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Abstract

We investigate the parabolic Boundary Harnack Principle by the analytical methods
developed in De Silva and Savin (J Differ Equ 3(15):2419-2429, 2020; J Math Eng
(in press)). Besides the classical case, we deal with less regular space-time domains,
including slit domains.

Keywords Parabolic equations - Harnack inequality - Comparison principle -
Regularity - Holder domains - Slit domains

1 Introduction
1.1 Statement of Main Results

In this paper, we provide direct analytical proofs of the parabolic Boundary Harnack
Inequality for both divergence and non-divergence type operators, in several differ-
ent settings. Our strategy is based on our earlier works [8, 9] where the elliptic coun-
terparts of these results were obtained. In order to state our theorems precisely, we
introduce some notation.

We denote by I' C R"™! the graph of a continuous function g(x',?) in the x,
direction,

[:={x, =g(,n}, (0,0)€T,

while C, denotes the cylinder of size r on top of I (in the e, direction) i.e.,
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C,:={(,x,,p|x € B’r, re (=), gi.,n< x, < g, 0 +r}.
As usual, X" = (xy, ...,x,_), while B/ C R is the ball of radius r centered at the
origin.
We consider solutions u(x, ?) to the parabolic equation
u,=Lu in C,
where Lu = tr(A(x)D?u) or L(u) = div(A(x)Vu), with A satisfying,
M<A<LAI 0<A1<A<+oo.

First, we recall the standard boundary Harnack inequalities for parabolic equations

in Lipschitz domains (Fig. 1). References to known literature will be provided in the
. ap -

next subsection. Here g € C /", if

lg@. 1) = g0, )| < C( =Y |* + |1 = 517,

and E, E are points interior to C, at times r = 1 /2 and t = —1/2 , respectively,

e ((e(0d) ot 2= ((e0-2) +d)

! . 13 ..
Theorem 1.1 (C"2 domains) Assume that g € C,* and u, v are two positive solu-
tions to

u,=Lu, v,=Lv in C,
with u vanishing continuously onI'. Then

% x) <C % for allx € C, 5, (1.1)

with C depending only on n, ||g|| c11/2, 4, and A.

In this note, we provide new versions of Theorem 1.1 in more general Holder
domains.

Fig. 1 Theorem 1.1
20 = g(a',t)

(0.0)
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Theorem 1.2 (C2*5* domains) Theorem 1.1 holds if g € C*/ witha > 1/2, 4> 1/3.

In the case of the heat operator, we may lower further the space regularity of g
to any exponent a > 0 provided that we have a 1/2 Holder modulus of continuity
in time (from one-side).

1
Theorem 1.3 (C“’% domains) Theorem 1.1 holds for the heat equation if g € Cj,?
with a > 0.

We remark that the only property of the heat equation needed in the proof of
Theorem 1.3 is the translation invariance with respect to the x,,, ¢ variables. Hence,
the theorem holds also for operators L with coefficients depending only on the x/
variable.

Next we state a result in slit domains, that is the case when the equations are sat-
isfied in the complement of a thin set § C R™*!included in a lower dimensional sub-
space. This case is relevant, for example, in the time-dependent Signorini problem.

Precisely, we assume that S is a closed set and

Sc{x,=0},
and in this case
C, =B, x(-*.17), E=(1/2,1/2), E=(1/2e,,—1/2).

With these notation, we state our theorem.

Theorem 1.4 (Thin Parabolic Boundary Harnack) If u, v are two positive solutions
even in the x, variable,

u,=Lu v,=Lv, in C;\S,

and u vanishes on S, then (1.1) holds.

The assumption that u, v are even in the x,, variable can be removed provided that
C, \ S contains a ball of radius o centered on {x, = 0}, and the constant C in esti-
mate (1.1) depends on 6.

We remark that in Theorems 1.2—1.4 whenever the boundary of the domain con-
tains non-regular points for the Dirichlet problem, the statement that u vanishes on it
is interpreted in the sense that u is the limit of a sequence of continuous subsolutions
which vanish on it.

1.2 Known Literature

For the last 50 years, the boundary Harnack principle has played an essential role in
analysis and PDEs in a variety of contexts. The available literature on this topic is
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very rich and we collect here only the crucial results, making no attempt to discuss
the countless important applications of this fundamental tool.

1.2.1 Elliptic Case

In the elliptic context, the classical Boundary Harnack Principle, that is the case
when g is Lipschitz continuous, states the following. Here the notation is the same
as above, with u, v, g independent on ¢.

Theorem 1.5 Let u,v > 0 satisfy Lu = Lv = 0 in C; and vanish continuously on T.
Assume u, v are normalized so that u(en/Z) =v(e,/2) =1, then

__u .
Cl<=<C in Cp, (1.2)
with C depending on n, A, A\, and the norm of g.

The case when L = A first appears in [1, 7, 18, 26]. Operators in divergence form
were then considered in [6], while the case of operator in non-divergence form was
treated in [10]. The same result for operators in divergence form was extended also
to the so-called NTA domains in [17]. The case of Holder domains and L in diver-
gence form was addressed with probabilistic techniques in [2, 3], and an analytic
proof was then provided in [13]. For Holder domains and operators L in non-diver-
gence form, it is necessary that the domain is C%* with & > 1/2 or that it satisfies a
uniform density property, and this was first established again using a probabilistic
approach [5].

In [8, 9], we presented a unified analytic proof the Boundary Harnack Principle
that does not make use of the Green’s function and which holds for both operators
in non-divergence and in divergence form. The idea is to find an “almost positiv-
ity property” of a solution, which can be iterated from scale 1 to all smaller scales
(some similar ideas were also used in [20, 23] to treat non-divergence equations
with unbounded drift). This strategy successfully applies to other similar situations
like that of Holder domains, NTA domains, and to the case of slit domains, provid-
ing a unified approach to a large class of results.

1.2.2 Parabolic Case

For parabolic equations, the situation is more complicated, essentially due to the
evolution nature of the latter which is reflected in a time-lag in the Harnack Prin-
ciple. For operators in divergence form, the parabolic boundary Harnack principle
in Theorem 1.1 is due to [11, 19, 24]. In the case of operators in non-divergence
form in cylinders with C? cross sections, Theorem 1.1 was settled in [15], where
the author also derived a Carleson estimate (see Lemma 2.6) in Lipschitz domains.
The statement of Theorem 1.1 in Lipschitz domain was later obtained in [12], which
is (to the authors knowledge) the first instance in which a boundary Harnack type
result in Lipschitz domains is obtained without the aid of Green’s functions (and
it is probably the inspiration for the later works in the elliptic context [20, 23]). In
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[16], Theorem 1.1 was also shown to hold for unbounded parabolically Reifenberg
flat domains. In the context of time-independent Holder domains, a result in the
spirit of Theorem 1.2 was obtained via probabilistic techniques in [4]. The result
in Theorem 1.3 is completely novel. Concerning slit domains, in the case when S
is the subgraph of a parabolic Lipschitz graph, the thin-version Theorem 1.4 was
established by [22]. Again, our strategy provides a unified approach for a variety of
contexts.

1.3 Organization of the Paper

The paper is organized as follows. In Sect. 2, after recalling some standard results,
we provide the proof of Theorems 1.1 and 1.4. The key “almost positivity” prop-
erty to be iterated from scale 1 to all smaller scales is obtained in Lemma 2.5. The
following section deals with Holder domains and the proof of Theorem 1.2, which
relies on the same strategy as Theorem 1.1, though the proof of the Carleson esti-
mate in the Holder setting requires a more involved argument similar to the one
in the proof of Lemma 2.5. Section 4 contains the proof of Theorem 1.3, which is
based on refined versions of the weak Harnack inequality (see Lemmas 4.2—4.4).

2 Proof of Theorems 1.1 and 1.4

In this section, we provide the proof of the classical result Theorem 1.1 and the
novel result Theorem 1.4. We start by collecting standard known Harnack type ine-
qualities. In the divergence setting, these results are due to [21], while in the non-
divergence setting they follow from [25].

2.1 Weak Harnack Inequality

Denote by
Qr . =(_r’ r)n X (—7'2, 0]? Qr(-x()’ tO) . =(x()’ t()) + Qr’

the parabolic cubes of size r. The parabolic boundary of Q, is denoted by d,0, and
is given by

0,0, :=(0(=r,1)" X (=12, 0) U (=, )" x {=1*}).
Similarly,

Q; : =(_r7 r)n_l X (_r2’ 0]’ Q;('XZ)’ tO) : =(x67 t()) + Q;
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Our main tools in establishing the boundary Harnack inequalities are the standard
weak Harnack estimates. We recall the parabolic versions which as mentioned in the
introduction differ from the elliptic counterparts due to the time-lag.

Theorem 2.1 (Supersolution) If
u,>Lu and u>0 in Q,, u(0,0)=1,

then

/ uP dxdt < C,
010~
2

for some p > 0 small, C large universal (i.e., dependent on n, A, \).

Theorem 2.2 (Subsolution) If
u,<Lu and u>0 in Q,
then

u(0,0) < CP)ull o,

forany p > 0.
The classical (backward) Harnack inequality then reads as follows.

Theorem 2.3 (Harnack inequality) If
u,=Lu and u>0 in Q,,
then for ¢ small universal (dependent on n, A, A),

minu >c¢ max u.
Qi 01,0-3)

Another useful version for the subsolution property is the following measure
to pointwise estimate.

Theorem 2.4 (Subsolution) If
u, <Ly and 1>u>0 in Q,,
and for some 6 > 0,
[{u=0}n0Q,0,-1] 2 6.
Then
u<l—c() in Q.
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Fig.2 The sets C; and A, 0.0

z, = g(z',t)
. _
G
Ly

With these tools at hand, we are ready to provide in the following subsection
our proof of the classical result in Theorem 1.1.

2.2 Proof of Theorem 1.1

In what follows, constants depending on n, A, A, and the norm of g, are called
universal.
We denote by

Ci={(\x,, 0| X' € (-r, N re (=201 g, 1) <x, < gt +r),

the backward-in-time cylinder of size r on top (in the e, direction) of the graph I' of
g. Also we set,

Ar::{(x, DES Cr_l g, +6r< x, < g, nH+ r},

that is the collection of points in the cylinder C; at height greater or equal than 57 on
top of T, for some 6 > 0 small, to be made precise later (Fig. 2).

The key tool for establishing the boundary Harnack estimates is the follow-
ing iterative lemma. Later, we will apply this lemma for the difference w = v — cu
for some sufficiently small constant ¢, in order to obtain the desired claim in
Theorem 1.1.

Lemma 2.5 There exist universal constants M, 6 > 0, such that if w is a solution to
w,=Lw in Cr_,

(possibly changing sign) with w™ vanishing continuously on T,

w>M in A, 2.1
and

w>-1 in C,
then,

w>Ma in Ag, (2.2)
and

@ Springer



8 La Matematica (2022) 1:1-18

Fig. 3 Proof of Lemma 2.5 .
(0,0) ()T/Q

o Q-
= (e 0) e

t or

.
n

w Z —a in CZ, (23)
for some small a > 0.

The conclusion can be iterated indefinitely and we obtain that if the hypotheses
are satisfied in C” then

w > 0 on the line segment{(se,,0), 0<s<r}. 2.4

Proof We start by observing that any point (x, ) € A, , can be connected through
a chain of backwards-in-time adjacent parabolic cubes of size 7:=c,; ér centered at

(x5 1)) 1 =(xg + jTe,, 4y — i),

) C A, (see Fig. 3). Here ¢, is small depending on the ch/?

to a last cube Q;(x,,, ¢ i

m
norm of g so that
Q27(-xjs tj) - Cr_’

and the number m of cubes depends only on c¢;. By Harnack inequality (Theo-
rem 2.3) applied to w + 1 > 0, using assumption (2.1), we get

W+ Dlgstp) 2 "M +1) = w21 in A,

provided that we choose M large depending on ¢, (and independent of §). Hence
(2.2) holds witha = 1/M.
To establish (2.3) with this choice of M, a, we first extend w~ = 0 in

0 x ({x, < g, 0} U {x, > g, 1) + 6r)),

so that w™ is a global subsolution in Q' X R thanks to assumption (2.1).Then, for
each cube Q,;,(x, 1) satisfying Q’2 5,51 C Q! we have

- 1
H{w™ =0} N 0y, (x. D] 2 51Q05,(x. D).
This is a consequence of the graph property of I'. Indeed, for each fixed (X', 1), we

consider the 1D line in the ¢, direction. Any segment of length 267 on this line has at
least half of its length either in A, or in the complement of C_.
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By weak Harnack inequality, Theorem 2.4, as we remove the collection of cubes
Q,5,(x, 1) which are tangent to the parabolic boundary of O/ X R, the norm [[w™ || .«
decays by a factor 1 — ¢, ¢ > 0 universal. Iterating this for ~ 1/6 times we find that

w <=0 in C,c0Q,xR
We choose § small, so that w= < a = M~!and (2.3) holds. O

A second ingredient in the proof of Theorem 1.1 is the following Carleson esti-
mate which provides a bound for « in the cylinder C, 5.

Lemma 2.6 (Carleson estimate) Let u, E be as in Theorem 1.1, then
||’/‘||Loo(c2/3) < CM(E),
with C > 0 universal.

Proof The Carleson estimate can be established by similar arguments as in the
Lemma 2.5 above. We will use, this approach in the case of Holder domains in the
next section. However, for Cx,’j domains, the Carleson estimate is a direct conse-
quence of the weak Harnack inequality. _

Indeed, assume that u(E) = 1. Any point (x,, #y) € C},,17 can be connected to E by
a chain of forward-in-time adjacent cubes Q,j(xj, ;) included in C,, with r; propor-
tional to the parabolic distance dj from (xj, tj) to I'. The number of cubes in this chain
is proportional to | log dy|. By Harnack inequality,

u(xg, o) < e“NEDblY(E) < dsC.

This means that [|u||;, < C in C,,,; for some small p > 0 universal. The extension
of uby 0in Q,:=((—r,r)""! X (=r*,r?)) x {x, < g(x’, 1)} is a subsolution, and now
we can apply weak Harnack inequality Theorem 2.2 in cubes Q,, (x,7) C Cyp/17 U Q,
for (x, 1) € C,/3 and ¢, small universal, to obtain the desired conclusion. O

We are now ready to combine the previous two lemmas and obtain the desired
Theorem 1.1.

Proof of Theorem 1.1 We assume that u(E) = v(E) = 1 and define w = C,v — c,u. By
Harnack inequality applied to v and the Carleson estimate for #, we can choose the
constants C| large, ¢; small (depending on 6, M) such that w satisfies

w>-1 in Gy, and wx)>M if x,>g0,0)+6/4.

Then we can apply Lemma 2.5 in cylinders Cl_/6 around any point on I'n C; ,, and
conclude from (2.4) thatw > 0in C, 5. O

@ Springer



10 La Matematica (2022) 1:1-18

2.3 Proof of Theorem 1.4
The proof is identical to the one of Theorem 1.1 after the appropriate modifications in
the definitions of C and \A,. Precisely,

C :=0,\S, A.:=0n{lx,|>ér}.

Lemma 2.5 applies for the difference w =v — cu. The hypotheses that u and
w™ = (cu — v)* vanish on § are understood in the sense that each of them is obtained
in C| as a pointwise limit of an increasing sequence of continuous subsolutions in Q,
which vanish on S. Notice that if u, is such a sequence for u, then (cu,, — v)* is a cor-
responding sequence for w™, (since v > 0 in C)). Thus, the extensions of # and w™ by
0 on § are subsolutions in Q,, and Lemmas 2.5 and 2.6 hold as above. O

3 Holder Domains and the Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by extending the arguments of the previous
section to Holder domains. We assume that for some o > %,

[g] <K,

SR = 3.1

for some constant K. Below, constants depending possibly on n, A, A, @ and K are
called universal.
We define

C:::{(x',xn,t)| x€(-r,r)", te(-r0], gk, n<x,<gx,n+r},

and notice that here we took the time interval of C of size r instead of the natural
parabolic scaling > that we used in the previous section. This change is due to the
fact that the norm of g is no longer left invariant by the parabolic scaling. We also
define

.A,::{x eC| g+ < x, < g, 0+ r},

the points in the cylinder C at height greater or equal than P on top of I, for some
p > 1to be made precise later.

Lemma 3.1 Suppose (3.1) holds for C_ and let w be a solution to
w,=Lw in C_,

SJor which w™ vanishes on I". There exist universal constants Cy, f > 0 such that if
w>f(r) on A,

and
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w>-1 on C,

where
fr)i=eS" | yi=p(1 - %) <0,
then,
w Zf(%) a on A, (3.2)
and
w>-a on C;, 3.3)

2
for some small a = a(r) > 0, as long as r < ry universal.
Proof We adapt the argument of Lemma 2.5 in this case and sketch the details.

We connect a point (x), %)) € A, , (which is not in \A,) to a point (x,,,,) with
x,, =X, +rPe, € A, by a chain of adjacent backward-in-time cubes of size

ri=c, rP/¢ The number m of cubes depends on r, i.e.,

1
m~rPJF= calrﬂ(l_i) = calry.
All the cubes are included in the domain (¢, : =t, — m7?)
{(x —-x9)-e,20, telt,, ], - xo)/ € [T, 7]n_1},

a+l
which by (3.1) is included in C since mr* ~ r’F = ¢y’ "« , and ¢ is chosen small.

Moreover, Q;(x,,,t,,) C A,, and Harnack inequality for w + 1 implies that
wH+12fe ™ >2 in A, (3.4)

where the last inequality is guaranteed if we choose C; sufficiently large.
For the second step which bounds w™ we use cylinders of size 2+ (instead of 26r
as before) and get by the same argument as in the Lipschitz case

wo<e " '=:a. (3.5)
The conclusion follows since in A, », w > 1 > f(r/2)a, and in the last inequality we
used 1 — f <y, provided that f is chosen sufficiently large.
O
Lemma 3.2 (Carleson estimate) Let u, E be as in Theorem 1.2. Then,

”u”Lm(Cl/z) < Cu(E),

with C universal.
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Proof We apply an iterative argument similar to the one of Lemma 3.1 above.
Assume u(E) = 1, and denote by A the distance in the e, direction between a
point (x,#) € C;and I'

he(x, 1) :=x, — g(X', 1).

Any point (x,7) € C,5 can be connected to E by a chain of adjacent forward-in-time
cubes included in C,, so that the size of each cube is proportional to the distance
from its center to I' raised to the power 1/a. The Holder continuity of g implies that
the number of cubes in this chain is proportional to (Ap(x, 1)!=1/% and by Harnack
inequality we find

1-1/a
u< eC,hr

in Cyp (3.6)

with C, universal.
With the same notation as in Lemma 3.1, we wish to prove that if r < r, and

u(y, t,) 2 f(r),
for some (y, #,) € C,», then we can find (z,7,) € S,
S:={xn| X -y e@rry', te@-rtl, 0<hxn<r’},

such that
r
> fl =
u(z 1) _f( 2 >

Since |(z,1,) — (7, ty)l < Cr*, we see that for » small enough, we can build a conver-
gent sequence of points (y. ;) € C, 3 with u(yy, ;) > f(27%r) - co. This is a contra-
diction if we assume that u vanishes continuously on I', and is therefore bounded. If
u = 0 on I' is understood in the sense that u is the limit of an increasing sequence of
continuous subsolutions which vanish on I', then we may apply the argument below
to one such subsolution and reach again a contradiction.

To show the existence of the point z, assume for simplicity y’ = 0, t,=0, and
then S=C"\ A,. Let

+
w:=<u - %ecorr) ,  with Cy> C,.
By (3.6) we know that
w=0 inA,.

If our claim is not satisfied, then we apply Weak Harnack inequality for w in cubes
of size 2r” repeatedly as in Lemma 3.1. As we move a distance 7 inside the domain
we obtain

w< f<§> o in o, 3.7)
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In particular

210 <won < (% )ee,

and we reach a contradiction if r is sufficiently small as long as 1 — f < y (which is
possible because a > 1/2). O

4 Proof of Theorem 1.3

In this section, we assume that (3.1) holds for some a > 0 possibly small, and in addi-
tion g satisfies a one-sided C 172 bound in the ¢ variable, i.e.,

g t+95)— g, 0> —Ks'/?, ifs > 0. 4.1)

We will improve the estimates (3.5), (3.7) of the previous section by applying weak
Harnack inequality in parabolic cubes of smaller size 7 ~ ##/¢ (which is the size chosen
in the first step to obtain (3.4)) instead of rP. Then the oscillation of w™ (or w) will decay
by a factor e~ as we go from C to Cr_/z' However, in cubes of size 7 we can no

longer guarantee the uniform measure estimate of the set where w~ = 0. To deal with
this, we introduce a notion of parabolic capacity for the heat equation. This allows us to
diminish the oscillation of w~ more precisely than in the measure estimate of
Theorem 2.4.

Definition 4.1 Let E be a closed set. Set,
capg, (E):=¢(0, 1)

where ¢ is the solution to the heat equation in Q,(0, 1) \ (£ N ¢ él) which equals 0 on
the parabolic boundary of Q,(0, 1) and itis equal to 1 in EN Q,.

The function ¢ is well defined by the Perron—Wiener—Brelot—Bauer theory (see
for example [14]). Similarly, we can define cap,, ., (E) by translating the cube at the
origin, and then performing a parabolic rescaling

capg o.n(E)1=capg (E), E:={(,9)|(x+r?y,t+rs) € E}.

We prove here two lemmas about weak Harnack inequality depending on the size of
the capacity of E in Q,. The first lemma states that a solution to the heat equation in
0, \ E satisfies the Harnack inequality in measure if E has small capacity (Fig. 4).

Lemma 4.2 Assume v > 0 is defined in Q, \ E and satisfies
v, = Av.
Let

Qi:=Q1/4(xi7 tl) - Ql’ l = 172
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Flg 4 Lemma 4.2 (0.0)
t

be two cubes of size 1/4 included in Q,, with t, — t; > 1/4. Assume that

o

>1 !
capy (E) <6 and “V——}I”Q| >1/2,
‘ 10"
for some 6 small universal. Then
> ¢y} nQ?
[{v>co}nQ7 > 12

10°

Sfor some c, small universal.

Proof Let h be the solution to the heat equation in Q; \ K with # = 0 on the para-
bolic boundary of Q;, and h = lon K:={v > 1} n Q'. We claim that

v>h—¢ in Q\E,

where ¢ is the function from Definition 4.1. Since both v with # — ¢ solve the heat
equation in Q, \ (K U E), it suffices to check the claim on the parabolic boundary of
0O, \ Eand on K.

Indeed,v 202> h—-¢ond,0;,andv > 12> h— @ onK. Moreover,h <1 < gon
E gives h — ¢ < 0 on E, and since v > 0 the claim is proved.

The conclusion follows from the inequality above, since by the Weak Harnack
inequality, there exists ¢, small universal such that & > 2¢, in Q?. On the other hand,
®(0,1) = capy E < 6 implies that ¢ < ¢, in half the measure of 07 provided that § is
chosen sufficiently small. O

Remark 4.3 We may use cubes Q' of size ¢ and with z, — ¢, > &2, as long as  and ¢,
are allowed to depend on ¢ as well.

The second lemma states that the weak Harnack inequality holds for a subsolu-
tion v > 0 which vanishes on a set E of positive capacity. It follows directly from the

definition of capy, (E).

Lemma 4.4 Assume thatv > 0in Q,(0, 1), and

Av>vin 0,0,1),andv =0in EnQ,.
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If for some 6 > 0
capg, (E) > 6,

then
v, 1) < (1= cONVlls, 1) € Qy,(0, 1).

Proof Assume ||v||;» = 1. We compare 1 — v with ¢ in Q,(0,1) \ (EN @1) and find
1 —v > @. On the other hand since ¢(0, 1) > 6 and @ = 0 on the lateral boundary of
0,(1,0) X [0, 1]it follows that ¢ satisfies the forward Harnack inequality, and ¢ > ¢é
in Q, ,(0, 1). The same inequality holds for I — v which gives the desired estimate.
O

Remark 4.5 We may write the conclusion in [—-1/2,1/2]" X [o, 1] for any ¢ > O pro-
vided that the constant ¢ = ¢(8, o) depends on ¢ as well.

We are now ready to provide the proof of Theorem 1.3.

Proof of Theorem 1.3 We only show that the exponent in the estimate (3.5) from the
previous section can be improved to
L
w <e“ “, 4.2)

by the use of the two lemmas above. The rest of the proof remains the same as
before. Notice that now 1 — g < y holds simply by choosing f > 1 and no restriction
on range of the Holder exponent a > 0 is needed.

The same argument improves the exponent in (3.7) from 1 — g to 1 — f/a in the
proof of the Carleson estimate.

We proceed with the proof of (4.2). We set 7:=rf/%  and by hypothesis, the trans-
lation by the vector

T:=(-7e,, k) € R"!

maps the complement of C, into itself, provided that k < 1/2 is small depending on
the constant K in (4.1). Thus if we take a cube and then translate it by 7, the comple-
ment of C; (wWhere w™ = 0) “increased” in the translating cube because of (4.1) (see
Fig. 5).

Fig.5 Proof of Theorem 1.3 2, = g(a’,t)
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Decompose the space R"*! into cubes of size Q, in the following way. Take Q;
centered at the origin and then translate it by a linear combination of the vectors 7e;,
i <n, T, and e, | using integer coefficients. We look at the behavior of w on arrays
of cubes translated by multiples of 7. Starting with Q;(0), we consider Q;(mT), with
mé€ Z. When m > Cr*!, Q;.(mT) C A,, and when m < —Cr*~!, Q.(mT) C E,
where E denotes the complement of C,. Thus, there is an intermediate m, where

capy. r)(E) <6 ifandonly if m > mj.

When we decrease m from C#*~! to m, we may apply Lemma 4.2 in each such
Qs:(mT). The weak Harnack inequality holds in measure in these cubes (see
Remark 4.3, with ¢ = x/20), and as in (3.4), (as there are at most C7*~! such
cubes) we find that

W+1>fPe " >2)

in a fixed proportion of each such Q5.(mT) with m > m,. Thus w~ = 0 in a fixed pro-
portion of Q5:(mT), and by the weak Harnack inequality

||W_||Loo(Q;(x,;)) <(1- C)”W_”LW(QG;(XJ)) (x, 1) =mT + 27'2@n+1, 4.3)

if m > my,

If m < my then the capacity of E in Qs;(mT) is more than 6. By Lemma 4.4, the
inequality above remains valid after possibly relabeling c. We conclude that (4.3) is
valid for all cubes centered at mT + 27%e,, ;, and in particular for Q;(2F%e,, ).

This argument shows that (4.3) holds in fact at all points (x, ) € C; ,,. Indeed,

3r/4°
if|x, — g(x', )| > CrPthen eitherQ;(x, 1) C A,orQ:(x,t) CE
and (4.3) is satisfied trivially as w~ = 0 in Q;(x, f). Otherwise, we argue as above by

decomposing the space starting with the cube centered at (x, 1) — 272e,,,, instead of
the origin. Notice that (x,7) € C; ,, and |x, — g(x',1)] < Crf imply that

3r/4

05:((x, 1) — mT) C A,andQ5;((x, ) + mT) C Ewhenm ~ C7*~!

and the argument applies as before.

In conclusion, the maximum of w™ is decaying a fixed proportion each time we
remove the cubes O, which are tangent to the parabolic boundary of the infinite
cylinder in the (X', r) variables

{Ix;| £3/4r, i<n}n{re[-3/4r0]}.

Thus

as desired, and (4.2) is proved. O
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