunits in
JUNQ bodies. Thus, the interplay between the UPS and autophagy may also involve
Cdc48. There are many unknown regulatory mechanisms present in these two protein
degradation systems. One big challenge ahead would be the molecular and biochemical
characterization of the large group of ubiquitin E3 ligases, particularly in flowering plants,
whose UPS has been dramatically expanded [182,183]. However, with new imagining
tools, advances in structural biology, in-depth proteomics, and high-throughput functional
genomics studies, more exciting discoveries will be uncovered to shed light on how the life
process is maintained via protein death [184].
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TORC1 Target Of Rapamycin Complex 1
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