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Abstract
We investigate the parabolic Boundary Harnack Principle by the analytical methods 
developed in De Silva and Savin (J Differ Equ 3(15):2419–2429, 2020; J Math Eng 
(in press)). Besides the classical case, we deal with less regular space-time domains, 
including slit domains.

Keywords  Parabolic equations · Harnack inequality · Comparison principle · 
Regularity · Hölder domains · Slit domains

1  Introduction

1.1 � Statement of Main Results

In this paper, we provide direct analytical proofs of the parabolic Boundary Harnack 
Inequality for both divergence and non-divergence type operators, in several differ-
ent settings. Our strategy is based on our earlier works [8, 9] where the elliptic coun-
terparts of these results were obtained. In order to state our theorems precisely, we 
introduce some notation.

We denote by Γ ⊂ ℝ
n+1 the graph of a continuous function g(x�, t) in the xn 

direction,

while Cr denotes the cylinder of size r on top of Γ (in the en direction) i.e.,

Γ∶={xn = g(x�, t)}, (0, 0) ∈ Γ,
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As usual, x� = (x1,… , xn−1) , while B�
r
⊂ ℝ

n−1 is the ball of radius r centered at the 
origin.

We consider solutions u(x, t) to the parabolic equation

where Lu = tr(A(x)D2u) or L(u) = div(A(x)∇u) , with A satisfying,

First, we recall the standard boundary Harnack inequalities for parabolic equations 
in Lipschitz domains (Fig. 1). References to known literature will be provided in the 
next subsection. Here g ∈ C

�,�

x�,t
 if

and E , E are points interior to C1 at times t = 1∕2 and t = −1∕2 , respectively,

Theorem 1.1  (C1,
1

2 domains) Assume that g ∈ C
1,

1

2

x�,t
 and u,  v are two positive solu-

tions to

with u vanishing continuously on Γ . Then

with C depending only on n, ‖g‖C1,1∕2 , �, and Λ.

In this note, we provide new versions of Theorem 1.1 in more general Hölder 
domains.

Cr∶={(x
�, xn, t)|x� ∈ B�

r
, t ∈ (−r2, r2), g(x�, t) < xn < g(x�, t) + r}.

ut = Lu in C1,

𝜆I ≤ A ≤ ΛI, 0 < 𝜆 ≤ Λ < +∞.

|g(x�, t) − g(y�, s)| ≤ C(|x� − y�|� + |t − s|�),

E =
((

g
(
0,

1

2

)
+

1

2

)
en,

1

2

)
, E =

((
g
(
0,−

1

2

)
+

1

2

)
en,−

1

2

)
.

ut = Lu, vt = Lv in C1,

(1.1)u

v
(x) ≤ C

u(E)

v(E)
for allx ∈ C1∕2,

Fig. 1   Theorem 1.1
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Theorem 1.2  (C
1

2
+,

1

3
+ domains) Theorem 1.1 holds if g ∈ C

�,�

x�,t
 with 𝛼 > 1∕2 , 𝛽 > 1∕3.

In the case of the heat operator, we may lower further the space regularity of g 
to any exponent 𝛼 > 0 provided that we have a 1/2 Hölder modulus of continuity 
in time (from one-side).

Theorem  1.3  (C�,
1

2 domains) Theorem  1.1 holds for the heat equation if g ∈ C
�,

1

2

x�,t
 

with 𝛼 > 0.

We remark that the only property of the heat equation needed in the proof of 
Theorem 1.3 is the translation invariance with respect to the xn, t variables. Hence, 
the theorem holds also for operators L with coefficients depending only on the x′ 
variable.

Next we state a result in slit domains, that is the case when the equations are sat-
isfied in the complement of a thin set S ⊂ ℝ

n+1 included in a lower dimensional sub-
space. This case is relevant, for example, in the time-dependent Signorini problem.

Precisely, we assume that S is a closed set and

and in this case

With these notation, we state our theorem.

Theorem 1.4  (Thin Parabolic Boundary Harnack) If u, v are two positive solutions 
even in the xn variable,

and u vanishes on S, then (1.1) holds.

The assumption that u, v are even in the xn variable can be removed provided that 
C1 ⧵ S contains a ball of radius � centered on {xn = 0} , and the constant C in esti-
mate (1.1) depends on �.

We remark that in Theorems 1.2–1.4 whenever the boundary of the domain con-
tains non-regular points for the Dirichlet problem, the statement that u vanishes on it 
is interpreted in the sense that u is the limit of a sequence of continuous subsolutions 
which vanish on it.

1.2 � Known Literature

For the last 50 years, the boundary Harnack principle has played an essential role in 
analysis and PDEs in a variety of contexts. The available literature on this topic is 

S ⊂ {xn = 0},

Cr = Br × (−r2, r2), E = (1∕2en, 1∕2), E = (1∕2en,−1∕2).

ut = Lu vt = Lv, in C1 ⧵ S,
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very rich and we collect here only the crucial results, making no attempt to discuss 
the countless important applications of this fundamental tool.

1.2.1 � Elliptic Case

In the elliptic context, the classical Boundary Harnack Principle, that is the case 
when g is Lipschitz continuous, states the following. Here the notation is the same 
as above, with u, v, g independent on t.

Theorem 1.5  Let u, v > 0 satisfy Lu = Lv = 0 in C1 and vanish continuously on Γ . 
Assume u, v are normalized so that u

(
en∕2

)
= v(en∕2) = 1, then

with C depending on n, �,Λ, and the norm of g.

The case when L = Δ first appears in [1, 7, 18, 26]. Operators in divergence form 
were then considered in [6], while the case of operator in non-divergence form was 
treated in [10]. The same result for operators in divergence form was extended also 
to the so-called NTA domains in [17]. The case of Hölder domains and L in diver-
gence form was addressed with probabilistic techniques in [2, 3], and an analytic 
proof was then provided in [13]. For Hölder domains and operators L in non-diver-
gence form, it is necessary that the domain is C0,� with 𝛼 > 1∕2 or that it satisfies a 
uniform density property, and this was first established again using a probabilistic 
approach [5].

In [8, 9], we presented a unified analytic proof the Boundary Harnack Principle 
that does not make use of the Green’s function and which holds for both operators 
in non-divergence and in divergence form. The idea is to find an “almost positiv-
ity property” of a solution, which can be iterated from scale 1 to all smaller scales 
(some similar ideas were also used in [20, 23] to treat non-divergence equations 
with unbounded drift). This strategy successfully applies to other similar situations 
like that of Hölder domains, NTA domains, and to the case of slit domains, provid-
ing a unified approach to a large class of results.

1.2.2 � Parabolic Case

For parabolic equations, the situation is more complicated, essentially due to the 
evolution nature of the latter which is reflected in a time-lag in the Harnack Prin-
ciple. For operators in divergence form, the parabolic boundary Harnack principle 
in Theorem 1.1 is due to [11, 19, 24]. In the case of operators in non-divergence 
form in cylinders with C2 cross sections, Theorem  1.1 was settled in [15], where 
the author also derived a Carleson estimate (see Lemma 2.6) in Lipschitz domains. 
The statement of Theorem 1.1 in Lipschitz domain was later obtained in [12], which 
is (to the authors knowledge) the first instance in which a boundary Harnack type 
result in Lipschitz domains is obtained without the aid of Green’s functions (and 
it is probably the inspiration for the later works in the elliptic context [20, 23]). In 

(1.2)C−1 ≤ u

v
≤ C, in C1∕2,
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[16], Theorem 1.1 was also shown to hold for unbounded parabolically Reifenberg 
flat domains. In the context of time-independent Hölder domains, a result in the 
spirit of Theorem  1.2 was obtained via probabilistic techniques in [4]. The result 
in Theorem 1.3 is completely novel. Concerning slit domains, in the case when S 
is the subgraph of a parabolic Lipschitz graph, the thin-version Theorem  1.4 was 
established by [22]. Again, our strategy provides a unified approach for a variety of 
contexts.

1.3 � Organization of the Paper

The paper is organized as follows. In Sect. 2, after recalling some standard results, 
we provide the proof of Theorems 1.1 and 1.4. The key “almost positivity” prop-
erty to be iterated from scale 1 to all smaller scales is obtained in Lemma 2.5. The 
following section deals with Hölder domains and the proof of Theorem 1.2, which 
relies on the same strategy as Theorem 1.1, though the proof of the Carleson esti-
mate in the Hölder setting requires a more involved argument similar to the one 
in the proof of Lemma 2.5. Section 4 contains the proof of Theorem 1.3, which is 
based on refined versions of the weak Harnack inequality (see Lemmas 4.2–4.4).

2 � Proof of Theorems 1.1 and 1.4

In this section, we provide the proof of the classical result Theorem  1.1 and the 
novel result Theorem 1.4. We start by collecting standard known Harnack type ine-
qualities. In the divergence setting, these results are due to [21], while in the non-
divergence setting they follow from [25].

2.1 � Weak Harnack Inequality

Denote by

the parabolic cubes of size r. The parabolic boundary of Qr is denoted by �pQr and 
is given by

Similarly,

Qr∶=(−r, r)
n × (−r2, 0], Qr(x0, t0)∶=(x0, t0) + Qr,

�pQr∶=(�(−r, r)
n × (−r2, 0)) ∪ ((−r, r)n × {−r2}).

Q�
r
∶=(−r, r)n−1 × (−r2, 0], Q�

r
(x�

0
, t0)∶=(x

�
0
, t0) + Q�

r
.
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Our main tools in establishing the boundary Harnack inequalities are the standard 
weak Harnack estimates. We recall the parabolic versions which as mentioned in the 
introduction differ from the elliptic counterparts due to the time-lag.

Theorem 2.1  (Supersolution) If

then

for some p > 0 small, C large universal (i.e., dependent on n, �,Λ).

Theorem 2.2  (Subsolution) If

then

for any p > 0.

The classical (backward) Harnack inequality then reads as follows.

Theorem 2.3  (Harnack inequality) If

then for c small universal (dependent on n, �,Λ),

Another useful version for the subsolution property is the following measure 
to pointwise estimate.

Theorem 2.4  (Subsolution) If

and for some 𝛿 > 0,

Then

ut ≥ Lu and u ≥ 0 in Q1, u(0, 0) = 1,

�Q 1
2

(0,−
1

2
)

up dxdt ≤ C,

ut ≤ Lu and u ≥ 0 in Q1,

u(0, 0) ≤ C(p)‖u‖Lp(Q1)
,

ut = Lu and u ≥ 0 in Q1,

min
Q1∕2

u ≥ c max
Q1∕2(0,−

1

2
)

u.

ut ≤ Lu and 1 ≥ u ≥ 0 in Q2,

|{u = 0} ∩ Q1(0,−1)| ≥ �.

u ≤ 1 − c(�) in Q1.
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With these tools at hand, we are ready to provide in the following subsection 
our proof of the classical result in Theorem 1.1.

2.2 � Proof of Theorem 1.1

In what follows, constants depending on n, �,Λ , and the norm of g, are called 
universal.

We denote by

the backward-in-time cylinder of size r on top (in the en direction) of the graph Γ of 
g. Also we set,

that is the collection of points in the cylinder C−
r
 at height greater or equal than �r on 

top of Γ , for some 𝛿 > 0 small, to be made precise later (Fig. 2).
The key tool for establishing the boundary Harnack estimates is the follow-

ing iterative lemma. Later, we will apply this lemma for the difference w = v − cu 
for some sufficiently small constant c, in order to obtain the desired claim in 
Theorem 1.1.

Lemma 2.5  There exist universal constants M, 𝛿 > 0 , such that if w is a solution to

(possibly changing sign) with w− vanishing continuously on Γ,

and

then,

and

C
−
r
∶={(x�, xn, t)| x� ∈ (−r, r)n−1, t ∈ (−r2, 0], g(x�, t) < xn < g(x�, t) + r},

Ar∶=
{
(x, t) ∈ C

−
r
| g(x�, t) + 𝛿r ≤ xn < g(x�, t) + r

}
,

wt = Lw in C
−
r
,

(2.1)w ≥ M in Ar,

w ≥ −1 in C
−
r
,

(2.2)w ≥ M a in A r

2

,

Fig. 2   The sets C−
r
 and A

r
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for some small a > 0.

The conclusion can be iterated indefinitely and we obtain that if the hypotheses 
are satisfied in C−

r
 then

Proof  We start by observing that any point (x0, t0) ∈ Ar∕2 can be connected through 
a chain of backwards-in-time adjacent parabolic cubes of size r̄∶=c1𝛿r centered at

to a last cube Qr̄(xm, tm) ⊂ Ar (see Fig. 3). Here c1 is small depending on the C1,1∕2

x�,t
 

norm of g so that

and the number m of cubes depends only on c1 . By Harnack inequality (Theo-
rem 2.3) applied to w + 1 ≥ 0 , using assumption (2.1), we get

provided that we choose M large depending on c1 (and independent of � ). Hence 
(2.2) holds with a = 1∕M.

To establish (2.3) with this choice of M, a, we first extend w− = 0 in

so that w− is a global subsolution in Q�
r
×ℝ thanks to assumption (2.1).Then, for 

each cube Q2�r(x, t) satisfying Q�
2𝛿r

(x�, t) ⊂ Q�
r
, we have

This is a consequence of the graph property of Γ . Indeed, for each fixed (x�, t) , we 
consider the 1D line in the en direction. Any segment of length 2�r on this line has at 
least half of its length either in Ar or in the complement of C−

r
.

(2.3)w ≥ −a in C
−
r

2

,

(2.4)w > 0 on the line segment{(sen, 0), 0 < s < r}.

(xj, tj)∶=(x0 + jr̄en, t0 − jr̄2),

Q2r̄(xj, tj) ⊂ C
−
r
,

(w + 1)(x0, t0) ≥ cm(M + 1) ⟹ w ≥ 1 in Ar∕2,

Q�
r
× ({xn < g(x�, t)} ∪ {xn > g(x�, t) + 𝛿r}),

|{w− = 0} ∩ Q2�r(x, t)| ≥ 1

2
|Q2�r(x, t)|.

Fig. 3   Proof of Lemma 2.5
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By weak Harnack inequality, Theorem 2.4, as we remove the collection of cubes 
Q2�r(x, t) which are tangent to the parabolic boundary of Q�

r
×ℝ , the norm ‖w−‖L∞ 

decays by a factor 1 − c , c > 0 universal. Iterating this for ∼ 1∕� times we find that

We choose � small, so that w− ≤ a = M−1 and (2.3) holds. 	�  ◻

A second ingredient in the proof of Theorem 1.1 is the following Carleson esti-
mate which provides a bound for u in the cylinder C2∕3.

Lemma 2.6  (Carleson estimate) Let u, Ē be as in Theorem 1.1, then

with C > 0 universal.

Proof  The Carleson estimate can be established by similar arguments as in the 
Lemma 2.5 above. We will use this approach in the case of Hölder domains in the 
next section. However, for C

1,
1

2

x′,t
 domains, the Carleson estimate is a direct conse-

quence of the weak Harnack inequality.
Indeed, assume that u(E) = 1 . Any point (x0, t0) ∈ C12∕17 can be connected to E by 

a chain of forward-in-time adjacent cubes Qrj
(xj, tj) included in C1 , with rj propor-

tional to the parabolic distance dj from (xj, tj) to Γ . The number of cubes in this chain 
is proportional to | log d0| . By Harnack inequality,

This means that ‖u‖Lp ≤ C in C12∕17 for some small p > 0 universal. The extension 
of u by 0 in Ωr∶=((−r, r)

n−1 × (−r2, r2)) × {xn ≤ g(x�, t)} is a subsolution, and now 
we can apply weak Harnack inequality Theorem 2.2 in cubes Qc0

(x, t) ⊂ C12∕17 ∪ Ωr 
for (x, t) ∈ C2∕3 and c0 small universal, to obtain the desired conclusion. 	� ◻

We are now ready to combine the previous two lemmas and obtain the desired 
Theorem 1.1.

Proof of Theorem 1.1  We assume that u(Ē) = v(E) = 1 and define w = C1v − c1u . By 
Harnack inequality applied to v and the Carleson estimate for u, we can choose the 
constants C1 large, c1 small (depending on � , M) such that w satisfies

Then we can apply Lemma 2.5 in cylinders C−
1∕6

 around any point on Γ ∩ C1∕2 , and 
conclude from (2.4) that w > 0 in C1∕2 . 	�  ◻

w− ≤ (1 − c)1∕𝛿 in C
−
r∕2

⊂ Q�
r∕2

×ℝ.

‖u‖L∞(C2∕3)
≤ C u(E),

u(x0, t0) ≤ eC| log d0|u(E) ≤ d−C
�

0
.

w ≥ −1 in C2∕3, and w(x, t) ≥ M if xn ≥ g(x�, t) + �∕4.
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2.3 � Proof of Theorem 1.4

The proof is identical to the one of Theorem 1.1 after the appropriate modifications in 
the definitions of C−

r
 and Ar . Precisely,

Lemma  2.5 applies for the difference w = v − cu . The hypotheses that u and 
w− = (cu − v)+ vanish on S are understood in the sense that each of them is obtained 
in C−

1
 as a pointwise limit of an increasing sequence of continuous subsolutions in Q1 

which vanish on S. Notice that if un is such a sequence for u, then (c un − v)+ is a cor-
responding sequence for w− , (since v ≥ 0 in C−

1
 ). Thus, the extensions of u and w− by 

0 on S are subsolutions in Q1 , and Lemmas 2.5 and 2.6 hold as above. 	�  ◻

3 � Hölder Domains and the Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by extending the arguments of the previous 
section to Hölder domains. We assume that for some 𝛼 >

1

2
,

for some constant K. Below, constants depending possibly on n, �,Λ, � and K are 
called universal.

We define

and notice that here we took the time interval of C−
r
 of size r instead of the natural 

parabolic scaling r2 that we used in the previous section. This change is due to the 
fact that the norm of g is no longer left invariant by the parabolic scaling. We also 
define

the points in the cylinder C−
r
 at height greater or equal than r� on top of Γ , for some 

𝛽 > 1 to be made precise later.

Lemma 3.1  Suppose (3.1) holds for C−
r
 and let w be a solution to

for which w− vanishes on Γ . There exist universal constants C0, 𝛽 > 0 such that if

and

C
−
r
∶=Qr ⧵ S, Ar∶=Qr ∩ {|xn| ≥ �r}.

(3.1)[g]
C
�,

�
1+�

x� ,t

≤ K,

C
−
r
∶={(x�, xn, t)| x ∈ (−r, r)n, t ∈ (−r, 0], g(x�, t) < xn < g(x�, t) + r},

Ar∶=
{
x ∈ C

−
r
| g(x�, t) + r𝛽 ≤ xn < g(x�, t) + r

}
,

wt = Lw in C
−
r
,

w ≥ f (r) on Ar,
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where

then,

and

for some small a = a(r) > 0 , as long as r ≤ r0 universal.

Proof  We adapt the argument of Lemma 2.5 in this case and sketch the details.
We connect a point (x0, t0) ∈ Ar∕2 (which is not in Ar ) to a point (xm, tm) with 

xm = x0 + r�en ∈ Ar by a chain of adjacent backward-in-time cubes of size 
r̄∶=c0 r

𝛽∕𝛼 . The number m of cubes depends on r, i.e.,

All the cubes are included in the domain ( tm∶=t0 − mr̄2)

which by (3.1) is included in C−
r
 since mr̄2 ∼ r𝛽 r̄ = c0r

𝛽
𝛼+1

𝛼  , and c0 is chosen small. 
Moreover, Qr̄(xm, tm) ⊂ Ar , and Harnack inequality for w + 1 implies that

where the last inequality is guaranteed if we choose C0 sufficiently large.
For the second step which bounds w− we use cylinders of size 2r� (instead of 2�r 

as before) and get by the same argument as in the Lipschitz case

The conclusion follows since in Ar∕2 , w ≥ 1 ≥ f (r∕2)a , and in the last inequality we 
used 1 − 𝛽 < 𝛾 , provided that � is chosen sufficiently large.

	�  ◻

Lemma 3.2  (Carleson estimate) Let u, Ē be as in Theorem 1.2. Then,

with C universal.

w ≥ −1 on C
−
r
,

f (r)∶=eC0r
𝛾

, 𝛾∶=𝛽(1 −
1

𝛼
) < 0,

(3.2)w ≥ f (
r

2
) a on A r

2

,

(3.3)w ≥ −a on C
−
r

2

,

m ∼ r𝛽∕r̄ = c−1
0
r
𝛽(1−

1

𝛼
) = c−1

0
r𝛾 .

{
(x − x0) ⋅ en ≥ 0, t ∈ [tm, t0], (x − x0)

� ∈ [−r̄, r̄]n−1
}
,

(3.4)w + 1 ≥ f (r)e−Cm ≥ 2 in Ar∕2,

(3.5)w− ≤ e−cr
1−�

=∶a.

‖u‖L∞(C1∕2)
≤ C u(E),
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Proof  We apply an iterative argument similar to the one of Lemma 3.1 above.
Assume u(E) = 1 , and denote by hΓ the distance in the en direction between a 

point (x, t) ∈ C1 and Γ

Any point (x, t) ∈ C2∕3 can be connected to E by a chain of adjacent forward-in-time 
cubes included in Cr , so that the size of each cube is proportional to the distance 
from its center to Γ raised to the power 1∕� . The Hölder continuity of g implies that 
the number of cubes in this chain is proportional to (hΓ(x, t))1−1∕� , and by Harnack 
inequality we find

with C1 universal.
With the same notation as in Lemma 3.1, we wish to prove that if r ≤ r0 and

for some (y, ty) ∈ C1∕2 , then we can find (z, tz) ∈ S,

such that

Since |(z, tz) − (y, ty)| ≤ Cr� , we see that for r small enough, we can build a conver-
gent sequence of points (yk, tk) ∈ C2∕3 with u(yk, tk) ≥ f (2−kr) → ∞ . This is a contra-
diction if we assume that u vanishes continuously on Γ , and is therefore bounded. If 
u = 0 on Γ is understood in the sense that u is the limit of an increasing sequence of 
continuous subsolutions which vanish on Γ , then we may apply the argument below 
to one such subsolution and reach again a contradiction.

To show the existence of the point z, assume for simplicity y� = 0 , ty = 0 , and 
then S = C

−
r
⧵Ar . Let

By (3.6) we know that

If our claim is not satisfied, then we apply Weak Harnack inequality for w in cubes 
of size 2r� repeatedly as in Lemma 3.1. As we move a distance r inside the domain 
we obtain

hΓ(x, t)∶=xn − g(x�, t).

(3.6)u ≤ eC1h
1−1∕�

Γ in C2∕3,

u(y, ty) ≥ f (r),

S∶=
{
(x, t)| x� − y� ∈ (−r, r)n−1, t ∈ (ty − r, ty], 0 < hΓ(x, t) < r𝛽

}
,

u(z, tz) ≥ f
(
r

2

)
.

w∶=
(
u −

1

2
eC0r

𝛾
)+

, with C0 ≫ C1.

w = 0 inAr.

(3.7)w ≤ f
(
r

2

)
e−c0r

1−�

in C
−
r∕2

.
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In particular

and we reach a contradiction if r0 is sufficiently small as long as 1 − 𝛽 < 𝛾 (which is 
possible because 𝛼 > 1∕2 ). 	�  ◻

4 � Proof of Theorem 1.3

In this section, we assume that (3.1) holds for some 𝛼 > 0 possibly small, and in addi-
tion g satisfies a one-sided C1∕2 bound in the t variable, i.e.,

We will improve the estimates (3.5), (3.7) of the previous section by applying weak 
Harnack inequality in parabolic cubes of smaller size r̄ ∼ r𝛽∕𝛼 (which is the size chosen 
in the first step to obtain (3.4)) instead of r� . Then the oscillation of w− (or w) will decay 
by a factor e−cr1−�∕� as we go from C−

r
 to C−

r∕2
 . However, in cubes of size r̄ we can no 

longer guarantee the uniform measure estimate of the set where w− = 0 . To deal with 
this, we introduce a notion of parabolic capacity for the heat equation. This allows us to 
diminish the oscillation of w− more precisely than in the measure estimate of 
Theorem 2.4.

Definition 4.1  Let E be a closed set. Set,

where � is the solution to the heat equation in Q2(0, 1) ⧵ (E ∩ Q1) which equals 0 on 
the parabolic boundary of Q2(0, 1) and it is equal to 1 in E ∩ Q1.

The function � is well defined by the Perron–Wiener–Brelot–Bauer theory (see 
for example [14]). Similarly, we can define capQr(x,t)

(E) by translating the cube at the 
origin, and then performing a parabolic rescaling

We prove here two lemmas about weak Harnack inequality depending on the size of 
the capacity of E in Q1 . The first lemma states that a solution to the heat equation in 
Q1 ⧵ E satisfies the Harnack inequality in measure if E has small capacity (Fig. 4).

Lemma 4.2  Assume v ≥ 0 is defined in Q1 ⧵ E and satisfies

Let

1

2
f (r) ≤ w(y, t) ≤ f

(
r

2

)
e−c0r

1−�

,

(4.1)g(x�, t + s) − g�(x�, t) ≥ −Ks1∕2, ifs ≥ 0.

capQ1
(E)∶=�(0, 1)

capQr(x,t)
(E)∶=capQ1

(Ẽ), Ẽ∶={(y, s)|(x + r2y, t + rs) ∈ E}.

vt = △v.

Qi∶=Q1∕4(xi, ti) ⊂ Q1, i = 1, 2
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be two cubes of size 1/4 included in Q1 , with t2 − t1 ≥ 1∕4 . Assume that

for some � small universal. Then

for some c0 small universal.

Proof  Let h be the solution to the heat equation in Q1 ⧵ K with h = 0 on the para-
bolic boundary of Q1 , and h = 1 on K∶={v ≥ 1} ∩ Q1 . We claim that

where � is the function from Definition 4.1. Since both v with h − � solve the heat 
equation in Q1 ⧵ (K ∪ E) , it suffices to check the claim on the parabolic boundary of 
Q1 ⧵ E and on K.

Indeed, v ≥ 0 ≥ h − � on �pQ1 , and v ≥ 1 ≥ h − � on K. Moreover, h ≤ 1 ≤ � on 
E gives h − � ≤ 0 on E, and since v ≥ 0 the claim is proved.

The conclusion follows from the inequality above, since by the Weak Harnack 
inequality, there exists c0 small universal such that h ≥ 2c0 in Q2 . On the other hand, 
�(0, 1) = capQ1

E ≤ � implies that � ≤ c0 in half the measure of Q2 provided that � is 
chosen sufficiently small. 	�  ◻

Remark 4.3  We may use cubes Qi of size � and with t2 − t1 ≥ �2 , as long as � and c0 
are allowed to depend on � as well.

The second lemma states that the weak Harnack inequality holds for a subsolu-
tion v ≥ 0 which vanishes on a set E of positive capacity. It follows directly from the 
definition of capQ1

(E).

Lemma 4.4  Assume that v ≥ 0 in Q2(0, 1) , and

capQ1
(E) ≤ � and

|{v ≥ 1} ∩ Q1|
|Q1|

≥ 1∕2,

|{v ≥ c0} ∩ Q2|
|Q2|

≥ 1∕2

v ≥ h − � in Q1 ⧵ E,

△v ≥ vtin Q2(0, 1), andv = 0in E ∩ Q1.

Fig. 4   Lemma 4.2
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If for some 𝛿 > 0

then

Proof  Assume ‖v‖L∞ = 1 . We compare 1 − v with � in Q2(0, 1) ⧵ (E ∩ Q1) and find 
1 − v ≥ � . On the other hand since �(0, 1) ≥ � and � = 0 on the lateral boundary of 
Q2(1, 0) × [0, 1] it follows that � satisfies the forward Harnack inequality, and � ≥ c� 
in Q1∕2(0, 1) . The same inequality holds for 1 − v which gives the desired estimate. 	
� ◻

Remark 4.5  We may write the conclusion in [−1∕2, 1∕2]n × [�, 1] for any 𝜎 > 0 pro-
vided that the constant c = c(�, �) depends on � as well.

We are now ready to provide the proof of Theorem 1.3.

Proof of Theorem 1.3  We only show that the exponent in the estimate (3.5) from the 
previous section can be improved to

by the use of the two lemmas above. The rest of the proof remains the same as 
before. Notice that now 1 − 𝛽

𝛼
< 𝛾 holds simply by choosing 𝛽 > 1 and no restriction 

on range of the Hölder exponent 𝛼 > 0 is needed.
The same argument improves the exponent in (3.7) from 1 − � to 1 − �∕� in the 

proof of the Carleson estimate.
We proceed with the proof of (4.2). We set r̄∶=r𝛽∕𝛼 , and by hypothesis, the trans-

lation by the vector

maps the complement of C1 into itself, provided that � ≤ 1∕2 is small depending on 
the constant K in (4.1). Thus if we take a cube and then translate it by T, the comple-
ment of C1 (where w− = 0 ) “increased” in the translating cube because of (4.1) (see 
Fig. 5).

capQ1
(E) ≥ �,

v(x, t) ≤ (1 − c(�))‖v‖L∞ , (x, t) ∈ Q1∕2(0, 1).

(4.2)w− ≤ e−cr
1−

�
�
,

T∶=(−r̄en, 𝜅 r̄2) ∈ ℝ
n+1

Fig. 5   Proof of Theorem 1.3
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Decompose the space ℝn+1 into cubes of size Qr̄ in the following way. Take Qr̄ 
centered at the origin and then translate it by a linear combination of the vectors r̄ei , 
i < n , T, and r̄2en+1 using integer coefficients. We look at the behavior of w on arrays 
of cubes translated by multiples of T. Starting with Qr̄(0) , we consider Qr̄(mT) , with 
m ∈ ℤ . When m ≥ Cr̄𝛼−1 , Q3r̄(mT) ⊂ Ar , and when m ≤ −Cr̄𝛼−1 , Qr̄(mT) ⊂ E , 
where E denotes the complement of C1 . Thus, there is an intermediate m0 where

When we decrease m from Cr̄𝛼−1 to m0 we may apply Lemma  4.2 in each such 
Q3r̄(mT) . The weak Harnack inequality holds in measure in these cubes (see 
Remark  4.3, with �2 = �∕20 ), and as in (3.4), (as there are at most Cr̄𝛼−1 such 
cubes) we find that

in a fixed proportion of each such Q3r̄(mT) with m ≥ m0 . Thus w− = 0 in a fixed pro-
portion of Q3r̄(mT) , and by the weak Harnack inequality

if m ≥ m0.
If m < m0 then the capacity of E in Q3r̄(mT) is more than � . By Lemma 4.4, the 

inequality above remains valid after possibly relabeling c. We conclude that (4.3) is 
valid for all cubes centered at mT + 2r̄2en+1 , and in particular for Qr̄(2r̄

2en+1).
This argument shows that (4.3) holds in fact at all points (x, t) ∈ C

−
3r∕4

 . Indeed,

and (4.3) is satisfied trivially as w− = 0 in Qr̄(x, t) . Otherwise, we argue as above by 
decomposing the space starting with the cube centered at (x, t) − 2r̄2en+1 instead of 
the origin. Notice that (x, t) ∈ C

−
3r∕4

 and |xn − g(x�, t)| ≤ Cr� imply that

and the argument applies as before.
In conclusion, the maximum of w− is decaying a fixed proportion each time we 

remove the cubes Qss6r̄ which are tangent to the parabolic boundary of the infinite 
cylinder in the (x�, t) variables

Thus

as desired, and (4.2) is proved. 	�  ◻

capQ3r̄(mT)
(E) < 𝛿 if and only if m ≥ m0.

{w + 1 ≥ f (r)e−Cr̄
𝛼−1 ≥ 2}

(4.3)‖w−‖L∞(Qr̄(x,t))
≤ (1 − c)‖w−‖L∞(Q6r̄(x,t))

(x, t) = mT + 2r̄2en+1,

if|xn − g(x�, t)| > Cr𝛽 then eitherQr̄(x, t) ⊂ ArorQr̄(x, t) ⊂ E

Q3r̄((x, t) − mT) ⊂ ArandQ3r̄((x, t) + mT) ⊂ Ewhenm ∼ Cr̄𝛼−1

{|xi| ≤ 3∕4r, i < n} ∩ {t ∈ [−3∕4 r, 0]}.

w− ≤ e−crr̄
−1

in C
−
r∕2

,
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