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Abstract

We study the most common image and informal description of the optimal
transport problem for quadratic cost, also known as the second boundary value
problem for the Monge–Ampère equation—what is the most efficient way to fill
a hole with a given pile of sand?—by proving regularity results for optimal trans-
ports between degenerate densities. In particular, our work contains an analysis of
the setting in which holes and sandpiles are represented by absolutely continuous
measures concentrated on bounded convex domains whose densities behave like
nonnegative powers of the distance functions to the boundaries of these domains.

1. Introduction

The optimal transport problem, formulated by Gaspard Monge in 1781, asks
whether or not it is possible to find a map minimizing the total cost of moving a
distribution of mass f to another g given that the cost of moving from x to y is
measured by c = c(x, y). Since its inception, optimal transportation has drawn
together and impacted many areas of mathematics: fluid mechanics, functional
analysis, geometry, general relativity, and probability, just to name a few (see, e.g.,
[1,15,23,25,30]). The most fundamental case is that of the quadratic cost on R

n ,
when c(x, y) = |x− y|2 for x, y ∈ R

n . This is the model for all sufficiently smooth
cost functions on all sufficiently smooth (Riemannian) geometries ([10]), and it is
at the core of many applications ([30]). More precisely, it is

min
T

{∫
Rn

|x − T (x)|2 d f (x) : T# f = g

}
.
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Under certain conditions on the nonnegative measures f and g, Brenier dis-
covered that the optimal transport problem for the quadratic cost on Rn is uniquely
solvable f -almost everywhere ([2]; see also [24]). Moreover, he characterized min-
imizing maps as gradient maps of convex potentials: Tmin = ∇u for some convex
function u : Rn → R. When f and g are absolutely continuous with respect to
Lebesgue measure, he also established that any convex potential u defining Tmin

satisfies a Monge–Ampère equation,

g(∇u) det D2u = f and ∇u(spt f ) = spt g,

in a suitable weak sense (the Brenier sense; see Lemma 3.1), where f = f dx
and g = g dy. (In this work, we equate absolutely continuous measures with their
densities. It will either be clear from the context or explicitly stated when absolute
continuity is assumed.) In turn, Brenier linked the optimal transport problem and the
second boundary value problem for theMonge–Ampère equation: given two convex
domains and a nonnegative function on their product, find a convex function whose
gradient maps one domain onto the other with Jacobian determinant proportional
to the given function.

Unfortunately, optimal transports can behave rather poorly. Indeed, Caffarelli
observed that Tmin = ∇u can be discontinuous under the seemingly ideal conditions
that f and g are the characteristic functions of smooth, bounded domains of equal
volume ([3]; see also [20]). In principle then, a convex potential of an optimal
transport (on the support of the source measure) even between “nice” measures is
no better than an arbitrary convex function. That said, in this same work, Caffarelli
showed that the optimal transport must be locally Hölder continuous in X :=
int(spt( f )) under a geometric condition—Y := int(spt(g)) is convex—and a
uniform ellipticity type condition—the Monge–Ampère measure associated to u
is doubling in spt( f ). In subsequent works, Caffarelli established the global Hölder
continuity of∇u assuming that both X andY are convex ([4]), and the globalHölder
continuity of D2u, the Hessian of u, additionally assuming X and Y are C2 and
uniformly convex and f and g are positive and Hölder continuous in X and Y
respectively ([5]).

In this nondegenerate setting, Urbas also proved that D2u is Hölder continuous
up to ∂X when X and Y are uniformly convex, but under aC3 regularity assumption
on X and Y ([28]). More recently, Chen, Liu, and Wang demonstrated that these
domain regularity assumptions can be weakened to C1,1 in n ≥ 3 dimensions
and C1,α in two dimensions ([7,8]). In two dimensions and at the same time as
Caffarelli, Delanoë established the existence of globally smooth solutions to the
second boundary value problem for the Monge–Ampère equation given smooth
data ([9]).

In the degenerate setting of arbitrary open, bounded source and target domains,
but still considering densities bounded away from zero and infinity, Figalli ([12]),
Figalli–Kim ([14]), Goldman–Otto ([18]), and Goldman ([17]) showed that the
closure of the discontinuity set of an optimal transport, also known as the singular
set, has zero measure in X .

In this paper, we consider a different degenerate setting, one in which f and
g are permitted to vanish at times, e.g., continuously at the boundaries of X and
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Y . This scenario encompasses a study of the most common image and informal
description of the optimal transport problem:

What is the most efficient way to fill a hole with a given pile of sand?

Our first result is a global Hölder continuity regularity result for optimal trans-
ports between absolutely continuous, doubling measures (see Sect. 2 for the defi-
nition of a doubling measure in this context). This doubling assumption is different
from Caffarelli’s doubling assumption in that it is only on the data of the problem
rather than on the data and the solution, as it is in Caffarelli’s case.

Theorem 1.1. Let X and Y be open, bounded convex sets in Rn, and suppose that
f and g are densities which define doubling measures concentrated on X and Y
respectively. Let Tmin be the optimal transport taking f to g. Then Tmin ∈ Cσ (X),
for some σ ∈ (0, 1), depending on n, the doubling constants of f and g, and the
inner and outer diameters of X and Y .

Our second result establishes (optimal) global regularity for the optimal trans-
port in the planewhen f and g are comparable to nonnegative powers of the distance
functions to the boundaries of their supports, which we assume are convex:

f ∼ dα
∂X for some α ≥ 0 and g ∼ dβ

∂Y for some β ≥ 0.

In this work, d∂∗ represents the distance function to the boundary of ∗; d∂∗ > 0 in
∗ and d∂∗ = 0 outside of ∗. Thus, we assume our sandpile and hole (turned upside
down) have precise shapes at their boundaries.

Here we show that the optimal transport effectively splits along the tangential
and normal directions to ∂X . Let u′ : [0, 1] → [0, 1] be the optimal transport
taking a density which behaves like xα near 0 to another density which behaves
like yβ near 0. Then, by the mass balance formula,

u′(t) ∼ tγ with γ := 1 + α

1 + β
.

In other words, informally, we find that Tmin behaves like the identity map t moving
along the boundary of X and the one dimensional transport tγ moving orthogonally
in from the boundary of X .

In order to precisely state our theorem and expansion, we must define three
Hölder exponents, λ, μ, and ω, to formalize what we mean by ∼ above. We state
our theorem assuming that α > 0 and β > 0, and make a remark after to address
the mild difference when either α = 0 or β = 0. There are two cases to consider.
When α ≥ β, let

μ := λ
1 + γ

2
and ω := λ, for any fixed 0 < λ ≤ min

{
α

2

1 + γ
,

2

1 + γ
, β

}
.

If α = β, i.e., γ = 1, we additionally assume that λ < 1. On the other hand, when
α < β, set

μ := λ and ω := λ
1 + γ

2γ
, for any fixed 0 < λ ≤ min

{
α,

2γ

1 + γ
, β

2γ

1 + γ

}
.
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Theorem 1.2. Let X and Y be open, bounded, andC1,1 uniformly convex sets inR2.
Suppose that α and β are two positive constants. Let a ∈ Cμ(X) and b ∈ Cω(Y ) be
two positive functions. Suppose that Tmin is the optimal transport taking f = adα

∂X

to g = bdβ
∂Y . If γ ≥ 1, then Tmin ∈ C1+λ(X). On the other hand, if γ < 1, then

Tmin ∈ Cγ (1+ω)(X).

At the heart of Theorem 1.2 is an expansion of a convex potential defining Tmin

at points on ∂X . In particular, up to a translation placing 0 ∈ ∂X and subtracting
off the tangent plane to u at 0, we prove that

|u(Mx) − p1x
2
1 − p2x

1+γ
2 | ≤ C(|x1|2 + x1+γ

2 )1+
λ
2 in {x2 ≥ 0} ∩ M−1X ,

where M is some linear transformation and p1, p2, and C are three positive con-
stants.

Remark 1.3. The case α = 0 = β is, by now, well-understood. When α = 0
(respectivelyβ = 0), the upper boundonλbecomes independent of anydependence
on α (respectively β).

Our final main result is a Liouville theorem in the flat setting, X = {xn > 0} and
Y = {yn > 0}, with a ≡ 1 ≡ b. Here un ≥ 0 in {xn > 0}, and our Monge–Ampère
equation is

det D2u = xα
n

uβ
n

in {xn > 0} and un = 0 on {xn = 0}. (1.1)

We remark that this equation is invariant under affine transformations that keep
the tangential variables x ′ = (x1, . . . , xn−1) separate from the normal variable xn :
Ax = (A′x ′, anxn). Furthermore, since all three notions of weak solution to the
Monge–Ampère equation (Alexandrov, Brenier, and viscosity) are equivalent in
this case, the following theorem classifies not only Brenier solutions to (1.1), but
also Alexandrov and viscosity solutions to (1.1).

Theorem 1.4. Let u be convex and such that (∇u)#dα
∂{xn>0} = dβ

∂{yn>0}, for two
given constants α ≥ 0 and β ≥ 0. Then

u(x) = p0 + p′ · x ′ + P ′x ′ · x ′ + pnx
1+γ
n

for some p0 ∈ R, p′ ∈ R
n−1, positive definite matrix P ′, and constant pn > 0.

This paper is organized as follows. The next section collects some facts from
measure theory and convex analysis. In Sect. 3, we revisit Caffarelli’s boundary
regularity theory, and prove Theorem 1.1. In Sect. 4, we study the flat setting, and
we prove our (Liouville) Theorem 1.4. In Sect. 5, we establish a pointwise “flat
implies smooth” result. Finally, in Sect. 6, we prove Theorem 1.2.
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2. Preliminaries

Throughout this work, c and C will denote positive constants that may change
from line to line. It will be clear from the context, if any change occurs. Sometimes
some of the quantities on which c and C depend will be explicit and denoted
in parentheses or as subscripts; other times, especially when these quantities are
contextually clear, these quantities will be implicit.

Let us start with a pair of definitions and an important lemma by John.

Definition 2.1. We say that a map T pushes-forward a measure f to another mea-
sure g, T# f = g, if

∫
ϕ ◦ T d f =

∫
ϕ dg for all ϕ Borel and bounded.

Definition 2.2. Anonnegativemeasure f isdoubling (on bounded convexdomains)
if there is a constant C ≥ 1 such that the following holds: given an open, bounded
convex set S whose barycenter is contained in spt f ,

f (S) ≤ C f ( 12 S),

where 1
2 S is the dilation of S with respect to its center of mass by 1/2.

Definition 2.3. An ellipsoid is the image under a symmetric positive definite affine
transformation of B1(0). In particular, let E be any symmetric positive definite
matrix and x ∈ R

n , the ellipsoid generated by E and centered at x ∈ R
n is

EE,x := x + E(B1(0)).

Given r > 0, we let

rE = rEE,x := Er E,x

be the dilation of E with respect to its center by r . (Given an ellipsoid E , we can
assume its generatingmatrix E can be diagonalizedwith a determinant 1 orthogonal
matrix.)

Lemma 2.4. (John’s Lemma) Let S ⊂ R
n be a bounded convex set with nonempty

interior and center of mass z. A unique ellipsoid E also with center of mass z exists
such that

E ⊂ S ⊂ n
3
2 E .

With these definitions and John’s lemma in hand (see, e.g., [19] for a proof),
we prove that a measure that is doubling on ellipsoids is doubling.

Corollary 2.5. Let f be a nonnegative measure. If f is doubling on ellipsoids, then
f is doubling.
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Proof. Let S be an open, bounded convex set. Then, by John’s lemma, S is compa-
rable to an ellipsoid E : E ⊂ S ⊂ n3/2E , and the center of mass of E is the same as
the center of mass of S. If C ≥ 1 is the doubling constant for f on ellipsoids and
k ≥ 1 is chosen such that n3/2/2k ≤ 1/2, then

f (S) ≤ f (n
3
2 E) ≤ C f ( 12n

3
2 E) ≤ · · · ≤ Ck f ( 1

2k
n

3
2 E) ≤ Ck f ( 12E) ≤ Ck f ( 12 S).

��
Asa consequence ofLemma2.5,we can show thatmeasures that are comparable

to the distance function to the boundary of a convex domain are doubling.

Lemma 2.6. Let X ⊂ R
n be an open, bounded convex set. The density f = adα

∂X
defines a doubling measure on ellipsoids if 0 < infX a, supX a < ∞. In particular,
a constant C ≥ 1 exists for which∫

E
f ≤ C

∫
1
2E

f

given any ellipsoid E centered in X.

Proof. There are two cases to consider.
Case 1: E ⊂ X . Let d := d∂X (z), with z taken to be the center of E . Up to a

translation and rotation, E, X ⊂ {xn > 0}, and the origin is the closet point on ∂X
to z.

First, note d∂X (x) ≤ 2d for all x ∈ ∂E , and so, for all x ∈ E . Indeed, if xn ≤ zn ,
then there is nothing to show. If xn > zn , then

d∂X (x) ≤ d∂{xn>0}(x) = xn = (xn − zn) + zn = (zn − x∗
n ) + zn ≤ 2zn,

since x∗
n , xn > 0. Here x∗ ∈ ∂E is the dual point to x . So∫

E
f ≤ 2α(sup a)dα|E |.

Second, for i = 1, . . . , n, let ri and ei be the principle radii and directions of
E . Hence, � := conv{z ± riei : i = 1, . . . , n} ⊂ E . Also, |�|/|E | ≥ c(n). Now
consider �d := conv{z ± max{ri , d}ei : i = 1, . . . , n}, which contains � and is
contained in X . For all x ∈ 1

2�d then, dist∂�d (x) ≥ d/2
3
2 . In turn,

d∂X (x) ≥ d∂�d (x) ≥ d

2
3
2

for all x ∈ 1
2�.

It follows that

dα|E | ≤ 2n+ 3α
2

c(n) inf a
(inf a)

dα

2
3α
2

| 12�| ≤ 2n+ 3α
2

c(n) inf a

∫
1
2�

f ≤ C(n, α, inf a)

∫
1
2E

f.

Finally, the above two inequalities together yield∫
E
f ≤ C(n, α, inf a, sup a)

∫
1
2E

f.
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Case 2: E \ X is nonempty. Up to a translation, we can assume that the center
of E is the origin. Let z be the center of mass of ( 12E)∩X , d := d∂X (z), and suppose
that the nearest point to z on ∂X lives on the plane {x · e = 0} for some |e| = 1.

Using that open, bounded convex sets are balanced with respect to their center
of mass, d∂{x ·e>0} is 1-homogeneous, and arguing like we did to produce the first
inequality above, we see that

d∂X (x) ≤ C(n)d for all x ∈ E ∩ X.

Now let J be the John ellipsoid of ( 12E) ∩ X , which also has center z. Notice
that J ⊂ X . So∫

E
f ≤ Cdα|E ∩ X | ≤ Cdα2n|( 12E) ∩ X | ≤ Cdα|J | ≤ C

∫
1
2J

f ≤ C
∫

1
2E

f.

Here we have used the arguments of Case 1 on J and that E ∩ X ⊂ 2[( 12E) ∩ X ],
which uses that 0 ∈ X . ��
Remark 2.7. By Corollary 2.5, if 0 < inf X a, supX a < ∞, then f = adα

∂X defines
a doubling measure.

We conclude this section with three lemmas. These lemmas use nothing about
the optimal transport problem; they are facts about convex functions with centered
sections. The first lemma’s proof may be found in [4].

Lemma 2.8. (Centered Sections) Let u : R
n → R be a convex function whose

graph contains no complete lines. Then, for every h > 0 and z ∈ R
n, there exists

an affine function 
 such that 
(z) = u(z) + h and the set

Sch(z) := {x ∈ R
n : u < 
}

is centered at z.

Lemma 2.9. Let Sch(z) be a centered section for u at z ∈ R
n. Let z1 and z2 be two

opposite points on ∂Sch(z), i.e., z2 = z + l(z − z1) for some l > 0. Then

n− 3
2 ≤ l ≤ n

3
2 .

Proof. Without loss of generality, we may assume that z = 0 and that z1 and z2
lie on the e1-axis. Thus, by John’s lemma, E ⊂ Sch(0) ⊂ n3/2E , for some ellipsoid
E , whose center of mass is also the origin. Let e > 0 denote the e1-component
of E ∩ {positive e1-axis}. Abusing notation, we let z1 > 0 and −lz1 denote the
e1-component of z1 and z2. In turn, e ≤ z1, lz1 ≤ n3/2e, from which it follows that
n−3/2 ≤ l ≤ n3/2, as desired. ��
Lemma 2.10. Let Sch(z) be a centered section for u at z ∈ R

n. Then

h ≤ max
Sch(z)

(
 − u) ≤ (1 + n
3
2 )h.
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Proof. Without loss of generality, z = 0.
Since (
 − u)(0) = h, by definition, the first inequality is trivial.
Now let zh ∈ Sch(0) be a point at which 
−u achieves its maximum value; let z1

and z2 be the opposite points on ∂Sch(0) for which the segment [z1, z2] contains 0
and xh ; and letψ ≥ 0 be the one-dimensional concave function defined by 
−u on
[z1, z2]. Notice that the lines 
i ⊂ R

2 determined by (zi , 0) and (0, h), for i = 1, 2,
are secant lines for graph of ψ . Hence, the graph of ψ must live under the union
of the subgraphs of these two lines. Assume that zh ∈ [0, z2]. Otherwise, swap the
roles of z1 and z2 in what follows. Consider the triangle (in R

2) over [z1, 0] with
height h determined by the points (z1, 0), (0, 0), and (0, h). Its maximal self-similar
enlargement over [z1, z2], whose base has right end point (z2, 0) instead of (0, 0),
has height Ch with 1 + n−3/2 ≤ C ≤ 1 + n3/2 (see Lemma 2.9), from which the
second inequality follows. ��

3. Boundary Regularity of Maps with Convex Potentials Revisited

In this section, we prove Theorem 1.1, and list some geometric properties of
convex potentials defining optimal transports between absolutely continuous dou-
blingmeasures on convex domains. Let u0 : Rn → R be a convex potential defining
the optimal transport of Theorem 1.1. It will be convenient to replace u0 with its
minimal convex extension outside of X . More precisely, we consider the function

u(x) := sup
z∈X,p∈∂u0(z)

{u0(z) + p · (x − z)}.

Similarly, we let v0 be the Legendre transform of u0, and

v := the minimal convex extension outside Y of v0.

Thus, ∇v is the optimal transport taking g to f .
Given a centered section S = Sch(z) for u, which exists at every z ∈ R

n ([4]),
we define the normalized pair (ũ, S̃) by

ũ(x) := [u − 
](A−1x)

h
and S̃ := A(S)

where A(E) = B1(0) and E is the John ellipsoid of S. Moreover, we let f̃ and g̃
be the appropriate rescalings of f and g which ensure that (∇ũ)# f̃ = g̃. Similarly,
we define X̃ := A(X) and Ỹ := A−t (Y ). Here and in the remainder of this work,
we let

L−t = (L−1)t ,

i.e., the transpose of the inverse of L , for any invertible transformation.
We first recall that optimal transports balance mass ([2,29]).
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Lemma 3.1. Let u : Rn → R be convex and such that (∇u)# f = g, where f and
g are two absolutely continuous measures. Then, for all Borel sets B ⊂ R

n,
∫
B
f =

∫
∂u(B)

g.

Next we prove an Alexandrov maximum principle for normalized pairs.

Lemma 3.2. There is an increasing functionϑ : [0,∞) → [0,∞), depending only
on dimension and the doubling constants of f and g, such that limd→0 ϑ(d) = 0
and

|ũ(x)| ≤ ϑ(d
∂ S̃(x)) for x ∈ S̃.

Here S̃ is any normalized centered section based at any point in X.

Proof. For notational simplicity, we suppress the dependence on x and set

d = d
∂ S̃(x) and |ũ| = |ũ(x)|.

First, observe that

∂ ũ( 12 S̃) ⊂ BR(0).

Also, considering the cone generated by (x, ũ(x)) and S̃,

∂ ũ(S̃) ⊃ K := conv(Br |ũ|(0) ∪ |ũ|
d e)

for some unit vector e = e(x) and two positive constants R and r depending only
on dimension. Since the slope of the plane which determines Sch is in Y , 0 ∈ Ỹ . By
assumption, the center of S̃ is in the closure of X̃ . In turn,

∫
K
g̃ ≤

∫
∂ ũ(S̃)

g̃ =
∫
S̃
f̃ ≤ C

∫
1
2 S̃

f̃ = C
∫

∂ ũ( 12 S̃)

g̃ ≤ C
∫
BR(0)

g̃.

(Normalization affects neither the doubling property nor the doubling constants.)
Now let Brm (tme) ⊂ conv(Br (0) ∪ 1

d e) for m = 1, . . . , M be a sequence of
balls chosen so that

1
2Km ⊂ Km \ Km−1 with Km := conv(Brm (tme) ∪ Br (0)) and K0 := Br (0).

By construction, { 12Km}Mm=1 is a disjoint family, and

M = M(d) → ∞ as d → 0.

Hence, if we consider the collection

{Brm |ũ|(tm |ũ|e)}Mm=1 ⊂ K ⊂ Ỹ ,
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and redefine Km := conv(Brm |ũ|(tm |ũ|e) ∪ Br |ũ|(0)), we see that the redefined
family { 12Km}Mm=1 is also disjoint. Thus,

M
∫
Br |ũ|(0)

g̃ ≤
M∑

m=1

∫
Km

g̃ ≤ C
M∑

m=1

∫
1
2 Km

g̃ ≤ C
∫
K
g̃.

Combining the two chains of inequalities above, we find that

M
∫
Br |ũ|(0)

g̃ ≤ C
∫
BR(0)

g̃ ≤ Ck
∫
Br |ũ|(0)

g̃,

where

k =
⌈
log r

R |ũ|
log 1

2

⌉
.

In turn, M ≤ Ck . Solving for |ũ| concludes the proof. ��
With Lemma 3.2 in hand, Theorem 1.1 follows from Caffarelli’s arguments ([4,

5]). Indeed,wefirst find that centered sections based at points in X have an engulfing
property. To prove this property, we replace Caffarelli’s modulus for normalized
solutions Cd1/n , i.e, the classical Alexandrov maximum principle modulus, with
the modulus ϑ(d) from Lemma 3.2 in his proof.

Lemma 3.3. For any pair of constants 0 ≤ t < t ≤ 1, there exists a constant
0 < t0 ≤ 1 such that

Sct0h(z) ⊂ t Sch(x)

for all x ∈ X and all z ∈ t Sch(x) ∩ X. The constant t0 depends on t, t , dimension,
and the doubling constants of f and g.

Second, we obtain that u is strictly convex in X (cf., [5, Corollary 2.3]), and,
by duality and iteration, Theorem 1.1.

Corollary 3.4. A constant c > 0, depending only on dimension and the doubling
constants of f and g, exists for which

u(z) ≥ u(x) + p · (z − x) + ch

for all x ∈ X, p ∈ ∂u(x), and all z ∈ ∂Sch(x) ∩ X.

Proof of Theorem 1.1. Let y, z ∈ Y , and let h > 0 be such that z ∈ ∂Sch(v, y). By
Corollary 3.4, for any q ∈ ∂v(y),

v(z) ≥ v(y) + q · (z − y) + ch.

By compactness, Sc1(v, y) ⊂ B1/τ (y) for some τ ∈ (0, 1) depending only on the
inner and outer diameters of X and Y . (See [4].)
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Applying Lemma 3.3 iteratively, we see that

Sc
t j0

(v, y) ⊂ 1
2 j S

c
1(v, y) for all j ∈ N for some t0 ∈ (0, 1).

Let k ∈ N such that tk+1
0 ≤ h ≤ tk0 . Then

z ∈ Sc
tk0

(v, y) and |y − z| ≤ 1

τ2k
.

In turn, for M ≥ log t0/ log(1/2), we deduce that

v(z) ≥ v(y) + q · (z − y) + ct0τ |y − z|M .

Therefore, as v|Y agrees with the Legendre transform of u in Y , u ∈ C1+σ (X) for
some σ ∈ (0, 1), as desired. ��

Following the proof of [5, Corollary 2.2], we find a first volume product esti-
mate.

Corollary 3.5. Let x ∈ X and Sch(x) be a centered section for u based at x. There
is a constant r > 0, depending on dimension and the doubling constants of f and
g, such that

Br (0) ⊂ ∇ũ(S̃) ⊂ B1/r (0).

Consequently,

rnhn ≤ |Sch(x)||∇u(Sch(x))| ≤ hn

rn
.

Remark 3.6. An implication of Corollary 3.5 is that

ϑ(d) = Cd
1
n ,

for some C > 0 depending only on dimension and the doubling constants of f and
g, is a candidate modulus for Lemma 3.2. Indeed, since rn ≤ |∇ũ(S̃)| ≤ r−n , this
follows from Alexandrov’s maximum principle.

FromCorollary 3.4, we also deduce that centered sections and classical sections

Sh(u, x, p) := {z ∈ X : u(z) < u(x) + p · (z − x) + h},
where p ∈ ∂u(x), are comparable (see [7] for a proof). When u is differentiable at
x , the set ∂u(x) is a singleton, and we write Sh(u, x) rather than Sh(u, x,∇u(x)).
We often also suppress the dependence on u.

Corollary 3.7. There are constants c > 0, depending only on dimension, and
C ≥ 1, depending only on dimension and the doubling constants of f and g, such
that

Scch(x) ∩ X ⊂ Sh(x) ⊂ ScCh(x) ∩ X

for all x ∈ X.
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In addition, we find that the image of (centered) sections of u of height h are
comparable to (centered) sections of v height h.

Corollary 3.8. There are constants c > 0 andC ≥ 1, depending only on dimension
and the doubling constants of f and g, such that

Sch(v,∇u(x)) ⊂ ∇u(Sh(u, x)) ⊂ SCh(v,∇u(x))

and

Scch(v,∇u(x)) ∩ Y ⊂ ∇u(Sch(u, x)) ⊂ ScCh(v,∇u(x)) ∩ Y

for any x ∈ X.

Proof. Up to a translation, we assume that x = 0. Furthermore, up to subtracting
off the tangent plane to u at 0, we assume that u(0) = 0 and u ≥ 0.

We start with the second inclusion. Since v in Y agrees with the Legendre
transform of u and ∇u(X) = Y , ∇v(∇u(x)) = x for all x ∈ X . In particular,
∇v(∇u(0)) = 0. Moreover, v(0) = 0 and v ≥ 0. Considering Corollary 3.7 then,
it suffices to show that v(∇u(x)) < Ch for all x ∈ Sch(u, 0) ∩ X , which follows
from Corollary 3.5. Indeed, letting A be the John transformation that normalizes
Sch(u, 0), observe that

v(∇u(x)) = ∇u(x) · x − u(x) = h∇ũ(Ax) · Ax − u(x) + 
(x) < Ch,

as desired. (Recall Lemma 2.10.)
The first inclusion now follows from symmetry and duality. Specifically, re-

versing the roles of u and v in the second inclusion and applying ∇u, we see that

Sh(v, 0) = ∇u(∇v(Sh(v, 0))) ⊂ ∇u(SCh(u, 0)).

Replacing h by C−1h concludes the proof. ��
Finally, again following the arguments of [5, Section 3], we obtain a uniform

density estimate on centered sections as well as a second volume product estimate,
this time on (centered) sections and their images when X is polynomially convex.
For completeness, let us recall the definition of polynomially convex and an im-
portant remark, both taken directly from [5], which will be used in the proof of
Theorem 1.2.

Definition 3.9. A domain X is polynomially convex at the origin provided 0 ∈
∂X = {xn = �X (x ′)} (up to a rotation) and two constants 0 < κ1, κ2 < 1 exist
such that

�X (x ′) ≤ x ′ · z′
|z′|2 �X (z′)

whenever |x ′|, |z′| ≤ δ and x ′ lies in the truncated cone{
|x ′| < κ1|z′|
| sin∠(x ′, z′)| ≤ κ2.

Here ∠(x ′, z′) denotes the angle between x ′ and z′. A domain is polynomially
convex if it is polynomially convex at every point on its boundary.
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Remark 3.10. In two dimensions, every convex domain is polynomially convex. In
every dimension, given a polynomially convex domain, the constants κ1 and κ2 can
be chosen uniformly for all points on its boundary depending only on the inner and
outer diameters of the domain. (See [5, Section 3, Remark 2 and Lemma 3.1].)

Proposition 3.11. Let X be polynomially convex. Then there are constants C ≥ 1
and c > 0, depending on the inner and outer diameters of X and Y , dimension,
and the doubling constants of f and g, such that

C
|Sch(x) ∩ X | 1n

|Sch(x)|
1
n

≥ diam(Sch(x) ∩ X)

diam(Sch(x))
≥ c

for any x ∈ ∂X.

For the convenience of the reader, we sketch the proof of this proposition. First,
however, we make a remark.

Remark 3.12. The polynomial convexity of X only plays a role in proving the first
inequality, between normalized volume and normalized diameter, but for ellipsoids
centered at points in ∂X rather than centered sections. This inequality is one about
convex sets, and nothing more. In terms of the geometry of X and Y , the remainder
of the proof uses only that X and Y are convex, and have boundaries that can be
locally written as graphs of a Lipschitz functions.

We write A ∼ B if cB ≤ A ≤ CB for some c > 0 and C > 0.

Sketch of Proof. Let 0 ∈ ∂X and consider S = Sch(0). The first inequality is a
consequence of [5, Lemma3.2] and the comparability of S to an ellipsoidE centered
at 0; and so, it suffices to show that the normalized diameter of S,

δ := diam(S ∩ X)

diam(S)
,

cannot be too small.
From Corollary 3.5, if ri is the principle radius of E in the ei direction, then

∇u(S) is comparable to an ellipsoid E∗ that has principle radius h/ri in the direction
ei . Let y = ∇
 ∈ Y , where 
 defines S. Up to a rotation, we assume that r1 ≥ ri
for all i �= 1. Let x± ∈ ∂S be such that ν∂S(x+) = e1 and ν∂S(x−) = −e1. In
particular, ∇(
 − u) at x± is parallel to e1. Since |x±| ∼ r1, x± /∈ X if δ > 0 is
sufficiently small. Hence, y± = ∇u(x±) = y ± t±e1 ∈ ∂Y with t± ∼ h/r1.

Now ∂Y is locally the graph of a Lipschitz function in the direction ν. Let
t1 > 0 be the largest constant for which y1 := y− t1ν ∈ ∇u(S). Thus, y1 ∈ ∂Y , as
∇u(S) ⊂ Y . Since y± ∈ ∂Y and ∂Y is Lipschitz function in the direction ν, we find
the inequality t1 ≤ Ch/r1. Let t2 > 0 be such that y2 := y + t2ν ∈ Y ∩ ∂(∇u(S)).
By Corollary 3.5, it follows that t2 ≤ Ch/r1. Thus, if x2 = (∇u)−1(y2), then
x2 ∈ ∂S ∩ X . Moreover, by convexity and Lemma 2.10,

|x2||y − y2| = |x2||∇(
 − u)(x2)| ≥ (
 − u)(0) = h.

In turn, |x2| ≥ r1/C . But this contradicts δ > 0 being arbitrarily small. ��
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Corollary 3.13. Let X be polynomially convex. Then constants C ≥ 1 and c > 0
exist, depending on the inner and outer diameters of X and Y , dimension, and the
doubling constants of f and g, for which

chn ≤ |Sch(x) ∩ X ||∇u(Sch(x))| ∼ |Sh(x)||∇u(Sh(x))| ≤ Chn

for any x ∈ ∂X.

4. The Flat Case

Let u be convex and such that

(∇u)#d
α
∂{xn>0} = dβ

∂{yn>0}, (4.1)

for two nonnegative constants α and β. Then, by the arguments of Sect. 3 and
classical regularity theory for theMonge–Ampère equation, we find that u is strictly
convex in {xn ≥ 0}, u ∈ C1,σ

loc ({xn ≥ 0}) ∩ C∞
loc({xn > 0}), un ≥ 0, and solves

det D2u = xα
n

uβ
n

in {xn > 0} and un = 0 on {xn = 0}. (4.2)

From this point forward, in this section, we assume that max{α, β} > 0. If
α = β = 0, then u must be a quadratic polynomial by the classical Liouville
theorem for the Monge–Ampère equation; indeed, its even reflection over the set
{xn = 0} solves det D2u = 1 in Rn .

First, we prove a Pogorelov estimate in x ′, which holds up to {xn = 0}.
Proposition 4.1. Let u be convex and satisfy un ≥ 0 in {xn > 0} and (4.2). Let
x0 ∈ {xn = 0} and 
x0 be the tangent plane to u at x0. For any tangential direction
e, i.e., such that e · en = 0,

uee|u − 
x0 − h| ≤ C(n + β, ‖∂eu − ∂e
x0‖L∞(Sh(x0))). (4.3)

Proof. Up to a translation and subtracting off the tangent plane to u at x0, we
assume that x0 = 0 and u(0) = ∇u(0) = 0. Now let ε > 0, ϒ := B ∩ {yn > 0},
for some large ball B centered at the origin, and� be a dilation of (∇u)−1(ϒ) such
that ∫

�

(xn + ε)α =
∫

ϒ

(yn + ε)β.

Furthermore, let ∇ψ be the optimal transport taking f = (xn + ε)α � to g =
(yn + ε)β ϒ . Note that the even reflection in xn of ψ , call it ψ̄ , is a potential
whose gradient is the optimal transport taking the even reflection of f to the even
reflection of g, in xn and yn respectively. So points along {xn = 0} can be turned
into interior points. By [3] and symmetry, D2ψ̄ is locally Hölder continuous in
�̄, the reflection of � over the xn-axis, ∇ψ̄(�) ⊂ {yn > 0}, and ψ̄n = 0 on
�̄ ∩ {xn = 0}. In particular, we find that

det D2ψ = (xn + ε)α

(ψn + ε)β
in �, (4.4)
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ψn = 0 on {xn = 0}, (4.5)

andψ is smooth in� and D2ψ is Hölder continuous and strictly positive definite up
to {xn = 0}. By Theorem 1.1, ∇ψ converges to ∇u locally uniformly in �̄∩{xn ≥
0}. (We can choose doubling constants for the denisites (xn + ε)α and (yn + ε)β

unifornly in ε.) So it suffices to prove (4.3) for ψ .
If we differentiate the log of (4.4) and (4.5) in any tangential direction e (with

e · en = 0), we have that

ψ i j∂i jψe = −β
ψne

ψn + ε
in {xn > 0} (4.6)

and

∂nψe = 0 on {xn = 0}.
The right-hand side of this equation is Hölder continuous. Hence, D2ψe is Hölder
continuous across {xn = 0}. Differentiating again in the e direction, we find that

ψ i j∂i jψee = β
ψ2
ne

(ψn + ε)2
− β

ψnee

ψn + ε
+ ψ ikψ jlψi jeψkle (4.7)

and

∂nψee = 0 on {xn = 0}.
The right-hand side of this equation is Hölder continuous, given the Hölder conti-
nuity of D2ψe just observed. In conclusion, the fourth order derivatives ψ̄i jkl are
continuous across {xn = 0} provided that no more than two of the four indices are
n, and so

M := log |ψ̄ | + log ψ̄ee + 1
2 ψ̄

2
e

is C2(S) with S = Sh(ψ̄, 0). The ball B is chosen large enough so that Sh(ψ̄, 0) �
�̄. Furthermore, up to subtracting off the tangent plane to ψ̄ and h, we can assume
that that S = {ψ̄ < 0}.

Let z ∈ {ψ̄ < 0} be a point at which M achieves its maximum. (The point
z /∈ {ψ̄ = 0} since eM vanishes on {ψ̄ = 0}.) As ψ̄ is even in xn , we can assume
that z ∈ {xn ≥ 0}. For notational simplicity, we identify ψ̄ with ψ .

Case 1: M is achieved at z ∈ {xn = 0}. By (4.5), at z,

ψni = 0 for all i < n.

Thus, after an orthogonal transformation in the tangential coordinates, which leaves
the equation invariant, we can assume that D2ψ(z) is diagonal and e = e1. (While
the equality ψni |{xn=0} = 0 simplifies some of the expressions below, we refrain
from using it, so that Case 2 becomes evident.)

First, differentiating M twice in the ei and evaluating at z, we find

ψi

ψ
+ ψ11i

ψ11
+ ψ1ψ1i = 0 (4.8)
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and

ψi i

ψ
− ψ2

i

ψ2 + ψ11i i

ψ11
− ψ2

11i

ψ2
11

+ ψ2
1i + ψ1ψ1i i ≤ 0.

So multiplying by ψ i i = ψ−1
i i and summing over i , we deduce that

n

ψ
− ψ i iψ2

i

ψ2 + ψ i iψ11i i

ψ11
− ψ i iψ2

11i

ψ2
11

+ ψ11 + ψ1ψ
i iψ1i i ≤ 0. (4.9)

Second, considering (4.6), (4.7), and (4.9), we have that

n

ψ
− ψ i iψ2

i

ψ2 − βψn11

(ψn + ε)ψ11
+ ψ i iψ j jψ2

1i j

ψ11
− ψ i iψ2

11i

ψ2
11

+ ψ11 − βψ1ψn1

ψn + ε
≤ 0.

Third,

ψ i iψ j jψ2
1i j

ψ11
− ψ i iψ2

11i

ψ2
11

= 1

ψ11

n∑
i=2, j=1

ψ2
1i j

ψi iψ j j
,

and, by (4.8), we find that

ψ i iψ j jψ2
1i j

ψ11
− ψ i iψ2

11i

ψ2
11

≥
n∑

i=2

ψ2
i

ψi iψ2 .

Our first three steps together yield that

n

ψ
− ψ2

1

ψ11ψ2 − β

ψn + ε

(
ψn11

ψ11
+ ψ1ψn1

)
+ ψ11 ≤ 0.

Now, from (4.8) again, i.e.,

ψ11n

ψ11
+ ψ1ψn1 = −ψn

ψ
,

it follows (recall ψ < 0 and ψn = 0 at z) that

n

ψ
− ψ2

1

ψ11ψ2 + ψ11 = 1

ψ

(
n + β

ψn

ψn + ε

)
− ψ2

1

ψ11ψ2 + ψ11 ≤ 0.

Consequently,

|ψ |ψ11 ≤ C(n, ‖ψ1‖L∞(S)).

Case 2: M is achieved at z ∈ {xn > 0}. In this case, after a rotation e �→ e1, a
shearing transformation x �→ (x1 − si xi , x2, . . . , xn) for i = 2, . . . , n, and then a
rotation in the xi variables for i > 1, we can assume D2ψ(z) is diagonal provided
we replace (4.4) and (4.5) with

det D2ψ = (x · �ξ + ε)α

(ψξ + ε)β
in {x · �ξ > 0} with �ξ · e1 = 0, |ξ | = 1, (4.10)
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and

ψξ := snψ1 + ψ�ξ = snψ1 + ∇ψ · �ξ = 0 on {x · �ξ = 0}. (4.11)

Identical computations to those in Case 1 yield the same final inequality:

n + β

ψ
− ψ2

1

ψ11ψ2 + ψ11 ≤ 1

ψ

(
n + β

ψξ

ψξ + ε

)
− ψ2

1

ψ11ψ2 + ψ11 ≤ 0,

from which (4.3) follows for ψ , as desired. ��
A an important consequence of Proposition 4.1 (applied to u and v the Legendre

transform of u) is that un and xγ
n are comparable. Recall,

γ := 1 + α

1 + β
.

Since the rescalings

ut (x) := u(Dt x)

t
with Dt := diag(t

1
2 Id′, t

1
1+γ ) (4.12)

leave the equation invariant, the correct geometry in which to work is defined by
the cylinders

Cr (z) := B ′
r1/2(z

′) × (zn − r
1

1+γ , zn + r
1

1+γ ) and Cr := Cr (0).
We state our comparability estimate in this geometry.

Lemma 4.2. Let u be convex and satisfy (4.1). Then two constants c0 > 0 and
C0 > 0, depending on ‖∇x ′u‖L∞(C1∩{xn≥0}), ‖∇y′v‖L∞(∇u(C1∩{xn≥0})), α, β, and
n, exist such that

c0 ≤ un
xγ
n

≤ C0 on C1 ∩ {xn ≥ 0}. (4.13)

Proof. We claim that if

D2
x ′u(0) ≥ 1

M
Id′(or ≤ M Id′),

then

un(0, xn) ≤ C(M)xγ
n (or ≥ c(M)xγ

n ).

Before proving this claim, we use it to conclude the proof of our lemma. Up to
subtracting the tangent plane to u at 0, assume that u ≥ 0. Then, as 0 was arbitrary,
our lemma follows, since Proposition 4.1 (applied to u and v the Legendre transform
of u) tells us that

1

M
Id′ ≤ D2

x ′u ≤ M Id′ in B ′
1 × {0}.
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Nowwe prove our claim. First, we show that Sh(0) is comparable to an ellipsoid
whose axes are parallel to the coordinate axes. Indeed, let

li;h = li;h(u, 0) := − inf{xi : (xi , 0) ∈ Sh(u, 0)}
and

ri;h = ri;h(u, 0) := sup{xi : (xi , 0) ∈ Sh(u, 0)}.
By Corollary 3.7,

cli;h ≤ ri;h ≤ li;h
c

for some c ≤ 1, depending only on α, β, and n. Now define

wi;h := ri;h + li;h

and

dh = dh(u, 0) := sup{xn : (0, xn) ∈ Sh(u, 0)},
and consider

Ti;h := the triangle determined by (0, dh) and (±min{ri;h, li;h}, 0).
(The center ofmass of Ti;h is (0, 1

3dh).) Note that Sh(0)∩span{ei , en} is contained in
theunionof the subgraphs of the lines determinedby (0, dh) and (±min{ri;h, li;h}, 0)
and inside the strip [−li;h, ri;h] × [0,∞). The heights of the intersections of these
lines and the boundary of the strip is less than or equal to dh(1+ c−1), from which
find aC ≥ 1, depending only onα,β, and n, such thatCTi;h ⊃ Sh(0)∩span{ei , en}.
In turn, if Eh is the John ellipsoid of conv{∪i<nTi;h}, then

δEh ⊂ Sh(0) ⊂ 1

δ
Eh, (4.14)

for some 0 < δ < 1 depending only on c. The ellipsoid Eh has axes parallel to the
coordinate axes, and is our desired ellipsoid.

Since Eh has axes parallel to the coordinate axes the distance from its center
to ∂{xn > 0} is the vertical height of the center, which is comparable to dh . Then
arguing as in Lemma 2.6, but using the ellipsoid just constructed above, we see
that

1

C
dα
h dhw1;h · · · wn−1;h ≤

∫
Sh(u)

(xn)
α+ ≤ Cdα

h dhw1;h · · ·wn−1;h .

And, as Sh(v) is dual to Sh(u) (Corollary 3.8), we similarly find that

1

C

hβ

dβ
h

h

dh

h

w1;h
· · · h

wn−1;h
≤

∫
Sh(v)

(yn)
β
+ ≤ C

hβ

dβ
h

h

dh

h

w1;h
· · · h

wn−1;h
.
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Moreover, by Lemma 3.1 and Corollary 3.8, again,

∫
Sh(u)

(xn)
α+ ∼

∫
Sh(v)

(yn)
β
+.

Therefore,

1

C
≤ d2+α+β

h w2
1;h · · · w2

n−1;h
hn+β

≤ C. (4.15)

By assumption, for all i ≤ n − 1,

w2
i;h ≤ 2Mh.

In turn, h1+β ≤ CMn−1d2+α+β
h , or, equivalently,

h
1

1+γ ≤ CM
n−1

2+α+β dh .

Thus, C(M)x1+γ
n ≥ u(0, xn) ≥ 0. So our claim follows by the convexity of u;

indeed,

C(M)21+γ x1+γ
n ≥ u(0, 2xn) ≥ u(0, 2xn) − u(0, xn) ≥ un(0, xn)xn .

��
Lemma 4.2 effectively gives us control over the second derivatives of u in

the normal direction. And since un/x
γ
n is a solution to an elliptic equation, with

Lemma 4.2 in hand, we can prove an oscillation decay estimate for un/x
γ
n . In

particular,

φ := un
xγ
n

solves

ui jφi j + βxnδin + (1 + γ )unuin

xnun
φi = 0.

Here δi j = 0 if i �= j and δi j = 1 if i = j .

Proposition 4.3. Let u be convex and satisfy (4.1). A constant ζ ∈ (0, 1) exists,
depending only on α, β, and n, such that

oscC1/2∩{xn≥0}
un
xγ
n

≤ (1 − ζ ) oscC1∩{xn≥0}
un
xγ
n

. (4.16)

(A similar and simpler version of the proof of this proposition can be found in
the proof of Lemma 6.3.)
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Proof. From (4.13),

either
un
xγ
n

(2− 1
1+γ en) <

C0 + c0
2

or
un
xγ
n

(2− 1
1+γ en) ≥ C0 + c0

2
.

If the first inequality holds, we build a barrier that pulls un/x
γ
n down in C1/2.

Whereas if the second inequality holds, we build a barrier that pulls un/x
γ
n up in

C1/2.
Case 1: α < β. If the first inequality holds, up to dividing by C0, assume that

C0 = 1. Then let

ψ := (1 − ε)xγ
n + c1ε|x ′|2 − εxκ

n ,

with c1 > 0 and 1 > κ > γ to be chosen. (This is our upper barrier.) First, note
that

ψ ≥ xγ
n on {xγ

n ≤ c1
2 |x ′|2}.

Second, given any δ ∈ (0, 2− 1
1+γ ), applying the Harnack inequality to un/x

γ
n along

a chain of overlapping balls, we find that

sup
C1/2∩{xn≥δ}

un ≤ (1 − c(δ))xγ
n ,

for some small c(δ) > 0. Third, let δ be small enough to ensure that

� := {xγ
n > c1

2 |x ′|2} ∩ {xn < δ} ⊂ C1/2 ∩ {xn ≥ 0}.
Set

ε := c(δ).

Then

ψ ≥ un on ∂�.

With our boundary values understood, we now turn to the interior of � and the
equation.

Suppose that un − ψ achieves its maximum at some point in �. Then, at this
point, un = ψ + s for some s ≥ 0, and

0 ≥ ui j∂i j (un − ψ) ≥ α

xn
− βψn

ψ
− uiiψi i . (4.17)

Using that∇un = ∇ψ at our distinguished point, we show that (4.17) is impossible
provided δ > 0 is sufficiently small, which forces our distinguished point to be very
close to {xn = 0}.

First, we compute an upper bound for the quotient ψn/ψ . Observe that

ψn

ψ
≤ (1 − ε)γ xγ−1

n − εκxκ−1
n

(1 − ε)xγ
n − εxκ

n
= γ

xn

(1 − ε)xγ
n − εκγ −1xκ

n

(1 − ε)xγ
n − εxκ

n
.
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Now we look at the sum uiiψi i , which we break into two pieces: unnψnn and the
remainder. First, observe that∑

i<n

uiiψi i = 2c1ε tr(D
2
x ′u)−1.

From Proposition 4.1 (applied to u and its Legendre transform), we have that

1

C ′ ≤ (D2
x ′u)−1 ≤ C ′.

Therefore, choose

c1 := 1

2C ′(n − 1)
.

Hence,

−
∑
i<n

uiiψi i ≥ −ε.

Now considering D2u as a block matrix, we see that

unn = 1

unn − ∇x ′un(D2
x ′u)−1∇x ′un

≥ 1

unn
;

and so, provided δ > 0 is small enough so that ψnn ≤ 0,

−unnψnn ≥ −γ − 1

xn

(1 − ε)xγ
n − εκγ −1(κ − 1)(γ − 1)−1xκ

n

(1 − ε)xγ
n − εκγ −1xκ

n
.

In turn, we have the following inequality, for the right-hand side of our equation,

α

xn
− βψn

ψ
− uiiψi i ≥ α

xn
− βγ

xn
I − γ − 1

xn
II − ε

with

I := (1 − ε)xγ
n − εκγ −1xκ

n

(1 − ε)xγ
n − εxκ

n

and

II := (1 − ε)xγ
n − εκγ −1(κ − 1)(γ − 1)−1xκ

n

(1 − ε)xγ
n − εκγ −1xκ

n
.

As

α − βγ = γ − 1,

we rearrange our lower bound as follows, splitting II into two pieces:

α

xn
− βγ

xn
I − γ − 1

xn
II = α

xn
(1 − II) + βγ

xn
(II − I).
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Now we estimate the two factors, above, in parentheses. Observe that

1 − II ≥ − ε

1 − ε
C0,κ,γ x

κ−γ
n (1 + C̄εxκ−γ

n )

with

C0,κ,γ := κ(κ − γ )

γ (1 − γ )
> 0.

(Here and below C̄ > 0 is a large constant that may change from line to line; it
depends only on κ and γ .) Similarly,

II − I ≥ ε

1 − ε
C1,κ,γ x

κ−γ
n (1 − C̄εxκ−γ

n )

with

C1,κ,γ := (κ − γ )(1 + κ − γ )

γ (1 − γ )
> 0.

Finally, we conclude. From above,

α

xn
− βγ

xn
I − γ − 1

xn
II ≥ ε

1 − ε

C0,κ,γ

κ
xκ−γ−1
n ((βγ + κ)(1 − γ ) − C̄ε).

Then, considering (4.17) and choosing ε > 0 sufficiently small depending only on
κ and γ , we find the inequality

0 ≥ δκ−γ−1 − C̄,

which is impossible once δ > 0 is sufficiently small, as desired.
Consequently,

ψ ≥ un in C1/2 ∩ {xn ≥ 0}.
In particular,

(1 − ε)xγ
n ≥ un along {x ′ = 0}.

Translating the barrier ψ to any z ∈ C1/2 ∩ {xn = 0} and repeating the above
argument, we find that

(1 − ε)xγ
n ≥ un in C1/2 ∩ {xn ≥ 0}.

If, on the other hand, the second inequality holds, up to dividing by c0 (so that
c0 = 1), consider

ψ := (1 + ε)xγ
n − c1ε|x ′|2 + εxκ

n .

An analogous argument proves that

(1 + ε)xγ
n ≤ un in C1/2 ∩ {xn ≥ 0}.

In summary, (4.16) holds in Case 1.
Case 2: α = β. Setting κ = 2 from the start, and following the same line of

reasoning proves this case.
Case 3: α > β.By duality, consider v (the Legendre transform of u). Reversing

the roles of α and β, and applying the arguments of Case 1 and 2 proves this case.
��
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Iterating Proposition 4.3 (rescaling C1/2 to C1 leaves things unchanged), we find
that un/x

γ
n is Hölder continuous at the origin. Translating this argument to other

boundary points yields that un/x
γ
n is locally Hölder continuous up to {xn = 0}. In

particular, we have the following corollary.

Corollary 4.4. Let u be convex and satisfy (4.1). A constant χ ∈ (0, 1) exists,
depending only on α, β, and n, such that

[
un
xγ
n

]
C0,χ (C1∩{xn≥0})

≤ C(α, β, n, ‖un/xγ
n ‖L∞(C1∩{xn≥0})).

From Corollary 4.4, we deduce Theorem 1.4.

Proof of Theorem 1.4. By Proposition 4.1, duality, and Lemma 4.2, there exists an
M > 0 such that

1

M
Id′ ≤ D2

x ′u ≤ M Id′ and 1

M
≤ un

xγ
n

≤ M in B ′
1 × {0}.

After subtracting off the tangent plane to u at any point in C1 ∩ {xn = 0} and a
translation, if we can show that

C1/R ∩ {xn ≥ 0} ⊂ S = {ψ < 1} ⊂ CR ∩ {xn ≥ 0} with ψ := ut , (4.18)

for some R = R(M) > 0, then (since un = 0 on {xn = 0})∥∥∥∥∂nut
xγ
n

∥∥∥∥
L∞(C1∩{xn≥0})

=
∥∥∥∥ψn

xγ
n

∥∥∥∥
L∞(C1∩{xn≥0})

≤ C(M).

(Recall that ut is the rescaling of u defined in (4.12).) Therefore, by Corollary 4.4
and scaling,

[
un
xγ
n

]
C0,χ (Ct∩{xn≥0})

≤ C(M)

min{t χ
2 , t

χ
1+γ }

→ 0 as t → ∞.

Hence, un/x
γ
n is constant in {xn ≥ 0}. In turn, det D2

x ′u is constant in {xn > 0}.
Thus, by Jörgens, Calabi, and Pogorelov’s Liouville theorem ([6,21,26]),

u(x) = P(x ′) + px1+γ
n

for some uniformly convex quadratic polynomial P , proving the theorem. Now we
prove (4.18).

By the arguments of Lemma 4.2, we find that the linear map A that normalizes
the pair (ψ, S) is such that

A = diag(A′, a) and
1

C
≤ (det A)2aα+β ≤ C,

for some C > 0, depending only on α, β, and n. Let

ψ̃(x) := ψ(A−1x),
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so that

B1(0) ⊂ S̃ := A(S) ⊂ Bn3/2(0) and ∇ψ̃(S̃) ⊂ B1/r (0), (4.19)

for some r > 0, depending only on α, β, and n. The inclusion concerning the
gradient of ψ̃ follows from Corollary 3.5 and Corollary 3.7. So, by Proposition 4.1
and duality,

1

M̃
Id′ ≤ D2

x ′ψ̃(0) ≤ M̃ Id′ .

Furthermore, by Lemma 4.2,

1

C(M̃)
≤ ψ̃n

xγ
n

(0) ≤ C(M̃).

Here and above M̃ > 0 and C(M̃) > 0 depend only on α, β, and n. It follows that

1

MM̃
Id′ ≤ (A′)t A′ ≤ MM̃ Id′ and 1

MC(M̃)
≤ a ≤ MC(M̃).

These inequalities, by [13, Lemma A.4], imply that

|A|, |A−1| ≤ C(M).

In turn, from (4.19) we deduce (4.18), as desired. ��

5. Flat Implies Smooth

In this section, we prove a pointwise “flat implies smooth” result. Before doing
so, we reintroduce and introduce some notation essential to the statements and
proofs of this section.

Recall,

Cr (z) = B ′
r1/2(z

′) × (zn − r
1

1+γ , zn + r
1

1+γ ) and Cr = Cr (0).
Let

λ := λ + 2

1 + γ
= 1 + λ + 1 − γ

1 + γ
and λ := λ + 2γ

1 + γ
= 1 + λ − 1 − γ

1 + γ
.

Also, let X be an open set whose boundary in C1 is defined by be a nonnegative
function �X = �X (x ′) on R

n−1:

X ∩ C1 = {xn > �X (x ′)} ∩ C1 and ∂X ∩ C1 = {xn = �X (x ′)} ∩ C1.
Set

U (x) := |x ′|2
2

+ γ
β

1+β
x1+γ
n

(1 + γ )γ
.

Finally, define

C∗
r (z) := B ′

r1/2(z
′) × (zn − r

γ
1+γ , zn + r

γ
1+γ ) and C∗

r := C∗
r (0).
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Proposition 5.1. Assume that X is convex with 0 ∈ ∂X. Let Y ⊂ {yn > 0} be an
open set with 0 ∈ ∂Y , and assume further that

0 ≤ xn ≤ δε|x ′|λ on ∂X ∩ C2 and 0 ≤ yn ≤ δε|y′|λ on ∂Y ∩ C∗
1/ρ. (5.1)

Suppose that u ∈ C1(X ∩ C2) is a convex function such that

u(0) = 0 = |∇u(0)|, (5.2)

un ≥ 0, and

∇u(∂X ∩ C1) ⊂ ∂Y ∩ C∗
1/ρ.

In X ∩ C1, assume that
1 − δε|x |μ
1 + δε|∇u|ω

(xn − 2δε|x ′|λ)α+
uβ
n

≤ det D2u ≤ 1 + δε|x |μ
1 − δε|∇u|ω

xα
n

(un − 2δε|∇x ′u|λ)β+
.

Furthermore, suppose that

|u −U | ≤ ε in X ∩ C2.
If δ, ε, ρ > 0 are sufficiently small, then

|u(Rx) −U | ≤ Cε(|x ′|2 + x1+γ
n )1+

λ
2

for some R = diag(R′, rn).

Our proposition will follow from an iteration of an improvement of flatness
lemma. In order to state it, however, we need to define one more object:

Uτ ′(x) := U (x) + τ ′ · x ′ so that U0 = U.

Also, recall that

Dh := diag(h
1
2 Id′, h

1
1+γ ).

Lemma 5.2. Let 0 ∈ ∂X and assume that

0 ≤ xn ≤ δε on ∂X ∩ C1. (5.3)

Furthermore, let u ∈ C1(X ∩ C1) be convex and such that

u(0) = 0, (5.4)

un ≥ 0, and

0 ≤ un ≤ δε on ∂X ∩ C1. (5.5)

Suppose that

1 − δε

1 + δε

(xn − δε)α+
uβ
n

≤ det D2u ≤ 1 + δε

1 − δε

xα
n

(un − δε)
β
+

in X ∩ C1.
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For any 0 < λ < 1, there exist constants δ0 > 0, ε0 > 0, and h0 > 0 such that the
following holds: if

|u −Uτ ′ | ≤ ε in X ∩ C1,
then

|ũ −Uτ̃ ′ | ≤ h
λ
2
0 ε in X̃ ∩ C2

provided 0 < δ ≤ δ0 and 0 < ε ≤ ε0. Here

ũ(x) := u(QDh0x)

h0
, τ̃ ′ := (Q′D′

h0
)t (τ ′ + q ′)
h0

, and X̃ := (QDh0)
−1X

for some Q and q ′ such that

Q = diag(Q′, qn) and |Q − Id |, |q ′| ≤ C0ε

and

qα+β
n (det Q)2 = 1. (5.6)

To prove our improvement of flatness lemma, we approximate u − Uτ ′ by a
solution to the Grushin type equation with singular drift Lw = 0 where L is defined
by

Lw := γ
β

1+β xγ−1
n �x ′w + wnn + βγ

wn

xn
,

which,with theNeumann conditionwn = 0 on {xn = 0}, has a rather nice regularity
theory (see [11]).

Proof. Let

uε := u −Uτ ′

ε
.

Step 1: We show that uε is well-approximated near the origin by a solution w

to the linearized equation{
Lw = 0 in C1/4 ∩ {xn > 0}
wn = 0 on C1/4 ∩ {xn = 0} (5.7)

in the viscosity sense. In other words, for any η > 0, a solution w to (5.7) in
C1/4 ∩ {xn > 0} exists such that

|uε − w| ≤ η in X ∩ C1/4,
provided that δ0, ε0 > 0 are sufficiently small, depending on η, ρ, n, α, and β.

Step 1.1: First, we derive the linearized equation.
To this end, by convexity, observe that if x + te ∈ X ∩ C1, then

(∇u(x) − ∇Uτ ′(x)) · te ≤ 2ε + (∇Uτ ′(x + te) − ∇Uτ ′(x)) · te;
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in particular,

|un(x) −Un(x)| ≤ 2ε
1
2 + Cγ max{ε γ

2 , ε
1
2 }.

Consequently, un → ∂nUτ ′ = Un uniformly in compact subsets of X ∩ C1 as
ε → 0. Moreover,

det D2u − det D2Uτ ′ = tr(AεD
2(u −Uτ ′)),

with

Aε :=
∫ 1

0
cof(D2U + t (D2u − D2U )) dt.

Since det1/n is concave on symmetric, positive semi-definite n × n matrices,

(det Aε)
1/n ≥

∫ 1

0
(t (det D2u)1/n + (1 − t)(det D2U )1/n) dt.

Therefore, (det Aε)
1/n is strictly positive and bounded on compact subsets of X∩C1.

Furthermore,

xα
n

(un − δε)
β
+

− xα
n

Uβ
n

= xα
n

uβ
n

− xα
n

Uβ
n

+ xα
n

(un − δε)
β
+

− xα
n

uβ
n

= −xα
n

∫ 1

0
β

un −Un

(Un + t (un −Un))1+β
dt + xα

n

(un − δε)
β
+

− xα
n

uβ
n

.

Thus,

1 + δε

1 − δε

xα
n

(un − δε)
β
+

− xα
n

Uβ
n

≤ b+
ε ∂n(u −Uτ ′) + c+

δ ε

with

b+
ε → −β

xα
n

U 1+β
n

as ε → 0 and c+
δ → 0 as δ → 0

locally uniformly in X ∩ C1. Similarly,

1 − δε

1 + δε

(xn − δε)α+
uβ
n

− xα
n

Uβ
n

≥ b−
ε ∂n(u −Uτ ′) + c−

δ ε

with

b−
ε → −β

xα
n

U 1+β
n

and c−
δ → 0

uniformly in compact subsets of X ∩ C1 as ε, δ → 0, respectively. In turn, by the
ABP estimate and Schauder theory, D2u → D2Uτ ′ = D2U locally uniformly in
X ∩ C1 as ε → 0. Hence,

Aε → cof D2U = diag(γ
β

1+β xγ−1
n Id′, 1)
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as ε → 0 uniformly in compact subsets of X ∩ C1.
Step 1.2: Second, we show that uε is uniformly Hölder continuous in an appro-

priate sense up to C1/4 ∩ {xn = 0} as δ, ε → 0.
To start, we claim that two small constants c0 > 0 and δ0 > 0 exist such that

the following holds: for all δ ≤ δ0, if

oscX∩C1 uε ≤ 2,

then

oscX∩C1/2 uε ≤ 2(1 − c0).

We prove this claim with a barrier argument. For every z ∈ ∂X ∩ C1/2, define

φz(x) := −1 + c2

(
1 + 2C1γ

β
1+β

x1+γ
n

(1 + γ )γ
+ xn − C1

|x ′ − z′|2
2

)

and

φz(x) := 1 − c2

(
1 + 2C1γ

β
1+β

(xn − δε)
1+γ
+

(1 + γ )γ
− C1

|x ′ − z′|2
2

)
,

for C1 � 1 and c2 � 1 with c2C1 � 1 to be chosen (uniformly in z). Also, let

F+
δ,ε(D

2ψ,∇ψ, x) := (1 − δε)(ψn − δε)
β
+ det D2ψ − (1 + δε)xα

n

and

F−
δ,ε(D

2ψ,∇ψ, x) := (1 + δε)ψβ
n det D2ψ − (1 − δε)(xn − δε)α+.

Finally, define

wz := Uτ ′ + εφz

and

wz := |x ′|2
2

+ γ
β

1+β
(xn − δε)

1+γ
+

(1 + γ )γ
+ εφz + τ ′ · x ′.

First, we show that if δ > 0 is small enough (and ε < 1), then

F+
δ,ε(D

2wz,∇wz, x) ≥ 0 ≥ F+
δ,ε(D

2u,∇u, x) in X ∩ C1
and

F−
δ,ε(D

2wz,∇wz, x) ≤ 0 ≤ F−
δ,ε(D

2u,∇u, x) in X ∩ C1.
Indeed, if δ ≤ c2 (recalling that c2C1 � 1 and C1 � 1), then

F+
δ,ε(D

2wz,∇wz, x) ≥ [(1 − δε)(1 − c2C1ε)(1 + c22C1ε) − (1 + δε)]xα
n ≥ 0

and

F−
δ,ε(D

2wz,∇wz, x) ≤ [(1 + δε)(1 + c2C1ε)(1 − c22C1ε)
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−(1 − δε)](xn − δε)α+ ≤ 0.

Second, we address the boundary data. Note that

either uε(2
− 1

1+γ en) > 0 or uε(2
− 1

1+γ en) ≤ 0.

In the first case, we prove that

u ≥ wz on X ∩ ∂C1/8(z) and ∂nwz ≥ ∂nu on ∂X ∩ C1/8(z).
While, in the second case, we prove that

u ≤ wz on X ∩ ∂C1/8(z) and ∂nu ≥ ∂nw
z on ∂X ∩ C1/8(z).

In the first case, fix some small distance d̄ > δε, depending only on γ . If C1 is
sufficiently large, depending only on γ , then φz ≤ −1 on ∂C1/8(z) ∩ {xn ≤ d̄}.
Hence, wz ≤ u here. By the Harnack inequality, choosing c2 > 0 small, we can
ensure that wz ≤ u on the remainder of X ∩ ∂C1/8(z). Also, by (5.5), once again if
δ ≤ c2,

∂nwz = Un + εc22C1Un + εc2 ≥ εc2 ≥ ∂nu on ∂X ∩ C1/8(z).
In the second case, a similar Harnack inequality argument, yields the required
inequality along X ∩ ∂C1/8(z). Also, by (5.3),

∂nw
z = γ

− 1
1+β (1 − εc22C1)(xn − δε)

γ
+ = 0 ≤ ∂nu on ∂X ∩ C1/8(z).

By the maximum principle then, one of the two inequalities

wz ≤ u ≤ wz in X ∩ C1/8(z)
holds for all z ∈ ∂X ∩ C1/2, from which the claim follows with c0 = c2/2.

Iterating the claim, we find that if ε < 1/2k−1 and δ0 > 0 is small, then

oscX∩C2−k uε ≤ 2(1 − c0)
k .

Thus, after translating the above argument to any point x0 ∈ ∂X ∩ C1/4, we see
that uε converges uniformly in C1/4 ∩ {xn ≥ 0}, as ε and δ tend to zero, to some
function w that solves

Lw = γ
β

1+β xγ−1
n �x ′w + wnn + βγ

wn

xn
= 0 in {xn > 0} ∩ C1/4

in the viscosity sense (and so, classically by elliptic theory).
Step 1.3: Third, we show that the Neumann condition wn = 0 is satisfied in the

viscosity sense as defined in [11, Definition 7.1] on C1/4 ∩ {xn = 0}.
If βγ ≥ 1, then wn = 0 on {xn = 0} in the viscosity sense since |w| ≤ 1. This

bound is a consequence of Step 1.2.
When βγ < 1, we show that w can neither be touched from above at any point

on C1/4 ∩ {xn = 0} by any test function of the form

A

2
|x ′ − z′|2 + B + 2px1−βγ

n
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where z′ ∈ R
n−1, A, B ∈ R, and

p < 0

(making w a viscosity subsolution) nor be touched from below at any point on
C1/4 ∩ {xn = 0} by any test function of the form

A

2
|x ′ − z′|2 + B + 2px1−βγ

n

where z′ ∈ R
n−1, A, B ∈ R, and

p > 0

(making w a viscosity supersolution).
Suppose, to the contrary, that w can be touched from below at some x0 =

(x ′
0, 0) ∈ C1/4 ∩ {xn = 0} by

A

2
|x ′ − z′|2 + B + 2px1−βγ

n

for some z′ ∈ R
n−1, A, B ∈ R, and p > 0. Since βγ < 1, we can touch w at x0

from below strictly by

φ(x) := A

2
|x ′ − z′|2 + B + γ

β
1+β

(1 + γ )γ
Cx1+γ

n + pxn

with any C ∈ R. Since uε → w uniformly as ε, δ → 0,

� := Uτ ′ + ε(φ + cε,δ)

touches u from below strictly at some xε ∈ X . Arguing as in Step 1.2, we find that

F+
δ,ε(D

2�(xε),∇�(xε), xε) > 0,

provided that 0 < δ, ε � 1 and C � 1 (since p > 0), but then

0 ≥ F+
δ,ε(D

2u(xε),∇u(xε), xε) ≥ F+
δ,ε(D

2�(xε),∇�(xε), xε) > 0,

which is impossible. (The first inequality is an assumption on u, and the middle
inequality holds since � touches u from below.) On the other hand, suppose, to the
contrary, thatw can be touched from above at some x0 = (x ′

0, 0) ∈ C1/4∩{xn = 0}
by

A

2
|x ′ − z′|2 + B + 2px1−βγ

n

for some z′ ∈ R
n−1, A, B ∈ R, and p < 0. Since βγ < 1, we can touch w at x0

from above strictly by

φ(x) := A

2
|x ′ − z′|2 + B + γ

β
1+β

(1 + γ )γ
C(xn − δε)

1+γ
+ + pxn
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with any C ∈ R. Since uε → w uniformly as δ, ε → 0,

� := |x ′|2
2

+ γ
β

1+β
(xn − δε)

1+γ
+

(1 + γ )γ
+ τ ′ · x ′ + ε(φ + cε,δ)

touches u from below strictly at some xε ∈ X . Arguing as in Step 1.2, we find that

F−
δ,ε(D

2�(xε),∇�(xε), xε) < 0

provided 0 < δ, ε � 1 and C � −1 (since p < 0). But again this inequality is
impossible.

Step 2: Now we find the transformation Q and prove (5.6).
Anapplicationof the arguments of [11, Section7.1] yields thatw ∈ C1+γ

loc (C1/4∩
{xn ≥ 0}). In particular, wn = 0 is satisfied in the classical sense. Moreover,
Dk
x ′w ∈ C1+γ

loc (C1/4 ∩ {xn ≥ 0}). Also, since w is the limit of a sequence of
functions that vanish at the origin (by (5.4)),

w(0) = 0.

In turn, by Taylor’s theorem and (5.7),

w(x) = p′ · x ′ + 1

2
P ′x ′ · x ′ + Cγ pnx

1+γ
n + O(|x ′|3 + x2+2γ

n + |x ′|x1+γ
n )

where

|p′|, |P ′|, |pn| ≤ C;
in particular,

pn = − tr P ′

1 + β
and Cγ = γ

β
1+β

(1 + γ )γ
.

It follows that, if 0 < δ, ε � 1,∣∣∣∣u −Uτ − ε

(
p′ · x ′ + 1

2
P ′x ′ · x ′ + Cγ pnx

1+γ
n

)∣∣∣∣
≤ εη + εC(|x ′|3 + x2+2γ

n + |x ′|x1+γ
n ).

So

|u(Q̃′x ′, q̃nxn) −U (x) − (τ ′ + q ′) · Q̃′x ′| ≤ ηε + Ch
3
2 ε + Cε2 in Q̃−1(X ∩ C4h)

with

Q̃ = diag(Q̃′, q̃n) := ((Id′ +εP ′)−
1
2 , (1 + εpn)

− 1
1+γ ) and q ′ := εp′.

In turn, if ε, η ≤ h3/2,

|u(Q̃′x ′, q̃nxn) − (τ ′ + q ′) · Q̃′x ′ −U (x)| ≤ Ch
3
2 ε in (Q̃−1X) ∩ C2h .
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Now notice that

2 + α + β

1 + γ
pn = −2 + α + β

1 + γ

tr P ′

1 + β
= − tr P ′,

and so

q̃α+β
n (det Q̃)2 = (1 + εpn)

− 2+α+β
1+γ (det(Id′ +εP ′))−1

=
(
1 − ε

2+α+β
1+γ

pn + O(ε2)
)(

1 − ε tr P ′ + O(ε2)
)

= 1 + O(ε2).

Thus, we can find a Q that satisfies (5.6) and is ε2 close to Q̃, i.e.,

|Q̃ − Q| ≤ C̃ε2.

It follows that

|u(Q′x ′, qnxn) − (τ ′ + q ′) · Q′x ′ −U (x)| ≤ Ch
3
2 ε in (Q−1X) ∩ C2h,

since ε ≤ h3/2. Therefore, taking h > 0 sufficiently small (depending on λ < 1),
we find that∣∣∣∣1h u(QDhx) − 1

h
(τ ′ + q ′) · Q′D′

hx
′ −U (x)

∣∣∣∣ ≤ εh
λ
2 in ((QDh)

−1X) ∩ C2,

as desired. ��
With Lemma 5.2 in hand, we prove our proposition.

Proof of Proposition 5.1. First, we claim, by induction, that a sequence of matrices
Rk := diag(R′

k, rk,n) and vectors τ ′
k ∈ R

n−1 exit such that the rescalings of u at
height hk = hk0,

uk(x) := u(RkDkx)

hk
for x ∈ Xk := (RkDk)

−1X

with

Dk := diag(h
1
2
k Id′, h

1
1+γ

k )

satisfy

|uk −Uτ ′
k
| ≤ εk := εh

λ
2
k in Xk ∩ C2 (5.8)

provided

δ = cδ0 and ε = ε0

for some small c > 0. Moreover,

rα+β
k,n (det Rk)

2 = 1 and |Rk − Rk−1| ≤ Cεk−1. (5.9)

The base case k = 0 holds by assumption, with R0 = Id and τ ′
0 = 0.
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Now suppose the claim holds for some k ∈ N. Note that the second inequality
in (5.9) implies that

|Rk − Id | ≤ Cε.

From (5.1), provided that c > 0 is sufficiently small, we see that

0 ≤ xn ≤ |r−1
k,n ||R′

k |λ+ 2
1+γ δεk |x ′|λ+ 2

1+γ ≤ δ0εk on ∂Xk ∩ C2.

Furthermore, since the segment between 0 and ε
1/2
k (τ ′

k |τ ′
k |−1 + δ0εken) lives inside

Xk ∩ C2 (by the above inequality on the height of ∂Xk ∩ C2 and the convexity of
X ), the function wk = uk + τ ′

k · x ′ is convex, and the second equality in (5.2), we
deduce that

|τ ′
k | ≤ 2ε

1
2
k + Cγ max{ε

γ
2
k , ε

1
2
k }

(cf., the beginning of Step 1.1 in the proof of Lemma 5.2). In particular, this shows
that τ ′

k → 0 as k → ∞. A similar argument, but also using that the family of slopes
τ ′
k is uniformly bounded, yields the inclusion

∇uk(Xk ∩ C1) ⊂ Yk ∩ C∗
1/ρ with Yk := (RkDk)

t h−1
k Y.

By construction, the boundary of Xk maps to the boundary of Yk . From (5.1), we
also see that

0 ≤ yn ≤ |rk,n||(R′
k)

−1|λ+ 2γ
1+γ δεk |y′|λ+ 2γ

1+γ ≤ δ0εk on ∂Yk ∩ C∗
1/ρ.

In turn, in Xk ∩ C1, un ≥ 0 and, using (5.8),

1 − δ0εk

1 + δ0εk

(xn − δ0εk)
α+

(∂nuk)β
≤ det D2uk ≤ 1 + δ0εk

1 − δ0εk

xα
n

(∂nuk − δ0εk)
β
+

,

taking c > 0 smaller if needed depending on ρ > 0. Therefore, by Lemma 5.2,

|ũk −Uτ̃ ′
k
| ≤ εkh

λ
2
0 = εk+1 in X̃k ∩ C2

where

ũk(x) := uk(QDh0x)

h0
and X̃k := (QDh0)

−1Xk

for

Q = diag(Q′, qn) with |Q − Id |, |q ′| ≤ C0εk and q
α+β
n (det Q)2 = 1.

In other words, the inductive step holds taking

uk+1 = ũk, Rk+1 = RkQ, and τ ′
k+1 = τ̃ ′

k .

Indeed,

rα+β
k+1,n(det Rk+1)

2 = qα+β
n (det Q)2rα+β

k,n (det Rk)
2 = 1,
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and

|Rk+1 − Rk | ≤ |Q − Id ||Rk | ≤ 2C0εk .

Second, we find R and conclude. By the inequality in (5.9), we see that Rk

converges to some R, as k tends to infinity. In particular,

|R − Rk | ≤ Cεk .

Thus, after replacing εk with Cεk , we can replace Rk by R in (5.8). In particular,
considering the inductive manner in which each τ ′

k is produced, we have that

|u(Rx) − r ′
k · R′x ′ −U (x)| ≤ Cεh

1+ λ
2

k in (R−1X) ∩ Chk

with

r ′
k :=

k∑
i=1

h
i−1
2 (R′

i−1)
−t q ′

i .

Here q ′
i is the linear part of the polynomial found at each application of Lemma 5.2.

Hence, r ′
k converges to some r ′, and

|r ′ − r ′
k | ≤ 2εh

1
2+ λ

2
k .

It follows that we can replace r ′
k with r

′, as we replaced Rk with R: for all k ∈ N,

|u(Rx) − r ′ · R′x ′ −U (x)| ≤ Cεh
1+ λ

2
k for all x ∈ (R−1X) ∩ Chk .

Finally, we claim that (R′)t r ′ = 0, which concludes the proof. Indeed, the
inequality above tells us that the function u(Rx)−r ′ ·R′x ′−U (x) vanishes up to and
including first order at the origin. From (5.2), we know that ∇u(0) = 0 = ∇U (0),
forcing (R′)t r ′ = 0. ��

6. Proof of Theorem 1.2

The proof of Theorem 1.2 has three steps. First, we prove a strict obliqueness
estimate. This key estimate allows us to find an affine transformation that aligns
ν∂X (0) and ν∂Y (0), assuming∇u(0) = 0. Second, after a rotation which prescribes
the now aligned normals at the origin, we blow-up to the global flat setting of
Sect. 4. Finally, we apply Proposition 5.1 to find a pointwise expansion of u at 0.
Since, in this procedure, the origin was fixed arbitrarily, Theorem 1.2 follows.
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6.1. Strict Obliqueness

In this section, we prove our strict obliqueness estimate.

Lemma 6.1. Let X and Y be open, bounded, and C1 convex sets in R
2. Suppose

that Tmin = ∇u is the optimal transport taking f = adα
∂X to g = bdβ

∂Y , where a
and b are functions bounded away from zero and infinity in X and Y respectively,
and max{α, β} > 0. Then

ν∂X (x) · ν∂Y (∇u(x)) ≥ θ > 0 for all x ∈ ∂X,

where θ depends only on the inner and outer diameters of X and Y , α, β, and the
upper and lower bounds of a and b.

The proof of this estimate follows the proof of the same estimate in the work
of Savin and Yu ([27, Section 3]). We show that orthogonality (as opposed to strict
obliqueness) is at odds with the volume estimate for sections.

Proof. By an approximation argument, we may assume that a and b are C1 and
that X and Y are C2 and uniformly convex (cf. [27]).

Let us assume, without loss of generality, that 0 ∈ ∂X , {x2 = 0} is tangent to
X (at 0), X ⊂ {x2 > 0}, u(0) = 0, and ∇u(0) = 0. Now suppose, to the contrary,
that we have orthogonality instead of strict obliqueness; then {y1 = 0} is tangent
to Y (at 0 = ∇u(0)), and, without loss of generality, Y ⊂ {y1 > 0}. Set

� := {x ∈ X : x2 < d0} ∩ ∇v({y ∈ Y : y2 > 0}).
(Recall v is the minimal convex extension outside of Y of the Legendre transform
of u.) Also, define

ψ := diam(Y )

d0
x2.

Notice that

u2 ≤ ψ on ∂� ∩ X. (6.1)

Moreover, if u12 = u21 along ∂X , then

u21 ≥ 0 along ∂X ∩ �. (6.2)

Indeed, first, since Y ⊂ {y1 > 0} and Y is tangent of the positive y2-axis, the image
under ∇u moves to the left as we move along ∂X from the left toward the origin;
if �X determines ∂X near the origin,

u1(x1, �X (x1)) ≥ u1(z1, �X (z1)) if x1 < z1 ≤ 0.

As u1(z1, �X (x1)) ≥ u1(x1, �X (x1)), by the convexity of u, we deduce that

u1(z1, �X (x1)) ≥ u1(z1, �X (z1)).
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Finally, since �X (x1) > �X (z1), it follows that

u21(z1, �X (z1)) = u12(z1, �X (z1)) ≥ 0,

letting x1 tend to z1. Suppose the maximum of u2 − ψ is achieved at some z ∈ �.
Then ∇u2(z) = ∇ψ(z). And setting

Lw := ui j∂i jw,

we find that, at z,

0 ≥ L(u2 − ψ) = α
ν∂Xd · e2
d∂X

+ a2
a

− diam(Y )

d0

(
β

ν∂Yd (∇u) · e2
d∂Y (∇u)

+ b2(∇u)

b(∇u)

)

≥ α
ν∂Xd · e2
d∂X

− Ca − diam(Y )

d0

(
β

ν∂Yd (∇u) · e2
d∂Y (∇u)

+ Cb

)

> 0.

Indeed, ν∂Xd ·e2 > 0, ifd0 � 1.Moreover, ν∂Yd (∇u)·e2 < 0, as∇u(�) ⊂ {y2 > 0}
and, also, provided that d0 � 1. Finally, if d0 � 1, then the terms with d∂∗ in
the denominator will be large enough to absorb the constants Ca and Cb. (Recall
max{α, β} > 0.) Here, for example,

∂Xd := {x ∈ X : d∂X (x) = d}
and ν∂Xd is the unit normal to ∂Xd oriented to point inside {x ∈ X : d∂X (x) > d}.
(See, e.g., [16].) This is a contradiction. In turn, by (6.1) and (6.2), the maximum
of u2 − ψ is achieved on ∂� ∩ X , which implies that

u ≤ diam(Y )

d0
x22 in �. (6.3)

Unfortunately, we cannot guarantee that u12 = u21 along ∂X . Therefore, we
consider the following approximation scheme: let∇uk be the solution to the optimal
transport problem taking

f k := (1 − k−1) f + k−1‖ f ‖L1(X) to gk := (1 − k−1)g + k−1‖g‖L1(Y ).

By [27, Remark 2.1], ∇uk converges to ∇u locally uniformly inR2, and, similarly,
∇vk converges to ∇v locally uniformly in R

2. (Here vk is the minimal convex
potential associated to the optimal transport problem taking gk to f k , and vk , in Y ,
agrees with the Legendre transform of uk .) Set

�k := {x ∈ X : x2 < d0} ∩ ∇vk({y ∈ Y : y2 > 0}).
Then �k converges to � in the Hausdorff sense. Since fk and gk are positive and
Hölder continuous, uk ∈ C2(X) by Caffarelli’s boundary regularity theory ([5]).
Thus uk21 = uk12 along ∂X . In turn, by the formal maximum principle argument
above,

uk ≤ diam(Y )

d0
x22 in �k .
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Taking the limit, k → ∞, proves (6.3).
In summary, if we have orthogonality rather than strict obliqueness,

u ≤ Cx22 in �(u) and v ≤ Cy21 in �(v), (6.4)

where the estimate on v is by duality.
To conclude, let �Y determine ∂Y near the origin. Corollaries 3.13, and 3.8 and

(6.4), applied in succession, imply that

Ch2 ≥ |Sh(u, 0)||∇u(Sh(u, 0))|
≥ c|Sh(u, 0)||Sh(v, 0)|
≥ c|{x ∈ X : x1 ≤ 0, x2 ≤ ch

1
2 }||{y ∈ Y : y2 ≤ 0, y1 ≤ ch

1
2 }|

≥ ch
1
2 �−1

X (ch
1
2 )h

1
2 �−1

Y (ch
1
2 ).

Dividing through by h2 yields

C ≥ �−1
X (ch

1
2 )

ch
1
2

�−1
Y (ch

1
2 )

ch
1
2

.

Since �′
X (0) = �′

Y (0) = 0, by assumption, (�−1
X )′(0) = (�−1

Y )′(0) = +∞, but
this implies that the right-hand side above tends to infinity when h tends to zero,
which is impossible. ��

6.2. Blow-Ups

In this section, we blow-up. That said, in order to blow-up to the flat setting
studied in Sect. 4, we have to not only use Lemma 6.1 but choose the right trans-
formation to normalize sections.

6.2.1. A First Normalization Up to a translation and subtracting an affine func-
tion, we assume that

0 ∈ ∂X ∩ ∂Y, u(0) = 0 = v(0), and ∇u(0) = 0 = ∇v(0).

From our strict obliqueness estimate, a shearing transformation exists that aligns
the inner unit normals of ∂X and ∂Y at the origin, which after a rotation can be
prescribed. In particular, a � exists such that

X̃ := �−1X ⊂ {xn > 0} and Ỹ := �t Y ⊂ {yn > 0}
have {x2 = 0} and {y2 = 0} as tangent planes to their boundaries at 0 respectively.
Moreover, det� = 1. Then defining

ũ(x) := u(�x),

we find that

(∇ũ)# f̃ = g̃
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where

f̃ = ãdα

∂ X̃
with ã(x) := a(�x)

[
d∂X (�x)

d
∂ X̃ (x)

]α

and

g̃ = b̃dβ

∂Ỹ
with b̃(y) := b(�−t y)

[
d∂Y (�−t y)

d
∂Ỹ (y)

]β

By [22, Lemma 6.1], ã ∈ Cμ(X̃) and ã > 0. Similarly, b̃ ∈ Cω(Ỹ ) and b̃ > 0.

Remark 6.2. The restrictions on λ with respect to α and β explicitly, rather than
via γ , come from this normalization. Indeed, ã, for instance, as the product of
two Hölder continuous functions, will be Hölder continuous. Yet between the two
Hölder exponents it could inherit, it will inherit the smaller one.

It will be convenient to suppress the tildes in these definitions, andwrite u rather
than ũ, for example.

6.2.2. A New Ellipsoid In the proof of Lemma 4.2, we found ellipsoids com-
parable to sections whose axes were parallel to the coordinate axes. The same
construction applies here. The only difference is that the δ in (4.14) now depends
on the doubling constants of f and g, dimension, and the Lipschitz semi-norm of
∂X . For simplicity, we let wh = w1;h , as defined a few lines above (4.14). It will
be convenient to normalize these ellipsoids as we blow-up.

6.2.3. A Blow-Up Limit In this section, we show that the boundaries of X and
Y flatten as we normalize. Since X and Y are C1,1 and uniformly convex, near the
origin,

{x2 > p−1x21 } ⊂ X ⊂ {x2 > px21 } and {y2 > q−1y21 } ⊂ Y ⊂ {y2 > qy21 }
for two constants p, q > 0.

Lemma 6.3. For each k ∈ N, there is an hk > 0 such that dhk > kw2
hk
.

Proof. Suppose the lemma fails to hold; that is, a k̃ ∈ N exists for which

dh ≤ k̃w2
h for all h ≤ h̃.

Let

Ah := diag(wh, dh), Xh := A−1
h X, and Yh := h−1At

hY,

and consider the normalized potentials

uh(x) := u(Ahx)

h
and vh(x) := v(A−t

h hy)

h
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along with their normalized densities

fh(x) := (det Ah) f (Ahx) and gh(y) := h2(det A−t
h )g(A−t

h hy).

Now observe that

{x2 > d−1
h w2

h p
−1x21 } ⊂ Xh ⊂ {x2 > d−1

h w2
h px

2
1 }

and {
y2 > hdhw

−2
h q−1y21

}
⊂ Yh ⊂

{
y2 > hdhw

−2
h qy21

}

By convexity,

dh ≥ cpw2
h .

Thus, taking k̃ larger if needed,

1

k̃
≤ cp ≤ dh

w2
h

≤ k̃.

Hence, up to a subsequence, as h → 0, we find two limiting domains X̃ and Ỹ such
that

{x2 > k̃ p−1x21 } ⊂ X̃ = {x2 > p̃(x1)} ⊂ {x2 > pk̃−1x21 },
for some convex p̃ that vanishes only at 0, and

Ỹ = {y2 > 0}.
Moreover, recalling our balancing condition (4.15),

1

C
≤ mh := d2+α+β

h w2
h

h2+β
≤ C,

we find a convex function ũ, smooth in X̃ , and such that

det D2ũ(x) = m̃
a(0)(x2 − p̃(x1))α

b(0)ũβ
2

in {x2 > p̃(x1)}

and

ũ2 = 0 along {x2 = p̃(x1)}.
Up to multiplying ũ by a constant, we may assume that m̃a(0)/b(0) = 1. (The
constant m̃ = limh→0 mh .)

Set

Lw := ũi j∂i jw.

First, notice that there is a C > 0 such that

Cxγ
2 ≥ ũ2 on ∂S1(ũ, 0).
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If s := supS1(ũ,0)(ũ2 − Cxγ
2 ) is achieved at x̃ ∈ S1(ũ, 0), then ũ2(x̃) = Cx̃γ

2 + s
for some s ≥ 0, and

0 ≥ L(ũ2 − Cxγ
2 )(x̃)

= α
1

x̃2 − p̃(x̃1)
− β

Cγ x̃γ−1
2

Cx̃γ
2 + s

− C−1γ −1 x̃1−γ
2 Cγ (γ − 1)x̃γ−2

2

≥ α
1

x̃2 − p̃(x̃1)
− (βγ + γ − 1)

1

x̃2
> 0,

provided α > 0, an impossibility. (Because ũ2 and Cxγ
2 + s touch at x̃ , their

gradients agree at x̃ . Since ũi j is the inverse of ũi j ,wehave that ũ12ũ12+ũ22ũ22 = 1.
Moreover, ũ12(x̃) = (Cxγ

2 +s)1(x̃) = 0. In turn, ũ22(x̃)ũ22(x̃) = 1,which explains
the second equality line.) So we find that

ũ ≤ Cx1+γ
2 in S1(ũ, 0).

If α = 0, then consider the power γ − ε rather than γ , with ε > 0 arbitrary but
small. In particular, Cxγ−ε

2 , for some C > 0 independent of ε, is an upper barrier;
the right-hand side, in this case, becomes ε(1+β)x̃−1

2 > 0. Applying themaximum
principle and then sending ε to zero, yields the same inequality. Thus,

dt (ũ, 0) ≥ ct
1

1+γ .

Since uh converges to ũ locally uniformly,

dt (uh, 0) ≥ c

2
t

1
1+γ for all h � 1.

Moreover,

dt (uh, 0) = dth(u)

dh(u)
and wt (uh, 0) = wth(u)

wh(u)
.

So our balancing condition holds for uh as well after replacing C by C2. In turn,

wt (uh, 0)
2 ≤ Ct.

Then

c
t

1
1+γ

t
≤ dt (uh, 0)

wt (uh, 0)2
= dth

dh

w2
h

w2
th

≤ k̃2.

However, taking t � 1, we find this inequality impossible. ��
Swapping the roles of u and v and α and β (also p and q), we find a dual lemma.

Lemma 6.4. For each k ∈ N, there is an hk > 0 such that khkdhk < w2
hk
.
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A consequence of Lemmas 6.3 and 6.4 is that the boundaries of X and Y flatten
under A−1

h and hAt
h respectively; up to a subsequence, in the Hausdorff sense,

Xh → {x2 > 0} and Yh → {y2 > 0},
as h → 0. In turn, up to multiplication by a constant and the same subsequence,
locally uniformly in R2,

uh → ū = P̄(x1) + p̄
γ

β
1+β

(1 + γ )γ
x1+γ
2 ,

by Theorem 1.4. Furthermore,

|∇ū| ≤ 1

r
in S1(ū, 0),

where r > 0 is the constant from Corollary 3.5.

6.3. Conclusion

Up to a multiplication by a constant and determinant 1 transformation in the x ′
variables (both depending on the constant r > 0 from Corollary 3.5, i.e., only on
the doubling constants of f and g), we find that, after choosing h > 0 sufficiently
small, the rescaling

ũ := uh

satisfies the hypothesis of Proposition 5.1. First, notice that

ũ(0) = 0 = |∇ũ(0)|,
which is (5.2), since u(0) = 0 = |∇u(0)|. Second, for any ε > 0,

|ũ −U | ≤ ε in C2,
by the conclusion of the previous section. (The constant and determinant 1 trans-
formation turn ū into U .) By convexity,

∇ũ(X̃ ∩ C1) ⊂ Ỹ ∩ C∗
1/ρ.

By construction, ∇ũ maps ∂ X̃ to ∂Ỹ . Also,

{x2 > d−1
h w2

ht
γ

1+γ p−1x21 } ⊂ X̃ ⊂ {x2 > 0}
and

{y2 > hdhw
−2
h t

1
1+γ q−1y21 } ⊂ Ỹ ⊂ {y2 > 0},

so (5.1) follows byLemmas6.3 and6.4 aswell as the definition ofλ. These estimates
on ∂ X̃ and ∂Ỹ together with the estimates

|ã(x) − 1| ≤ δε|x |μ and |b̃(y) − 1| ≤ δε|y|ω
imply that the inequalities on det D2ũ hold. Thus, applying Proposition 5.1 proves
that u is C2+λ at 0 when γ ≥ 1 and C1+γ (1+ω) at 0 when γ < 1.

Since � and r > 0 are uniform over points in ∂X , Theorem 1.2 is proved.
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