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Abstract
Weprovide perturbative estimates for the one-phase Stefan free boundary problem and obtain
the regularity of flat free boundaries via a linearization technique in the spirit of the elliptic
counterpart established in De Silva (IFB 13, 223–238, 2011).

1 Introduction

In this paper we are concerned with perturbative estimates for the one-phase Stefan problem,{
ut = �u in (� × (0, T ]) ∩ {u > 0},
ut = |∇u|2 on (� × (0, T ]) ∩ ∂{u > 0}, (1.1)

with � ⊂ R
n , u : � × [0, T ] → R, u ≥ 0.

The classical one-phase Stefan problem describes the phase transition between solids and
liquids, such as the melting of the ice (see for example [15,19]). In this setting u represents
the temperature of the liquid, and the region {u = 0} the unmelted region of ice.

The main object of interest is the behavior of the free boundary ∂{u > 0}. In problems of
this type free boundaries may not regularize instantaneously. A two dimensional example in
which a Lipschitz free boundary preserves corners can be found for instance in [6]. Athana-
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sopoulos, Caffarelli, and Salsa studied the regularizing properties of the free boundary under
reasonable assumptions in the more general setting of the two-phase Stefan problem. In [2]
they showed that Lipschitz free boundaries in space-time become smooth provided a nonde-
generacy condition holds, while in [3] the same conclusion was established for sufficiently
“flat” free boundaries. The techniques are based on the original work of Caffarelli in the
elliptic case [4,5].

A related result is due to S. Choi and I. Kim who showed in [9] that solutions regular-
ize instantaneously if the initial free boundary is locally Lipschitz with bounded Lipschitz
constant and the initial data has subquadratic growth.

In this paper we study the regularity of flat free boundaries for (1.1) based on perturbation
arguments leading to a linearization of the problem, which are in the spirit of the elliptic
counterpart developed by the first author in [11]. Our result is basically equivalent to the
previously mentioned flatness result in [3]. The techniques in [11] are very flexible and
have been widely generalized to a variety of free boundary problems, including two-phase
inhomogeneous problems, “thin” free boundary problems, minimization problems (see for
example [12–14]). The methods of the current paper are suitable to further extensions as
well.

Our main theorem roughly states that a solution to the Stefan problem in a ball of size λ

in space-time which is of size λ and has a “flat free boundary” in space, must have smooth
free boundary in the interior provided that a necessary nondegeneracy condition holds. The
nondegeneracy condition for u requires that u is bounded below by a small multiple of λ at
some point in the domain at distance λ from the free boundary. Precisely, we assume that
u : �×[0, T ] → R

+ solves (1.1) in the viscosity sense. This means that u is continuous and
its graph cannot be touched by above (resp. below), at a point (x0, t0) in a parabolic cylinder
Br (x0)× (t0 − r2, t0], by the graph of a classical strict supersolution ϕ+ (resp. subsolution).
By a classical strict supersolution we mean that ϕ(x, t) ∈ C2, ∇xϕ 	= 0, and it solves{

ϕt > �ϕ in (� × (0, T ]) ∩ {ϕ > 0},
ϕt > |∇ϕ|2 on (� × (0, T ]) ∩ ∂{ϕ > 0}. (1.2)

Similarly we can define a strict classical subsolution.
Throughout the paper, given a space-time function, ∇,�, and D2 are computed with

respect to the space variable x .

The rigorous statement of the main theorem is as follows.

Theorem 1.1 Fix a constant K (large) and let u be a solution to the one-phase Stefan problem
(1.1) in Bλ × [−K −1λ, 0] for some λ ≤ 1. Assume that

|u| ≤ Kλ, u(x0, t) ≥ K −1λ for some x0 ∈ B 3
4 λ.

There exists ε0 depending only on K and n such that if, for each t, ∂x {u(·, t) > 0} is ε0-
flat in Bλ, then the free boundary ∂{u > 0} (and u up to the free boundary) is smooth in
B λ

2
× [−(2K )−1λ, 0].
Here we use the notation ∂x {u(·, t) > 0} to denote the boundary in R

n of {u(·, t) > 0)},
with t being fixed. By ∂x {u > 0} is ε0-flat in Bλ we understand that, for each t , ∂x {u(·, t) >

0} ∩ Bλ is trapped in a strip of width ε0λ (the region between two parallel hyperplanes at
distance ε0λ from each other), and u = 0 on one side of this strip while u > 0 on the other
side.

The assumption that u is of size λ in a domain of size λ around the free boundary is natural,
since this eventually holds for all classical solutions by choosing λ small. We point out that
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in Theorem 1.1 the behavior of the solution depends strongly on the value of λ. If we scale
the domain to unit size and keep the function u of size 1, then the rescaled function

(x, t) �→ 1

λ
u(λx, λt), (x, t) ∈ B1 × [−K −1, 0],

solves a Stefan problem with possibly large diffusion coefficient λ−1

{
λut = �u in (B1 × (−K −1, 0]) ∩ {u > 0},
ut = |∇u|2 on (B1 × (−K −1, 0]) ∩ ∂{u > 0}. (1.3)

Our theorem states that nondegenerate solutions of size 1 of (1.3) which have ε0- flat free
boundaries in B1 are smooth up to the free boundary. We remark that ε0 is independent of
λ, which means that we need to obtain uniform estimates in λ for the oscillation of the free
boundaries of solutions of (1.3). Our results show that the free boundary has a uniform C1,α

bound in space. On the other hand, the estimates for u in the set where it is positive depend
on the parameter λ. The strategy is to approximate u with a family of explicit functions la,b

which in the direction perpendicular to the free boundary depend on λwhile on the tangential
directions to the free boundary are independent of the parameter λ.

Formally as λ → 0+, a solution u to (1.3) solves the Hele-Shaw equation. Estimates for
this problem by similar methods as ours were obtained by H. Chang-Lara and N. Guillen in
[CG].

To prove our main theorem, we show that if a solution u satisfies the hypotheses of
Theorem 1.1 then, after a convenient dilation, the flatness assumption can be extended to
the whole function u instead of just the free boundary. Then Theorem 1.1 follows from the
following result.

Theorem 1.2 Fix a constant K (large) and let u be a solution to the one-phase Stefan problem
(1.1) in B2λ × [−2λ, 0] for some λ ≤ 1. Assume that 0 ∈ ∂{u > 0}, and

an(t) (xn − b(t) − ε1λ)+ ≤ u ≤ an(t) (xn − b(t) + ε1λ)+ ,

with

K −1 ≤ an ≤ K , |a′
n(t)| ≤ λ−2, b′(t) = −an(t),

for some small ε1 depending only on K and n. Then in Bλ × [−λ, 0] the free boundary
∂{u > 0} is a C1,α graph in the xn direction.

The assumption that b′ = −an(t) means that the approximating linear functions in x ,
an(t)(xn − b(t))+, satisfy the free boundary condition, while |a′

n(t)| ≤ λ−2 respects the
parabolic scaling of the interior equation and represents that an can change at most o(1) in a
time interval of length o(λ2).

We remark that it suffices to prove Theorem 1.2 under the more relaxed hypotheses

λ ≤ λ0 and |a′
n(t)| ≤ c0λ

−2, (1.4)

with λ0, c0 small depending on K , n. We end up in this setting by working in balls of size
τλ with τ sufficiently small, and then relabel τλ by λ and ε1τ

−1 by ε1.
Theorem 1.2 applies, for example, when u is a perturbation of order o(1)λ of a traveling

wave solution

(eaxn+a2t − 1)+, K −1 ≤ a ≤ K .
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In this case we choose an(t) = a, b(t) = −at , and consider λ ≤ λ0 small so that the
difference between the approximating linear part an(t)(xn − b(t)) and the exact solution
above is less than 1

2ε1λ in Bλ.
The proof of Theorem 1.2 is based on linearization techniques. The linearized equation

in our setting has the form of an oblique derivative parabolic problem{
λvt = tr(A(t)D2v) in {xn > 0},
vt = γ (t) · ∇v on {xn = 0}, (1.5)

with A(t) uniformly elliptic and γn > 0. An important task in our analysis is to develop
Schauder-type estimates for Eq. (1.5) with respect to an appropriate distance dλ and to
capture both features of the mixed parabolic/hyperbolic scaling.

The paper is organized as follows. In the next section we show that Theorem 1.1 can be
deduced from Theorem 1.2. In Sect. 3, we use a Hodograph transform to obtain an equivalent
quasilinear parabolic equation with oblique derivative boundary condition. In the following
section, we state an improvement of flatness result Proposition 4.1 for solutions of such
nonlinear problem, then we show how this implies Theorem 1.2. The proof of Proposition
4.1 is presented in Sect. 5, and it relies on various Hölder estimates (with respect to the
appropriate distance) for solutions to the linearized problem associated to the nonlinear
problem. Sections 6 and 7 are devoted to the proofs of such Hölder estimates, while Sect. 8
focuses on the one dimensional linear problem, which plays an essential role. The last section
contains some general technical results on solutions to the linear problem.

2 From flat free boundaries to flat solutions

In this section, we show that Theorem 1.1 can be reduced to Theorem 1.2.
We assume that the function u satisfies the ε0-flatness hypothesis of the free boundary

from Theorem 1.1 for some λ ≤ 1, and that (0, 0) is a free boundary point. Precisely, by
∂x {u > 0} is ε0-flat in Bλ we understand that, for each t , there exists a direction ν such that

∂x {u(·, t) > 0} ∩ Bλ ⊂ {|〈x − x0, ν〉| ≤ ε0λ},
and

u = 0 in {〈x − x0, ν〉 ≤ −ε0λ},
u > 0 in {〈x − x0, ν〉 ≥ ε0λ}.

First, we show that in a smaller domain Bηλ×[−ηλ, 0] the whole graph of u is ηβ - flat, for
some small β, provided that ε0 ≤ c(η, K ). Then, in this domain the hypotheses of Theorem
1.2 are satisfied by choosing η sufficiently small.

We work with the parabolic rescaling of the function u which is defined in B1

× [−(Kλ)−1, 0] and keeps the function u of unit size:

(x, t) �→ 1

λ
u(λx, λ2t), (x, t) ∈ B1 × [−(Kλ)−1, 0].

By abuse of notation we denote this rescaling by u, and then u solves a Stefan problem with
possibly small speed coefficient λ,{

ut = �u in (B1 × (−(Kλ)−1, 0]) ∩ {u > 0},
ut = λ|∇u|2 on (B1 × (−(Kλ)−1, 0]) ∩ ∂{u > 0}. (2.1)
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We prove the following main lemma. Universal constants only depend on n, K . As usual,
in the body of the proofs, constants denoted by C may change from line to line.

Lemma 2.1 Assume that u solves (2.1),

|u| ≤ K , u(x0, t) ≥ K −1 for some x0 ∈ B3/4,

0 ∈ ∂x {u(·, 0) > 0}, and ∂x {u > 0} is ε0-flat in B1.

Then for all small η > 0 we have

an(t)
(
xn − b(t) − η1+β

)+ ≤ u ≤ an(t)
(
xn − b(t) + η1+β

)+
in Bη × [−λ−1η, 0],

with β = 1/20 and for c, C > 0 universal,

c ≤ an(t) ≤ C, |a′
n(t)| ≤ ηβ−2, b′(t) = −λan(t), b(0) = 0,

provided that ε0 ≤ c(η, K ).

When we rescale the conclusion back to the original coordinates, we obtain that the
hypotheses of Theorem 1.2 are satisfied in the cylinder Bηλ × [−ηλ, 0] with ε1 = ηβ .

We start by proving a result about the location of the free boundary in time.

Lemma 2.2 Assume u solves (2.1) in B2 × [−K −1, 1] and that 0 ≤ u ≤ K . If u(x, 0) = 0
in B1, then

u(x, t) ≤ C(|x | − 1)+, if t ∈ [−(2K )−1, 0], (2.2)

and

u(x, t) = 0 if |x | < 1 − Cλ, t ∈ [0, 1], (2.3)

with C > 0 universal.

Proof Since the support of u is increasing with time we deduce that u = 0 in B1 for all
t ∈ [−K −1, 0]. Then, in the annular domain (B2\B1) × [−K −1, 0], by the comparison
principle, u is less than a multiple of the solution to the heat equation which equals 0 on
∂ B1× (−K −1, 0], and 1 on the remaining part of the parabolic boundary. This, together with
the boundary regularity of such solution, implies the estimate (2.2).

Now, for times t ∈ [0, 1] we compare u with

w(x, t) = C0 g(|x | − r(t)), r(t) := 1 − C0λt,

with g a 1D function such that g(s) = 0 if s ≤ 0, and for positive s is defined by the ODE

g′′(s) + 2ng′(s) = 0, g(0) = 0, g′(0) = 1.

Notice that g′ ∈ [0, 1].
We may assume that r(t) ≥ 1/2, otherwise the conclusion (2.3) is trivial (say for C

> 2C0).
The constant C0 is chosen large such that w ≥ u at time t = 0 (by (2.2)) and also on

∂ B2 × [0, 1]. We check that w is a supersolution to (2.1); indeed in {w > 0} we have (recall
r(t) ≥ 1/2),

wt = C2
0λg′ ≥ 0, �w = C0

(
g′′ + n − 1

|x | g′
)

< 0,
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and on ∂{w > 0}
wt = λC2

0 = λ|∇w|2.
In conclusion, u ≤ w which gives the desired conclusion (2.3). ��

Now, we turn to the proof of Lemma 2.1.

Proof of Lemma 2.1 We assume that u satisfies (2.1) in B1 × [−(Kλ)−1, 0], and ∂x {u > 0}
is ε0-flat in B1. Suppose that (0, 0) ∈ ∂{u > 0} and then, after a rotation,

u(x, 0) > 0 if xn > ε0, and u(x, 0) = 0 if xn < −ε0.

From (2.2) in Lemma 2.2 (applied to balls tangent to {xn = −ε0}) we find that u ≤ C(xn

+ ε0)
+ in B1/2 × [−(2K )−1, 0].

We define

uτ := 1

τ
u(τ x, τ 2t), with τ ≥ ε

1/2
0 ,

and, if τ ∈ [ε1/20 , c], then
uτ ≤ C(xn + τ)+ in B1 × [−2, 0]. (2.4)

Notice that uτ satisfies (2.1) with τλ instead of λ. We apply (2.3) of Lemma 2.2 for uτ and
obtain that (since (0, 0) ∈ ∂{uτ > 0}),

∂x {uτ > 0} ∩ B1/2 intersects {xn ≤ Cλτ }, for all t ∈ [−1, 0]. (2.5)

Moreover, ∂x {uτ > 0} is τ−1ε0-flat in B1, which combined with (2.5) implies that

∂{uτ > 0} ∩ (B1/2 × [−1, 0]) is included in {xn ≤ C(λτ + τ−1ε0)}. (2.6)

In (B1/2 ∩ {xn > Cτ }) × [−1, 0] we compare uτ with the solution w to the heat equation
which equals 0 on {xn = Cτ }, and equals uτ on the remaining part of the parabolic boundary.
Notice that by (2.6), since τ ≥ ε

1/2
0 , uτ > 0 on {xn = Cτ }. From (2.4)wefind |uτ −w| ≤ Cτ ,

and the boundary regularity of w gives

|uτ − axn | ≤ Cρ3/2 + Cτ ≤ 2Cρ3/2 in B+
2ρ × [−ρ2, 0], (2.7)

for some constant a < C , provided that we choose τ = ρ3/2 with ρ small, to be made precise
later.

We claim that the nondegeneracy assumption u(x0, t) ≥ K −1 for some x0 ∈ B3/4 implies
that a > c. For this we use (2.6) which, in terms of the function u, implies that ∂x {u(·, t) > 0},
at all times t = −τ 2 ≤ −ε0, intersects the xn axis at distance at most C(λ|t | + ε0) from
the origin. As for (2.6), using that ∂x {u > 0} is ε0-flat in B1, we obtain that u(x, t) > 0 if
xn > Cε0 + Cλ|t | in B1/2. Now we can use the nondegeneracy condition with a Hopf-type
lemma for the heat equation and obtain

u ≥ c(xn − C(ε0 + λ|t |))+ in B1/4 × [−(4K )−1, 0],
for some c > 0 that depends only on n and K . We use this inequality at time t = 0 in (2.7)
and conclude a > c since τρ > 2τ 2 ≥ 2ε0. We can restate (2.7) as

(axn − Cη1+
1
5 )+ ≤ u ≤ (axn + Cη1+

1
5 )+ in B2η × [−η2, 0],

with η := τρ = ρ5/2.
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Similarly, by looking at the points (b(t)en, t) where the free boundary intersects the xn

axis, we obtain that

|b(t)| ≤ C(λ|t | + ε0) ≤ C0η if t ∈ [−λ−1η, 0],
and in the domain B2C0η × [t − η2, t] we have(

a(t) · (x − b(t)en) − Cη
6
5

)+ ≤ u(x, s) ≤
(

a(t) · (x − b(t)en) + Cη
6
5

)+

with c ≤ |a(t)| ≤ C . The flatness assumption of the free boundary in B1 implies

|a(t) − an(t)en | ≤ Cη,

so we may replace a(t) · (x − b(t)en) above by an(t)(xn − b(t)).
The bounds on u above imply that an(t) can vary at most Cη1/5 in an interval of length

η2. We can regularize an(t) by averaging over such intervals (convolving with a mollifier)
and the bounds for u still hold after changing the value of the constant C . Hence for all
t ∈ [−λ−1η, 0], we can find an(t) ∈ R such that

an(t)
(

xn − b(t) − Cη
6
5

)+ ≤ u ≤ an(t)
(

xn − b(t) + Cη
6
5

)+
(2.8)

in B2C0η × [t − η2, t] with
c ≤ an(t) ≤ C, |a′

n(t)| ≤ Cη
1
5−2, |b(t)| ≤ C0η. (2.9)

It remains to show that we can modify b slightly so that it satisfies the ODE b′ = −λan .
Precisely, we let

b̃′(t) = −λan(t), b̃(0) = 0,

and we show that

|b(t) − b̃(t)| ≤ Cη1+β if t ∈ [−λ−1η, 0], β = 1/10. (2.10)

For this we perturb the family of evolving planes an(t)(xn − b̃(t))+ into a subsolu-
tion/supersolution. Let

d(t) := b̃(t) + C1η
βλt,

with C1 large, to be specified later. We claim that

b(t) ≥ d(t) − 2η1+β . (2.11)

For this we define the function

v := (1 − C2η
β) an(t) (h(x − d(t)en))+,

with

h(x) := xn − ηβ−1(|x ′|2 − 2nx2n ),

and check that it is a subsolution to our problem (2.1) in the domain

� :=
⋃

t∈[−λ−1η,0]
B2η(d(t)en) × {t}.

Notice that in a ball of radius 2η,

h ≤ Cη, |∇h| = 1 + O(ηβ), (2.12)
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and the constant C2 = C2(n) is chosen depending only on n such that

v ≤ an(t)(xn − d(t))+, (2.13)

with equality at d(t)en and moreover, when x ∈ ∂ B2η(d(t)en)∩{v(x, t) > 0}, the difference
between the two functions above is greater than η1+β .

Next, we check that v is a strict subsolution. In the interior {v > 0}, using (2.9),(2.12),
the definition of b̃, we have (for η small)

|vt | ≤ C |a′
n |η + C |d ′| ≤ Cη−4/5, �v ≥ cηβ−1 > vt ,

and on the free boundary (C ′ depending only on C2, n),

vt = (1 − C2η
β)an(−d ′)hn, |∇v|2 ≥ (1 − C ′ηβ)a2

n .

Since

hn = 1 + O(ηβ), (−d ′)an = λa2
n − C1λanηβ,

we can choose C1 large such that vt < λ|∇v|2.
If

b(t0) < d(t0) − 2η1+β for some t0 ∈ [−λ−1η, 0],
then by (2.8) and (2.13) we find that v < u at time t = t0 in B2η(d(t0)en) ∩ {v > 0}. On the
other hand v = u at the origin (0, 0). This means that as we increase t from t0 to 0, the graph
of v(·, t) in B2η(d(t)en) ∩ {v > 0} will touch by below the graph of u for a first time t , and
the contact must be an interior point to B2η(d(t)en) due to the properties (2.8),(2.13) of u
and v (in particular the difference between an(t) (xn − d(t))+ and v is greater than η1+β on
∂ B2η(d(t)en)). This contact point is either on the free boundary ∂{v > 0} or on the positivity
set {v > 0}, and we reach a contradiction since v is a strict subsolution. The claim (2.11) is
proved, hence

b(t) ≥ b̃(t) − Cη1+β if t ∈ [−λ−1η, 0].
The opposite inequality is obtained similarly and the claim (2.10) holds. Then from (2.8) we
deduce that for all η ≤ c small

an(t)
(

xn − b̃(t) − η1+β ′)+ ≤ u ≤ an(t)
(

xn − b̃(t) + η1+β ′)+

in Bη × [−λ−1η, 0] with β ′ = 1/20 and

c ≤ an(t) ≤ C, |a′
n(t)| ≤ ηβ ′−2, b̃′(t) = −λan(t), b̃(0) = 0.

��

3 The nonlinear problem

In this section, we use a standard Hodograph transform to reduce our Stefan problem (1.1)
to an equivalent nonlinear problem with fixed boundary and oblique derivative boundary
condition (see (3.4)).

Here and henceforth, for n ≥ 2, given r > 0 we set

Qr := (−r , r)n, Q+
r := Qr ∩ {xn ≥ 0}, Qr (x0) := x0 + Qr ,

Cr := (Qr ∩ {xn > 0}) × (−r , 0], Fr := {(x, t)| x ∈ Qr ∩ {xn = 0}, t ∈ (−r , 0]} .
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Also, by parabolic cylinders we mean

Pr (x0, t0) := Qr (x0) × (t0 − r2, t0].

3.1 The hodograph transform

As mentioned above, we use a Hodograph transform to reduce the Stefan problem (1.1) to
one with fixed boundary. Precisely, we view the graph of u in R

n+2

� := {(x, xn+1, t)| xn+1 = u(x1, x2, . . . , xn, t)}
as the graph of a possibly multi-valued function ū with respect to the xn direction

� := {(x, xn+1, t)| xn = ū(x1, x2, . . . , xn−1, xn+1, t)}.
We use (y1, . . . , yn) to denote the coordinates (x1, x2, . . . , xn−1, xn+1). Then, if Du and Dū
denote at some point on the graph � the gradients with respect to the first n entries of u and
ū, we find

Du = − 1

ūn
(ū1, . . . , ūn−1,−1), ut = − ūt

ūn

D2u = − 1

ūn
(A(Dū))T D2ū A(Dū),

where A(Dū) is a square matrix which agrees with the identity matrix except on the nth row
where the entries are given by the right hand side of Du above.

TheStefan problem (1.1) in terms of ū can bewritten abstractly as the following quasilinear
parabolic equation with oblique derivative boundary condition:{

ūt = tr( Ā(∇ū) D2ū) in {yn > 0},
ūt = g(∇ū) on {yn = 0}, (3.1)

with Ā(p) symmetric, positive definite as long as pn 	= 0, and gn(p) > 0.
The free boundary of u is given by the graph of the trace of ū on {yn = 0}. Our goal

becomes to show that ū is C1,α with respect to the y′, t variables. Let us assume that u
satisfies the hypotheses of Theorem 1.2 (it is now more convenient to work in cubes rather
than in balls). Below we denote by c, C various constants depending on K and n. From the
flatness assumption∣∣u − an(t)(xn − b(t))+

∣∣ ≤ Cε1λ in Qλ × [−λ, 0], (3.2)

and 0 ∈ ∂{u > 0} implies |b(0)| ≤ Cε1λ which together with |b′| ≤ Cλ gives

|b(t)| ≤ C(ε1 + |t |)λ.

Thus, if (x, t) ∈ Qλ ×[−cλ, 0], then (for ε1 possibly smaller), |b(t)| ≤ λ/2 and by (3.2) the
domain of definition of ū at time t contains Q+

c̄λ for c̄ small enough. We conclude that ū is
well-defined in Q+

λ̄
× [−λ̄, 0], with λ̄ := c1λ, c1 sufficiently small.

Moreover, the graph of ū in this set is closed inRn+2 (since it is obtained as a rigid motion
from the graph of u) and it satisfies Eq. (3.1) in the viscosity sense, see Definition 3.2 below.
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Remark 3.1 We observe that ū is single-valued in the region yn ≥ Cε1λ, and possibly multi-
valued near yn = 0. Indeed, similarly as above, if t ∈ [t0 −λ2, t0 +λ2], then using the bound
for |b′| and (1.4) for |a′|,

|a(t) − a(t0)| ≤ c0, |b(t) − b(t0)| ≤ Cλ2,

hence, if λ0, c0 are smaller than ε1 then∣∣u − an(t0)(xn − b(t0))
+∣∣ ≤ Cε1λ in Qλ × [t0 − λ2, t0 + λ2], (3.3)

with |b(t0)| ≤ λ/2. By applying interior gradient estimates in parabolic cylinders included
in {u > 0} we find from (3.3) that if

(x0, t0) with x0 ∈ Qλ, t0 > −cλ is in the region Cε1λ ≤ u(x0, t0) ≤ cλ

then

|∇u(x0, t0) − an(t0)en | ≤ (2K )−1.

Finally, the main hypotheses of Theorem 1.2 can be written in terms of ū as

|ū − (ān(t)yn + b̄(t))| ≤ Cε1λ̄ in Q+
λ̄

× [−λ̄, 0],
b̄′(t) = g(ān(t)en), K −1 ≤ ān ≤ K ,

λ̄ ≤ λ̄1, |ā′
n | ≤ c̄1λ̄

−2.

Our purpose in this paper is to prove an improvement of flatness result for solutions of the
nonlinear Eq. (3.1) as above, provided that ε1, λ̄1, c̄1 are chosen small depending on n and
K (see Proposition 4.1 in the next section). Then Theorem 1.2 can be obtained by iterating
such statement.

3.2 Assumptions on the nonlinear problem

We consider solutions to the following problem (for simplicity of notation we drop the bars
in our formulation, and we use x rather than y),{

ut = F(∇u, D2u) in Cλ,

ut = g(∇u) on Fλ.
(3.4)

We assume that F is linear in D2u, that is F(∇u, D2u) = tr(A(∇u)D2u) and gn > 0.
Westart by stating precisely the notion of viscosity solution. Firstwewrite it for continuous

functions and then adapt it to include possibly multi-valued functions u whose graphs are
compact sets of Rn+2, which is relevant to our setting.

Definition 3.2 We say that a continuous function u : Cλ → R is a viscosity subsolution to
(3.4) if u cannot be touched by above at points in Cλ ∪ Fλ (locally, in parabolic cylinders)
by a strict C2 supersolution ϕ of (3.4).

Precisely, we require that there do not exist points (x0, t0) ∈ Cλ ∪ Fλ and test functions
ϕ ∈ C2(Pr (x0, t0)) that satisfy{

ϕt > F(∇ϕ, D2ϕ) in Pr (x0, t0),

ϕt > g(∇ϕ) on Fλ ∩ Pr (x0, t0),
(3.5)
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such that

u(x0, t0) = ϕ(x0, t0), u ≤ ϕ in Pr (x0, t0). (3.6)

Similarly we can define viscosity supersolutions and viscosity solutions to (3.4).
We extend this definition to multi-valued functions u, and require they still satisfy the

comparison with respect to (single-valued) test functions ϕ.

Definition 3.3 Assume that u : Cλ → R is a multi-valued function with compact graph in
R

n+2. We say that u is a viscosity subsolution to (3.4) if the definition above holds and (3.6)
is understood as ϕ(x0, t0) ∈ u(x0, t0) while the inequality u ≤ ϕ in Pr (x0, t0) means that
u(x, t) ≤ ϕ(x, t) for all possible values of u at (x, t), and for all (x, t) ∈ Pr (x0, t0).

We remark that this notion of viscosity solution for multi-valued functions is very weak.
For example if we consider two single-valued functions u1 ≤ u2 with u2 a subsolution and
u1 a supersolution, then the union of the 2 graphs is a multi-valued solution according to
Definition 3.3. In fact we can add to it any arbitrary closed set between the two graphs.
However, in our analysis we only consider solutions which could be multi-valued near Fλ

and single-valued farther away, which is a consequence of the flatness regime.
We define now a class of linear in x functions that we use throughout this paper to express

the flatness condition.

Definition 3.4 We denote by la,b(x, t) functions which for each fixed t are linear in the x
variable, and whose coefficients in the x ′ variable are independent of t , and also so that la,b

satisfies the boundary condition in (3.4) on {xn = 0}. More precisely,

la,b(x, t) := a(t) · x + b(t),

with

a(t) := (a1, . . . , an−1, an(t)), ai ∈ R, i = 1, . . . , n − 1,

and

b′(t) = g(a(t)).

Our main result is to show that if u is a viscosity solution of (3.4) which is possibly
multi-valued near {xn = 0} and is well approximated by la,b in a cylinder Cλ, i.e.

|u − la,b| ≤ ελ in Cλ,

then in a smaller cylinder Cτλ it can be approximated by another function lã,b̃ with an error

ετ = ετα that improved by a C1,α scaling.
Before formulating this result rigorously in the next section, we state here the precise

hypotheses on F and g. We assume that F(p, M) is uniformly elliptic in M for each fixed
slope p ∈ R

n with pn > 0 and the ellipticity constants could degenerate as pn → 0+ or
|p| → ∞. Precisely, for any given constant K large there exists � large depending on K
such that

�I ≥ DM F(p, M) ≥ �−1 I , if p ∈ RK , (3.7)

with

RK := BK ∩ {pn ≥ K −1} ⊂ R
n . (3.8)
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We choose K sufficiently large such that when p is restricted to the set above we also have

|Dp F | ≤ �|M |, ‖g‖C1 ≤ �, gn ≥ �−1. (3.9)

From now on we assume that the constants K and � have been fixed such that (3.7)–(3.9)
hold. In fact, for notational simplicity, by possibly choosing K larger, we can assume that
(3.7)–(3.9) hold with � = K . We consider the situation when u is well approximated in Cλ

by a function la,b as above with slopes a(t) belonging to the region RK .
We suppose in addition that u satisfies the Harnack inequality from scale λ to scale σλ

where σ is a small parameter. We denote this property for u as property H(σ ), which is
defined in the following way.

Definition 3.5 Given a positive constant σ small, we say that

u has property H(σ ) in Cλ

if u (possibly multi-valued) satisfies the following version of interior Harnack inequality in
parabolic cylinders of size r ∈ [σλ, λ].

Let l denote a linear function

l(x) := a · x + b, with a ∈ R
n, b ∈ R, |a| ≤ K .

If

u ≥ l in Qr (x0) × [t0 − r2, t0 + r2] ⊂ Cλ,

with r ≥ σλ, and

(u − l)(x0, t0) ≥ μ, for some μ ≥ 0,

then

u − l ≥ κμ in Qr/2(x0) ×
[

t0 + 1

2
r2, t0 + r2

]
,

for some constant κ depending on n and K (but independent of σ ).
Similarly, if u ≤ l we require these inequalities to hold for l − u instead of u − l.

Property H(σ ) for all σ > 0 is a consequence of the parabolic Harnack inequality in
the case when u is a single-valued viscosity solution of (3.4), and in addition we know that
∇u ∈ RK . Property H(σ ) for a multi-valued solution of (3.4) roughly states that u behaves
as a single-valued function from scale λ up to scale σλ. In fact we will show in Remark
4.2 below that property H(σ ) (for some appropriate σ small) is satisfied for multi-valued
solutions u which are graphical with respect to the en direction and are well approximated
by the functions la,b.

4 The iterative statement

In this section, we state our main improvement of flatness result Proposition 4.1, and we
show how Theorem 1.2 can be deduced from it. We also describe the strategy of the proof of
Proposition 4.1, and its connection to the corresponding linearized problem (4.7).

The improvement of flatness statement reads as follows (we use the notation from Sub-
section 3.2). The rest of the paper will be devoted to its proof.
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Proposition 4.1 (Improvement of flatness) Fix K > 0 large, and assume F,g satisfy (3.7)
-(3.9). Assume that u is a viscosity solution to (3.4) possibly multi-valued, which satisfies
property H(ε1/2) and

|u − la,b| ≤ ελ in Cλ, with b′(t) = g(a(t)),

a(t) ∈ RK , |a′
n(t)| ≤ δελ−2, (4.1)

and

ε ≤ ε0, λ ≤ λ0, λ ≤ δε.

Then there exists lã,b̃ such that

|u − lã,b̃| ≤ ε

2
τλ in Cτλ, b̃′(t) = g(ã(t)),

with

|a(t) − ã(t)| ≤ Cε, |ã′
n(t)| ≤ δε

2
(τλ)−2.

Here the constants ε0, λ0, δ, τ > 0 small and C large depend only on n, and K .

For the remainder of the section constants depending only on n and K are called universal,
and denoted by ci , Ci .

Remark 4.2 We apply the proposition above to the hodograph transform of a solution to the
original Stefan problem, hence in our case u is graphical with respect to the en direction.
Then (4.1) already implies our hypothesis that

u satisfies property H(ε1/2) in Cλ.

Indeed, if t ∈ [t0 − λ2, t0 + λ2], then using the bounds for |a′|, |b′|,
|a(t) − a(t0)| ≤ δε, |b(t) − b(t0)| ≤ Cλ2 ≤ Cδελ,

hence

|a(t0) · x + b(t0) − la,b| ≤ Cδελ in Q+
λ × [t0 − λ2, t0 + λ2]. (4.2)

This shows that u is well approximated in each parabolic cylinder of sizeλ by a linear function
which is constant in t ,

|u − (a(t0) · x + b(t0))| ≤ 2ελ in Q+
λ × [t0 − λ2, t0 + λ2], (4.3)

with C ≥ an(t0) > c. Since the graph of u coincides with the graph (in the en direction)
of a solution to the heat equation, we can use the standard Harnack inequality for the heat
equation and find that u satisfies property H(Cε) in Cλ (as we used interior regularity in
Remark 3.1). Thus u satisfies property H(ε1/2) by choosing ε0 smaller if necessary.

This argument shows that if u is graphical with respect to the en direction, then it is
single-valued away from a O(ελ) neighborhood of {xn = 0}.

We now show that Proposition 4.1 implies Theorem 1.2, and the remainder of the paper
will be devoted to prove Proposition 4.1.
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Proof of Theorem 1.2 As discussed in Subsection 3.1, Theorem 1.2 is equivalent to obtaining
C1,α estimates on {xn = 0} for the hodograph transform. After relabeling constants if nec-
essary, the hodograph transform does satisfy the hypotheses of Proposition 4.1 with ε = ε0,
λ ≤ min{δε0, λ0}, a0(t) = (0, 0, . . . , 0, (a0)n(t)) ∈ RK/2. Now Proposition 4.1 can be
applied indefinitely in the cylinders Cλk , λk := λτ k , with ε = εk := ε02−k = C(λ)λα

k . The
hypothesis that ak(t) ∈ RK is satisfied (by choosing ε0 smaller if necessary) since

|ak(t) − ak−1(t)| ≤ Cεk, a0(t) ∈ RK/2,

from which we also deduce that

|ak(t) − ∇u(0, t)| ≤ Cεk . (4.4)

Hence

|u − lak ,bk | ≤ εkλk ≤ C(λ) λ1+α
k in Cλk ,

for all k ≥ 0, and from (4.3) (applied for λk) and (4.4) we deduce that

|∇u(0, t) − ∇u(0, s)| ≤ C(λ)|t − s|α/2,

which gives

|ak(t) − ak(s)| ≤ C(λ)λ
α/2
k if t, s ∈ [−λk, 0].

Using that b′
k = g(ak) we finally obtain

|u − (ak(0) · x + b′
k(0)t + bk(0))| ≤ C(λ)λ

1+ α
2

k in Cλk ,

which is the desired conclusion. ��

4.1 Strategy of the proof of the improvement of flatness

We briefly explain the strategy of the proof of Proposition 4.1. The main idea is to linearize
the equation near la,b. Define w(x, t) the rescaled error by

u(x, t) := la,b(x, t) + ελw

(
x

λ
,

t

λ

)
, (x, t) ∈ Cλ. (4.5)

Then w is defined in C1, possibly multi-valued near {xn = 0}, and satisfies by hypothesis

|w| ≤ 1 in C1,
and {

λa′
n(λt)xn + b′(λt) + εwt (x, t) = F

(
a(λt) + ε∇w, ε

λ
D2w

)
in C1,

b′(λt) + εwt = g(a(λt) + ε∇w) on F1.
(4.6)

We show thatw is well approximated by a solution to the linear equation obtained formally
by multiplying the first equation by λε−1 and the second by ε−1 and then letting ε → 0,
δ → 0. Using |a′| ≤ δελ−2, and λε−1 ≤ δ → 0 we obtain{

λvt = tr(Aλ(t)D2v) in C1,
vt = γλ(t) · ∇v on F1,

(4.7)
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with

Aλ(t) := A(a(λt)), γλ(t) := ∇g(a(λt)).

Using that A, g ∈ C2(RK ), and that |a′| � λ−2 we find

|A′
λ(t)| ≤ λ−1, |γ ′

λ(t)| ≤ λ−1.

The next sections are devoted to the study of the linear problem (4.7), and to obtain estimates
which are uniform with respect to λ. To this aim, we introduce a distance d between points
(x, t) ∈ R

n+1

d((x, t), (y, s)) :=
= min{|x ′ − y′| + |xn − yn | + |t − s|1/2, |x ′ − y′| + |xn | + |yn | + |t − s|},

which is consistent with the scaling of the equation, so that d is equivalent with the standard
Euclidean distance on the hyperplane xn = 0 and with the standard parabolic distance far
away from this hyperplane. The various Hölder estimates in the next section are written
with respect to this distance d , or after a dilation of factor λ−1 with respect to the rescaled
distance dλ. In particular, this allows us to show that solutions v to the linear problem enjoy
an improvement of flatness property in cylinders Cτ k , which can be transferred further to the
solutions of the nonlinear problem (4.6).

The relation between solutions w to (4.6) and v to (4.7) is made precise in the next
proposition. It states that w satisfies essentially a comparison principle with C2 subsolu-
tions/supersolutions v of (4.7) which have bounded derivatives and second derivatives in
x .

Proposition 4.3 (Comparison principle) Let v ∈ C2(�) with � ⊂ C1 satisfy

|∇v|, |D2v| ≤ M,

for some large constant M and{
λvt ≤ tr(Aλ(t)D2v) − Cδ in �,

vt ≤ γλ(t) · ∇v − δ on F1 ∩ �,
(4.8)

with Aλ(t), γλ(t) as above.
Then v is a subsolution to (4.6), as long as C is sufficiently large, universal, and ε

≤ ε1(δ, M). In particular, if

v ≤ w on ∂�\({t = 0} ∪ {xn = 0})
then

v ≤ w in �.

Similarly, we have the same result for supersolutions by replacing≤ by≥ and the− signs
in (4.8) by +.

Proof It is straightforward to show that (4.8) implies the corresponding inequalities for v (in
place of w) in (4.6). We need to use the hypotheses of Proposition 4.1 and that

λ‖a′‖L∞ + ‖b′‖L∞ ≤ C, |A(a(λt) + ε∇v) − A(a(λt))| ≤ CεM,

|g(a(λt) + ε∇v) − g(a(λt)) − ε∇g(a(λt)) · ∇v| ≤ Cε2M2.

��
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As a consequence, we obtain that if the rescaled errorw is close to a C2 solution v of (4.7)
on the Dirichlet boundary of a domain � ⊂ C1, then v and w remain close to each other in
the whole domain �.

Corollary 4.4 Let w be a solution to (4.6) and v ∈ C2 be a solution of (4.7) in a domain
� ⊂ C1, with

|∇v|, |D2v| ≤ M .

If ε ≤ ε1(δ, M) and

|v − w| ≤ σ on ∂�\({t = 0} ∪ {xn = 0})
then

|v − w| ≤ σ + Cδ in �.

Proof This follows immediately by applying Proposition 4.3 to

v ± (Cδ(x2n − t − 2) − σ).

��
We apply Proposition 4.3 and Corollary 4.4 to functions v for which M is large, universal.

In order to apply Corollary 4.4 we need to show that w can be well approximated near the
boundary of C1/2 by a solution v to (4.7) with bounded second derivatives in x . We prove
that w has essentially a Hölder modulus of continuity (as δ → 0) with respect to the distance
dλ induced by d , and then we let v be the solution to the Dirichlet problem (4.7) in C1/2 with
boundary data which is sufficiently close to w.

We conclude this section by stating a version of interior Harnack inequality for w with
respect to constants, which is an immediate consequence of property H(ε1/2) of u in Cλ, see
Definition 3.5.

As in (4.2), the error between la,b and a linear function independent of t in a time-interval
of size (λr)2 is Cδελ r2. Then Definition 3.5 implies the following property for u − la,b.

If for some constant ω

u − (ω + la,b) ≥ 0 in Qλr (x0) × [t0 − (λr)2, t0 + (λr)2] ⊂ Cλ,

with r ∈ [ε1/2, 1], and
(u − (ω + la,b))(x0, t0) ≥ μελ, for some μ ≥ Cδr2,

then

u − (ω + la,b) ≥ κ

2
μελ in Qrλ/2(x0) ×

[
t0 + 1

2
(λr)2, t0 + (λr)2

]
,

with κ the universal constant fromDefinition 3.5. In terms ofw this can be written as follows.
Interior Harnack inequality for w. If

w ≥ ω in Qr (x0) × [t0 − λr2, t0 + λr2] ⊂ C1,
with ω a constant, r ≥ ε1/2, and

w(x0, t0) ≥ ω + μ, for some μ ≥ Cδr2,

then

w ≥ ω + κ

2
μ in Qr/2(x0) ×

[
t0 + λ

2
r2, t0 + λr2

]
. (4.9)
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5 The linearized problem

In this section, we state various estimates for the linear problem (4.7) which are uniform in
the parameter λ ≤ 1 and we use them to prove our main result Proposition 4.1. We start with
introducing the distance dλ with respect to which our estimates are obtained.

5.1 Definition of the distances d, d� and the family of ballsBr,B�,r.

We define the following distance in Rn+1

d((x, t), (y, s)) :=
= min{|x ′ − y′| + |xn − yn | + |t − s|1/2, |x ′ − y′| + |xn | + |yn | + |t − s|},

which interpolates between the parabolic distance and the standard one depending on how far
points are from {xn = 0}. It is not too difficult to check that d satisfies the triangle inequality.

For r ≤ 1 and points (y, s) with yn ∈ [0, 1], we define the family of “balls” of center
(y, s) and radius r , which are backwards in time and restricted to {xn ≥ 0}, and which are
consistent with the distance induced by d:

Br (y, s) := Qr (y) × (s − r2, s), if r < |yn |,
Br (y, s) := Q+

r (y) × (s − r , s), if 1 ≥ r ≥ |yn |,
where we recall that

Qr (y) := {x ∈ R
n | |xi − yi | < r}, Q+

r (y) := Qr (y) ∩ {xn ≥ 0}.
Notice that

(x, t) ∈ B2r (y, s)\Br (y, s) �⇒ d((x, t), (y, s)) ∼ r .

A function v : U → R, with U ⊂ C1, is Hölder with respect to the distance d if

[v]Cα
d

:= sup
(x,t)	=(y,s)

|v(x, t) − v(y, s)| d((x, t), (y, s))−α < ∞.

Equivalently, v ∈ Cα
d (U ) if and only if there exists M such that ∀(x, t) ∈ U

osc v ≤ Mrα in Br (x, t) ∩ U .

5.1.1 Rescaling

Assume λ ≤ 1 and we perform a dilation of factor λ−1 which maps Q+
λ into Q+

1 . We use the
hyperbolic scaling for the rescaled distance dλ of d

dλ((x, t), (y, s)) := 1

λ
d(λ(x, t), λ(y, s))

= min{|x ′ − y′| + |xn − yn | + λ−1/2|t − s|1/2, |x ′ − y′| + |xn | + |yn | + |t − s|}.
The corresponding family of balls induced by dλ, denoted by Bλ,r is obtained by dilating of
a factor λ−1 the sizes of the balls Br above and then relabeling λ−1r by r . We find

Bλ,r (y, s) := Qr (y) × (s − λr2, s), if r < |yn |,
Bλ,r (y, s) := Q+

r (y) × (s − r , s), if λ−1 ≥ r ≥ |yn |,
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and notice that Bλ,r (y, s) = Br (y, s) if yn = 0.
As above a function v is Hölder with respect to the distance dλ inU and write v ∈ Cα

dλ
(U )

if there exists M such that

osc v ≤ Mrα in Bλ,r (x, t) ∩ U .

5.2 Estimates

Having introduced the distance dλ, we are now ready to state the estimates for the linear
problem {

λvt = tr(A(t)D2v) in C1,
vt = γ (t) · ∇v on F1,

(5.1)

with

K −1 I ≤ A(t) ≤ K I , K −1 ≤ γn ≤ K , |γ | ≤ K

λ ∈ (0, 1], |A′(t)| ≤ λ−1, |γ ′(t)| ≤ λ−1,

for some large constant K . Here constants depending on n and K are called universal.
We start with an interior regularity result (see Definition 3.4 of la,b).

Proposition 5.1 (Interior estimates) Let v be a viscosity solution to (5.1) such that ‖v‖L∞
≤ 1. Then

|∇v|, |D2v| ≤ C in C1/2,
and for each ρ ≤ 1/2, there exists lā,b̄ such that

|v − lā,b̄| ≤ Cρ1+α in Cρ,

with

b̄′(t) = γ (t) · ā, |ā′
n | ≤ Cρα−1λ−1, |ā| ≤ C,

with α, C universal.

In terms of the Dirichlet problem for (5.1), we define the Dirichlet boundary of C1 as

∂DC1 := ∂C1 ∩
(
{t = −1} ∪ {xn = 1} ∪n−1

i=1 {|xi | = 1}
)

.

Notice that ∂DC1 is different from the standard parabolic boundary since the points on F1

are also excluded.

Proposition 5.2 (The Dirichlet problem) Let φ be a continuous function on ∂DC1. Then there
exists a unique classical solution v ∈ C2,1(C1) ∩ C0(C̄1) to the Dirichlet problem (5.1) with
v = φ on ∂DC1. Moreover,

|∇v|, |D2v| ≤ C(σ )‖v‖L∞ in Cσ
1 := {dλ((x, t), ∂DC1) ≥ σ },

and if φ is Cα with respect to the distance dλ, then v is also Cα up to the boundary and

‖v‖Cα
dλ

≤ C‖φ‖Cα
dλ

,

with C(σ ), C universal constants (independent of λ).
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Here

‖v‖Cα
dλ

:= ‖v‖L∞ + sup
(x,t)	=(y,s)

|v(x, t) − v(y, s)|dλ((x, t), (y, s))−α.

The proofs of Propositions 5.1 and 5.2 are based on a Harnack inequality for solutions to
(5.1), which we provide in the next section. The Harnack inequality holds for more general
equations of the same type with measurable coefficients. It applies also for solutionsw to the
nonlinear problem (4.6) up to scale ε1/2. To state it, we recall the definition of the maximal
Pucci operators

M+
K (N ) = max

K −1 I≤A≤K I
tr AN , M−

K (N ) = min
K −1 I≤A≤K I

tr AN . (5.2)

Theorem 5.3 (Hölder continuity) Let v be a viscosity solution to⎧⎪⎨
⎪⎩
M+

K (D2v) ≥ λvt ≥ M−
K (D2v) in C1,

K −1v−
n − Kv+

n − K |∇x ′v| ≥ vt ≥ K −1v+
n − Kv−

n − K |∇x ′v| on F1.

(5.3)

Then v is locally Hölder continuous in C1/2 with respect to the metric induced by dλ, that is

‖v‖Cα
dλ

(C1/2) ≤ C‖v‖L∞(C1).

Moreover, if v is continuous up to the boundary and v = φ on ∂DC1 with φ ∈ Cα
dλ

then
v ∈ Cα

dλ
up to the boundary and

‖v‖Cα
dλ

≤ C‖φ‖Cα
dλ

.

The constants α and C depend only on n and K .

Proposition 5.4 (Harnack inequality for w) Assume that u satisfies the hypotheses of Propo-
sition 4.1 and w is defined as in (4.5). Then

osc Bλ,r (x0,t0) w ≤ Crα, ∀(x0, t0) ∈ C1/2, r ≥ C(δ)ε1/2,

provided that δ ≤ c′ universal.

5.3 Proof of Proposition 4.1.

Using the results above we can complete the proof of Proposition 4.1.

Proof of Proposition 4.1 We divide the proof in two steps.
Step 1 We prove that there exists a solution v to (4.7) which approximates w well in C1/2,

that is

|v − w| ≤ Cδ in C1/2,

provided that ε ≤ ε1(δ).
Indeed, by Proposition 5.4 we know that there exists a function φ defined in C1/2 such

that

|w − φ| ≤ δ, ‖φ‖Cα
dλ

≤ C . (5.4)
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Let v be the solution to (4.7) in C1/2 with v = φ on ∂DC1/2, which exists in view of Proposition
5.2 and satisfies,

‖v‖Cα
dλ

≤ C . (5.5)

Then, if dλ((x, t), ∂DC1/2) ≤ δ1/α , there exists (y, s) on ∂DC1/2 so that (using (5.5) and
(5.4)),

|v(x, t) − φ(y, s)| ≤ Cδ, |w(x, t) − φ(y, s)| ≤ Cδ,

thus,

|v − w| ≤ Cδ on C1/2 ∩ {dλ((x, t), ∂DC1/2) ≤ δ1/α}. (5.6)

In particular

|v − w| ≤ Cδ on ∂D�, � := C1/2 ∩ {dλ((x, t), ∂DC1/2) > δ1/α}.
On the other hand, by Proposition 5.2,

|∇v|, |D2v| ≤ C(δ) in �.

Thus, using Corollary 4.4,

|v − w| ≤ Cδ in �,

which gives the desired claim.
Step 2 Applying Proposition 5.1, to the solution v above, we find that

|w − lā,b̄| ≤ Cρ1+α + Cδ in Cρ,

and

b̄′(t) = γλ(t) · ā, |ā′
n | ≤ Cρα−1λ−1, |ā| ≤ C,

with γλ(t) = ∇g(a(λt)). We choose ρ = τ small, universal, and

δ = τ 1+
α
2 ,

so that δ ≤ c′ the constant from Proposition 5.4, and

|w − lā,b̄| ≤ 1

4
τ in Cτ , |ā′

n | ≤ 1

4
δ τ−2λ−1.

In terms of the original function u, this inequality implies∣∣∣∣u −
(

la,b + ελlā,b̄

(
x

λ
,

t

λ

))∣∣∣∣ = ελ

∣∣∣∣w
(

x

λ
,

t

λ

)
− lā,b̄

(
x

λ
,

t

λ

)∣∣∣∣ ≤ ε

4
τλ in Cτλ.

Set

ã(t) := a(t) + ε ā

(
t

λ

)
, b̂(t) := b(t) + ελ b̄

(
t

λ

)
,

then

|u − lã,b̂| ≤ ε

4
τλ in Cτλ,

and

|ã′
n | ≤ εδ

λ2

(
1 + 1

4τ 2

)
≤ εδ

2(τλ)2
.
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Finally, we define b̃ by the ODE

b̃′ = g(ã), b̃(0) = b̂(0),

and then we have

b̂′ = b′ + εb̄′
(

t

λ

)
= g(a(t)) + ε∇g(a(t)) · ā

(
t

λ

)
= g(ã(t)) + O(ε2) = b̃′ + O(ε2).

If t ∈ [−τλ, 0] then
|(b̃ − b̂)(t)| ≤ Cε2|t | ≤ ε

4
τλ,

which implies the desired conclusion

|u − lã,b̃| ≤ ε

2
(λτ) in Cτλ,

and ã, b̃ satisfy the required bounds. ��

6 Harnack inequality

In this section, we prove Theorem 5.3 and Proposition 5.4. The key ingredient is to establish
a diminishing of oscillation property. As usual, universal constants depend on n, K .

Proposition 6.1 Assume that v is a viscosity solution of (5.3) and 0 ≤ v ≤ 1 in C1. Then

oscC1/2v ≤ 1 − c,

with c > 0 universal.

In order to prove Proposition 6.1 we start with a lemma. Let � be a smooth domain in
R

n , n ≥ 2, such that

Q̄+
3/4 ⊂ �̄ ⊂ Q̄+

7/8,

and call

T := {xn = 0} ∩ Q3/4 ⊂ ∂�.

Define η(x ′) a standard bump function supported on Q′
5/8 and equal 1 on Q′

1/2 (here the prime

denotes cubes in Rn−1). Let φ satisfy (see (5.2) for the definition of the Pucci operator)

M−
K (D2φ) = 0 in �,

φ = 0 on ∂�\T , φ = η on T ,

and notice that 0 ≤ φ ≤ 1,φ ≥ c on Q+
1/2, and byHopf lemmaφn > 0 on {xn = 0}∩{φ = 0}.

The following lemma holds.

Lemma 6.2 Let v ≥ 0 satisfy{
M+

K (D2v) ≥ λvt ≥ M−
K (D2v) in C1,

vt ≥ K −1v+
n − Kv−

n − K |∇x ′v| on F1,
(6.1)

in the viscosity sense. If for some t0 ∈ (−1, 0],
v(x, t0) ≥ s0 φ(x) in Q+

1 , s0 ≥ 0,
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then

v(x, t) ≥ s(t) φ(x) in Q+
1 × [t0, 0],

with

s′(t) = −C0s(t), s(t0) = s0, C0 large universal.

Moreover, if s0 ≤ c0 with c0 small universal, and

v

(
1

2
en, t0 + λ/4

)
≥ 1

2
, (6.2)

then

v(x, t0 + λ) ≥ (s0 + c0λ)φ(x) in Q+
1 .

Proof For the first part of the claim, since v ≥ 0, it suffices to show that with our choice of
s,

w(x, t) := s(t)φ(x),

is a subsolution to (6.1) in � × [t0, 0], that is{
λwt ≤ M−

K (D2w) in � × (t0, 0],
wt ≤ K −1w+

n − Kw−
n − K |∇x ′w| on {xn = 0} ∩ (� × (t0, 0]).

The interior equation is immediately satisfied since s′ ≤ 0 and s ≥ 0. On {xn = 0}, we need
to show that

Cφ + K −1φ+
n − Kφ−

n − K |∇x ′φ| ≥ 0,

for some large C . By Hopf lemma φn > 0 on {φ = 0} ∩ {xn = 0} and moreover |∇x ′φ| = 0,
thus

K −1φ+
n − Kφ−

n − K |∇x ′φ| = K −1φn > 0 on {φ = 0} ∩ {xn = 0}.
The same holds in a neighborhood of this set by continuity, and then we can choose C
sufficiently large so that the desired inequality holds.

For the second part, denote for simplicity

ti := t0 + i
λ

4
, i = 1, . . . , 4.

We define

D := {x ∈ �| d(x, ∂�) > c} ⊂ �,

with c small universal such that there exists a C2 function ψ ≥ 0 defined in �\D satisfying

M−
K (D2ψ) ≥ 4 in �\D,

and

ψ = 0, |∇ψ | ≥ 1 on ∂�, ψ ≤ 1 on ∂ D.

An example of such a function is given by ψ = d + Cd2 with C sufficiently large, where d
is the distance function to ∂�. In view of (6.2)

v

(
1

2
en, t1

)
≥ 1/2.
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Thus, we can use Harnack inequality (after rescaling) to conclude that

v ≥ 2c1 on D × [t2, t4], (6.3)

for some small c1. We claim that at time t = t3,

v(x, t3) ≥ s(t3)φ + c1ψ in �\D. (6.4)

For this we compare v in (�\D) × [t2, t3] with

q(x, t) := s(t3)φ + c1

(
ψ + t − t3

t3 − t2

)
.

The inequality q ≤ v holds on the boundary of the domain. Indeed (recall that s is decreasing),
on ∂ D

q(x, t) ≤ s(t3)φ + c1 ≤ s0 + c1 ≤ 2c1 ≤ v,

where in the last inequality we used (6.3), and on ∂� or at t = t2 we have q ≤ s(t3)φ ≤ v.
It remains to check that q is a subsolution for the interior equation. Indeed,

λqt = 4c1 ≤ c1 M−
K (D2ψ) ≤ M−

K (D2q),

where we used that M−
K (N1) + M−

K (N2) ≤ M−
K (N1 + N2), and claim (6.4) is proved.

Next, in the domain (�\D) × [t3, t4] we compare v with the subsolution

z(x, t) := (s(t3) + c2(t − t3))φ(x) + c1ψ(x),

with c2 sufficiently small.
The inequality v ≥ z is satisfied at time t = t3 by (6.4), and on ∂ D we have

z ≤ s0 + c2 + c1 ≤ 2c1 ≤ v,

while on ∂�\{xn = 0} we have z = 0 ≤ v. We check that z is a subsolution of our problem.
For the interior inequality we have

λzt = c2λφ ≤ c2 ≤ c1 M−
K (D2ψ) ≤ M−

K (D2z).

For the boundary condition, on {xn = 0} we get
zt = c2φ ≤ c2 ≤ c1

4
K −1ψn, (6.5)

where in the second inequality we have used that ψn ≥ 1 on ∂�∩{xn = 0}. Moreover, since
φn ≥ −C on ∂� ∩ {xn = 0}, we get (for s0, c2 small enough),

zn ≥ −
(

s0 + c2
λ

4

)
C + c1ψn ≥ c1

2
ψn,

and finally (|∇x ′ψ | = 0 on {xn = 0})
K |∇x ′ z| ≤

(
s0 + c2

4

)
K |∇x ′φ| ≤ c1

4
K −1ψn .

Together with (6.5), this gives

zt = c2φ ≤ c2 ≤ K −1zn − K |∇x ′ z| on {xn = 0}.
In conclusion, at time t = t4 we have v ≥ z in �\D and v ≥ 2c1 in D which gives the
desired claim by choosing c0 sufficiently small. ��
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Remark 6.3 In the proof above we only used the subsolution property for v

M+
K (D2v) ≥ λvt , (6.6)

in order to extend the inequality (6.2) fromone point to (6.3) by applying the interior parabolic
Harnack inequality. Alternately, it is sufficient to assume that the Harnack inequality holds
for v only in a neighborhood of D and not necessarily up to {xn = 0}.

The rest of the proof is based on comparing v with the explicit C2 subsolutions w, q and
z which all have bounded second derivatives in the x variable. Thus the hypothesis that v

is a viscosity supersolution of (6.1) can be slightly relaxed, and require instead, that v only
satisfies the comparison principle with respect to the explicit barriers above.

Remark 6.4 The hypothesis (6.6) can be removed completely if instead of (6.2) we assume
a measure estimate∣∣∣∣

{
v ≥ 1

4

}
∩

(
Q1 ×

[
t0, t0 + λ

4

])∣∣∣∣ ≥ 1

2

∣∣∣∣Q1 ×
[

t0, t0 + λ

4

]∣∣∣∣ .
Then, the inequality (6.3) follows directly from the supersolution property for v and the weak
Harnack inequality (see for example [20]).

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1 Assume that 0 ≤ v ≤ 1, and for half of the values of

tk := −1 + kλ, so that tk ∈ [−1,−1/2), k = 0, 1, 2, . . . ,

we have

v

(
1

2
en, tk + λ/4

)
≥ 1

2
. (6.7)

We apply Lemma 6.2 repeatedly to the sequence of times tk and obtain

v(x, tk) ≥ skφ, sk := s(tk), s0 = 0,

with φ given in Lemma 6.2, and

sk+1 ≥ sk + c0λ if (6.7).holds and sk ≤ c0,

or

sk+1 ≥ sk(1 − C0λ) otherwise.

Now it follows that sk ≥ c1 for the last value of k so that tk < −1/2, for c1 appropriately
chosen depending on c0, C0. Then we apply the first part of Lemma 6.2 to obtain

v(x, t) ≥ c̄φ for all t ≥ −1/2,

which gives the desired conclusion, since φ > c on Q+
1/2. ��

The same arguments show that a similar statement to that of Proposition 6.1 holds for a
solution w of (4.6) defined in (4.5). Below is the key lemma which connects the linear and
nonlinear problem and allows us to reduce our analysis mostly to the linear case.
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Lemma 6.5 Assume that u satisfies the hypotheses of Proposition 4.1 and let w be defined
as in (4.5), with −1 ≤ w ≤ 1. Then

osc C1/2w ≤ 2(1 − c),

with c universal, provided that δ ≤ c′ and ε ≤ ε1(δ).

Proof We may assume as above that w(en/2, tk + λ/4) ≥ 0 for more than half the values of
k, and then show that w separates from the lower constraint −1. For this we apply the same
argument as above to the function

w̄ := w + 1 + Cδ(2 + t − x2n ) ≥ 0,

forwhich the relaxed hypotheses of Remark 6.3 hold. Indeed, by (4.9), w̄ satisfies the required
Harnack inequality (6.2) �⇒ (6.3) and, by Proposition 4.3, it satisfies the comparison with
the explicit barriers of Lemma 6.2.

We remark that we have only used that u has property H(c′′) in Cλ for some c′′ small,
universal. ��

Before we proceed with the proofs of Theorem 5.3 and Proposition 5.4 we provide a
boundary version of the diminishing of oscillation Proposition 6.1.

Lemma 6.6 Assume that U is a space-time domain obtained by the intersection of n + 1 half
spaces in the x1, . . . , xn−1, xn and t variables,

U := (−∞, z1) × (−∞, z2) × · · · × (−∞, zn) × (−zn+1,∞) ⊂ R
n+1,

with zi ∈ [0, 1].
Assume that v ≥ 0 satisfies⎧⎪⎨

⎪⎩
λvt ≥ M−

K (D2v) in C1 ∩ U ,

vt ≥ K −1v+
n − Kv−

n − K |∇x ′v| on F1 ∩ U ,

v ≥ 1
4 on ∂U ∩ C1.

(6.8)

If min zi ≤ 7
8 , then

v ≥ c in C1/2 ∩ U , c universal.

Proof This follows easily from Lemma 6.2. Indeed, we work with the truncation ṽ

:= min{v, 1
4 } extended by 1

4 in C1\U . Then ṽ is a supersolution for our problem in C1.
If zn+1 < 1, then we can apply directly the first part of Lemma 6.2 for ṽ for some t0 close

to −1 and for s0 universal, and obtain the desired conclusion.
On the other hand, if zn+1 = 1, then zi ≤ 7

8 for some i ≤ n hence for each time t ∈ [−1, 0]
we find ∣∣∣∣

{
ṽ ≥ 1

4

}
∩ Q1

∣∣∣∣ ≥ c|Q1|.

Now the conclusion follows as before, see Remark 6.3. ��
We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3 Notice that the rescaling of v

vr (x, t) = v(r x, r t), r ≤ 1,
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satisfies again the hypotheses of Theorem 5.3 in C1 with the constant λ replaced by λr = λr .
Proposition 6.1 applied to vr implies that

osc C1/2 vr ≤ (1 − c)osc C1 vr

which gives (recall that Bλ,r (y, s) = Br (y, s) if yn = 0),

osc Br/2(0,0) v ≤ (1 − c)osc Br (0,0) v.

Similarly, if (y, s) ∈ C1/2 ∩ {xn = 0}, then by considering cylinders centered at (y, s) we
obtain

osc Br/2(y,s) v ≤ (1 − c)osc Br (y,s) v, ∀r ≤ 1/2, (6.9)

which proves the desired oscillation decay on {xn = 0} ∩ C1/2.
If (y, s) ∈ C1/2, then (6.9) applied at ((y′, 0), s) implies

osc Bλ,r/8(y,s) v ≤ (1 − c)osc Bλ,r (y,s) v, if yn ≤ r ≤ 1/4.

In the case when r < yn, then the inequality above follows from the standard parabolic
Harnack inequality applied to v in the interior cylinder Bλ,r (y, s).

The boundary version follows in the same way. Precisely, if (y, s) ∈ C1 ∩ {xn = 0} then
we find

osc Br/2(y,s)∩C1
v ≤ (1 − c)osc Br (y,s)∩C1

v, ∀r ≤ 1,

by applying either Proposition 6.1 or Lemma 6.6 depending whether or not Bλ,r (y, s) inter-
sects the boundary ∂DC1.

The inequality above can be deduced at all points (y, s) ∈ C1 after replacing r/2 by r/8
on the left hand side. Indeed, if r ≥ yn then it follows from the inequality above applied at the
point ((y′, 0), s), and if r < yn then we can apply the standard parabolic Harnack inequality
or its boundary version since Bλ,r (y, s) does not intersect {xn = 0}. ��

We conclude the section with the proof of Proposition 5.4, that is the Harnack inequality
for w.

Proof of Proposition 5.4 By Lemma 6.5 we find that, in terms of u, we satisfy again the
hypotheses of Proposition 4.1 in Cλ/2 with λ replaced by λ/2, ε replaced by 2(1 − c)ε, and
with δ the same. The function a stays the same while b is modified by a small constant.
Moreover, the property H(ε1/2) of u in Cλ implies that u satisfies property H(2ε1/2) in Cλ/2.
We can iterate this result k times as long as the scale parameter of the property H(2kε1/2)

remains small, universal, and the hypotheses of Lemma 6.5 hold:

2kε1/2 ≤ c′′, δ ≤ c′, 2k(1 − c)kε ≤ ε1(δ),

with c′′ small, universal. This means that we can iterate k times if

2kε1/2 ≤ ε2(δ), δ ≤ c′.

In terms of w, we obtain that its oscillation in C2−k is bounded by 2(1 − c)k as long as k
satisfies the inequality above. On the other hand for the interior ballsBλ,r , by (4.9),w satisfies
a similar diminishing of oscillation up to scale r ∼ ε1/2, and the conclusion follows. ��
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7 Proof of Proposition 5.1

In this section, we prove Proposition 5.1 by using Theorem 5.3 and the estimates for the one-
dimensional problem which will be proved in Lemma 8.1 of the next section. The constants
C in this proof depend on n and K .

Proof of Proposition 5.1 The proof is divided in four steps.
Step 1 - Interior estimates. Let (y, s) ∈ C1/2. From Theorem 5.3 we know that

osc Br (y,s)v ≤ Crα, r = yn .

The rescaling

ṽ(x, t) := v(y + r x, s + r2λt),

solves in Q1 × (−1, 0)

ṽt = tr( Ã(t)D2ṽ), Ã(t) := A(s + r2λt).

Since |A′| ≤ λ−1, we have | Ã′(t)| ≤ C, and we find by interior estimates that |ṽn(0, 0)|
≤ C oscQ1×(−1,0) ṽ, from which we deduce

|vn(y, s)| ≤ Crα−1 = Cyα−1
n .

On the other hand, we prove in appendix that the difference of two viscosity solutions is still
a viscosity solution. Thus, the estimates for v can be extended to the derivatives of v in the
xi directions, i = 1, . . . , n − 1. Indeed, by applying the interior Hölder estimates to discrete
differences in the xi directions, and iterating this we find that

‖Dk
x ′v‖ ≤ C(k) in C1/2, ∀k ≥ 1.

In particular, using also the estimate for vn above, we obtain

‖D2
x ′v‖ ≤ C, |vin | ≤ Cxα−1

n in C1/2.
Step 2 - Reduction to 1D. Combining the interior estimates with our assumptions on γ,we

obtain that when we restrict v to a two-dimensional space in which we freeze the x ′ variable,
say for simplicity x ′ = 0, then the function v((0, xn), t) solves in the xn, t variables the
equation {

vt = 1
λ
{ann(t)vnn + h(xn, t)} in C1,

vt = γn(t)vn + f (t) on F1,
(7.1)

with

|h| ≤ Cxα−1
n , | f (t)| ≤ C,

h(xn, t) :=
∑

(i, j)	=(n,n)

ai j (t) vi j ((0, xn), t), f (t) :=
∑
i<n

γi (t) vi (0, t).

The boundary condition on F1 is understood in the viscosity sense.
Indeed, if a C1 function ϕ(xn, t) touches v(0, xn, t) by above/below, say at (0, 0), in

Br (0, 0) ⊂ R
2, then

ϕ(xn, t) +
∑
i<n

vi (0, 0)xi ± C |(x, t)|1+α
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touches v by above/below at the origin in Br (0, 0) ⊂ R
n+1. This follows from the Cα

continuity of vi , i < n, which implies∣∣∣∣∣v(x, t) −
(

v(0, xn, t) +
∑
i<n

vi (0, 0)xi

)∣∣∣∣∣ ≤ C |(x, t)|1+α. (7.2)

Now, we can use Lemma 8.1 a) for v(0, xn, t), where we establish C1,α estimates for the
1D problem (7.1). We obtain

|v((0, xn), t) − v(0, t) − vn(0, t)xn | ≤ Cx1+α
n ,

which together with (7.2) gives∣∣∣∣∣v −
(

v(0, t) + vn(0, t)xn +
n−1∑
i=1

vi (0, 0)xi

)∣∣∣∣∣ ≤ Cρ1+α in Cρ.

This means that

|v − la,b| ≤ Cρ1+α in Cρ,

with

a(t) := (v1(0, 0), . . . , vn−1(0, 0), vn(0, t)), b(t) := v(0, t),

and

b′ = γn(t)an + f (t) = γ (t) · a +
∑
i<n

γi (t)(vi (0, t) − vi (0, 0)).

Step 3 - Modifying the linear approximation. Next, we modify a and b slightly into ā, b̄
so that

|v − lā,b̄| ≤ Cρ1+α in Cρ,

and we also satisfy

|ā′(t)| ≤ Cλ−1ρα−2, b̄′ = γ (t) · ā. (7.3)

By Lemma 8.1 we know that

|an(t) − an(s)| ≤ Cλ− α
2 |t − s| α

2 , (7.4)

and by the Hölder continuity of the vi ’s,

|b′ − γ (t) · a| ≤
∑
i<n

|γi ||vi (0, t) − vi (0, 0)| ≤ C |t |α. (7.5)

Thus, an oscillates Cρα in an interval of length λρ2. We define ā by averaging a over
intervals of this length. More precisely, let η be a standard mollifier in R with compact
support in [−1, 1], and ητ denote its rescaling with support of size τ . We extend an(t) to be
constant for t ≥ 0 and define

ān := an ∗ ηλρ2 , āi := ai , i = 1, . . . , n − 1.

Then (7.4) implies the inequality (7.3) for ā′ and also

|a − ā| ≤ Cρα. (7.6)
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We define b̄(t) for t ≤ 0 as

b̄′ = γ (t) · ā, b̄(0) = b(0).

Then, (7.5), (7.6) imply

|(b̄ − b)′| ≤ Cρα �⇒ |b̄ − b| ≤ Cρ1+α in [−ρ, 0],
and the desired conclusion follows.

Step 4 - Conclusion. The tangential derivatives vi , with i < n, satisfy the same estimates
as v. We find from Step 2 applied to vi that the mixed derivatives vin must be bounded by
a universal bound. This improves the initial estimate in Step 1, which in turn improves the
regularity of f and h in Step 2. More precisely, by Lemma 8.1 we find that vin satisfies
the estimate (8.2). This holds also for the tangential derivatives of order up to 2. Then the
functions h(x, t) and f (t) in (7.1) satisfy the hypotheses of part b) of Lemma 8.1. This gives
that the remaining second derivative vnn is bounded as well, and (7.4) holds for α +1 instead
of α. Thus we can replace α by α +1 in the bound (7.3) above, and the proposition is proved.

��

8 Estimates for the 1D case

In this section, we provide the necessary estimates for solutions to the 1D linear problem. The
difference with the higher dimensional case is that now, in the 1D case, the Hölder estimates
and the subsequent C1,α and C2,α estimates can be iterated in parabolic cylinders

Pρ := (0, ρ) × (−ρ2, 0],
and we can use the standard Hölder parabolic norms with respect to the standard parabolic
distance: d((x, t), (y, s)) := |x − y| + |t − s|1/2. Following Krylov [16], we denote the
corresponding Hölder spaces with respect to this distance with Ck,α

x,t .

Precisely, we prove the following.

Lemma 8.1 (1D-Estimates) Assume that λ ≤ 1 and w(x, t) is a viscosity solution in C1 ⊂ R
2

of the equation {
wt = 1

λ
{A(t)wxx + h(x, t)} in C1,

wt = γ (t)wx + f (t) on F1,
(8.1)

with

‖w‖L∞ ≤ 1, K −1 ≤ A(t), γ (t) ≤ K , |A′(t)| ≤ Kλ−1.

(a) If

|h| ≤ K xα−1, | f (t)| ≤ K ,

then w ∈ C1,α in the x variable, w ∈ C1 on {x = 0}, and the free boundary condition is
satisfied in the classical sense. More precisely, in C1/2 we have

|w(x, t) − (w(0, t) + xwx (0, t))| ≤ Cx1+α, |wx | ≤ C,
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and

|w(y, t) − w(z, s)| ≤ C
(
|y − z|α + λ− α

2 |t − s| α
2

)
,

|wx (y, t) − wx (z, s)| ≤ C
(
|y − z|α + λ− α

2 |t − s| α
2

)
, (8.2)

with C depending only on K and α.
(b) If in addition in C3/4

|h(y, t) − h(z, s)| ≤ K
(
|y − z|α + λ− α

2 |t − s| α
2

)
,

|γ (t) − γ (s)| ≤ Kλ− α
2 |t − s| α

2 , | f (t) − f (s)| ≤ Kλ− α
2 |t − s| α

2 ,

then in C1/2
|wx (0, t) − wx (0, s)| ≤ Cλ− 1+α

2 |t − s| 1+α
2 , |wxx | ≤ C . (8.3)

After subtracting F(t) := ∫ t
0 f (s)ds fromw and replacing h by h−λ f (t)wemay assume

that f ≡ 0. We work with v(x, t) = w(x, λt), and after relabeling λt by t in the arguments
of A and h, we obtain{

vt = A(t)vxx + h(x, t) in (0, 1) × (−λ−1, 0],
vt = λγ (t) vx on {x = 0}, (8.4)

with

K −1 ≤ A(t), γ (t) ≤ K , |A′(t)| ≤ K , |h| ≤ K xα−1. (8.5)

Lemma 8.1 is equivalent to the Lemma 8.2 below, where we establish the corresponding
estimates for v using parabolic scaling.

Lemma 8.2 Assume that v is a viscosity solution of (8.4) in P1 with λ ≤ 1, and coefficients
that satisfy (8.5). Then

‖v‖C1,α
x,t (P1/2)

≤ C(‖v‖L∞(P1) + 1), (8.6)

and the free boundary condition is satisfied in the classical sense. If in addition

‖h‖C0,α
x,t

, ‖γ ‖
C0,α/2

t
≤ K ,

then

‖v‖C2,α
x,t (P1/2)

≤ C(‖v‖L∞(P1) + 1),

with C depending only on n, K and α.

Proof If v solves (8.4) in Pρ then the rescaling

ṽ(x, t) := ρ−βv(ρx, ρ2t)

solves (8.4) in P1 with coefficients

Ã(t) = A(ρ2t), h̃(x, t) = ρ2−βh(ρx, ρ2t), λ̃ = ρλ, γ̃ (t) = γ (ρ2t). (8.7)

Notice that the hypotheses on the coefficients are preserved as long as β ≤ 1 + α, and
moreover λ̃ → 0 as ρ → 0.

We divide the proof in four steps.
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Step 1: Hölder estimates. We show that

‖v‖
C0,β

x,t (P1/2)
≤ C

(‖v‖L∞(P1) + 1
)
,

for some β > 0 small.
Notice that after an initial dilation, we may assume that λ ≤ λ0 is small. It suffices to

prove the following claim.
If v is a viscosity solution of (8.4) then

osc P1 v ≤ 2 �⇒ osc Pρ v ≤ 3

2
, with ρ = c0 small, universal. (8.8)

The Hölder estimate is obtained by iterating this claim in parabolic cylinders centered on the
t axis, while for the interior parabolic cylinders (included in {x > 0}) we can apply directly
the diminishing of oscillation for parabolic equations.

In order to prove (8.8), we let g(x, t) be the solution to the 1D heat equation on the
real-line

gt = K −1gxx , g(x, 0) = χ(0,∞) − χ(−∞,0). (8.9)

Notice that for all t > 0, in x = 0 we have

g(0, t) = 0, gx (0, t) ≤ Ct−1/2,

and

gt ≤ 0, for x > 0.

We want to show that if |v| ≤ 1 in P1, then we can improve the upper bound or lower bound
by a fixed amount in the interior, depending on the value of v at (0,−1), i.e.

|v| ≤ 1 in P1 and v(0,−1) ≤ 0, then v ≤ 1/2 in Pρ , with ρ = c0.

In P1 we compare v with

G(x, t) := C1g(x, t + 1) + 1

4
(t + 1)1/2 − C2x1+α.

We choose C2 and then C1 sufficiently large such that G is a classical supersolution to (8.4)
and G ≥ 1 on the boundary (0, 1] × {−1} and {1} × [−1, 0], while G(0, 0) = 1/4. Then we
find v ≤ G in P1, which gives the claim (8.8) by choosing c0 sufficiently small.

Step 2: C1,α estimates. We show that (8.6) holds by first establishing a pointwise C1,α

estimate at the origin.
After an initial dilation and after dividing by a large cosnstant, we may assume that λ ≤ δ,

|h| ≤ δxα−1 for some small δ, and ‖v‖L∞(P1) is sufficiently small.
Claim. If a function l0 (linear in x) of the form

l0 = a0x + b0(t), b′
0 = λγ (t)a0, |a0| ≤ 1, (8.10)

approximates v in Pρ to order 1 + α, i.e.

|v − l0| ≤ ρ1+α in Pρ, ρ ≤ δ,

then we can approximate v to order 1 + α in Pc1ρ by a function l1 as above, with |a1 − a0|
≤ Cρα , and c1 small universal. Then the claim can be iterated indefinitely by starting with
l0 ≡ 0 in Pδ .
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Weprove the claim by compactness. Notice that v−l0 solves (8.4) with a slightlymodified
h that satisfies |h| ≤ δxα−1 + Cδ. This means that the rescaled error

ṽ(x, t) := ρ−(1+α)(v − l0)(ρx, ρ2t),

satisfies (8.4) with coefficients as in (8.7). Since ‖ṽ‖L∞ ≤ 1, by Step 1 we know that

‖ṽ‖
C0,β

x,t (P1/2)
≤ C .

This means that if we consider a sequence of δn → 0 and corresponding solutions vn in Pρn ,

then we can extract a uniformly convergence subsequence of the rescalings ṽn in P1/2 such
that

ṽn → v̄.

Then the Hölder continuous limit function v̄ is a viscosity solution of{
v̄t = Ā v̄xx in P1/2,

v̄t = 0 on {x = 0},
with Ā constant. Since v̄ is constant on the boundary {x = 0}, theC2 estimate for the standard
heat equation implies

|v̄ − (āx + b̄)| ≤ Cτ 2 ≤ 1

2
τ 1+α in Pτ , τ ≤ c1.

This shows that if δ is chosen sufficiently small, then the rescaling ṽ satisfies the inequality
above instead of v̄ which implies

|v − (a1x + b(t))| ≤ 3

4
(τρ)1+α in Pτρ, τ = c1,

with

a1 = a0 + ρα ā, b(t) = b0(t) + ρ1+α b̄.

We define b1(t) so that l1 has the form as in (8.10), that is

b′
1(t) = λγ (t)a1, b1(0) = b(0).

Then

|(b1 − b)′| ≤ C |āρα| ≤ Cρα �⇒ |b1 − b| ≤ Cρα(τρ)2 ≤ 1

4
(τρ)1+α in Pτρ,

where we used ρ ≤ δ sufficiently small. In conclusion,

|v − l1| ≤ (τρ)1+α in Pτρ, l1 = a1x + b1(t),

and the claim is proved.
We remark that the oscillation of b0(t) which appears in the approximation function l0 in

(8.10) is less than Cρ2 in Pρ . Thus we can modify b0 to be constant in (8.10) and take l0
to be linear, and then adjust the error ρ1+α by Cρ1+α . This pointwise C1,α estimate can be
applied at other points on {x = 0}, which combined with interiorC1,α estimates for parabolic
equations implies the desired conclusion (8.6).

Step 3: Boundary regularity We check that v is C1 on {x = 0} and the boundary condition
is satisfied in the classical sense.
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For this assume by contradiction that there exists a sequence tk → 0− such that

1

tk
(v(0, tk) − v(0, 0)) < μ := λγ (0)(vx (0, 0) − η), for some η > 0. (8.11)

For each k, we look at the contact point where the graph of v is touched by below by a
translation of the graph of the classical strict subsolution to (8.4)

g(x, t) := v(0, 0) + μt + x

(
vx (0, 0) − 1

2
η

)
+ Cx1+α,

in the domain Dk := [0, c(η)] × [tk, 0].
We choose c(η) small such that gx (x, t) < vx (x, t) in the domain Dk for all large k. This

implies that the contact point must occur on Dk ∩ {x = 0}. On the other hand, (8.11) gives

v(0, tk) − v(0, 0) > g(0, tk) − g(0, 0)

which shows that the contact point is different than (0, tk) and we reach a contradiction.
Step 4: C2,α estimatesOn {x = 0}we know that vx , γ ∈ Cα/2, and the boundary condition

implies that v(0, t) ∈ C1,α/2. Now we can apply the standard C2,α Schauder estimates up to
the boundary for the heat equation. ��

9 Viscosity solutions for the linear problem

In this section, we collect some general facts about viscosity solutions for the linear problem
(5.1) and establish the existence and uniqueness claim in Proposition 5.2 by Perron’s method.
Similar results for different types of boundary conditions were established by G. Lieberman
(see for example [18]). However, we are not aware of an existence result that applies directly
to the linear problem (5.1). Therefore, for completeness we provide the details in this case.

Recall that v ∈ C(C1) satisfies{
λvt ≤ tr(A(t)D2v) in C1,
vt ≤ γ (t) · ∇v on F1,

(9.1)

in the viscosity sense if v cannot be touched by above at any point (x0, t0) ∈ C1 ∪ F1 in
a small neighborhood Br (x0, t0) by a classical strict supersolution w ∈ C2(Br (x0, t0)). As
usually, this definition is equivalent to the one where we restrict w to belong to the class of
quadratic polynomials rather than to the class of C2 functions.

Another equivalent way is to say that v is a viscosity subsolution of the parabolic equation
in C1, and a viscosity subsolution of the boundary condition on F1. This last condition
means that we cannot touch v locally by above at any point (x0, t0) ∈ F1 by a function
w ∈ C1(Br (x0, t0)) (or say w is a linear function) that satisfies

wt (x0, t0) > γ (t0) · ∇w(x0, t0).

The two definitions are the same since, if w ∈ C1 is as above, and say (x0, t0) = (0, 0), then
a vertical translation of the quadratic polynomial

w(0) + (wt (0) − ε)t + (∇w(0) + εen) · x + M(|x ′|2 − nK 2x2n ),

must touch v by above at some interior point (x, t) ∈ Br . Here r is chosen sufficiently small
and M large, appropriately, and then the polynomial is a strict supersolution in Br .

We state the comparison principle for viscosity solutions.
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Lemma 9.1 Assume v1 is a viscosity subsolution, and v2 a viscosity supersolution to (5.1) in
C1. If v1 ≤ v2 on ∂DC1 then v1 ≤ v2 in C1.

Corollary 9.2 The difference of two viscosity solutions of (5.1) is also a viscosity solution of
(5.1).

We work with the rescaling w(x, t) = v(x, λt).
First we prove a preliminary result on the evolution in time of a Lipschitz “trace”

w((x ′, 0), t) under specific growth assumptions.

Lemma 9.3 Assume that w ≤ 1 satisfies{
wt ≤ M+

K (D2w) + 1 in (Q1 ∩ {xn > 0}) × (0, T ],
1
λ
wt ≤ Kw+

n − K −1w−
n + K |∇x ′w| on {xn = 0}, (9.2)

and

w((x ′, 0), 0) ≤ |x ′|2.
Then

w(0, t) ≤ Cλ(t1/2 + t) for t ≥ 0,

with C depending on n and K .

Proof We compare w with

G(x, t) := g(xn, t) + Cλ(t1/2 + t) + |x ′|2 + C(2xn − x2n ),

where g(xn, t) is the solution to the 1D heat equation on the real-line (see (8.9))

gt = K −1gnn, g(xn, 0) = χ(0,∞) − χ(−∞,0).

It is easy to check that G is a classical supersolution which is above w on the boundary of
our domain, and that gives the desired result. ��
Lemma 9.4 Assume that w ≤ 1 satisfies (9.2) in C1 and the trace of w on {xn = 0} is
Lipschitz, i.e.

|∇x ′w| ≤ 1 on {xn = 0}.
Then

w((x ′, 0), t) ≥ w((x ′, 0), 0) − Cλ
2
3 |t | 12 if x ′ ∈ Q′

1/2.

Proof We prove the inequality for x ′ = 0. Since w is Lipschitz the parabola

w(0, t) + Cr2 + r−2|x ′|2

is greater than w((x ′, 0), t), with r to be specified later. Now we can apply the previous
lemma to the rescaling

w̃(y, s) := w(ry, t + r2s) − w(0, t) − Cr2,

which solves (9.2) with λ̃ = λr , and obtain that

w̃(0, s) ≤ C λ̃(s1/2 + s).
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This gives

C(r2 + λ|t | 12 + λr−1|t |) ≥ w(0, 0) − w(0, t),

and we choose r = (λ|t |)1/3 to get

w(0, t) ≥ w(0, 0) − C(λ|t | 12 + (λ|t |)2/3) ≥ w(0, 0) − Cλ
2
3 |t | 12 .

��
Remark 9.5 The proof of Lemma 9.4 shows that we can construct a supersolution Ḡ(x, t) in
C1 such that Ḡ((x ′, 0),−1) = |x ′|, Ḡ ≥ 1 on the remaining part of ∂DC1, and so that Ḡ(0, t)

≤ Cλ
2
3 |t | 12 . Similarly, given α > 0, we can construct a supersolution with Ḡ((x ′, 0),−1)

= |x ′|α , Ḡ ≥ 1 on the remaining of ∂DC1 and such that Ḡ(0, t) ≤ C(λ|t |)β, for some β

depending on α.

We are now ready to prove our main lemma.

Proof of Lemma 9.1. Let wi (x, t) = vi (x, λt), i = 1, 2, so that w1 is a subsolution and w2 a
supersolution of {

wt = tr(A(t)D2w) in {xn > 0},
1
λ
wt = γ (t) · ∇w on {xn = 0},

and we want to show that w1 cannot touch w2 strictly by below at an interior point. Assume
by contradiction that this is the case.

The standard viscosity theory of parabolic equations implies that the contact point cannot
occur in {xn > 0}. Below we denote by C , c various constants that may depend on wi and λ.

After a translation and a dilation we may assume that in C1
w1 ≤ w2 + μt, w1(0, 0) = w2(0, 0) = 0,

for some μ > 0 small. Without loss of generality we may also assume that w1/w2 has a
semiconvex/semiconcave trace in the x ′ variable, that is

D2
x ′w1 ≥ −I , D2

x ′w2 ≤ I , (9.3)

and also

‖wi‖L∞ ≤ 1 (9.4)

and eachwi solves the parabolic equation in the interior. This is achieved in the followingway.
First we replace a subsolution w with the standard regularization using the sup-convolutions
in the x ′ variable

wε(x, t) = max
y

{
w(y, t) − 1

2ε
|y′ − x ′|2

}
,

then we divide wε by a large constant, and in the end we solve the parabolic equation
in the interior of C1 by keeping the same boundary values on the parabolic boundary. All
these operations maintain the subsolution property of w, and justify the extra assumptions
(9.3)-(9.4).

Moreover, after subtracting from each wi a function of the type a′ · x ′ + b(t) with d
dt b(t)

= λa′ · γ (t) we may assume in addition that

wi (0, 0) = 0, ∇x ′wi (0, 0) = 0, (9.5)
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and the interior parabolic equations have the form

∂twi = tr(A(t)D2wi ) + h(t), |h| ≤ C .

We show thatwi (0, t) are differentiable at the origin in the t variable, and that the derivative of
w1 is less than the derivative ofw2,whichwould contradict our hypothesis thatw1 ≤ w2+μt .

To achieve this we apply Lemma 9.4 several times. By (9.3)-(9.4)-(9.5) and Lemma 9.4
we find that

w1 ≥ −Cr and w2 ≤ Cr on Pr ∩ {xn = 0}. (9.6)

Since w1 ≤ w2, we can use the pointwise Cα parabolic estimates at the origin and find that,
given any α < 1, we have

oscPr wi ≤ Crα for all r > 0. (9.7)

We can iterate this argument, by working with the rescaling

w̃1(x, t) = r−αw1(r x, r2t),

which satisfies a similar equation with λ̃ = λr , and is such that (9.3)-(9.4)-(9.5) hold for w̃1.
Again by Lemma 9.4 we find

w̃1((x ′, 0), t) ≥ −Cr2/3 if x ′ ∈ Q′
1/2,

hence we improve the estimate (9.6) as

w1 ≥ −Crα+ 2
3 on Pr ∩ {xn = 0}. (9.8)

The same holds for w2 with ≤ instead of ≥ and Crα+ 2
3 instead of −Crα+ 2

3 .

This in turn shows that wi are pointwise Cα+ 2
3 at the origin.

We modify again each wi by subtracting the corresponding function ∂nwi (0)xn + bi (t),
with d

dt bi = λγn∂nwi (0). Using that ∂n(w1 − w2)(0) ≤ 0, we find that the inequality
w1 ≤ w2 + μt is still valid on {xn = 0}, while (9.7) holds with rα+2/3 instead of rα . The
same argument as above implies that (9.8) holds again with rα+4/3 instead of rα+2/3. Since
α + 4/3 > 2, this means that w1(0, t) ≥ −C |t |1+β and w2(0, t) ≤ C |t |1+β for all small
t < 0, which contradicts w1(0, t) ≤ w2(0, t) + μt . ��

We can finally conclude the proof of Proposition 5.2.

Proof of Proposition 5.2 The interior C2 estimates in the x variable and the Hölder estimates
up to the boundary were already proved in Proposition 5.1 and Theorem 5.3. It remains to
prove existence by Perron’s method.

We assume for simplicity that the boundary data φ is Lipschitz, and the general case
follows by approximation. As usual, we define

v(x, t) := sup
w∈A

w(x, t),

where A is the class of continuous subsolutions on C1 which have boundary data below φ

on ∂DC1. The conclusion that v solves our problem is easily checked once its continuity has
been established.

Claim. For each (x0, t0) ∈ ∂DC1 there exists a subsolution w(x0,t0) which vanishes at
(x0, t0), is below the cone−|(x, t)−(x0, t0)| on ∂DC1 and has aHöldermodulus of continuity
at (x0, t0).
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This can be deduced from the proof of Theorem 5.3, where the Hölder continuity at the
boundary was achieved using explicit barriers. More precisely, as in Lemma 6.2 and Lemma
6.6, for all r ≤ 1/2 we can construct a subsolution φr defined in B±

λ,r (x0, t0) ∩ C1, where

B±
λ,r (x0, t0) := {(x, t)| dλ((x, t), (x0, t0)) < r},

so that

φr = 0 on ∂B±
λ,r (x0, t0)\(∂DC1 ∪ F1), φr ≤ 1 on ∂B±

λ,r (x0, t0) ∩ ∂DC1
and

φr ≥ c0 on ∂B±
λ,r/2(x0, t0).

Then w(x0,t0) is obtained by superposing appropriate multiples of φr for a dyadic sequence
of r = 2−m . We omit the details.

Using the claim we can construct a subsolution φ and supersolution φ which are Hölder
continuous on ∂DC1 and agree with the boundary data φ. Thus we can restrict the class A of
subsolutions to satisfy

φ ≤ w ≤ φ. (9.9)

This shows that the limit v achieves the boundary data φ continuously. Moreover, using (9.9)
we can replace each w ∈ A by its maximum among appropriate x ′ translations

max
y′ {w(x − (y′, 0), t) − C |y′|α},

and remain in the same class. Therefore we may assume that A contains only subsolutions
which are uniformly Hölder continuous in the x ′ variable. Using this together with Remark
9.5, we find that the trace of v on {xn = 0} is locally Hölder continuous in the x ′, t variables.
This means that the solution v̄ to the interior parabolic equation in C1 with boundary data v

is continuous up to the boundary. By the maximum principle v̄ ≥ w for any w ∈ A, and it
is straightforward to check that v̄ ∈ A, hence v = v̄ is continuous in C1. ��
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