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Abstract

We provide perturbative estimates for the one-phase Stefan free boundary problem and obtain
the regularity of flat free boundaries via a linearization technique in the spirit of the elliptic
counterpart established in De Silva (IFB 13, 223-238, 2011).

1 Introduction

In this paper we are concerned with perturbative estimates for the one-phase Stefan problem,

(1.1)

u; = Au in (2 x (0, T) N{u > 0},
u, = |Vul*> on(Q x (0, T]) N dfu > 0},

withQ Cc R, u:Qx[0,T] > R,u>0.

The classical one-phase Stefan problem describes the phase transition between solids and
liquids, such as the melting of the ice (see for example [15,19]). In this setting u represents
the temperature of the liquid, and the region {# = 0} the unmelted region of ice.

The main object of interest is the behavior of the free boundary d{u > 0}. In problems of
this type free boundaries may not regularize instantaneously. A two dimensional example in
which a Lipschitz free boundary preserves corners can be found for instance in [6]. Athana-
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sopoulos, Caffarelli, and Salsa studied the regularizing properties of the free boundary under
reasonable assumptions in the more general setting of the two-phase Stefan problem. In [2]
they showed that Lipschitz free boundaries in space-time become smooth provided a nonde-
generacy condition holds, while in [3] the same conclusion was established for sufficiently
“flat” free boundaries. The techniques are based on the original work of Caffarelli in the
elliptic case [4,5].

A related result is due to S. Choi and 1. Kim who showed in [9] that solutions regular-
ize instantaneously if the initial free boundary is locally Lipschitz with bounded Lipschitz
constant and the initial data has subquadratic growth.

In this paper we study the regularity of flat free boundaries for (1.1) based on perturbation
arguments leading to a linearization of the problem, which are in the spirit of the elliptic
counterpart developed by the first author in [11]. Our result is basically equivalent to the
previously mentioned flatness result in [3]. The techniques in [11] are very flexible and
have been widely generalized to a variety of free boundary problems, including two-phase
inhomogeneous problems, “thin” free boundary problems, minimization problems (see for
example [12-14]). The methods of the current paper are suitable to further extensions as
well.

Our main theorem roughly states that a solution to the Stefan problem in a ball of size A
in space-time which is of size A and has a “flat free boundary” in space, must have smooth
free boundary in the interior provided that a necessary nondegeneracy condition holds. The
nondegeneracy condition for u requires that u is bounded below by a small multiple of A at
some point in the domain at distance A from the free boundary. Precisely, we assume that
u:Q2x[0, T] — R solves (1.1) in the viscosity sense. This means that u is continuous and
its graph cannot be touched by above (resp. below), at a point (x, #p) in a parabolic cylinder
B, (x0) x (to — r2, 1], by the graph of a classical strict supersolution ¢ (resp. subsolution).
By a classical strict supersolution we mean that ¢(x, 1) € C2, V¢ # 0, and it solves

o> Ag  in(2x(0,T]) N{e > 0},

) (1.2)
or > |Vo|© on (2 x (0, T]) Nafe > 0}.

Similarly we can define a strict classical subsolution.

Throughout the paper, given a space-time function, V, A, and D? are computed with
respect to the space variable x.

The rigorous statement of the main theorem is as follows.

Theorem 1.1 Fixa constant K (large) and let u be a solution to the one-phase Stefan problem
(I.)in By x [-K~1x, 0] for some A < 1. Assume that

lul < Kx, u(xg,t) > K~ 'a for some xq € B%)\.

There exists €y depending only on K and n such that if, for each t, ox{u(-,t) > 0} is €g-
flat in B,, then the free boundary d{u > 0} (and u up to the free boundary) is smooth in
B, x [—(2K)~!a, 01

Here we use the notation d, {u(-, #) > 0} to denote the boundary in R" of {u(-, t) > 0)},
with ¢ being fixed. By d,{u > 0} is €o-flat in B, we understand that, for each ¢, 9, {u(-, t) >
0} N B, is trapped in a strip of width €pA (the region between two parallel hyperplanes at
distance €gA from each other), and # = 0 on one side of this strip while # > 0 on the other
side.

The assumption that u is of size A in a domain of size A around the free boundary is natural,
since this eventually holds for all classical solutions by choosing A small. We point out that
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in Theorem 1.1 the behavior of the solution depends strongly on the value of A. If we scale
the domain to unit size and keep the function u of size 1, then the rescaled function

1
(x,1) Xu(Ax,m, (x,1) € By x [-K~', 0],

solves a Stefan problem with possibly large diffusion coefficient A~

{xu, —Au in (B x (=K~1,0]) N {u > 0}, 13

u, = |Vul*> on(B; x (=K~1,0]) N a{u > 0}.

Our theorem states that nondegenerate solutions of size 1 of (1.3) which have €(- flat free
boundaries in B; are smooth up to the free boundary. We remark that €g is independent of
A, which means that we need to obtain uniform estimates in A for the oscillation of the free
boundaries of solutions of (1.3). Our results show that the free boundary has a uniform C'-*
bound in space. On the other hand, the estimates for u in the set where it is positive depend
on the parameter 1. The strategy is to approximate « with a family of explicit functions /, 5
which in the direction perpendicular to the free boundary depend on A while on the tangential
directions to the free boundary are independent of the parameter A.

Formally as A — OV, a solution u to (1.3) solves the Hele-Shaw equation. Estimates for
this problem by similar methods as ours were obtained by H. Chang-Lara and N. Guillen in
[CG].

To prove our main theorem, we show that if a solution u satisfies the hypotheses of
Theorem 1.1 then, after a convenient dilation, the flatness assumption can be extended to
the whole function u instead of just the free boundary. Then Theorem 1.1 follows from the
following result.

Theorem 1.2 Fixa constant K (large) and let u be a solution to the one-phase Stefan problem
(1.1) in By x [—2X, 0] for some A < 1. Assume that 0 € d{u > 0}, and

an(t) (xp —b(t) —e1)™ <u < ayt) (xn —b) +an)’,
with
K'<an <K, lay0l <272 b0 =—an(0),
for some small €| depending only on K and n. Then in B;, x [—A, 0] the free boundary

d{u > 0} is a CY% graph in the x,, direction.

The assumption that ' = —a,(¢) means that the approximating linear functions in x,
a, (t)(x, — b(t))™, satisfy the free boundary condition, while la, ()] < 22 respects the
parabolic scaling of the interior equation and represents that a, can change at most o(1) ina
time interval of length o(A2).

We remark that it suffices to prove Theorem 1.2 under the more relaxed hypotheses

A<x and |a, ()] < cor”2, (1.4)

with Ao, co small depending on K, n. We end up in this setting by working in balls of size
A with 7 sufficiently small, and then relabel A by A and e;7~! by €.

Theorem 1.2 applies, for example, when u is a perturbation of order o(1)A of a traveling
wave solution

(eaxn+a2t _ 1)+, K—l <a<K.
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In this case we choose a,(t) = a, b(t) = —at, and consider A < )y small so that the
difference between the approximating linear part a,(t)(x, — b(¢)) and the exact solution
above is less than %el)\ in By.

The proof of Theorem 1.2 is based on linearization techniques. The linearized equation
in our setting has the form of an oblique derivative parabolic problem

vy = tr(A@t)D%v) in {x, > 0},

(1.5)
v =y() Vv on {x, = 0},

with A(#) uniformly elliptic and y, > 0. An important task in our analysis is to develop
Schauder-type estimates for Eq. (1.5) with respect to an appropriate distance dj and to
capture both features of the mixed parabolic/hyperbolic scaling.

The paper is organized as follows. In the next section we show that Theorem 1.1 can be
deduced from Theorem 1.2. In Sect. 3, we use a Hodograph transform to obtain an equivalent
quasilinear parabolic equation with oblique derivative boundary condition. In the following
section, we state an improvement of flatness result Proposition 4.1 for solutions of such
nonlinear problem, then we show how this implies Theorem 1.2. The proof of Proposition
4.1 is presented in Sect. 5, and it relies on various Holder estimates (with respect to the
appropriate distance) for solutions to the linearized problem associated to the nonlinear
problem. Sections 6 and 7 are devoted to the proofs of such Holder estimates, while Sect. 8
focuses on the one dimensional linear problem, which plays an essential role. The last section
contains some general technical results on solutions to the linear problem.

2 From flat free boundaries to flat solutions

In this section, we show that Theorem 1.1 can be reduced to Theorem 1.2.

We assume that the function u satisfies the €p-flatness hypothesis of the free boundary
from Theorem 1.1 for some A < 1, and that (0, 0) is a free boundary point. Precisely, by
d{u > 0} is ¢p-flat in B, we understand that, for each ¢, there exists a direction v such that

Ox{u(, 1) > 0} N By C {[{(x — x0, v)| < €0},
and
u=0 in{{x —xp,v) < —€or},
u >0 in{{x —xp, v) > €oAr}.

First, we show thatin a smaller domain By x [—nA, 0] the whole graph of u is nﬂ - flat, for
some small B, provided that €y < ¢(n, K). Then, in this domain the hypotheses of Theorem
1.2 are satisfied by choosing 7 sufficiently small.

We work with the parabolic rescaling of the function u# which is defined in Bj
x [—(KA)~1, 0] and keeps the function u of unit size:

(x,1) %u()»x,)\zt), (x,1) € By x [—(K»)7',0].

By abuse of notation we denote this rescaling by u, and then u solves a Stefan problem with
possibly small speed coefficient A,

(2.1)

u; = Au in(B; x (—(KA)~1, 0D N{u > 0},
u; = A|Vu|® on (B; x (=(K2)~L 0D Nafu > 0}.
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We prove the following main lemma. Universal constants only depend on 2, K. As usual,
in the body of the proofs, constants denoted by C may change from line to line.

Lemma 2.1 Assume that u solves (2.1),

lul < K, u(xp, t) > K~! for some xo € B34,
0 € 0, {u(-,0) > 0}, and 0, {u > 0} is eg-flat in By.

Then for all small n > 0 we have
an (@) (xn = b@) = 1'"P)" < u < @) (50 — b@) +0"*F) T in By x [-27"n, 01,
with B = 1/20 and for ¢, C > 0 universal,
c<an®) = C, layl <2 b)) = —ran(®), b0) =0,
provided that g < c(n, K).

When we rescale the conclusion back to the original coordinates, we obtain that the
hypotheses of Theorem 1.2 are satisfied in the cylinder By, x [—nA, 0] with €] = nﬁ .
We start by proving a result about the location of the free boundary in time.

Lemma 2.2 Assume u solves (2.1) in By % [—K~ Y, 1]and that 0 < u < K. Ifu(x,0)=0
in By, then

u(x, 1) < C(x| = DT, if 1e[-2K)"',0], 2.2)
and
ux,t)=0 iflx| <1—-Cx, rel0,l1], (2.3)
with C > 0 universal.
Proof Since the support of u is increasing with time we deduce that u = 0 in B; for all
t € [-K~',0]. Then, in the annular domain (B,\B;) x [—K ', 0], by the comparison
principle, u is less than a multiple of the solution to the heat equation which equals 0 on
9B x (—K~!, 0], and 1 on the remaining part of the parabolic boundary. This, together with

the boundary regularity of such solution, implies the estimate (2.2).
Now, for times ¢ € [0, 1] we compare u with

w(x, 1) = Co g(x| —r@), r@):=1-=Coht,
with g a 1D function such that g(s) = 0 if s < 0, and for positive s is defined by the ODE
g’ (s) +2ng'(s) =0, g0)=0, g0 =1.

Notice that g’ € [0, 1].

We may assume that r(#) > 1/2, otherwise the conclusion (2.3) is trivial (say for C
> 2C).

The constant Cy is chosen large such that w > u at time t = 0 (by (2.2)) and also on
0By x [0, 1]. We check that w is a supersolution to (2.1); indeed in {w > 0} we have (recall
r(t) > 1/2),

n—1
wy = Cgkg/ >0, Aw = Cy <g” + Wg/> <0,
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and on d{w > 0}
w; = AC3 = A|Vw|*.
In conclusion, # < w which gives the desired conclusion (2.3). O

Now, we turn to the proof of Lemma 2.1.

Proof of Lemma 2.1 We assume that u satisfies (2.1) in By x [—(K1)~!, 0], and 9, {u > 0}
is €o-flat in Bj. Suppose that (0, 0) € d{u > 0} and then, after a rotation,

u(x,0) > 0if x,, > €p, and u(x,0) =0if x, < —¢p.

From (2.2) in Lemma 2.2 (applied to balls tangent to {x, = —¢€op}) we find that u < C(x,
+e0)tin Byjo x [-(2K) 71, 0].
We define
1
U ;= —u(tx, tzt), with 7 > eé/z,
T
and, if 7 € [¢,%, cl, then
ur < Clxy + )" in By x [-2,0]. (2.4

Notice that u, satisfies (2.1) with tA instead of 1. We apply (2.3) of Lemma 2.2 for u, and
obtain that (since (0, 0) € d{u,; > 0}),

Ox{ur > 0} N By intersects {x, < CAt}, forallt € [-1,0]. 2.5)
Moreover, d,{u; > 0} is 7~ l¢p-flat in B;, which combined with (2.5) implies that
0{ur > 0} N (By2 x [—1,0]) is included in {x, < C(AT + ‘L'_le())}. (2.6)

In (B12 N {x, > Ct}) x [—1, 0] we compare u, with the solution w to the heat equation
which equals 0 on {x, = Ct}, and equals u, on the remaining part of the parabolic boundary.
Notice that by (2.6), since T > 63/2, u; > 0on{x, = Ct}.From (2.4)we find |u; —w| < Cr,

and the boundary regularity of w gives
lur —axy| < Cp** 4+ Ct <2Cp** in Bj, x [—p?,0], 2.7)

for some constanta < C, provided that we choose 7 = p3/ 2 with p small, to be made precise
later.

We claim that the nondegeneracy assumption u(xg, ) > K ~! for some xo € B3 /4 implies
thata > c. For this we use (2.6) which, in terms of the function u, implies that . {u(-, t) > 0},
at all times 7 = —t2 < —¢, intersects the x, axis at distance at most C (Alt] 4+ €g) from
the origin. As for (2.6), using that d,{u > 0} is €o-flat in B, we obtain that u(x, ) > 0 if
X, > Ceo + CAlt| in By 2. Now we can use the nondegeneracy condition with a Hopf-type
lemma for the heat equation and obtain

u>c(xy — Cleg +Alt))T in By x [-(4K)~!, 0],

for some ¢ > 0 that depends only on n and K. We use this inequality at time t = 0 in (2.7)
and conclude a > ¢ since tp > 212 > 2¢(. We can restate (2.7) as

(ax, — Cn' ™) < u < (ax, + Cn'THT in By, x [~ 0],

withn :=1p = p/2.
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Similarly, by looking at the points (b(t)e,, t) where the free boundary intersects the x,
axis, we obtain that

Ib(1)| < C(Alt| +€p) < Con if t € [-2"1n,0],

and in the domain B¢y, x [t — 772, t] we have

+ +
(a) - = bwen = nf) " =ut.s) = (a0 @& = bOen) +Cn?)
with ¢ < |a(t)| < C. The flatness assumption of the free boundary in B; implies
la(t) — an(t)en| = Cn,

so we may replace a(t) - (x — b(t)e;,) above by a, (t)(x, — b(t)).

The bounds on u above imply that a,(f) can vary at most Cn'/> in an interval of length
n?. We can regularize a, () by averaging over such intervals (convolving with a mollifier)
and the bounds for u still hold after changing the value of the constant C. Hence for all
t € [=2" 15, 0], we can find a, () € R such that

6\t 6\ 1
an(t) (xn —b(t) — cné) <u<ay) (xn —b(t) + Cns) (2.8)
in Bacyy x [t — 12, t] with

c<at)<C, la,0)|< Cn3 =2 b < Con. (2.9)

It remains to show that we can modify b slightly so that it satisfies the ODE b’ = —ia,.
Precisely, we let

b'(t) = —ray(t), b(0) =0,
and we show that
b(t) —bt) < Cy'tP if te[-2"'n,0], B=1/10. (2.10)

For this we perturb the family of evolving planes a,(f)(x, — l;(t))Jr into a subsolu-
tion/supersolution. Let

d() = b(t) + Cinir,
with Cy large, to be specified later. We claim that
b(t) > d(t) — 2n'*h. (2.11)
For this we define the function
vi= (1= Conf)ay(t) (h(x — d(e)) ™,
with
h(x) = xn = 0P N2 = 2nx)),
and check that it is a subsolution to our problem (2.1) in the domain

Q= (J By@®en) x {1},
te[-2"19,0]

Notice that in a ball of radius 27,
h<Cn VA =140, (2.12)
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and the constant Cy = C»(n) is chosen depending only on n such that
v < ap()(x, —d@)7T, (2.13)

with equality at d(t)e, and moreover, when x € d By (d(t)e,) N{v(x, t) > 0}, the difference
between the two functions above is greater than n'+#.

Next, we check that v is a strict subsolution. In the interior {v > 0}, using (2.9),(2.12),
the definition of b, we have (for n small)

o < Clagln+Cld'| < Cn™*P, Avz= e~ >y,
and on the free boundary (C’ depending only on C», n),
v = (= Confyay(=dhy, Vo] = (1= C'nP)ay.
Since
hn=1+00",  (=d)ay = ha; — Crranm’,

we can choose Cj large such that v, < AVl2.
If

b(ty) < d(t9) — 21" P for some 19 € [-1 "7, 0],

then by (2.8) and (2.13) we find that v < u at time ¢t = #( in By, (d(fp)e,) N {v > 0}. On the
other hand v = u at the origin (0, 0). This means that as we increase ¢ from ¢t( to O, the graph
of v(-, 1) in By, (d(t)e,) N {v > 0} will touch by below the graph of u for a first time 7, and
the contact must be an interior point to Ba,(d(t)e,) due to the properties (2.8),(2.13) of u
and v (in particular the difference between ay, (t) (x, — d(¢))" and v is greater than n'*tP on
0B, (d(t)ey)). This contact point is either on the free boundary 9{v > 0} or on the positivity
set {v > 0}, and we reach a contradiction since v is a strict subsolution. The claim (2.11) is
proved, hence

b(t) = b@t) —Cn'*P if  re[-1"1n,0]

The opposite inequality is obtained similarly and the claim (2.10) holds. Then from (2.8) we
deduce that for all n < ¢ small

~ N T ~ N\t
an(t) (xn _b(t)_nl+ﬂ) <u =< an(t) (xn —b(f)+771+ﬁ)
in B, x [-A~'n, 0] with g’ = 1/20 and

c<ayt)<C, la,) <nP2  B@t)=—ra,(t), bO)=0.

3 The nonlinear problem

In this section, we use a standard Hodograph transform to reduce our Stefan problem (1.1)
to an equivalent nonlinear problem with fixed boundary and oblique derivative boundary
condition (see (3.4)).

Here and henceforth, for n > 2, given r > 0 we set

Q= (-r.r)",  OF=0,N{x, >0}, 0,(x0) :=x0+ O,
Cr = (O, N{xp, >0} x (=r,0], F ={(x,0) x€Q,N{x, =0}, te(-r,0]}.
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Also, by parabolic cylinders we mean

P (x0, 10) := Qy(x0) X (o — 1, 1o].

3.1 The hodograph transform

As mentioned above, we use a Hodograph transform to reduce the Stefan problem (1.1) to
one with fixed boundary. Precisely, we view the graph of u in R"+2

[i={(x, X001, ) xpp1 =ulxy, x2, ..., X4, 1)}
as the graph of a possibly multi-valued function u# with respect to the x,, direction
= {(x7 Xn+1, t)| Xn = I/_{(xlv X2y eee s Xn—15 Xn+1, [)}

Weuse (y1, ..., yn) to denote the coordinates (x, x2, ..., Xy,—1, Xp+1). Then, if Du and Du
denote at some point on the graph I" the gradients with respect to the first n entries of u and
u, we find

1 _ _ Uy
Du=——(@y,...,up—1,—1), u=——
Up Up
1
D*u = —— (A(Dw))" D*u A(Du),
Un

where A(Du) is a square matrix which agrees with the identity matrix except on the nth row
where the entries are given by the right hand side of Du above.

The Stefan problem (1.1) in terms of i can be written abstractly as the following quasilinear
parabolic equation with oblique derivative boundary condition:

i _ 3.1)
ur = g(Vu) on {y, = 0},

{ﬁ, = tr(A(Vii) D%i) in {y, > 0},
with A(p) symmetric, positive definite as long as p, # 0, and g,(p) > 0.
The free boundary of u is given by the graph of the trace of u# on {y, = 0}. Our goal
becomes to show that i is C1-¢ with respect to the y’, ¢ variables. Let us assume that u
satisfies the hypotheses of Theorem 1.2 (it is now more convenient to work in cubes rather
than in balls). Below we denote by ¢, C various constants depending on K and n. From the
flatness assumption

| —an () (xn = b)) = Cerr in Q@ x [—4,0], 3.2)
and 0 € 9{u > 0} implies |b(0)| < CejA which together with |6’| < CA gives
[b(®)] < Cler + [t)A.

Thus, if (x, 1) € Q) x [—cA, 0], then (for €] possibly smaller), |b(¢)| < 1/2 and by (3.2) the
domain of definition of i at time 7 contains Q5 for ¢ small enough. We conclude that u is
well-defined in Q; x [=A, 0], with & := ¢4, ¢1 sufficiently small.

Moreover, the graph of i in this set is closed in R”*? (since it is obtained as a rigid motion
from the graph of u) and it satisfies Eq. (3.1) in the viscosity sense, see Definition 3.2 below.
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219 Page 100f38 D. De Silva et al.

Remark 3.1 We observe that i is single-valued in the region y, > Ce; A, and possibly multi-
valued near y, = 0. Indeed, similarly as above, if t € [tg — 22, 1o+ A2], then using the bound
for |b'| and (1.4) for |a’|,

la(t) — a(to)l < co,  |b(t) — bltg)] < CA2,
hence, if Ag, co are smaller than €] then
|t — an(to)xa — b(t10)T| < Cerr in Qs x [to — A%, 19 + A7), (3.3)

with |b(f9)| < A/2. By applying interior gradient estimates in parabolic cylinders included
in {# > 0} we find from (3.3) that if

(x0,20) with xo € Qn, fo > —cA isintheregion Cejd < u(xg, o) < ch
then

|Vu(xo. 10) = an(to)en] < 2K) ™.
Finally, the main hypotheses of Theorem 1.2 can be written in terms of « as
it = @n()yn +b(1)| < Cerk i QF x [=2,0],
b(t) =g@men). K '<ay <K,
A<k, @) <&
Our purpose in this paper is to prove an improvement of flatness result for solutions of the
nonlinear Eq. (3.1) as above, provided that €, A1, ¢ are chosen small depending on n and

K (see Proposition 4.1 in the next section). Then Theorem 1.2 can be obtained by iterating
such statement.

3.2 Assumptions on the nonlinear problem

We consider solutions to the following problem (for simplicity of notation we drop the bars
in our formulation, and we use x rather than y),

u; = F(Vu, D*u) inG;,

(3.4)
ur = g(Vu) on F;.

We assume that F is linear in D?u, that is F(Vu, D*u) = tr(A(Vu)D?u) and g, > 0.

We start by stating precisely the notion of viscosity solution. First we write it for continuous
functions and then adapt it to include possibly multi-valued functions u whose graphs are
compact sets of R"+2, which is relevant to our setting.

Definition 3.2 We say that a continuous function u : C; — R is a viscosity subsolution to
(3.4) if u cannot be touched by above at points in C; U F; (locally, in parabolic cylinders)
by a strict C2 supersolution ¢ of (3.4).

Precisely, we require that there do not exist points (xo, o) € C, U F;, and test functions
NS C2(7>r (x0, tp)) that satisfy

{wt > F(Vg, D*p) inP,(x0, 10), 45)

or > g(Vo) on Fy NPy (xo, tp),
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such that

u(xo, t0) = @(xo,t0), u <¢ in Pr(xo, t). (3.6)

Similarly we can define viscosity supersolutions and viscosity solutions to (3.4).
We extend this definition to multi-valued functions u, and require they still satisfy the
comparison with respect to (single-valued) test functions ¢.

Definition 3.3 Assume that u : C;, — R is a multi-valued function with compact graph in
R"*+2 We say that u is a viscosity subsolution to (3.4) if the definition above holds and (3.6)
is understood as ¢ (xo, o) € u(xo, o) while the inequality u < ¢ in P, (xo, fo) means that
u(x,t) < ¢(x,t) for all possible values of u at (x, t), and for all (x, t) € P (xo, tp)-

We remark that this notion of viscosity solution for multi-valued functions is very weak.
For example if we consider two single-valued functions u; < u; with u, a subsolution and
u1 a supersolution, then the union of the 2 graphs is a multi-valued solution according to
Definition 3.3. In fact we can add to it any arbitrary closed set between the two graphs.
However, in our analysis we only consider solutions which could be multi-valued near F)
and single-valued farther away, which is a consequence of the flatness regime.

We define now a class of linear in x functions that we use throughout this paper to express
the flatness condition.

Definition 3.4 We denote by [, »(x, 7) functions which for each fixed ¢ are linear in the x
variable, and whose coefficients in the x” variable are independent of ¢, and also so that ,
satisfies the boundary condition in (3.4) on {x,, = 0}. More precisely,

lap(x, 1) :=a() - x +b(1),
with
a(t) == (ar,...,ap—1,a,(t)), aeR, i=1,...,n—1,
and
b'(t) = gla()).

Our main result is to show that if u is a viscosity solution of (3.4) which is possibly
multi-valued near {x, = 0} and is well approximated by [, , in a cylinder C;,, i.e.

lu—lgp] <€r in Cy,

then in a smaller cylinder C; it can be approximated by another function / Wb with an error
€; = et that improved by a C* scaling.

Before formulating this result rigorously in the next section, we state here the precise
hypotheses on F and g. We assume that F'(p, M) is uniformly elliptic in M for each fixed
slope p € R" with p, > 0 and the ellipticity constants could degenerate as p, — 01 or
|p| — oo. Precisely, for any given constant K large there exists A large depending on K
such that

Al > Dy F(p,M)> A""I, if pe Rk, (3.7
with

Rk :=BxN{p, =K'} c R (3.8)
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We choose K sufficiently large such that when p is restricted to the set above we also have
IDpFl < AIMI, liglcr <A, gn= AT (3.9)

From now on we assume that the constants K and A have been fixed such that (3.7)-(3.9)
hold. In fact, for notational simplicity, by possibly choosing K larger, we can assume that
(3.7)—(3.9) hold with A = K. We consider the situation when u is well approximated in C,
by a function /, ;, as above with slopes a(#) belonging to the region Rg.

We suppose in addition that u satisfies the Harnack inequality from scale A to scale oA
where o is a small parameter. We denote this property for u as property H (o), which is
defined in the following way.

Definition 3.5 Given a positive constant o small, we say that
u has property H (o) in C;,

if u (possibly multi-valued) satisfies the following version of interior Harnack inequality in
parabolic cylinders of size r € [o A, A].
Let / denote a linear function

I(x):==a-x+b, with acR", beR, |a <K.
It
u>1 in Q(xo) x[to—r*to+r’] <C G,
with r > oA, and
(u — D (x0,10) > p, forsome w >0,

then
_ ~ L) 2
u—Il>=kp in Qpplxo) X |to+ U

for some constant k¥ depending on n and K (but independent of o).
Similarly, if u < [ we require these inequalities to hold for / — u instead of u — /.

Property H(o) for all ¢ > 0 is a consequence of the parabolic Harnack inequality in
the case when u is a single-valued viscosity solution of (3.4), and in addition we know that
Vu € Rg. Property H (o) for a multi-valued solution of (3.4) roughly states that u behaves
as a single-valued function from scale A up to scale o A. In fact we will show in Remark
4.2 below that property H (o) (for some appropriate o small) is satisfied for multi-valued
solutions u which are graphical with respect to the e, direction and are well approximated
by the functions I, .

4 The iterative statement

In this section, we state our main improvement of flatness result Proposition 4.1, and we
show how Theorem 1.2 can be deduced from it. We also describe the strategy of the proof of
Proposition 4.1, and its connection to the corresponding linearized problem (4.7).

The improvement of flatness statement reads as follows (we use the notation from Sub-
section 3.2). The rest of the paper will be devoted to its proof.
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Proposition 4.1 (Improvement of flatness) Fix K > 0 large, and assume F,g satisfy (3.7)
-(3.9). Assume that u is a viscosity solution to (3.4) possibly multi-valued, which satisfies
property H(e'/?) and

lu—l,p| <€r inCy, with b (t) = g(a(?)),
a(t) € R, la,(1)] < 8er™2, 4.1)

and
€ <€, A=<D>XLy A=<Sie.

Then there exists 1, ; such that

€ .= ~ ~
=1z 5l = STh inCo, b'(1) = g(a)),

with
N - Se Y
la(t) —a®)| < Ce, la,(®)| < 7(“) .
Here the constants €g, Lo, 5, T > 0 small and C large depend only on n, and K.

For the remainder of the section constants depending only on n and K are called universal,
and denoted by ¢;, C;.

Remark 4.2 'We apply the proposition above to the hodograph transform of a solution to the
original Stefan problem, hence in our case u is graphical with respect to the e, direction.
Then (4.1) already implies our hypothesis that

u satisfies property H(e'?)inC,.
Indeed, if 7 € [ro — A2, 1y + A2], then using the bounds for |@’|, '],
la(t) —a(to)l < 8e,  [b(r) = blto)| < Ci* < Céen,
hence
la(ty) - x + b(ty) — lg,p] < Céer in Q;\" x [to — A%, to + A2]. 4.2)

This shows that « is well approximated in each parabolic cylinder of size A by a linear function
which is constant in 7,

u = (alto) - x + b)) < 2eh in QF x [t — 22, 10 + 221, 4.3)

with C > a,(t9) > c. Since the graph of u coincides with the graph (in the e, direction)
of a solution to the heat equation, we can use the standard Harnack inequality for the heat
equation and find that u satisfies property H(Ce¢) in C; (as we used interior regularity in
Remark 3.1). Thus u satisfies property H (¢'/?) by choosing € smaller if necessary.

This argument shows that if u is graphical with respect to the e, direction, then it is
single-valued away from a O (eA) neighborhood of {x, = 0}.

We now show that Proposition 4.1 implies Theorem 1.2, and the remainder of the paper
will be devoted to prove Proposition 4.1.
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Proof of Theorem 1.2 As discussed in Subsection 3.1, Theorem 1.2 is equivalent to obtaining
C1@ estimates on {x, = 0} for the hodograph transform. After relabeling constants if nec-
essary, the hodograph transform does satisfy the hypotheses of Proposition 4.1 with € = €,
A < min{dep, Ao}, ap(t) = (0,0,...,0, (ap)n(t)) € Rk, 2. Now Proposition 4.1 can be
applied indefinitely in the cylinders C;,, A := A%, with € = ¢ 1= €27% = C(A)AY. The
hypothesis that a, () € R is satisfied (by choosing €p smaller if necessary) since

lax(t) —ax—1(0)| < Ce,  ao(t) € Rk )2,

from which we also deduce that
lax (1) — Vu(0,1)| < Cey. 4.4)

Hence

= la| < €die < COIRTEin Gy,
for all k > 0, and from (4.3) (applied for Ay) and (4.4) we deduce that

IVu(0, 1) — Vu(0, s)| < C)|t —s|*/2,
which gives
lax (1) — ax(s)] < COOAS? if 1,5 € [=A, O].

Using that b}, = g(ax) we finally obtain

lu = (@ (0) - x + B, () + b(0)| < CVA, ©  in Cy.

which is the desired conclusion. ]

4.1 Strategy of the proof of the improvement of flatness

We briefly explain the strategy of the proof of Proposition 4.1. The main idea is to linearize
the equation near /, ;. Define w(x, ¢) the rescaled error by

t

ulx,t) =1l p(x,t) + erw <§, X) , (x,1) eC,. 4.5)

Then w is defined in Cy, possibly multi-valued near {x, = 0}, and satisfies by hypothesis
lw| <1 in Cy,

and

[xa;,(,\r)x,, + b/ (t) + ew(x, 1) = F (a(t) + €Vw, ED?w) inCy, “6)

b'(At) + ew; = g(a(rt) + eVw) on Fji.
We show that w is well approximated by a solution to the linear equation obtained formally

by multiplying the first equation by Ae~! and the second by € ! and then letting ¢ — 0,
8 — 0. Using |a'| < 8er™2, and e~ ! < 8 — 0 we obtain

4.7)

vy = tr(A; ()D?*v) in(j,
vy =yu(t) - Vo on Fi,
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with
A1) == A(a(rr)),  y() == Vg(arn).
Using that A, g € C*(Rg), and that |a’| < 12 we find
A0l <27 ol <Al

The next sections are devoted to the study of the linear problem (4.7), and to obtain estimates
which are uniform with respect to A. To this aim, we introduce a distance d between points
(x,1) e R1Hl

d((x,1), (y,s)) =
= min{|x' — y'| + [xn — vl + 1t =512 1x" = ¥/ | 4 lxal + yal + 1 — 51},

which is consistent with the scaling of the equation, so that d is equivalent with the standard
Euclidean distance on the hyperplane x,, = 0 and with the standard parabolic distance far
away from this hyperplane. The various Holder estimates in the next section are written
with respect to this distance d, or after a dilation of factor »~! with respect to the rescaled
distance d,,. In particular, this allows us to show that solutions v to the linear problem enjoy
an improvement of flatness property in cylinders C,«, which can be transferred further to the
solutions of the nonlinear problem (4.6).

The relation between solutions w to (4.6) and v to (4.7) is made precise in the next
proposition. It states that w satisfies essentially a comparison principle with C2 subsolu-
tions/supersolutions v of (4.7) which have bounded derivatives and second derivatives in
X.

Proposition 4.3 (Comparison principle) Let v € C2(Q) with Q C C satisfy
Vo, ID*v] < M,
for some large constant M and

= 4.8)

v < 1r(A, (1) D*v) — C8 in Q,
v < ya(t)-Vu—34§ on Fi NQ,

with Ay (t), y,.(t) as above.
Then v is a subsolution to (4.6), as long as C is sufficiently large, universal, and €
< €1(8, M). In particular, if

v<w on IQ\({t =0}U{x, =0})

then
v<w in Q.

Similarly, we have the same result for supersolutions by replacing < by > and the — signs
in (4.8) by +.

Proof 1t is straightforward to show that (4.8) implies the corresponding inequalities for v (in
place of w) in (4.6). We need to use the hypotheses of Proposition 4.1 and that

Ma'lLe + 16l < €, |A(a(rr) +€Vv) — A(a(rr))| < CeM,
|g(a(rAt) + €Vv) — g(a(rt)) — eVg(a(rr)) - Vv| < Ce*M?.

[}
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As a consequence, we obtain that if the rescaled error w is close to a C? solution v of (4.7)
on the Dirichlet boundary of a domain 2 C Cy, then v and w remain close to each other in
the whole domain £2.

Corollary 4.4 Let w be a solution to (4.6) and v € C? be a solution of (4.7) in a domain
Q C Cy, with

Vo], D?v] < M.
Ife <e€1(5, M) and
lv—w| <o on IQ\{r=0}U{x, =0}

then
lv—w|<o+C§ in Q.
Proof This follows immediately by applying Proposition 4.3 to
v+ (CS(x2 —1—2) —0).
O

We apply Proposition 4.3 and Corollary 4.4 to functions v for which M is large, universal.
In order to apply Corollary 4.4 we need to show that w can be well approximated near the
boundary of Cy/2 by a solution v to (4.7) with bounded second derivatives in x. We prove
that w has essentially a Holder modulus of continuity (as § — 0) with respect to the distance
d), induced by d, and then we let v be the solution to the Dirichlet problem (4.7) in Cy 2 with
boundary data which is sufficiently close to w.

We conclude this section by stating a version of interior Harnack inequality for w with
respect to constants, which is an immediate consequence of property H (¢'/2) of u in Cy, see
Definition 3.5.

Asin (4.2), the error between [, , and a linear function independent of ¢ in a time-interval
of size (Ar)? is C8eA r2. Then Definition 3.5 implies the following property for 1 — lap-

If for some constant @

u—(@+1ap) =0 in Qi (x0) X [to — )2, 10 + ()] C s,
with r € [e!/%, 1], and
(W — (@ +14.))(x0. 10) > peh, forsome p > Cor2,

then
K . 1
U= (©+lap) = ek in Opp(xo) X [lo + E(Ar)z, fo + (Ar)z]

with « the universal constant from Definition 3.5. In terms of w this can be written as follows.
Interior Harnack inequality for w. If
w>w in Qy(xo) x [ty — Ar2, o+ Ar?] C C1,

with  a constant, r > ¢!/2

, and
w(xg, tg) > w + u, forsome pu > C8r2,
then

K . A o 5
wzw-l—a,u in Q,p(xo) x t0+5r Jto+Arc|. 4.9)
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5 The linearized problem

In this section, we state various estimates for the linear problem (4.7) which are uniform in
the parameter A < 1 and we use them to prove our main result Proposition 4.1. We start with
introducing the distance d, with respect to which our estimates are obtained.

5.1 Definition of the distances d, d; and the family of balls 3, 3, ;.

We define the following distance in R"*!
d((x, 1), (y,5)) =
= min{|lx" = y'| 4+ ey = yal + 1t =512 1" =T+ beal + Lyal + 12 = 1,

which interpolates between the parabolic distance and the standard one depending on how far
points are from {x, = 0}. It is not too difficult to check that d satisfies the triangle inequality.

For » < 1 and points (y, s) with y, € [0, 1], we define the family of “balls” of center
(v, s) and radius r, which are backwards in time and restricted to {x, > 0}, and which are
consistent with the distance induced by d:

By (y,s) 1= Qr(y) x (s =17, 5), if r < |yal,
Be(y,s) == QF (y) x (s —r.5), if1>7r > |yl
where we recall that
0, ={x eR'|xi —yil <r},  QF ()= 0N {xy =0}
Notice that
(x,1) € Bor(y, )\Br(y,8) = d((x,1),(y,5)) ~r.

A function v : U — R, with U C Cy, is Holder with respect to the distance d if

[vlce :=  sup lv(x, 1) —v(y,s)| d((x, 1), (y,5)"% < oo.
(x,0)F#(y,s)

Equivalently, v € Cj (U) if and only if there exists M such that V(x, t) € U

osc v<Mr® in B.(x,1)NU.

5.1.1 Rescaling

Assume A < 1 and we perform a dilation of factor A~' which maps Qi“ into QT. We use the
hyperbolic scaling for the rescaled distance dj, of d

1
dr((x, 1), (v, ) := —dA(x, 1), A(y, )

1/2 12 |y

= min{lx" — y'| + |y — yul + A7t =175 1 =yl + Lyal + 2= s])

The corresponding family of balls induced by d,, denoted by 5, , is obtained by dilating of
a factor A~ ! the sizes of the balls B, above and then relabeling A ~'7 by . We find

By (y,8) = Qr(y) X (s —ar?,s), if r < |yul,
By (y,8) i= Q) (y) X (s —r,8),if A7" =7 > |yl
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and notice that By (v, s) = B-(y, s) if y, = 0. - o
As above a function v is Holder with respect to the distance dj, in U and write v € Cé’l“A )
if there exists M such that

osc v<Mr® in B ,(x,t)NU.

5.2 Estimates

Having introduced the distance d,, we are now ready to state the estimates for the linear
problem

{Av, — tr(A(t)D*v) inCy, 5

vy =y(t)- Vv on Fi,
with
K'I<A®)<KI, K '<y, <K, |y|<K
re 0.1, [A0l<2 ol

for some large constant K. Here constants depending on n and K are called universal.
We start with an interior regularity result (see Definition 3.4 of I, ).

Proposition 5.1 (Interior estimates) Let v be a viscosity solution to (5.1) such that ||v|| L
< 1. Then

|Vol, |D*v| <C in Cip,
and for each p < 1/2, there exists l; j such that
v =151 <Cp'™™ incC,,
with
by=yw-a, la<cp* 27", lal=cC,
with o, C universal.
In terms of the Dirichlet problem for (5.1), we define the Dirichlet boundary of C; as
apCy = aC; N ({t =1 U, = U (x| = 1}).

Notice that dpC; is different from the standard parabolic boundary since the points on F;
are also excluded.

Proposition 5.2 (The Dirichlet problem) Let ¢ be a continuous function on dpCi. Then there
exists a unique classical solution v € C2L(C) N COCy) to the Dirichlet problem (5.1) with
v = ¢ on dpCy. Moreover,

IVol, [D*v] < C(@)vllze in Cf :={dy((x,1),dpC1) = o},
and if ¢ is C* with respect to the distance d,,, then v is also C* up to the boundary and
Ivlicg = Cliglics -

with C (o), C universal constants (independent of ).).
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Here

[vlice :=llvliee +  sup  Jolx, 1) — v(y, )ldr((x, 1), (¥, ).
* (. D#(y,s)

The proofs of Propositions 5.1 and 5.2 are based on a Harnack inequality for solutions to
(5.1), which we provide in the next section. The Harnack inequality holds for more general
equations of the same type with measurable coefficients. It applies also for solutions w to the
nonlinear problem (4.6) up to scale €'/2. To state it, we recall the definition of the maximal
Pucci operators

ME(N) = max tr AN, Myg(N)=  min tr AN.  (52)
K-'I<A<KI K-1I<A<KI

Theorem 5.3 (Hoélder continuity) Let v be a viscosity solution to

ME(D?v) = Ay = My (D?v) inCi,
5.3)
K=, — Kvf — K|V > v > Kol — Kv, — K|Vov| on F.

Then v is locally Holder continuous in Cy 2 with respect to the metric induced by d,, that is
||U||ch(cl/2) < Clvlizeeey)-

Moreover; if v is continuous up to the boundary and v = ¢ on dpCy with ¢ € C(‘l,)‘x then
vE Cg‘A up to the boundary and

Iollcs < Cllglcs -
d, d,
The constants o and C depend only on n and K.

Proposition 5.4 (Harnack inequality for w) Assume that u satisfies the hypotheses of Propo-
sition 4.1 and w is defined as in (4.5). Then

05C B, , (xo.10) W < Cr¥, V(xo,10) € Cijp, 1= C(8)e'/?,

provided that § < ¢ universal.

5.3 Proof of Proposition 4.1.
Using the results above we can complete the proof of Proposition 4.1.

Proof of Proposition 4.1 We divide the proof in two steps.
Step 1 We prove that there exists a solution v to (4.7) which approximates w well in Cy 2,
that is

lv—w| <C8 inCip,

provided that € < €1(9).
Indeed, by Proposition 5.4 we know that there exists a function ¢ defined in C; > such
that

lw—¢l =8, l¢lcg =C. (54
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Let v be the solution to (4.7) in Cy j» withv = ¢ on 9pCy /2, which exists in view of Proposition
5.2 and satisfies,

Ivlicg = €. (5.5)

Then, if d;((x,1),dpCi2) < 81/ there exists (y, s) on dpCi 2 so that (using (5.5) and
(5.4)),

x, 1) — ¢y, ) =C8,  |wx, 1) —¢(y,5)| = C8,
thus,

[v—w|<C8 on CippNi{d((x,1),dpCip2) < sy, (5.6)
In particular

lv—w| <C§ on pR,  Q:=CipN{d((x,1),dpCp) > 8.
On the other hand, by Proposition 5.2,
|Vol, |[D*v| < C() in .
Thus, using Corollary 4.4,
[lv—w| <C§ in R,

which gives the desired claim.
Step 2 Applying Proposition 5.1, to the solution v above, we find that

lw—1; 5 < Co'™ +Cs5 in Cp,

and
by =y0)-a, la,|<Cp* 27", lal<C,
with y, () = Vg(a(At)). We choose p = 7 small, universal, and
§=1!t%,
so that § < ¢’ the constant from Proposition 5.4, and
lw—1, ;| < LE la,| < Ls o,
’ 4 4

In terms of the original function u, this inequality implies

x t x t X t € .
u— la,b—f—é)\la’g K,X =€Ar|w X,X —l[LE X,X SzT)\, mn CT)\.'

Set
. [t N _(t
a(t) :=a(t)+ea (X) , b(t):=b(t)+erb (X) ,
then
€ .
lu —l&’,;| < ZIA in Cry,
and

|&/|<é 1+L <$.
A2 472 ) ~ 2(7r)?
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Finally, we define b by the ODE
b =g@, b0 =b0),
and then we have

B =b +eb’ (%) = g(a() + €Vg(a(®)) -a (%) = 2@M) + 0 =5 + 0(e),

If t € [—tA, 0] then
6 =b)o) = celrl < Zra,
which implies the desired conclusion

€ .
U —lz5l = 50) in Con

and @, b satisfy the required bounds. O

6 Harnack inequality

In this section, we prove Theorem 5.3 and Proposition 5.4. The key ingredient is to establish

a diminishing of oscillation property. As usual, universal constants depend on n, K.

Proposition 6.1 Assume that v is a viscosity solution of (5.3) and0 < v < 1inCy. Then
osce, ;v < 1—oc,

with ¢ > 0 universal.

In order to prove Proposition 6.1 we start with a lemma. Let Q2 be a smooth domain in
R”", n > 2, such that

07, CQC 0%
and call
T :={x, =0}N Q3,4 C Q.

Define 1(x’) a standard bump function supported on Q’5 /8 and equal 1 on Q] P (here the prime
denotes cubes in R"~!). Let ¢ satisfy (see (5.2) for the definition of the Pucci operator)

Mz (D*¢) =0 inQ,
¢=0 ondQ\T, ¢=n onT,

and noticethat) < ¢ < 1,¢p > con er/z,andbyHopflemmaq&n > Oon{x, = 0}N{¢p = 0}.
The following lemma holds.

Lemma 6.2 Let v > O satisfy

MG (D) = hvy = Mg (D) inCy,

6.1
v > K~ 'of — Kv, — K|Vev| on Fy, ©.1)

in the viscosity sense. If for some ty € (—1, 0],

v(x,f0) = so $(x) in Qf, so=0,
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then
v(x, 1) = s(t) ¢(x) in OF x 10, 0],
with
s'(t) = —Cos(t), s(to) = so, Co large universal.

Moreover, if so < co with co small universal, and

: 6.2)

N =

1
v <§en,to—|—)\/4) >
then
v(x, 10+ A) > (so +cob)p(x) in QF.

Proof For the first part of the claim, since v > 0, it suffices to show that with our choice of
s,

w(x, 1) = s)P(x),
is a subsolution to (6.1) in  x [fg, 0], that is
Awp < Mg (D*w) in Q x (1, 0],
w, < K~'wh — Kw, — K|[Vyw| on {x, =0} N (Q x (f, 0]).

The interior equation is immediately satisfied since s’ < 0 and s > 0. On {x,, = 0}, we need
to show that

Co+K'¢f — K, — KIVug| 20,

for some large C. By Hopf lemma ¢, > 0 on {¢ = 0} N {x,, = 0} and moreover |V, ¢| = 0,
thus

K '¢Fr — K¢, —K|Vupl =K '¢, >0 on {¢p=0}n{x, =0}

The same holds in a neighborhood of this set by continuity, and then we can choose C
sufficiently large so that the desired inequality holds.
For the second part, denote for simplicity

A
ti Z:t()-l-lz, i=1,...,4.
We define
D:={xeQ| dx,0Q) >c} CQ,
with ¢ small universal such that there exists a C? function ¥ > 0 defined in \ D satisfying
My (D*y) >4 in Q\D,
and

Y =0, |V¥|>1 onad, ¥ <1 onaD.

An example of such a function is given by ¥ = d 4+ Cd? with C sufficiently large, where d
is the distance function to 0€2. In view of (6.2)

1
v (Een, t]) > 1/2
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Thus, we can use Harnack inequality (after rescaling) to conclude that
v>2c; onD X |[t,ts], (6.3)
for some small ¢;. We claim that at time ¢t = 13,
v(x,13) > s(13)p + 1y in Q\D. (6.4)

For this we compare v in (2\D) X [1, 3] with

q(x.1) = s(13)¢ +cy <w+ t_t3>.

13—

The inequality ¢ < v holds on the boundary of the domain. Indeed (recall that s is decreasing),
on oD

q(x,t) <s(t3)p+c1 <so+c1 <2 <,

where in the last inequality we used (6.3), and on 92 or at t = #, we have ¢ < s(13)¢ < v.
It remains to check that g is a subsolution for the interior equation. Indeed,

hgp = 4ei < e Mg (DY) < Mg (Dq).

where we used that M (N1) + Mg (N2) < Mg (N1 + N2), and claim (6.4) is proved.
Next, in the domain (2\ D) X [f3, 4] we compare v with the subsolution

2(x, 1) i= (s(t3) + c2(t = 13))P (x) + 1Y (%),

with ¢, sufficiently small.
The inequality v > z is satisfied at time ¢ = 3 by (6.4), and on 9 D we have

Z<sp+cr+c1 <2 <,

while on 2\ {x,, = 0} we have z = 0 < v. We check that z is a subsolution of our problem.
For the interior inequality we have

Mzt = cahd < 2 <t Mg(D*) < My (D?2).
For the boundary condition, on {x, = 0} we get
a=ap<as 7K (6.5)
where in the second inequality we have used that ¥, > 1 on 92N {x, = 0}. Moreover, since

¢, > —C on Q2 N {x, = 0}, we get (for sg, c2 small enough),

A cl
n = — SO+C21 C+cyy > ?Ilfn»

and finally (V| = 0 on {x,, = 0})
2 1
KIVwzl = (s0+ F) KIVugl = Ky
Together with (6.5), this gives
i =c¢ <cy <K'z, — K[Vyz| on{x, = 0}.

In conclusion, at time t = #4 we have v > z in Q\D and v > 2c¢; in D which gives the
desired claim by choosing ¢ sufficiently small. O
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Remark 6.3 In the proof above we only used the subsolution property for v
ME(D*v) > hvy, (6.6)

in order to extend the inequality (6.2) from one point to (6.3) by applying the interior parabolic
Harnack inequality. Alternately, it is sufficient to assume that the Harnack inequality holds
for v only in a neighborhood of D and not necessarily up to {x,, = 0}.

The rest of the proof is based on comparing v with the explicit C? subsolutions w, ¢ and
z which all have bounded second derivatives in the x variable. Thus the hypothesis that v
is a viscosity supersolution of (6.1) can be slightly relaxed, and require instead, that v only
satisfies the comparison principle with respect to the explicit barriers above.

Remark 6.4 The hypothesis (6.6) can be removed completely if instead of (6.2) we assume

a measure estimate
A
Q1 X |10, 10 + il

>l n A >1
{”—1} (le[’O”°+4]>’—z

Then, the inequality (6.3) follows directly from the supersolution property for v and the weak
Harnack inequality (see for example [20]).

We are now ready to prove Proposition 6.1.

Proof of Proposition 6.1 Assume that 0 < v < 1, and for half of the values of

tr = —1+ kA, sothat 7 € [—-1,—-1/2), k=0,1,2,...,
we have

1 1
v (Een, I + k/4> > 3 6.7)
We apply Lemma 6.2 repeatedly to the sequence of times #; and obtain
v(x, k) = skp, sk =s(),  s0=0,
with ¢ given in Lemma 6.2, and
Sk+1 = Sk +cor  if (6.7).holds and s; < ¢y,
or
Sk+1 = sk (1 — CoA) otherwise.

Now it follows that s; > ¢ for the last value of k so that , < —1/2, for ¢; appropriately
chosen depending on cg, Co. Then we apply the first part of Lemma 6.2 to obtain

v(x,t) >c¢p forallt > —1/2,
which gives the desired conclusion, since ¢ > ¢ on Qf/z. O

The same arguments show that a similar statement to that of Proposition 6.1 holds for a
solution w of (4.6) defined in (4.5). Below is the key lemma which connects the linear and
nonlinear problem and allows us to reduce our analysis mostly to the linear case.
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Lemma 6.5 Assume that u satisfies the hypotheses of Proposition 4.1 and let w be defined
as in (4.5), with —1 < w < 1. Then

osc ¢ w < 2(1 —c),

with ¢ universal, provided that § < ¢’ and € < €] ().

Proof We may assume as above that w(e, /2, fx + A/4) > 0 for more than half the values of
k, and then show that w separates from the lower constraint — 1. For this we apply the same
argument as above to the function

Wi=w+1+C8Q+1t—x2) >0,

for which the relaxed hypotheses of Remark 6.3 hold. Indeed, by (4.9), w satisfies the required
Harnack inequality (6.2) = (6.3) and, by Proposition 4.3, it satisfies the comparison with
the explicit barriers of Lemma 6.2.

We remark that we have only used that u has property H(c”) in C,, for some ¢” small,
universal. O

Before we proceed with the proofs of Theorem 5.3 and Proposition 5.4 we provide a
boundary version of the diminishing of oscillation Proposition 6.1.

Lemma 6.6 Assume that U is a space-time domain obtained by the intersection of n + 1 half
spaces in the x1, ..., Xx,—1, X, and t variables,

U = (—00,21) X (=00,22) X -+ X (=00, 23) X (—zp41,00) C R,

with z; € [0, 1].
Assume that v > 0 satisfies

Ay > My (D?) inC,NU,
v > K~ 'wf — Kv, — K|Vev| on FiNU, (6.8)
v > % ondU NCy.
Ifminz; < %, then
v>c inCippNU, ¢ universal.

Proof This follows easily from Lemma 6.2. Indeed, we work with the truncation v
:= min{v, }T} extended by % in C1\U. Then v is a supersolution for our problem in Cj.

If z,41 < 1, then we can apply directly the first part of Lemma 6.2 for v for some 7y close
to —1 and for 5o universal, and obtain the desired conclusion.

On the other hand, if z,41 = 1,thenz; < % forsomei < nhenceforeachtimer € [—1, 0]
we find

> clQ1l.

.1
v>-—¢N
[r=3jne
Now the conclusion follows as before, see Remark 6.3. O
We are now ready to prove Theorem 5.3.
Proof of Theorem 5.3 Notice that the rescaling of v

v(x,t) =v(rx,rt), r=<l,

@ Springer



219 Page 26 of 38 D. De Silva et al.

satisfies again the hypotheses of Theorem 5.3 in C; with the constant A replaced by A, = Ar.
Proposition 6.1 applied to v, implies that

osc ¢, vr < (I —cosc e, vy
which gives (recall that B; ,(y, s) = B (y, s) if y, = 0),
0S¢ B,20,00 vV < (1 —c)osc p,(0,0) V-

Similarly, if (y, s) € C; ;2 N {x, = 0}, then by considering cylinders centered at (y, s) we
obtain

0SC B, jp(y,s) V = (L —c)osc gysy v, Vr <1/2, (6.9)

which proves the desired oscillation decay on {x, = 0} N C| /2
If (y, s) € C1/2, then (6.9) applied at ((y’, 0), s) implies

0SC B, ,j(y,5) V = (I =c)osc B, ,(y.5) Vs if y, <r<1/4.

In the case when r < yj,, then the inequality above follows from the standard parabolic
Harnack inequality applied to v in the interior cylinder 5;_,(y, ). ~

The boundary version follows in the same way. Precisely, if (y, s) € C; N {x, = 0} then
we find

_ < — — <
0SC B, (y.5)rCy ¥ = (1 —c)osc B, (y,5)"Cy Vs Vr <1,

by applying either Proposition 6.1 or Lemma 6.6 depending whether or not 13;_,(y, s) inter-
sects the boundary dpC;.

The inequality above can be deduced at all points (y, s) € C; after replacing r/2 by r/8
on the left hand side. Indeed, if » >y, then it follows from the inequality above applied at the
point ((y’, 0), ), and if r < y, then we can apply the standard parabolic Harnack inequality
or its boundary version since B;_,(y, s) does not intersect {x,, = 0}. O

We conclude the section with the proof of Proposition 5.4, that is the Harnack inequality
for w.

Proof of Proposition 5.4 By Lemma 6.5 we find that, in terms of u, we satisfy again the
hypotheses of Proposition 4.1 in C s> with A replaced by A /2, € replaced by 2(1 — ¢)e, and
with § the same. The function a stays the same while b is modified by a small constant.
Moreover, the property H (€'/2) of u in C; implies that u satisfies property H (2¢'/2) in C;, /2-
We can iterate this result k times as long as the scale parameter of the property H (2Ke!/2)
remains small, universal, and the hypotheses of Lemma 6.5 hold:

kel2 <" s<d, 250 = o)fe < €1(8),
with ¢” small, universal. This means that we can iterate k times if
2Kel2 < ey(8), s<c.

In terms of w, we obtain that its oscillation in C,—« is bounded by 2(1 — )X as long as k
satisfies the inequality above. On the other hand for the interior balls B;, -, by (4.9), w satisfies
a similar diminishing of oscillation up to scale r ~ ¢!/2, and the conclusion follows. O
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7 Proof of Proposition 5.1

In this section, we prove Proposition 5.1 by using Theorem 5.3 and the estimates for the one-
dimensional problem which will be proved in Lemma 8.1 of the next section. The constants
C in this proof depend on n and K.

Proof of Proposition 5.1 The proof is divided in four steps.
Step 1 - Interior estimates. Let (y, s) € Cy2. From Theorem 5.3 we know that

08¢ B, (y,5)V < Cr¥, r= yp.
The rescaling
v(x,t) :=v(y+rx,s+ rzkt),
solvesin Q1 x (—1,0)
3 = tr(A(t)D*%),  A(t) := A(s + r2At).

Since |A’| < A~!, we have |A’(r)] < C, and we find by interior estimates that |7, (0, 0)]
< C 0scg, x(~1,0) U, from which we deduce

[ua(y, $)| < Cro=t = cyel,

On the other hand, we prove in appendix that the difference of two viscosity solutions is still
a viscosity solution. Thus, the estimates for v can be extended to the derivatives of v in the
x; directions, i = 1, ..., n — 1. Indeed, by applying the interior Holder estimates to discrete
differences in the x; directions, and iterating this we find that

IDX vl < Ck) inCip, Yk =1
In particular, using also the estimate for v, above, we obtain
IDIvl < C,  vinl < Cx27" inCypa.

Step 2 - Reduction to 1D. Combining the interior estimates with our assumptions on y, we
obtain that when we restrict v to a two-dimensional space in which we freeze the x’ variable,
say for simplicity x’ = 0, then the function v((0, x,,), ) solves in the x,, ¢ variables the

equation
U
U

lh| < Cx27Y |1 f(n) < C,

h(, 1) = Y a (@) v (0, x,),0),  f@) =Y yi(®) vi(0,1).
(i, ))#(n,n) i<n

L{a" (t)van + h(xy, D} inCy,
Yu (v + f(1) on Fi,

(7.1)

with

The boundary condition on F7 is understood in the viscosity sense.
Indeed, if a C! function ¢(x,, t) touches v(0, x,, ) by above/below, say at (0, 0), in
B,(0,0) C R?, then

@@, 1)+ Y 0i(0, 0)x; + C|(x, 1)] '+

i<n
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touches v by above/below at the origin in B,.(0,0) C R+ This follows from the C*
continuity of v;, i < n, which implies

v(x, 1) — <u(0, X )+ Y v 0, O)x,->

i<n

< C|(x, )"t (7.2)

Now, we can use Lemma 8.1 a) for v(0, x,, t), where we establish C Lo ostimates for the
1D problem (7.1). We obtain

[0((0, x), 1) — v(0, 1) — v, (0, £)x,| < Cx} T,

which together with (7.2) gives

< Cp'™™ inc,.

n—1
v — (v(O, 1)+ va (0, )x, + Y _ v (0, O)x,-)

i=1

This means that
v —lapl = Cp'* inCp,
with
a(t) := (v1(0,0),...,v,-1(0,0), v,(0,1)), b(t):=v(0,1),
and

b =yaan+ () =y @) -a+ Y yi®)(i(0,1) = vi(0,0)).

i<n

Step 3 - Modifying the linear approximation. Next, we modify a and b slightly into a, b
so that

lv—1; ;1 < Cp'™ inC,,
and we also satisfy
@) <Cca B =y@)-a. (7.3)
By Lemma 8.1 we know that
lan () — an(s)] < CA™2 |t — 5|2, (7.4)

and by the Holder continuity of the v;’s,

b =y () -al < Z ¥illvi (0, 1) — v; (0,0)| < C|t]*. (7.5)

i<n

Thus, a, oscillates Cp® in an interval of length Ap?. We define @ by averaging a over
intervals of this length. More precisely, let n be a standard mollifier in R with compact
support in [—1, 1], and n, denote its rescaling with support of size . We extend a, (¢) to be
constant for # > 0 and define

El,l::an*nkpz, a=a;, i=1,...,n—1.
Then (7.4) implies the inequality (7.3) for @’ and also
la —al < Cp“. (7.6)
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We define b(r) for t < 0 as
b=y@)-a, b0)=b0).
Then, (7.5), (7.6) imply
|(b—b)| <Cp* = |b—bl<Cp'*™ in[—p,0],

and the desired conclusion follows.

Step 4 - Conclusion. The tangential derivatives v;, with i < n, satisfy the same estimates
as v. We find from Step 2 applied to v; that the mixed derivatives v;, must be bounded by
a universal bound. This improves the initial estimate in Step 1, which in turn improves the
regularity of f and /4 in Step 2. More precisely, by Lemma 8.1 we find that v;, satisfies
the estimate (8.2). This holds also for the tangential derivatives of order up to 2. Then the
functions % (x, t) and f(¢) in (7.1) satisfy the hypotheses of part b) of Lemma 8.1. This gives
that the remaining second derivative v, is bounded as well, and (7.4) holds for « + 1 instead
of a. Thus we can replace o by o + 1 in the bound (7.3) above, and the proposition is proved.

O

8 Estimates for the 1D case

In this section, we provide the necessary estimates for solutions to the 1D linear problem. The
difference with the higher dimensional case is that now, in the 1D case, the Holder estimates
and the subsequent C1% and C%¢ estimates can be iterated in parabolic cylinders

P, = (0, p) x (—p*,0],

and we can use the standard Holder parabolic norms with respect to the standard parabolic
distance: d((x, 1), (y,5)) := |x — y| + |t — s|'/%. Following Krylov [16], we denote the
corresponding Holder spaces with respect to this distance with Cﬁ:f’.

Precisely, we prove the following.

Lemma 8.1 (ID-Estimates) Assume that A < 1 and w(x, t) is a viscosity solution inC; C R2
of the equation

w = HA@O Wy +h(x, 1)} inCy, &.1)
wy =y () wy + (1) on i,
with
lwlize <1, K" <A@, y@) <K, |A@)] < KA
(a) If
Il < Kx*7' I f (0] < K,

then w € CY% in the x variable, w € C' on {x = 0}, and the free boundary condition is
satisfied in the classical sense. More precisely, in Cy /2 we have

lw(x, 1) — (W(0, 1) + xwy (0, )| < Cx'T, lw,y| < C,
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and
wipn = we )l = (Iy =2 +27 3 —s1%).
ey D) = wiz, )| = € (Iy = 21" + 273 = 51F), 8.2)
with C depending only on K and «.
(b) If in addition in C34
1,0 = hiz, )l < K (Iy =21 + 275 = s1%),
Y@ —y©I < KA 2 =52, [f()— f&)] < KA 2|t —s]2,

then in Cy 2

+a

Wy (0, 1) — wy (0, 5)] < CA™ Tt —s|' 2%, Jwy| < C. (8.3)

After subtracting F(t) := fot f(s)ds from w and replacing 2 by h — A f (t) we may assume
that f = 0. We work with v(x, r) = w(x, At), and after relabeling A by ¢ in the arguments
of A and h, we obtain

v = A(H)vey + A(x, 1) in(0,1) x (=271, 0], 8.4)
v, = Ay (1) vy on {x =0}, '
with
K'<A®n, y0) <K, |A®I<K, |h<Kx*" (8.5)

Lemma 8.1 is equivalent to the Lemma 8.2 below, where we establish the corresponding
estimates for v using parabolic scaling.

Lemma 8.2 Assume that v is a viscosity solution of (8.4) in Py with A < 1, and coefficients
that satisfy (8.5). Then

ol p, p) = ClUlzepy + 1, (8.6)
and the free boundary condition is satisfied in the classical sense. If in addition
Ml goes 1¥llcoan < K,
then
1ol c2ep, p) = CCIUlLepy) + 1,
with C depending only on n, K and «.
Proof If v solves (8.4) in P, then the rescaling
i(x, 1) := p Pu(px, pt)
solves (8.4) in Py with coefficients
AW =A™, hx,0)=p* Phipx, p*n), h=pk, 7O =y(@D. BT

Notice that the hypotheses on the coefficients are preserved as long as . < 1 + «, and
moreover A — 0 as p — 0.
We divide the proof in four steps.
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Step 1: Holder estimates. We show that
10l 05 p, ) = € (Il + 1),

for some 8 > 0 small.

Notice that after an initial dilation, we may assume that A < Aq is small. It suffices to
prove the following claim.

If v is a viscosity solution of (8.4) then

3
oscp, V<2 = osc P, V= > with p = ¢g small, universal. (8.8)

The Holder estimate is obtained by iterating this claim in parabolic cylinders centered on the
t axis, while for the interior parabolic cylinders (included in {x > 0}) we can apply directly
the diminishing of oscillation for parabolic equations.

In order to prove (8.8), we let g(x, ) be the solution to the 1D heat equation on the
real-line

& =K 'gu, g(x,0) = X0.00 = X(~00.0)- (8.9)
Notice that for all # > 0, in x = 0 we have
g0.0=0, g(0,n=Cr 2
and
gr <0, forx > 0.

We want to show that if [v| < 1 in P;, then we can improve the upper bound or lower bound
by a fixed amount in the interior, depending on the value of v at (0, —1), i.e.

[v| < 1inPjand v(0, —1) <0, thenv < 1/2inP,, with p = co.

In P; we compare v with
1
G, 0= Cigle, r+ D)+t + D2 — Cyxtte,

We choose C» and then C sufficiently large such that G is a classical supersolution to (8.4)
and G > 1 on the boundary (0, 1] x {—1} and {1} x [—1, 0], while G(0, 0) = 1/4. Then we
find v < G in Py, which gives the claim (8.8) by choosing cq sufficiently small.

Step 2: C1% estimates. We show that (8.6) holds by first establishing a pointwise C!-*
estimate at the origin.

After an initial dilation and after dividing by a large cosnstant, we may assume that 1. < §,
|h| < 8x%~! for some small 8, and lvll Lo (p,) is sufficiently small.

Claim. If a function [y (linear in x) of the form

lo =aox +bo(t),  by=ry(ao, laol <1, (8.10)
approximates v in P, to order 1 + «, i.e.
v—Ilpl <p'™ inP,, p<s,

then we can approximate v to order 1 + « in P, , by a function /; as above, with |a; — ag|
< Cp%, and ¢ small universal. Then the claim can be iterated indefinitely by starting with
lp = 01in P;.
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We prove the claim by compactness. Notice that v — [ solves (8.4) with a slightly modified
h that satisfies |1| < 8x®~! 4+ C8. This means that the rescaled error

O, 1) := p~ T w = lp) (px, p°1),
satisfies (8.4) with coefficients as in (8.7). Since ||V]|z~ < 1, by Step 1 we know that

v <C.
Il ”CS;,"(PW) <C

This means that if we consider a sequence of §,, — 0 and corresponding solutions v, in P, ,
then we can extract a uniformly convergence subsequence of the rescalings v, in P} ,2 such
that
Uy, —> V.
Then the Holder continuous limit function v is a viscosity solution of
U = Ay, inPip,
7, =0 on {x = 0},

with A constant. Since 7 is constant on the boundary {x = 0},the C 2 estimate for the standard
heat equation implies

o —(@x+b)|<Ct?>< =t in P, 7<c.

1
-2
This shows that if § is chosen sufficiently small, then the rescaling v satisfies the inequality
above instead of v which implies

v = (arx + b)) < %(zp)”a in Pr, T=c1,
with
ay = ag + p%a, bt) = bot) + p'tb.
We define b (¢) so that [ has the form as in (8.10), that is
bi(t) = 1y (a1, b1(0) = b(0).
Then

1
(b1 = )| < Clap®| = Cp* == |b1 = bl = Cp(zp)* < (xp)' ™ in Py,

where we used p < § sufficiently small. In conclusion,

I+a

lv—1i] < (zp) in Prp, L =aix +bi(1),

and the claim is proved.

We remark that the oscillation of by (#) which appears in the approximation function [y in
(8.10) is less than Cp? in Pp. Thus we can modify by to be constant in (8.10) and take o
to be linear, and then adjust the error p! ¢ by Cp!*¢. This pointwise C!** estimate can be
applied at other points on {x = 0}, which combined with interior C'¢ estimates for parabolic
equations implies the desired conclusion (8.6).

Step 3: Boundary regularity We check that v is C!' on {x = 0} and the boundary condition
is satisfied in the classical sense.
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For this assume by contradiction that there exists a sequence 7z — 0~ such that
1
t—(v(O, 1) — v(0,0)) < p =1y (0)(vx(0,0) — ), forsomen > 0. (8.11)
k

For each k, we look at the contact point where the graph of v is touched by below by a
translation of the graph of the classical strict subsolution to (8.4)

1 1+o
8. 1) = (0,0) + ut +x (0(0.0) = o ) + €'

in the domain Dy := [0, c(n)] x [#, O].
We choose c(n) small such that gy (x, t) < vy (x, t) in the domain Dy for all large k. This
implies that the contact point must occur on Dy N {x = 0}. On the other hand, (8.11) gives

v(0, %) —v(0,0) > g(0, %) — £(0,0)

which shows that the contact point is different than (0, #) and we reach a contradiction.
Step 4: C>* estimates On {x = 0} we know that v, y € C%/2, and the boundary condition

implies that v(0, 1) € C'*/2. Now we can apply the standard C>® Schauder estimates up to

the boundary for the heat equation. O

9 Viscosity solutions for the linear problem

In this section, we collect some general facts about viscosity solutions for the linear problem

(5.1) and establish the existence and uniqueness claim in Proposition 5.2 by Perron’s method.

Similar results for different types of boundary conditions were established by G. Lieberman

(see for example [18]). However, we are not aware of an existence result that applies directly

to the linear problem (5.1). Therefore, for completeness we provide the details in this case.
Recall that v € C(Cy) satisfies

v < tr(A(H)D?v) inCy,

©.1)
v <y()-Vu on Fi,

in the viscosity sense if v cannot be touched by above at any point (xg, #p) € C; U Fj in
a small neighborhood B, (xo, fo) by a classical strict supersolution w € C 2(B,(x9, 19)). As
usually, this definition is equivalent to the one where we restrict w to belong to the class of
quadratic polynomials rather than to the class of C? functions.

Another equivalent way is to say that v is a viscosity subsolution of the parabolic equation
in Cy, and a viscosity subsolution of the boundary condition on Fj. This last condition
means that we cannot touch v locally by above at any point (xg, fp) € F; by a function
w € CY (B, (xo, 1)) (or say w is a linear function) that satisfies

wy (X0, to) > y (to) - Vw(xo, fo).

The two definitions are the same since, if w € C! is as above, and say (xo, o) = (0, 0), then
a vertical translation of the quadratic polynomial

w(0) + (W, (0) — )t + (Vw(0) + €e,) - x + M(Ix'|* — nK?x2),

must touch v by above at some interior point (x, ) € B,. Here r is chosen sufficiently small
and M large, appropriately, and then the polynomial is a strict supersolution in B,.
We state the comparison principle for viscosity solutions.
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Lemma 9.1 Assume v is a viscosity subsolution, and vy a viscosity supersolution to (5.1) in
Cy. If vi < vy 0on dpCy then vy < vy in Cy.

Corollary 9.2 The difference of two viscosity solutions of (5.1) is also a viscosity solution of
5.1).

We work with the rescaling w(x, 1) = v(x, At).
First we prove a preliminary result on the evolution in time of a Lipschitz “trace”
w((x’, 0), t) under specific growth assumptions.

Lemma 9.3 Assume that w < 1 satisfies

iwt < ME(D?w) + 1 in (01 N {x, > 0}) x (0, T, ©2)
Tw, < Kwf — K~ 'wy + K|Vew| on {x, =0},
and
w((x',0),0) < |x'|*.
Then

w(0,1) < CA(t'/> +1) fort >0,
with C depending on n and K.
Proof We compare w with
G, 1) = g, 1) + CA'? + 1) + x> + CQ2xy — x7),
where g(x,, t) is the solution to the 1D heat equation on the real-line (see (8.9))
g =K g, g(x,,0)= X(0,00) — X(—00,0)-

It is easy to check that G is a classical supersolution which is above w on the boundary of
our domain, and that gives the desired result. ]

Lemma 9.4 Assume that w < 1 satisfies (9.2) in C1 and the trace of w on {x, = 0} is
Lipschitz, i.e.

[Vyw| <1 oni{x, =0}.
Then
w((x',0),1) = w(x',0),0) — CA3 |12 ifx' € Q).
Proof We prove the inequality for x’ = 0. Since w is Lipschitz the parabola
w(0, 1) + Cr? + r21x)?

is greater than w((x’, 0), ), with r to be specified later. Now we can apply the previous
lemma to the rescaling

w(y,s) :=wry, t+ r2s) —w(0, 1) — cr?,
which solves (9.2) with . = Ar, and obtain that

w(0,5) < Ci(s'/? +5).
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This gives

CO2+ M2 + 2 ]) = w(0,0) — w(0, 1),

1/3

and we choose r = (A|t])"/° to get

w(0,1) = w(0,0) — COt + 1D¥?) = w(0,0) — €13 1|2
[m}
Remark 9.5 The proof of Lemma 9.4 shows that we can construct a supersolution G()f, t)in
C1 such that G((x’, 0), —1) = |x’|, G > 1 on the remaining part of dpCj, and so that G (0, r)
< Ck% Itl_%. Similarly, given « > 0, we can construct a supersolution with G((x',0),—1)

= |x'|% G > 1 on the remaining of dpC; and such that G(0,1) < C(Mt])P, for some B
depending on «.

We are now ready to prove our main lemma.

Proofof Lemma 9.1. Let w;(x,t) = v;(x, At),i = 1, 2, so that wy is a subsolution and w; a
supersolution of

w; = tr(A@t)D*w) in {x, > 0},
tw,=y@®)-Vw on{x, =0},
and we want to show that w; cannot touch wj strictly by below at an interior point. Assume
by contradiction that this is the case.
The standard viscosity theory of parabolic equations implies that the contact point cannot

occur in {x, > 0}. Below we denote by C, ¢ various constants that may depend on w; and X.
After a translation and a dilation we may assume that in C;

wy < wy + ut, w1(0,0) = wy(0,0) =0,

for some © > 0 small. Without loss of generality we may also assume that w;/w> has a
semiconvex/semiconcave trace in the x’ variable, that is

DXwy > —1, Diwy<I, (9.3)
and also
lwillLe <1 94

and each w; solves the parabolic equation in the interior. This is achieved in the following way.
First we replace a subsolution w with the standard regularization using the sup-convolutions
in the x’ variable

_ 1 / 7112
We(x, 1) =maxyw(y, 1) — —[y —x'|7¢,
y 2¢

then we divide w. by a large constant, and in the end we solve the parabolic equation
in the interior of C; by keeping the same boundary values on the parabolic boundary. All
these operations maintain the subsolution property of w, and justify the extra assumptions
(9.3)-(9.4).

Moreover, after subtracting from each w; a function of the type a’ - x” + b(r) with %b(r)
= Aa’ - y(t) we may assume in addition that

w;(0,0) =0, Vyw;(0,0)=0, 9.5)
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and the interior parabolic equations have the form
dw; = tr(AOD*w) +h(), W =C.

We show that w; (0, ¢) are differentiable at the origin in the 7 variable, and that the derivative of
wy is less than the derivative of w;, which would contradict our hypothesis that w; < wy+put.

To achieve this we apply Lemma 9.4 several times. By (9.3)-(9.4)-(9.5) and Lemma 9.4
we find that

w; > —Cr and wy <Cr on P.N{x, =0} 9.6)

Since w; < wj, we can use the pointwise C* parabolic estimates at the origin and find that,
given any o < 1, we have

oscp,w; < Cr® forallr > 0. 9.7)
We can iterate this argument, by working with the rescaling
Wi (x, 1) = rYwi(rx, o),

which satisfies a similar equation with % = Ar, and is such that (9.3)-(9.4)-(9.5) hold for w.
Again by Lemma 9.4 we find

Wi ((x',0),1) = —Cr?? ifx' e 0,
hence we improve the estimate (9.6) as
wy > —Cr¥t3 on P, N {x, = 0}. 9.8)

The same holds for w, with < instead of > and C ro‘+% instead of —C r“"'%.
This in turn shows that w; are pointwise C @+3 at the origin.

We modify again each w; by subtracting the corresponding function 9, w; (0)x,, + b; (1),
with j—tb,- = Ayud,w;(0). Using that d,(w; — w>)(0) < 0, we find that the inequality
wy < wy + wt is still valid on {x, = 0}, while (9.7) holds with r**2/3 instead of r%. The
same argument as above implies that (9.8) holds again with r*+4/3 instead of r**+2/3. Since
o +4/3 > 2, this means that w; (0, 1) > —C|¢|"*# and w»(0, 1) < C|¢|'*# for all small
t < 0, which contradicts w1 (0, 1) < wy(0, t) + ut. O

We can finally conclude the proof of Proposition 5.2.

Proof of Proposition 5.2 The interior C? estimates in the x variable and the Holder estimates
up to the boundary were already proved in Proposition 5.1 and Theorem 5.3. It remains to
prove existence by Perron’s method.

We assume for simplicity that the boundary data ¢ is Lipschitz, and the general case
follows by approximation. As usual, we define

v(x, ) := sup w(x,1),
weA

where A is the class of continuous subsolutions on C; which have boundary data below ¢
on dpC;. The conclusion that v solves our problem is easily checked once its continuity has
been established.

Claim. For each (xo, t9) € 9pC; there exists a subsolution wy,,s) Which vanishes at
(x0, t0), is below the cone —|(x, t) — (xg, #p)| on dpC; and has a Holder modulus of continuity
at (xo, t9).
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This can be deduced from the proof of Theorem 5.3, where the Holder continuity at the
boundary was achieved using explicit barriers. More precisely, as in Lemma 6.2 and Lemma
6.6, for all » < 1/2 we can construct a subsolution ¢, defined in B)ji (X0, %) N Cy, where

B, (x0. 10) := {(x, )] dy.((x, 1), (x0, 10)) < r},
so that
¢ =0 on 3B, (x0. 10)\@pC1UF), ¢ <1 on 3B;,(x0.1) N IpCi
and
¢r = co on B;, ,(x0, ).

Then wy, ) is obtained by superposing appropriate multiples of ¢, for a dyadic sequence
of r =27, We omit the details.

Using the claim we can construct a subsolution ¢ and supersolution ¢ which are Holder
continuous on dpCj and agree with the boundary data ¢. Thus we can restrict the class A of
subsolutions to satisfy

p<w<é. (9.9)

This shows that the limit v achieves the boundary data ¢ continuously. Moreover, using (9.9)
we can replace each w € A by its maximum among appropriate x’ translations

max {w(x — (', 0),1) — Cly|*},
y/

and remain in the same class. Therefore we may assume that .4 contains only subsolutions
which are uniformly Hoélder continuous in the x” variable. Using this together with Remark
9.5, we find that the trace of v on {x,, = 0} is locally Holder continuous in the x’, t variables.
This means that the solution v to the interior parabolic equation in C; with boundary data v
is continuous up to the boundary. By the maximum principle v > w for any w € A, and it
is straightforward to check that v € A, hence v = ¥ is continuous in C;. O
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