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Abstract

We study the most common image and informal description of the optimal
transport problem for quadratic cost, also known as the second boundary value
problem for the Monge—Ampere equation—what is the most efficient way to fill
a hole with a given pile of sand?—by proving regularity results for optimal trans-
ports between degenerate densities. In particular, our work contains an analysis of
the setting in which holes and sandpiles are represented by absolutely continuous
measures concentrated on bounded convex domains whose densities behave like
nonnegative powers of the distance functions to the boundaries of these domains.

1. Introduction

The optimal transport problem, formulated by Gaspard Monge in 1781, asks
whether or not it is possible to find a map minimizing the total cost of moving a
distribution of mass f to another g given that the cost of moving from x to y is
measured by ¢ = c(x, y). Since its inception, optimal transportation has drawn
together and impacted many areas of mathematics: fluid mechanics, functional
analysis, geometry, general relativity, and probability, just to name a few (see, e.g.,
[1,15,23,25,30]). The most fundamental case is that of the quadratic cost on R”,
when c(x, y) = |x —y|? forx, y € R". This is the model for all sufficiently smooth
cost functions on all sufficiently smooth (Riemannian) geometries ([10]), and it is
at the core of many applications ([30]). More precisely, it is

min {/ Ix = T)Pdf(x): Tuf = g}.
T R
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Under certain conditions on the nonnegative measures f and g, Brenier dis-
covered that the optimal transport problem for the quadratic cost on R” is uniquely
solvable f-almosteverywhere ([2]; see also [24]). Moreover, he characterized min-
imizing maps as gradient maps of convex potentials: 7},,;, = Vu for some convex
function u : R” — R. When f and g are absolutely continuous with respect to
Lebesgue measure, he also established that any convex potential u# defining T,
satisfies a Monge—Ampere equation,

g(Vu) det D*u = f and Vu(spt f) = sptg,

in a suitable weak sense (the Brenier sense; see Lemma 3.1), where f = fdx
and g = g dy. (In this work, we equate absolutely continuous measures with their
densities. It will either be clear from the context or explicitly stated when absolute
continuity is assumed.) In turn, Brenier linked the optimal transport problem and the
second boundary value problem for the Monge—Ampere equation: given two convex
domains and a nonnegative function on their product, find a convex function whose
gradient maps one domain onto the other with Jacobian determinant proportional
to the given function.

Unfortunately, optimal transports can behave rather poorly. Indeed, Caffarelli
observed that 7;,;, = Vu canbe discontinuous under the seemingly ideal conditions
that f and g are the characteristic functions of smooth, bounded domains of equal
volume ([3]; see also [20]). In principle then, a convex potential of an optimal
transport (on the support of the source measure) even between “nice” measures is
no better than an arbitrary convex function. That said, in this same work, Caffarelli
showed that the optimal transport must be locally Holder continuous in X :=
int(spt(f)) under a geometric condition—Y := int(spt(g)) is convex—and a
uniform ellipticity type condition—the Monge—Ampere measure associated to u
is doubling in spt( /). In subsequent works, Caffarelli established the global Holder
continuity of Vu assuming that both X and Y are convex ([4]), and the global Holder
continuity of D?u, the Hessian of u, additionally assuming X and Y are C2 and
uniformly convex and f and g are positive and Holder continuous in X and Y
respectively ([5]).

In this nondegenerate setting, Urbas also proved that D%y is Holder continuous
upto dX when X and Y are uniformly convex, but under a C3 regularity assumption
on X and Y ([28]). More recently, Chen, Liu, and Wang demonstrated that these
domain regularity assumptions can be weakened to C! in n > 3 dimensions
and C* in two dimensions ([7,8]). In two dimensions and at the same time as
Caffarelli, Delanoé established the existence of globally smooth solutions to the
second boundary value problem for the Monge—Ampere equation given smooth
data ([9]).

In the degenerate setting of arbitrary open, bounded source and target domains,
but still considering densities bounded away from zero and infinity, Figalli ([12]),
Figalli-Kim ([14]), Goldman—Otto ([18]), and Goldman ([17]) showed that the
closure of the discontinuity set of an optimal transport, also known as the singular
set, has zero measure in X.

In this paper, we consider a different degenerate setting, one in which f and
g are permitted to vanish at times, e.g., continuously at the boundaries of X and
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Y. This scenario encompasses a study of the most common image and informal
description of the optimal transport problem:

What is the most efficient way to fill a hole with a given pile of sand?

Our first result is a global Holder continuity regularity result for optimal trans-
ports between absolutely continuous, doubling measures (see Sect. 2 for the defi-
nition of a doubling measure in this context). This doubling assumption is different
from Caffarelli’s doubling assumption in that it is only on the data of the problem
rather than on the data and the solution, as it is in Caffarelli’s case.

Theorem 1.1. Let X and Y be open, bounded convex sets in R", and suppose that
f and g are densities which define doubling measures concentrated on X and Y
respectively. Let Ty, be the optimal transport taking f to g. Then Ty, € C° (X),
for some o € (0, 1), depending on n, the doubling constants of f and g, and the
inner and outer diameters of X and Y .

Our second result establishes (optimal) global regularity for the optimal trans-
portin the plane when f and g are comparable to nonnegative powers of the distance
functions to the boundaries of their supports, which we assume are convex:

f ~djy for some o > 0 and g ~ dfy for some B > 0.

In this work, dj, represents the distance function to the boundary of x; dy, > 0 in
* and dy, = 0 outside of *. Thus, we assume our sandpile and hole (turned upside
down) have precise shapes at their boundaries.

Here we show that the optimal transport effectively splits along the tangential
and normal directions to 9X. Let u’ : [0, 1] — [0, 1] be the optimal transport
taking a density which behaves like x* near O to another density which behaves
like yﬁ near 0. Then, by the mass balance formula,

1+«
1+8

In other words, informally, we find that 7,;,, behaves like the identity map t moving
along the boundary of X and the one dimensional transport #” moving orthogonally
in from the boundary of X.

In order to precisely state our theorem and expansion, we must define three
Holder exponents, X, i, and w, to formalize what we mean by ~ above. We state
our theorem assuming that > 0 and 8 > 0, and make a remark after to address
the mild difference when either « = 0 or 8 = 0. There are two cases to consider.
When o > 8, let

M:=A1+yandw:=k, foranyﬁxed0<)»§min{a 2 2 ,3}
2 l+y’ 1+y 14
Ifa = B,ie., y = 1, we additionally assume that A < 1. On the other hand, when
o < f,set

u'(t) ~t7 withy =

1
M—Aandw—kﬂ for any fixed 0 < A < min {«
2y 1+ l—i—y
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Theorem 1.2. Let X and Y be open, bounded, and C'! uniformly convex sets in R2.
Suppose that a and B are two positive constants. Leta € C*(X) andb € C*(Y) be
two positive functions. Suppose that Ty is the optimal transport taking f = adyy

tog = bdfy. Ify > 1, then Tyin € C'7*(X). On the other hand, if y < 1, then
Tmin € CV(H_w)(Y)-

At the heart of Theorem 1.2 is an expansion of a convex potential defining 7},
at points on 0 X. In particular, up to a translation placing 0 € dX and subtracting
off the tangent plane to u at 0, we prove that

u(Mx) — pix — poes ™| < C(lxi * + x4 in {xp > 0} N M,

where M is some linear transformation and pi, p», and C are three positive con-
stants.

Remark 1.3. The case « = 0 = p is, by now, well-understood. When o = 0
(respectively 8 = 0), the upper bound on A becomes independent of any dependence
on « (respectively B).

Our final main result is a Liouville theorem in the flat setting, X = {x, > 0} and
Y ={y, > 0}, witha =1 = b. Here u,, > 0 in {x,, > 0}, and our Monge—Ampere
equation is

o

det D*u = x—'/'sin {x, > 0} and u,, = 0 on {x,, = 0}. (1.1)
Up

We remark that this equation is invariant under affine transformations that keep
the tangential variables x” = (xy, ..., x,_1) separate from the normal variable x,,:
Ax = (A'X’, a,x,). Furthermore, since all three notions of weak solution to the
Monge—-Ampere equation (Alexandrov, Brenier, and viscosity) are equivalent in
this case, the following theorem classifies not only Brenier solutions to (1.1), but
also Alexandrov and viscosity solutions to (1.1).

Theorem 1.4. Let u be convex and such that (Vu)#dg‘{xn ~0) = dg{yn>0}’ for two
given constants « > 0 and B > 0. Then

u(x) = po+p' x4+ P'x X'+ puxy

for some py € R, p’ € R*™, positive definite matrix P’, and constant p, > 0.

This paper is organized as follows. The next section collects some facts from
measure theory and convex analysis. In Sect. 3, we revisit Caffarelli’s boundary
regularity theory, and prove Theorem 1.1. In Sect. 4, we study the flat setting, and
we prove our (Liouville) Theorem 1.4. In Sect. 5, we establish a pointwise “flat
implies smooth” result. Finally, in Sect. 6, we prove Theorem 1.2.
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2. Preliminaries

Throughout this work, ¢ and C will denote positive constants that may change
from line to line. It will be clear from the context, if any change occurs. Sometimes
some of the quantities on which ¢ and C depend will be explicit and denoted
in parentheses or as subscripts; other times, especially when these quantities are
contextually clear, these quantities will be implicit.

Let us start with a pair of definitions and an important lemma by John.

Definition 2.1. We say that a map T pushes-forward a measure f to another mea-
sure g, Ty f = g, if
/gp oTdf = /go dg for all ¢ Borel and bounded.

Definition 2.2. A nonnegative measure f is doubling (on bounded convex domains)
if there is a constant C > 1 such that the following holds: given an open, bounded
convex set S whose barycenter is contained in spt f,

f(8) = Cf (59
where %S is the dilation of S with respect to its center of mass by 1/2.

Definition 2.3. An ellipsoid is the image under a symmetric positive definite affine
transformation of B;(0). In particular, let E be any symmetric positive definite
matrix and x € R”, the ellipsoid generated by E and centered at x € R" is

Eex = x + E(B1(0)).
Given r > 0, we let
r€ = I’gny = 5rE,x

be the dilation of £ with respect to its center by r. (Given an ellipsoid £, we can
assume its generating matrix £ can be diagonalized with a determinant 1 orthogonal
matrix.)

Lemma 2.4. (John’s Lemma) Let S C R" be a bounded convex set with nonempty
interior and center of mass z. A unique ellipsoid € also with center of mass z exists
such that

£cScnie.

With these definitions and John’s lemma in hand (see, e.g., [19] for a proof),
we prove that a measure that is doubling on ellipsoids is doubling.

Corollary 2.5. Let f be a nonnegative measure. If f is doubling on ellipsoids, then
f is doubling.
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Proof. Let S be an open, bounded convex set. Then, by John’s lemma, S is compa-
rable to an ellipsoid £: £ C § C n3/2€, and the center of mass of & is the same as
the center of mass of S. If C > 1 is the doubling constant for f on ellipsoids and
k > 1 is chosen such that n3/2/2k < 1/2, then

F8) < f(i€) < CrGnig) <o < Chf(knie) < CFp(ke) < CFr (ko).
O

Asaconsequence of Lemma 2.5, we can show that measures that are comparable
to the distance function to the boundary of a convex domain are doubling.

Lemma 2.6. Let X C R" be an open, bounded convex set. The density f = adyy
defines a doubling measure on ellipsoids if 0 < infx a, supy a < oo. In particular,
a constant C > 1 exists for which

Lffcﬁgf

given any ellipsoid & centered in X.

Proof. There are two cases to consider.

Case 1: £ C X. Letd := dyx(z), with z taken to be the center of £. Up to a
translation and rotation, £, X C {x, > 0}, and the origin is the closet point on 9 X
to z.

First, note dyx (x) < 2d forall x € &, and so, forall x € £.Indeed, if x,, < z,,,
then there is nothing to show. If x,, > z,,, then

dyx (x) < dy(x,>01(x) = X5 = (X5 — 20) + 20 = (20 — X)) + 20 < 22,

since x,', x, > 0. Here x* € 9& is the dual point to x. So

/f < 2%supa)d®|&|.
&

Second, fori = 1,...,n, let r; and e; be the principle radii and directions of
E.Hence, A :=conv{z £rie; :i = 1,...,n} C E. Also, |A]|/|E] = c(n). Now
consider Ay := conv{z + max{r;,d}e; : i = 1,...,n}, which contains A and is

contained in X. For all x € %Ad then, distya, (x) > d/2%. In turn,
d 1
dyx (x) > dyp,(x) > — forall x € 5A.
22
It follows that
n+37a n+37°‘

2 d* 2
— (nfa)—|inl < ——— < C(n, a,inf .
c(n)infa(ln a)237°‘|2 = c(n)infa/;Af_ (n, @, in a)/;gf

Finally, the above two inequalities together yield

d“|&| <

/ffC(n,a,infa,supa)/ f.
£ le
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Case 2: £\ X is nonempty. Up to a translation, we can assume that the center
of £ is the origin. Let z be the center of mass of (%5) NX,d := dyx(z), and suppose
that the nearest point to z on 9 X lives on the plane {x - e = 0} for some |e| = 1.

Using that open, bounded convex sets are balanced with respect to their center
of mass, dj(x.e~0) i 1-homogeneous, and arguing like we did to produce the first
inequality above, we see that

dyx(x) < C(n)d forallx € £EN X.

Now let J be the John ellipsoid of (%5 ) N X, which also has center z. Notice
that 7 C X. So

[#=caienxizcaridonxizcaigi=c [ r=c| s
£ l7 le

2

Here we have used the arguments of Case 1 on 7 and that E N X C 2[(%5) N X],
which uses that 0 € X. d

Remark 2.7. By Corollary 2.5,if 0 < infx a, supy a < oo, then f = adg‘X defines
a doubling measure.

We conclude this section with three lemmas. These lemmas use nothing about
the optimal transport problem; they are facts about convex functions with centered
sections. The first lemma’s proof may be found in [4].

Lemma 2.8. (Centered Sections) Let u : R" — R be a convex function whose
graph contains no complete lines. Then, for every h > 0 and z € R", there exists
an dffine function £ such that £(z) = u(z) + h and the set

Sp@) i ={xeR":u<{}
is centered at z.

Lemma 2.9. Let S;l' (z) be a centered section for u at 7 € R". Let 71 and z» be two
opposite points on 98}, (2), i.e., 22 = z +1(z — z1) for some | > 0. Then

n

[}
[SI[)

<l <n2.
Proof. Without loss of generality, we may assume that z = 0 and that z; and z»
lie on the ej-axis. Thus, by John’s lemma, £ C §;,(0) C n3/2&, for some ellipsoid
&, whose center of mass is also the origin. Let ¢ > 0 denote the e;-component
of £ N {positive e|-axis}. Abusing notation, we let z; > 0 and —Iz; denote the
ej-component of zj and z. Inturn, e < 71,171 < n3/2e, from which it follows that
n3% <1 <n37?, as desired. O

Lemma 2.10. Let S, (z) be a centered section for u at z € R". Then

h < max(f —u) < (1+n3)h.
Sp(2)
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Proof. Without loss of generality, z = 0.

Since (¢ — u)(0) = h, by definition, the first inequality is trivial.

Now let zj, € Sj(0) be a point at which £ —u achieves its maximum value; let z;
and z; be the opposite points on 3.5} (0) for which the segment [z1, z2] contains 0
and xp,; and let ¢ > 0 be the one-dimensional concave function defined by £ —u on
[z1, z2]. Notice that the lines ¢; C R? determined by (z;, 0) and (0, h), fori =1, 2,
are secant lines for graph of . Hence, the graph of i must live under the union
of the subgraphs of these two lines. Assume that z;, € [0, z2]. Otherwise, swap the
roles of z; and z» in what follows. Consider the triangle (in R?) over [z;, 0] with
height & determined by the points (z1, 0), (0, 0), and (0, /). Its maximal self-similar
enlargement over [z1, z2], whose base has right end point (z», 0) instead of (0, 0),
has height Ch with 1 +n73/2 < C < 1 + n3/? (see Lemma 2.9), from which the
second inequality follows. O

3. Boundary Regularity of Maps with Convex Potentials Revisited

In this section, we prove Theorem 1.1, and list some geometric properties of
convex potentials defining optimal transports between absolutely continuous dou-
bling measures on convex domains. Letug : R” — R be a convex potential defining
the optimal transport of Theorem 1.1. It will be convenient to replace 1o with its
minimal convex extension outside of X. More precisely, we consider the function

u(x) = sup  {ug(x)+p-(x—2)}.
zeX,pedup(z)

Similarly, we let v be the Legendre transform of u, and
v := the minimal convex extension outside Y of vg.

Thus, Vv is the optimal transport taking g to f.
Given a centered section S = S; (z) for u, which exists at every z € R" ([4]),

we define the normalized pair (i, S) by

_fu—01(A71y)

p and S := A(S)

u(x) :

where A(E) = B1(0) and £ is the John ellipsoid of S. Moreover, we let f and g
be the appropriate rescalings of f and g which ensure that (Vit)y f = g. Similarly,
we define X := A(X) and Y := A~/(Y). Here and in the remainder of this work,
we let

L—t — (L_l)t,

i.e., the transpose of the inverse of L, for any invertible transformation.
We first recall that optimal transports balance mass ([2,29]).
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Lemma 3.1. Let u : R* — R be convex and such that (Vu)s f = g, where f and
g are two absolutely continuous measures. Then, for all Borel sets B C R",

Jo7=

Next we prove an Alexandrov maximum principle for normalized pairs.
Lemma 3.2. There is an increasing function © : [0, o) — [0, 00), depending only
on dimension and the doubling constants of f and g, such that limg_.o9(d) = 0
and

i (x)| < ¥(dy5(x)) forx € 8.
Here S is any normalized centered section based at any point in X.
Proof. For notational simplicity, we suppress the dependence on x and set

d = dy5(x) and || = [u(x)]|.
First, observe that

3ii(1S) C Br(0).
Also, considering the cone generated by (x, i(x)) and S’,
9ii(8) D K := conv(B,7(0) U Zle)

for some unit vector e = e(x) and two positive constants R and r depending only
on dimension. Since the slope of the plane which determines S} isin ¥, 0 € Y. By

assumption, the center of S is in the closure of X. In turn,

[e=[ a=[fzc[ f=c[ szc[ &
K 3ii(S) S 15 3ii(1S) Bg(0)

(Normalization affects neither the doubling property nor the doubling constants.)
Now let B, (t,e) C conv(B,(0) U %e) form = 1,..., M be a sequence of
balls chosen so that
%Km C K \ Kjn—1 with K, := conv(B,, (t,e) U B-(0)) and Ko := B,(0).
By construction, {%Km}%: | is a disjoint family, and
M =M(d) - ocoasd — 0.

Hence, if we consider the collection

{B,,1a)(tnlille)}—; C K C Y,
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and redefine K, := conv(B,,, z(tnlile) U B, 3(0)), we see that the redefined
family {%Km}%zl is also disjoint. Thus,

M M
M/ i<y [ gs=c / iscf s
Br\ﬁ\(o) Z K mXZ:] %Km K

m=1

Combining the two chains of inequalities above, we find that

M / g=cC / g=ct f g,
By (0) Br(0) B/ (0)

log it
(= [ oekin]
log 5

In turn, M < C*. Solving for |ii| concludes the proof. O

where

With Lemma 3.2 in hand, Theorem 1.1 follows from Caffarelli’s arguments ([4,
5]). Indeed, we first find that centered sections based at points in X have an engulfing
property. To prove this property, we replace Caffarelli’s modulus for normalized
solutions Cd1/", i.e, the classical Alexandrov maximum principle modulus, with
the modulus 9 (d) from Lemma 3.2 in his proof.

Lemma 3.3. For any pair of constants 0 <t < t < 1, there exists a constant
0 < to < 1 such that

Stc(‘)h(z) C ;SZ(.X)

forall x € Xandall 7 € LSE x)N X. The constant to depends on t, t, dimension,
and the doubling constants of f and g.

Second, we obtain that u is strictly convex in X (cf., [5, Corollary 2.3]), and,
by duality and iteration, Theorem 1.1.

Corollary 3.4. A constant ¢ > 0, depending only on dimension and the doubling
constants of f and g, exists for which

u(z) > ux)+p-(z—x)+ch
forallx € X, p € du(x), and all z € 3S5(x) N X.

Proof of Theorem 1.1. Let y,z € Y, and let h > 0 be such that z € 08} (v, y). By
Corollary 3.4, for any g € dv(y),

v(z) 2 v(y)+q-(z—y) +ch.

By compactness, S{(v, y) C Bi(y) for some 7 € (0, 1) depending only on the
inner and outer diameters of X and Y. (See [4].)
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Applying Lemma 3.3 iteratively, we see that

S[‘('{(v, ¥) C 5785 (v, y) forall j € N for some 10 € (0, 1).
Let k € N such that t(])‘“ <h< t(])‘. Then

€ S%(v,y)and [y —z| < —.
z€ 8w, y)yand |y —z] = —

In turn, for M > logty/log(1/2), we deduce that
(@) = v() +q- (=) +ciorly — 2.

Therefore, as v| agrees with the Legendre transform of u in Y, u € C 4o (X) for
some o € (0, 1), as desired. O

Following the proof of [5, Corollary 2.2], we find a first volume product esti-
mate.

Corollary 3.5. Let x € X and S} (x) be a centered section for u based at x. There
is a constant r > 0, depending on dimension and the doubling constants of f and
g, such that

B-(0) C Vii(S) C By, (0).

Consequently,

n

h
FUR < 1SRN Vu (S, ()] < prt
Remark 3.6. An implication of Corollary 3.5 is that
9(d) = Cdr,

for some C > 0 depending only on dimension and the doubling constants of f and
g, 1s a candidate modulus for Lemma 3.2. Indeed, since r"* < |Vu(S)| < r™", this
follows from Alexandrov’s maximum principle.

From Corollary 3.4, we also deduce that centered sections and classical sections
Sp(u,x, p) :=={z€ X :u@@) <ux)+p-(z—x)+h},

where p € du(x), are comparable (see [7] for a proof). When u is differentiable at
x, the set du(x) is a singleton, and we write Sy, (u, x) rather than Sj, (4, x, Vu(x)).
We often also suppress the dependence on u.

Corollary 3.7. There are constants ¢ > 0, depending only on dimension, and
C > 1, depending only on dimension and the doubling constants of f and g, such
that

S NX C Sp(x) € S&p ) NX

forallx € X.
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In addition, we find that the image of (centered) sections of u of height & are
comparable to (centered) sections of v height A.

Corollary 3.8. There are constants ¢ > 0 and C > 1, depending only on dimension
and the doubling constants of f and g, such that

Sen(v, Vu(x)) C Vu(Sp(u, x)) C Scr(v, Vu(x))
and
S (v, Vu(x)) N Y C Vu(Si(u, x)) C Sep(v, Vu(x)) N Y
forany x € X.

Proof. Up to a translation, we assume that x = 0. Furthermore, up to subtracting
off the tangent plane to u at 0, we assume that #(0) = 0 and u > 0.

We start with the second inclusion. Since v in Y agrees with the Legendre
transform of u and Vu(X) = Y, Vo(Vu(x)) = x for all x € X. In particular,
Vu(Vu(0)) = 0. Moreover, v(0) = 0 and v > 0. Considering Corollary 3.7 then,
it suffices to show that v(Vu(x)) < Ch for all x € S;(u,0) N X, which follows
from Corollary 3.5. Indeed, letting A be the John transformation that normalizes
S}, (u, 0), observe that

v(Vu(x)) = Vu(x) - x —u(x) = hViu(Ax) - Ax —u(x) + £(x) < Ch,

as desired. (Recall Lemma 2.10.)
The first inclusion now follows from symmetry and duality. Specifically, re-
versing the roles of «# and v in the second inclusion and applying Vu, we see that

Sn(v, 0) = Vu(Vo(Sy (v, 0))) C Vu(Sch(u, 0)).
Replacing 4 by C~'h concludes the proof. O

Finally, again following the arguments of [5, Section 3], we obtain a uniform
density estimate on centered sections as well as a second volume product estimate,
this time on (centered) sections and their images when X is polynomially convex.
For completeness, let us recall the definition of polynomially convex and an im-
portant remark, both taken directly from [5], which will be used in the proof of
Theorem 1.2.

Definition 3.9. A domain X is polynomially convex at the origin provided 0 €
90X = {x, = I'x(x")} (up to a rotation) and two constants 0 < ki, < 1 exist
such that

/ /

x'z
Cx(x') < B Tx(z)

whenever |x’|, |7/| < § and x’ lies in the truncated cone
|X'] < Ke112]
|sin Z(x', 2)| < ko.

Here Z(x’, 7') denotes the angle between x’ and z’. A domain is polynomially
convex if it is polynomially convex at every point on its boundary.
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Remark 3.10. In two dimensions, every convex domain is polynomially convex. In
every dimension, given a polynomially convex domain, the constants x1 and k» can
be chosen uniformly for all points on its boundary depending only on the inner and
outer diameters of the domain. (See [5, Section 3, Remark 2 and Lemma 3.1].)

Proposition 3.11. Let X be polynomially convex. Then there are constants C > 1
and ¢ > 0, depending on the inner and outer diameters of X and Y, dimension,
and the doubling constants of f and g, such that

c 1 : c
ClSh(x)ﬁ)lﬂ . dlaITl(Sh(xl)ﬂX) .
ISE(x)IE dlam(S;(x))

forany x € 0X.

For the convenience of the reader, we sketch the proof of this proposition. First,
however, we make a remark.

Remark 3.12. The polynomial convexity of X only plays a role in proving the first
inequality, between normalized volume and normalized diameter, but for ellipsoids
centered at points in d X rather than centered sections. This inequality is one about
convex sets, and nothing more. In terms of the geometry of X and Y, the remainder
of the proof uses only that X and Y are convex, and have boundaries that can be
locally written as graphs of a Lipschitz functions.

We write A ~ BifcB < A < CB forsomec > Qand C > 0.

Sketch of Proof. Let 0 € 90X and consider S = S (0). The first inequality is a
consequence of [5, Lemma 3.2] and the comparability of S to an ellipsoid £ centered
at 0; and so, it suffices to show that the normalized diameter of S,

__diam(SN X)
~ diam(S)

3

cannot be too small.

From Corollary 3.5, if r; is the principle radius of £ in the e; direction, then
Vu(S) is comparable to an ellipsoid £* that has principle radius /2 /r; in the direction
e;. Let y = V{ € Y, where ¢ defines S. Up to a rotation, we assume that r; > r;
for all i # 1. Let x4 € 95 be such that vy5(xy+) = e; and vys(x_) = —ey. In
particular, V(£ — u) at x4 is parallel to e;. Since |[x4| ~ ri, x+ ¢ X if § > Ois
sufficiently small. Hence, y+ = Vu(xy) =y +tire; € 0Y with ¢ty ~ h/ry.

Now Y is locally the graph of a Lipschitz function in the direction v. Let
1 > 0 be the largest constant for which y; := y —fjv € Vu(S). Thus, y; € 37, as
Vu(S) C Y.Since y+ € 3Y and dY is Lipschitz function in the direction v, we find
the inequality r; < Ch/r1.Lett; > Obe such that y» := y+ v € Y Na(Vu(S)).
By Corollary 3.5, it follows that r, < Ch/ry. Thus, if x, = (Vu)’l(yz), then
X3 € 3§ N X. Moreover, by convexity and Lemma 2.10,

l2lly = yal = 02|V —u)(x2)| = (€ —u)(0) = h.

In turn, |x2| > r1/C. But this contradicts § > 0 being arbitrarily small. O
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Corollary 3.13. Let X be polynomially convex. Then constants C > 1 and ¢ > 0
exist, depending on the inner and outer diameters of X and Y, dimension, and the
doubling constants of [ and g, for which

ch”" < 18},(x) N X[IVu(S;, )| ~ Sk () Vu(Sp(x)| = Ch"

forany x € 0X.

4. The Flat Case

Let u be convex and such that

B
(Viudgyy, ~0) = dypy,0p “.1

for two nonnegative constants « and S. Then, by the arguments of Sect. 3 and
classical regularity theory for the Monge—Ampere equation, we find that u is strictly
convex in {x, > 0}, u € C]]O’f {xp, =0hH N sz)oc({xn > 0}), u, > 0, and solves

o

det D%u = ™ in {x, > 0} and u, = 0 on {x, = O}. (4.2)
7

Up

From this point forward, in this section, we assume that max{c, 8} > 0. If
a = B = 0, then u must be a quadratic polynomial by the classical Liouville
theorem for the Monge—Ampere equation; indeed, its even reflection over the set
{x, = 0} solves det D%y = 1 in R".

First, we prove a Pogorelov estimate in x’, which holds up to {x,, = 0}.

Proposition 4.1. Let u be convex and satisfy u, > 0 in {x, > 0} and (4.2). Let
x0 € {x, = 0} and Ly, be the tangent plane to u at xo. For any tangential direction
e ie, suchthate-e, =0,

Ueel — Lyy —h| < C(n + B, [|0ett — delugll L (54 (x0)))- (4.3)

Proof. Up to a translation and subtracting off the tangent plane to u at xgp, we
assume that xo = 0 and u(0) = Vu(0) = 0. Now lete > 0, Y := BN {y, > 0},
for some large ball B centered at the origin, and €2 be a dilation of (Vu) ~1(T) such

that
f(xn+e)“ =f<yn+e>/’.
Q T

Furthermore, let Vi be the optimal transport taking f = (x, + €)*L.Q to g =
(yn + €)P LY. Note that the even reflection in x,, of Y, call it 1/_/, is a potential
whose gradient is the optimal transport taking the even reflection of f to the even
reflection of g, in x, and y, respectively. So points along {x, = 0} can be turned
into interior points. By [3] and symmetry, D>V is locally Holder continuous in
Q, the reflection of € over the x,-axis, V@/_/(Q) C {y, > 0}, and 1/7,1 = 0 on
Q N {x,, = 0}. In particular, we find that

(xn + €)% .

20 —
det Dy = W T o)P in

Q, “4.4)
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Y, = 0on {x, =0}, (4.5)

and ¥ is smooth in € and D2 is Holder continuous and strictly positive definite up
to {x, = 0}. By Theorem 1.1, Vi converges to Vu locally uniformly in Q N {x,, >
0}. (We can choose doubling constants for the denisites (x,, + €)% and (y, + e)B
unifornly in €.) So it suffices to prove (4.3) for ¥.

If we differentiate the log of (4.4) and (4.5) in any tangential direction e (with
e-e, = 0), we have that

Wne

Y 0ij e = —P —

in {x, > 0} (4.6)

and
dp e = 0 on {x,, = 0}.

The right-hand side of this equation is Holder continuous. Hence, D% is Holder
continuous across {x, = 0}. Differentiating again in the e direction, we find that

wr%e Wnee ik ]l - 47
Gnt?  Pyyre TV V Vuehhe (D

I)wjaijl/fee =p
and
0nVee = 0 on {x, = 0}.

The right-hand side of this equation is Holder continuous, given the Holder conti-
nuity of Dzlﬁe just observed. In conclusion, the fourth order derivatives ;jx are
continuous across {x, = 0} provided that no more than two of the four indices are
n, and so

M :=log |1ﬁ| + log 1;ee + %&3

is C2(S) with § = S;, (4, 0). The ball B is chosen large enough so that S, (¥, 0) €
Q. Furthermore, up to subtracting off the tangent plane to ¥ and /, we can assume
that that § = {y < 0}.

Letz € {1} < 0} be a point at which M achieves its maximum. (The point
z ¢ {Y = 0} since e vanishes on {¢/ = 0}.) As ¥ is even in x,,, we can assume
that z € {x, > 0}. For notational simplicity, we identify v with v.

Case 1: M is achieved at z € {x, = 0}. By (4.5), at z,

Y =0foralli < n.

Thus, after an orthogonal transformation in the tangential coordinates, which leaves
the equation invariant, we can assume that D2y () is diagonal and e = e;. (While
the equality ¥ l(x,=0; = O simplifies some of the expressions below, we refrain
from using it, so that Case 2 becomes evident.)

First, differentiating M twice in the e¢; and evaluating at z, we find

Yo Y
Yoy n ;=0 4.8
m + o + Yy (4.8)
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and

2 2
Vi Y7 Y Vi

v v T T

+YE + iy <0.

So multiplying by ! = 1//;l and summing over i, we deduce that

= w;:;p,? + lelm - w%ﬁi Y Y <0, (49)
Second, considering (4.6), (4.7), and (4.9), we have that
n ii 2 ; lﬂiilﬁjjlﬁzi» ii2 ,
v wl/flfl - (Wnﬂﬁl/-jel)IWn " Vi - wlﬁ?]m tn- /?/Zl—fel =0
Third,
1//ii¢jj1ﬁ12ij - yily?, s X": Lzu
Vil v Y 57 Vi

and, by (4.8), we find that
A AT IR AR TR =N 7
Vi1 i

=2

Our first three steps together yield that
no vl B (Wnll
v oYy Ynt+e\ Y

Now, from (4.8) again, i.e.,

Viln _ ¥
I + V1 = v

it follows (recall ¥ < 0 and ¥, = 0 at z) that

+ Wll//m) + Y11 <0.

n Y 1 va \ Wi
v Ty TS w<”+ﬂwn+e> g T =0
Consequently,

V1Y = Cn, 1Y llzoecs))-

Case 2: M is achieved at z € {x,, > 0}. In this case, after a rotation e — e, a
shearing transformation x — (x; — s;x;, X2, ..., x,) fori =2,...,n, and then a
rotation in the x; variables for i > 1, we can assume Dzl/f(z) is diagonal provided
we replace (4.4) and (4.5) with

gt e

det D’y = Getor inf{x ‘& >0}with'e-e; =0, |£| =1, (4.10)
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and

Ve = saW1 F e = a1 £ VY E=Oon{x -6 =0). (41D

Identical computations to those in Case 1 yield the same final inequality:

n+p Y 1 < Vi ) Ui
- + <—|n+ — + <0,
v Ty T sy Ut P T T
from which (4.3) follows for ¥, as desired. |

A an important consequence of Proposition 4.1 (applied to « and v the Legendre
transform of u) is that u,, and x| are comparable. Recall,

_l+ta
VST
Since the rescalings
u(D;x) , L
u;(x) = ; with D, := d1ag(t2 Id’, t ™) 4.12)

leave the equation invariant, the correct geometry in which to work is defined by
the cylinders

L
Cr(z) := Brl/z(z) X (zn —rHV ,Zn +r™#)and C, := C,(0).
We state our comparability estimate in this geometry.

Lemma 4.2. Let u be convex and satisfy (4.1). Then two constants co > 0 and
Co > 0, depending on ||Vyullpoc,nix,=on, IVyvllzewucnix,=on), @ B, and
n, exist such that

Co < 2% < CoonCiNi{x, >0}, (4.13)
Xn

Proof. We claim that if
1
D2u(0) > — Id'(or < M1d"),
M
then
u, (0, x,) < C(M)x) (or > ¢(M)x)).

Before proving this claim, we use it to conclude the proof of our lemma. Up to
subtracting the tangent plane to u at 0, assume that u > 0. Then, as 0 was arbitrary,
our lemma follows, since Proposition 4.1 (applied to u and v the Legendre transform
of u) tells us that

1
—1d' < D*>u < M1d in B x {0}.
M X 1
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Now we prove our claim. First, we show that Sy, (0) is comparable to an ellipsoid
whose axes are parallel to the coordinate axes. Indeed, let

Lisn = Lli;n(u,0) :== —inf{x; : (x;,0) € Sp(u, 0)}
and

ri-n = ri:p(u, 0) := sup{x; : (x;,0) € Sp(u,0)}.
By Corollary 3.7,

Li-n
Cli;h <rin =< ==
C

for some ¢ < 1, depending only on «, 8, and n. Now define
Wizh 2= Tish + lisn
and
dp = dp(u, 0) := sup{x, : (0, x,) € Sp(u, 0)},
and consider
T;.;, := the triangle determined by (0, dy) and (£ min{r;.5, l;.1}, 0).

(The center of mass of 7;., s (O, %dh).) Note that S, (0)Nspan{e;, e, } is contained in
the union of the subgraphs of the lines determined by (0, dj,) and (£ min{r;.p, l;.5}, 0)
and inside the strip [—/;.4, ;.5] X [0, 00). The heights of the intersections of these
lines and the boundary of the strip is less than or equal to dj, (1 + ¢~ 1), from which
findaC > 1,depending only on e, 8, and n, such that CT;.;, O S;,(0)Nspan{e;, e, }.
In turn, if &, is the John ellipsoid of conv{U; ., T;.,}, then

1
8&n C Sp(0) C ggiu (4.14)

for some 0 < § < 1 depending only on c. The ellipsoid &, has axes parallel to the
coordinate axes, and is our desired ellipsoid.

Since &, has axes parallel to the coordinate axes the distance from its center
to d{x, > 0} is the vertical height of the center, which is comparable to dj,. Then
arguing as in Lemma 2.6, but using the ellipsoid just constructed above, we see
that

1
—dpdpwy,p - Wy—1;p < / ()% < Cdydpwrp -+ - Wp—1;h-
¢ S ()
And, as Sy (v) is dual to S, (u) (Corollary 3.8), we similarly find that

1R h ok h </ < h
C df dp win  Wa—th  Jsw) o dldpwin wu—rg
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Moreover, by Lemma 3.1 and Corollary 3.8, again,

/ ()% ~ / o).
Sp(u) Sp(v)

Therefore,
24a+p . 2 2
1 dh Wi Wy gy
Ef B <C. 4.15)

By assumption, foralli <n — 1,
2
Wi, < 2Mh.

Inturn, K!8 < CM ”_ldiJraJrﬂ , or, equivalently,

1 n—1

h T+ < C M 2+e+B dh‘

Thus, C(M )x,1,+y > u(0, x,) > 0. So our claim follows by the convexity of u;
indeed,

CM2"H7 xy ™ > (0, 2x,) > (0, 2x,) — u(0, Xp) = 14 (0, X)Xy
O

Lemma 4.2 effectively gives us control over the second derivatives of u in
the normal direction. And since u, /x;; is a solution to an elliptic equation, with
Lemma 4.2 in hand, we can prove an oscillation decay estimate for u,/x} . In
particular,

Up
¢:=—

Xn
solves

B 81'11 1 in
MIJ¢ij + Bxu + (1 +Y)uyu

¢i = 0.

Xnlly
Here 6/ = 0ifi # jand 8"/ = 1ifi = j.
Proposition 4.3. Let u be convex and satisfy (4.1). A constant ¢ € (0, 1) exists,

depending only on «, B, and n, such that

u u
0SCC} ;N {x, >0} x—z < (I = &) osce,n(x, >0 —xﬁ . (4.16)
n n

(A similar and simpler version of the proof of this proposition can be found in
the proof of Lemma 6.3.)
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Proof. From (4.13),

Co +co
2

. Up 1
either — (2 ™7 e,) <
n

Up 1 Co+co
or — (27 e,) > )
n

If the first inequality holds, we build a barrier that pulls u, /x,’{ down in Cj 5.
Whereas if the second inequality holds, we build a barrier that pulls u,/x} up in
Cl/z.

Case 1: o < B. If the first inequality holds, up to dividing by Cp, assume that
Co = 1. Then let

Y= (1 —e)x) +crelx’|? — exk,

with c; > 0 and 1 > k > y to be chosen. (This is our upper barrier.) First, note
that

¥ = onfxy < G
1
Second, given any 8 € (0,2 T+7), applying the Harnack inequality to u,, /x, along
a chain of overlapping balls, we find that

sup  up < (1 —c(8))xy,
Cr2N{xn =8}

for some small ¢(8) > 0. Third, let § be small enough to ensure that
Q:= (x> G0 o <8} CCipa N {xy = 0).
Set
€ :=c($).
Then
Y > u, on 0L2.

With our boundary values understood, we now turn to the interior of 2 and the
equation.
Suppose that u,, — ¥ achieves its maximum at some point in 2. Then, at this
point, u, = ¢ + s for some s > 0, and
0> ulay(uy —p) = & = PV iy, @.17)
Xn ¥
Using that Vu,, = Vi at our distinguished point, we show that (4.17) is impossible
provided § > 0 is sufficiently small, which forces our distinguished point to be very
close to {x, = 0}.
First, we compute an upper bound for the quotient v, /1. Observe that

ﬁ - (1 —e)yx,’,/*1 —ezcx”"_l l(l —e)x) —GK]/_IXI';

v (1 —e€)x) — exk S x, (1—e)x) —exk
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Now we look at the sum u’/1/;;, which we break into two pieces: u™"1/,, and the
remainder. First, observe that

Z u”l/f,-i = 2c1€ tr(Df/u)_l.
i<n
From Proposition 4.1 (applied to u and its Legendre transform), we have that
1 2 (-1
o= (Dou)~ <.
Therefore, choose
1
cli=—.
YT ocm -
Hence,
— Y uly = —e.
i<n
Now considering D?u as a block matrix, we see that
n 1 1

u™ = >
Uppy — Vyrliy (D)%/u)_lvx’”n Unn

and so, provided § > 0 is small enough so that v, <0,

o _y—1d- )x) —exy Yk — D(y — 1)—1x,§.

nn
—Uu
- —1

Xn (1— e)x,],/ —€exyTIxg

In turn, we have the following inequality, for the right-hand side of our equation,

. -1

Xn v Xn Xn Xn

with
1= ex) — EKy’lxg
(1—e)x) — exk

and

. (- xy —exy e — Dy — D7 1xk

o (I —e)xy —exy—1xk ’

As

a—py=y-1
we rearrange our lower bound as follows, splitting II into two pieces:

By

—1
o Prp v=lh_ e e ao
Xn Xn

—

Xn Xn Xn
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Now we estimate the two factors, above, in parentheses. Observe that

1—1=— Cowyxs TV (1 + Cexy
— €
with
CO,K,y = e = V) > 0.
y(l—vy)

(Here and below C > 0 is a large constant that may change from line to line; it
depends only on « and y.) Similarly,

€ — — —
m-1= - CiuyXn '(1—Cexp )
— €
with
— 14+xk—
Cre,y = (kK —y)1+Kk—y) - 0.
y(d—y)
Finally, we conclude. From above,
—1 C L —
@ _Bry rolps € S0 lgy 4 — ) — Co.
Xn Xn Xn 1— € K

Then, considering (4.17) and choosing € > 0 sufficiently small depending only on
k and y, we find the inequality

0>s71_¢,
which is impossible once § > 0 is sufficiently small, as desired.
Consequently,
Y > u, inCrpp N {x, > 0}.
In particular,
(1 —€)x} > u, along {x" = 0}.

Translating the barrier ¢ to any z € Ci» N {x, = 0} and repeating the above
argument, we find that

(1 —€)x} > u, inCijpN{x, > 0}.

If, on the other hand, the second inequality holds, up to dividing by cg (so that
co = 1), consider

Y= (14 e)x) —crelx’]? + ex®.
An analogous argument proves that
(14e)x) <u,in Ci2 N {x, = 0}.

In summary, (4.16) holds in Case 1.

Case 2: @ = B. Setting x = 2 from the start, and following the same line of
reasoning proves this case.

Case 3: o > . By duality, consider v (the Legendre transform of u). Reversing
the roles of « and B, and applying the arguments of Case 1 and 2 proves this case.
O
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Iterating Proposition 4.3 (rescaling Cy /2 to C; leaves things unchanged), we find
that u, /x) is Holder continuous at the origin. Translating this argument to other
boundary points yields that u, /x, is locally Holder continuous up to {x, = 0}. In
particular, we have the following corollary.

Corollary 4.4. Let u be convex and satisfy (4.1). A constant x € (0, 1) exists,
depending only on «, B, and n, such that

u
[—ﬁ} < Cla. Bo . Nlun /%) | Loy =0p)-
Xn 10X (Cin{x, =0}

From Corollary 4.4, we deduce Theorem 1.4.
Proof of Theorem 1.4. By Proposition 4.1, duality, and Lemma 4.2, there exists an
M > 0 such that

1 l 2 / 1 Un : /
—Id" < Dyu<MId and — < —; < M in B| x {0}.
M x M Y
After subtracting off the tangent plane to u at any point in C; N {x, = 0} and a
translation, if we can show that
Ciyr N{x, 20y CS={y¥ <1} CCrN{x, =0} with ¢ :=u,, (4.18)

for some R = R(M) > 0, then (since u,, = 0 on {x, = 0})

Un

Xy

Oty

L (C1N{x,=0})

<CM).

Y
Xn L(C1N{x,>0})

(Recall that u; is the rescaling of u defined in (4.12).) Therefore, by Corollary 4.4
and scaling,

C(M)

X

[“"]
N2 = . X
Xn 10X (CN{x, =00  min{r 2,1}

— Qast — oo.

Hence, u, /x; is constant in {x,, > 0}. In turn, det Di,u is constant in {x,, > 0}.
Thus, by Jorgens, Calabi, and Pogorelov’s Liouville theorem ([6,21,26]),

u(x) = P(x') + pxp”

for some uniformly convex quadratic polynomial P, proving the theorem. Now we
prove (4.18).

By the arguments of Lemma 4.2, we find that the linear map A that normalizes
the pair (¥, S) is such that

1
A = diag(A’, a) and o = (det A)?a*P < C,

for some C > 0, depending only on «, §, and n. Let

U(x) = (A ),
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so that
B1(0) C S:=A(S) C B,3/2(0) and V&(S’) C Bi1-(0), 4.19)

for some r > 0, depending only on «, B, and n. The inclusion concerning the
gradient of ¢ follows from Corollary 3.5 and Corollary 3.7. So, by Proposition 4.1
and duality,

1 / 27 v /

ﬁld <D,y <MId.
Furthermore, by Lemma 4.2,

L Vo)< cay.
C(M) xp

Here and above M > 0 and C(]VI ) > 0 depend only on «, B, and n. It follows that
1 - 1 -
—1Id < (AY'A <MMId and ——— <a < MC(M).
MM MC(M)
These inequalities, by [13, Lemma A.4], imply that
Al 1AT! < c(m).

In turn, from (4.19) we deduce (4.18), as desired. |

5. Flat Implies Smooth

In this section, we prove a pointwise “flat implies smooth” result. Before doing
so, we reintroduce and introduce some notation essential to the statements and
proofs of this section.

Recall,

1 1

Cr(z) = B/1p(2) X (2o =™, 2, +r™7) and C; = C,(0).
Let

— 2 1—y 2y -y
A=A+——=1+21+ and A=A+ ——=1+1— —-.
I+y I1+vy I1+y 1+y

Also, let X be an open set whose boundary in C; is defined by be a nonnegative
function 'y = 'y (x’) on R"~ 1

XNC={x, >Tx(xH}NCiand dX NC; = {x, =TxxH}NC;.

Set
U( ) |x/|2 + % x;“l‘y
X) = y
2 I+

Finally, define

* / / = * *
Cr(2) == B p(2) x (zn —r™7, 2y +r™7) and C := C(0).
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Proposition 5.1. Assume that X is convex with 0 € 0X. Let Y C {y, > 0} be an
open set with 0 € 3Y, and assume further that

0<ux, < 86|x’|x ondXNCyand0 <y, < 8e|y'|*ondyY NCy,. (5.0
Suppose that u € C'(X N Cy) is a convex function such that
u(0) =0 = |Vu(0)|, (5.2)
u, >0, and
Vu(@XNCy) Cay ﬂCT/p.
In X N Cy, assume that

1+ Se|x|* x¥

L= delxl O = 2el'E ;

I+ 8¢ Vu|® u? T 1= 8elVul® (, — 28€|Vulr)

Furthermore, suppose that
lu—U|l <einXNC,.
If 8, €, p > 0 are sufficiently small, then
(Rx) = U| < Ce(lx'> +xy77)1+2
for some R = diag(R’, ).

Our proposition will follow from an iteration of an improvement of flatness
lemma. In order to state it, however, we need to define one more object:

Uy (x) :=U(x)+ 1" - x sothat Uy = U.

Also, recall that

1

Dy = diag(h? 1d', hT#7).
Lemma 5.2. Let 0 € 0X and assume that
0<x, <8condXnNC(. (5.3)

Furthermore, let u € CH(X N Cy) be convex and such that

u(0) =0, 5.4)
u, >0, and
0<u, <decondXnNC’C. (5.5)
Suppose that
—_ — o o
L =o€ @n =9 _qeptu<it® % xne

1 + 8e u? 1 =€ (y, — 86)§
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Forany 0 < A < 1, there exist constants §g > 0, €g > 0, and ho > 0 such that the
following holds: if
lu—Uy| <ein XNCy,
then
A -
lu — Uz/| < hée inXNGC
provided 0 < 6 < §pand 0 < € < €g. Here

_ u(QDpyx) . (Q/Dlgo)t(f/-l-q’)

: ,and X := (ODp,) "' X
o o an (QDpy)

u(x) :

for some Q and q’ such that
0 = diag(Q', gn) and |Q —1d|, |¢'| < Coe
and
g2 (det 0)* = 1. (5.6)

To prove our improvement of flatness lemma, we approximate u — U,/ by a
solution to the Grushin type equation with singular drift Lw = 0 where L is defined
by

1

By Wy
Lw:=y ™ x, Ayvw+ wy, + By —,
X,

n

which, with the Neumann condition w, = 0 on {x,, = 0}, has arather nice regularity
theory (see [11]).

Proof. Let

u—Upy
P

Ue =

Step 1: We show that u, is well-approximated near the origin by a solution w
to the linearized equation

Lw =0 inCyN{x, > 0}

5.7
w, =0 onCiy4Ni{x, =0}

in the viscosity sense. In other words, for any n > 0, a solution w to (5.7) in
Ci/a4 N {x, > 0} exists such that
lue —w| < nin X NCyy4,

provided that &g, g > 0 are sufficiently small, depending on 5, p, n, «, and .
Step 1.1: First, we derive the linearized equation.
To this end, by convexity, observe that if x 4+ 7e € X N Cy, then

(Vu(x) = VU (x)) - te <2 + (VU (x +te) — VU (x)) - te;
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in particular,
() — Up(x)] < 2€? + C, max{e?, €2},

Consequently, u, — 09,U; = U, uniformly in compact subsets of X N C; as
¢ — 0. Moreover,

det D*u — det D*U, = tr(AD*(u — Uyr)),

with
1
Ac = / cof (D>U + t(D*u — D*U)) dt.
0
Since det!/" is concave on symmetric, positive semi-definite n x n matrices,
1
(det A" > / (t(det D*u)'/" + (1 — 1)(det D*U)Y/™) dr.
0

Therefore, (det A¢)!'/" is strictly positive and bounded on compact subsets of XNCj.
Furthermore,

x¥ x¥ x¥ x¢ X

X n n n n n

___n — R
wo—se vl Wl Ul w,—seof il

o
n n _Tn _n  _n

o
* Xn

1
u, — U,
xa/ ﬁ dt+ -
"Jo U WUa A1y — U, —se)f  uf

o
_ n

Thus,
1456 ol "
+ o€ n 3 —x—’;} gbjan(u—UTr)—}-c;'e
1 =38€ @, —s0)f U,
with
x(x
bf — —B 1’;3 ase > Oandcy — 0asd — 0
Un

locally uniformly in X N Cy. Similarly,

1 —8e (xy —66)]  x% _ _
e = > b0y — Up) + ¢y €

n

with
xo{
- n _
be — —ﬂW andca — 0
uniformly in compact subsets of X N Cy as €, 5 — 0, respectively. In turn, by the
ABP estimate and Schauder theory, D?u — D?U, = D?U locally uniformly in
X NC; as e — 0. Hence,

B _
Ac — cof D2U = diag(y ™ x) " 1d’, 1)
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as € — 0 uniformly in compact subsets of X N Cj.

Step 1.2: Second, we show that u. is uniformly Holder continuous in an appro-
priate sense up to Cy/4 N {x, =0} as §, e — 0.

To start, we claim that two small constants ¢y > 0 and ¢ > 0 exist such that
the following holds: for all § < §, if

oscxne, Ue < 2,
then
0sCxnC, ), Ue < 2(1 — co).
We prove this claim with a barrier argument. For every z € 0X N Cy 2, define

I+y

¢ (x) 1+ (1 20y TR C Sl Zqz)
X) = — C X, —
b4 2 1Y (] +V))/ n 1 B
and
14y ’ "2
B (xp — 8€)+ |x" — 2’|
< =1 14+2Cy ™8 — ,
¢*(x) 02( +2Cyy Aty L

for C1 > 1 and ¢ < 1 with ¢;C < 1 to be chosen (uniformly in z). Also, let
Fyf (DY, Vi, x) i= (1 — 8€) (¥ — 8€)f} det D> — (1 + Se)xg

and
Fy (D*Y, Vi, x) i= (1 4+ 8€)yf det D>y — (1 — 8€)(x, — 8)%.

Finally, define

w; = Uy + €¢;
and
I+y
|)C/|2 £ (xy —8€) 4 ro
W= —— 4y ———— T fept T X
2 I+y)y

First, we show that if § > 0 is small enough (and € < 1), then
Fyf (D*w, Vw,,x) > 0> Fjf (D*u, Vu,x)in X NC
and
Fy . (D*w®, Vw?,x) <0 < F; (D*u, Vu,x)in X NCy.
Indeed, if § < ¢, (recalling that c;C; < 1 and C; > 1), then
F;;(Dzwz, Vw,, x) > [(1 —8€)(1 — c2C1e)(1 + ¢22C1€) — (1 +8€)]xy > 0
and

Fy (D*w?, Vo', x) < [(1 +36)(1 + e2C1e)(1 — e22C1e)
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—(1 =8e)](x, —8e)] <0.

Second, we address the boundary data. Note that

1 1
either uc (2 ™ve,) > Ooru. (2" ™re,) <O0.

In the first case, we prove that

u > w; on X N9Cyg(z) and d,w; > d,u on IX N Cyp8(2).
While, in the second case, we prove that

u < w*on X NaCyg(z) and d,u > d,w* on X NCy5(2).

In the first case, fix some small distance d > 8¢, depending only on y. If Cy is
sufficiently large, depending only on y, then ¢, < —1 on 9Cy/3(z) N {x, < J}.
Hence, w; < u here. By the Harnack inequality, choosing c2 > 0 small, we can
ensure that w, < u on the remainder of X N dCy,g(z). Also, by (5.5), once again if
3 <,

dw; = U, +€c22C1U, +€cr = ecp > dpuon dX NCyyg(2).

In the second case, a similar Harnack inequality argument, yields the required
inequality along X N dCy/3(z). Also, by (5.3),

1
w® =y T (1 — €22Cy)(xy — 8€). =0 < 8,u on 90X N Cy/3(2).
By the maximum principle then, one of the two inequalities
w, <u <w'in X NCy5(z)

holds for all z € 3X N Cy /2, from which the claim follows with co = ¢3/2.
Iterating the claim, we find that if € < 1/2¥~! and 89 > 0 is small, then

k
0SCxNC,_ Ue < 2(1 —co)".

Thus, after translating the above argument to any point xg € 0X N Cy/4, we see
that u. converges uniformly in Cy/4 N {x, > 0}, as € and 6 tend to zero, to some
function w that solves

B Wy, .
Lw=y™x; Avw+ wy, + ,BJ/X— =0in{x, >0} NCisx
n

in the viscosity sense (and so, classically by elliptic theory).

Step 1.3: Third, we show that the Neumann condition w,, = 0 is satisfied in the
viscosity sense as defined in [11, Definition 7.1] on Cy /4 N {x, = 0}.

If By > 1, then w, = 0 on {x, = 0} in the viscosity sense since |w| < 1. This
bound is a consequence of Step 1.2.

When 8y < 1, we show that w can neither be touched from above at any point
on Cy/4 N {x, = 0} by any test function of the form
1-By

A
3|x’—z/|2+B+2pxn
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where 77 e R""! A, B € R, and
p<0

(making w a viscosity subsolution) nor be touched from below at any point on
Ci/a4 N {x, = 0} by any test function of the form

A _
E|x/—z/|2+B+2px,t Py

where 77 € R""!, A, B € R, and
p>0

(making w a viscosity supersolution).
Suppose, to the contrary, that w can be touched from below at some xp =
(x4, 0) € C1/4 N {x, = 0} by

A _
§|x’—z/|2+B+2px,i Py

for some 7/ € R""!, A, B € R, and p > 0. Since By < 1, we can touch w at xq
from below strictly by

B
b= Sl =P+ Bt e Cn ™ +
with any C € R. Since u — w uniformly as €, § — 0,
D :=Up +e(@+ces)
touches u from below strictly at some x € X. Arguing as in Step 1.2, we find that
Fif (D*®(xe), VO (xe). x) > 0,
provided that 0 < §,¢ < 1 and C > 1 (since p > 0), but then
0> Fy' (D*u(xe), Vu(xe), xe) = Fy (D*®(xe), VO (xe), xe) > 0,

which is impossible. (The first inequality is an assumption on #, and the middle
inequality holds since ® touches u from below.) On the other hand, suppose, to the
contrary, that w can be touched from above at some xo = (x,, 0) € C/4N{x, = 0}
by

A _
E|x’ ~- 7>+ B +2px,1, By
for some 7/ € R""!, A, B € R, and p < 0. Since By < 1, we can touch w at xq
from above strictly by

[
=

y T+

I+y
—— C(x,, — b€ + px
0+7)y (Xn )+ PXn

A I 72
¢(x) :=§|x —z|I"+B+



On the Regularity of Optimal Transports 849

with any C € R. Since u, — w uniformly as §, € — 0,

x'I? b (xy — 8€) T
®:=|2| +y1+ﬁﬁ+f/-)€/+€(¢+ceﬁ)

touches u from below strictly at some x. € X. Arguing as in Step 1.2, we find that
Fy o (D*®(xe), VO (xe), xe) < 0

provided 0 < §,e < 1 and C <« —1 (since p < 0). But again this inequality is
impossible.

Step 2: Now we find the transformation Q and prove (5.6).

An application of the arguments of [1 1, Section 7.1] yields that w € Clloty (Cr7aN
{x, = 0}). In particular, w, = O is satisfied in the classical sense. Moreover,
D];,w € Cllo—:y (C14 N {x, = 0}). Also, since w is the limit of a sequence of
functions that vanish at the origin (by (5.4)),

w(0) = 0.
In turn, by Taylor’s theorem and (5.7),
1
we) = p xS P 4 Cyputn T O P A )
where

1P'1.1P], |pal < C;

in particular,

tr P’ y%
— an = .
Pn="17g YT a0+ )y

It follows that, if 0 < §, € <« 1,

1
u—U; — 6<p’ x4 EP’x’ x4 Cypnx,ﬁy)’
<en+eC(' P+ 416 a7,
So
(O'x', Guxn) — Ux) — (' +¢') - O'x'| < ne + Ch2e + Ce®in 0~ (X N Cap)

with

1

0 = diag(Q', G) = ((Ad' +eP") "2, (1 + epy) 77 ) and ¢’ := ep’.

In turn, if e, n < h3/2,

('Y, Guxn) — (7' +q') - O'x' — U(x)| < Chiein (371 X) N Cop.
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Now notice that

2+a+p  24a+p tr P’
1+y 1+y 148

=—tr P/,

Pn =
and so

5 _24atp
Gy (det 00 = (1 +ep,)™ 7 (det(id' 4¢P~

= (1 — Tty 0(62))<] et P+ 0(62)> =14 0().

Thus, we can find a Q that satisfies (5.6) and is €2 close to Q, ie.,
10 -0l < Cé.
It follows that
U(Q'x', guxn) — (' +¢') - Q'x' = U)| < Chiein (Q7'X) N Can,

since € < h3/2. Therefore, taking i > 0 sufficiently small (depending on A < 1),
we find that

1 1 A
EM(Qth) - E(T, +4¢')- Q'Dpx’ —Ux)| < eh? in ((QDy)~'X) NC,

as desired. O
With Lemma 5.2 in hand, we prove our proposition.

Proof of Proposition 5.1. First, we claim, by induction, that a sequence of matrices
Ry = diag(R,/(, Tk,n) and vectors r,é e R"! exit such that the rescalings of u at
height iy = hf,

up(x) := %ﬁ?m forx € Xy == (ReDp) "' X
with
Dy = diag(hk% Id’, h,i#)
satisfy
luy — Uflil <€ = ehé in X; NGy (5.8)
provided

8 =cépand € = €
for some small ¢ > 0. Moreover,
V/?,j;ﬁ(det Ro)* =1and |Ry — Ri—1| < Cexy. (5.9)

The base case k = 0 holds by assumption, with Ry = Id and 7y = 0.
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Now suppose the claim holds for some k € N. Note that the second inequality
in (5.9) implies that
IRy —1d| < Ce.

From (5.1), provided that ¢ > 0 is sufficiently small, we see that
2 2
0<x, =< |71<7;1||R//<|H 5 Sex|x' T < Sper on 91X N Ca.

Furthermore, since the segment between 0 and e,} / 2(1’,2 kA 14 §pere,) lives inside
X N Cy (by the above inequality on the height of d X N C; and the convexity of
X), the function wy = uy + r,é - x’ is convex, and the second equality in (5.2), we
deduce that

1 v 1
Itz < 2¢; + C, max{e], €]}

(cf., the beginning of Step 1.1 in the proof of Lemma 5.2). In particular, this shows
that 7, — Oask — oo. A similar argument, but also using that the family of slopes
7, is uniformly bounded, yields the inclusion

Vur(Xe N Cy) C Y NC, with Y := (Re D) hy ' Y.

By construction, the boundary of X; maps to the boundary of Y. From (5.1), we
also see that

2y 2y
0 < yn < Ikl R T7 86y M 77 < Soer on 8 NCY .
In turn, in X; N Cy, u, > 0 and, using (5.8),

1-6 — Soer) 1+3 "
o€k (Xn 0 k)+ < det Dzuk < + op€k Xn =
14+ 6oex (Buup)? I — o€k (Onur — do€r)’y

taking ¢ > 0 smaller if needed depending on p > 0. Therefore, by Lemma 5.2,

A ~
lite — Uz | < €xhg = €xq1in Xx N Co

where

_ uk(QDyyx)
o h

i (x) and X; := (QDp,) "' X

for
Q = diag(Q’, g,) with |Q —1d |, |¢'| < Coex and g% 7 (det 0)* = 1.
In other words, the inductive step holds taking
Ukr1 =g, Rep1 = ReQ, and 7| = 7.
Indeed,

n

retl et Rig)? = g2 P (det )2 P (det RW? = 1,
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and
[Ri+1 — R| < |Q — 1d[|Ri| < 2C0¢.

Second, we find R and conclude. By the inequality in (5.9), we see that Ry
converges to some R, as k tends to infinity. In particular,

IR — Ri| < Céy.

Thus, after replacing €, with Ce;, we can replace Ry by R in (5.8). In particular,
considering the inductive manner in which each ‘L’,é is produced, we have that

u(Rx) — - R'x' = U(x)| < Ceh, % in (R™'X) N Cy,

with
koo
rp = ZhT(RlL])_’q;.
i=1

Here g/ is the linear part of the polynomial found at each application of Lemma 5.2.
Hence, r; converges to some 7/, and

/ / 3+5
[r" =1l <2eh; °.

It follows that we can replace r,é with r’, as we replaced Ry with R: for all k € N,

lu(Rx) —r' - R'x’ —Ux)| < Ceh,,chrj forallx € (R™'X) N Cy,.

Finally, we claim that (R")'r’ = 0, which concludes the proof. Indeed, the
inequality above tells us that the function u (Rx) —r’- R’x’ — U (x) vanishes up to and
including first order at the origin. From (5.2), we know that Vu(0) = 0 = VU (0),
forcing (R")'r' = 0. m|

6. Proof of Theorem 1.2

The proof of Theorem 1.2 has three steps. First, we prove a strict obliqueness
estimate. This key estimate allows us to find an affine transformation that aligns
vyx (0) and vyy (0), assuming Vu(0) = 0. Second, after a rotation which prescribes
the now aligned normals at the origin, we blow-up to the global flat setting of
Sect. 4. Finally, we apply Proposition 5.1 to find a pointwise expansion of u at 0.
Since, in this procedure, the origin was fixed arbitrarily, Theorem 1.2 follows.
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6.1. Strict Obliqueness

In this section, we prove our strict obliqueness estimate.

Lemma 6.1. Let X and Y be open, bounded, and C' convex sets in R*. Suppose
that Tyyin = Vu is the optimal transport taking f = adyy to g = bdfy, where a
and b are functions bounded away from zero and infinity in X and Y respectively,
and max{a, B} > 0. Then

vax (x) - vgy (Vu(x)) >0 > 0 forall x € 90X,

where 0 depends only on the inner and outer diameters of X and Y, «, B, and the
upper and lower bounds of a and b.

The proof of this estimate follows the proof of the same estimate in the work
of Savin and Yu ([27, Section 3]). We show that orthogonality (as opposed to strict
obliqueness) is at odds with the volume estimate for sections.

Proof. By an approximation argument, we may assume that a and b are C! and
that X and Y are C? and uniformly convex (cf. [27]).

Let us assume, without loss of generality, that 0 € X, {x, = 0} is tangent to
X (at0), X C {x2 > 0}, u(0) = 0, and Vu(0) = 0. Now suppose, to the contrary,
that we have orthogonality instead of strict obliqueness; then {y; = 0} is tangent
to Y (at 0 = Vu(0)), and, without loss of generality, Y C {y; > 0}. Set

Qi=xeX:xx<d}NVv({yeY:y>0}.

(Recall v is the minimal convex extension outside of Y of the Legendre transform
of u.) Also, define

diam(Y)
= —x.
dy O’

Notice that
uy <Yond2N X. (6.1)
Moreover, if u1> = up; along 9 X, then
uz1 > 0along dX N Q. (6.2)

Indeed, first, since Y C {y; > 0} and Y is tangent of the positive y;-axis, the image
under Vu moves to the left as we move along d X from the left toward the origin;
if 'y determines 0 X near the origin,

up(x1, Cx(x1)) > ui(z1, Tx(z1) if xy < z1 <0.
As ui(z1, C'x(x1)) > ui(x1, I'x(x1)), by the convexity of u, we deduce that

ui(zi, I'x(x1)) > ui1(z1, T'x(z1)).
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Finally, since "'y (x1) > 'x(z1), it follows that

u21(z1, I'x(z1)) = u12(z1, 'x(z1)) = 0,

letting x tend to z1. Suppose the maximum of u, — v is achieved at some z € Q.
Then Vus(z) = V¥ (z). And setting

Lw :=u"9;jw,

we find that, at z,

0> Lty — 9) = avaxd e n a diam(Y)( vay,(Vu) - e bz(Vu))
- dyx a do dyy (Vu) b(Vu)
ZOll)axd -e _c, - diam(Y)( vay,(Vu) - ex c )
dyx do dyy (Vu)

> 0.

Indeed, vyx,-e2 > 0,ifdy < 1. Moreover, vyy, (Vu)-ex < 0,as Vu(2) C {y> > 0}
and, also, provided that dy <« 1. Finally, if dy < 1, then the terms with dj, in
the denominator will be large enough to absorb the constants C, and Cp. (Recall
max{a, §} > 0.) Here, for example,

Xy = {x € X : dyx(x) = d}

and v, x, is the unit normal to 0 X4 oriented to point inside {x € X : dyx(x) > d}.
(See, e.g., [16].) This is a contradiction. In turn, by (6.1) and (6.2), the maximum
of up —  is achieved on 92 N X, which implies that

diam (Y
u < —( )xgi
0

nQ. (6.3)

Unfortunately, we cannot guarantee that u1> = uy; along 0X. Therefore, we
consider the following approximation scheme: let Vu* be the solution to the optimal
transport problem taking

==+ N o gt =0 =k g+ kgl -

By [27, Remark 2.1], Vuk converges to Vu locally uniformly in R2, and, similarly,
Vuk converges to Vo locally uniformly in R?. (Here v* is the minimal convex
potential associated to the optimal transport problem taking g¥ to f¥, and v¥,in Y,
agrees with the Legendre transform of u¥.) Set

Qe ::{xGX:x2<d0}ﬂVvk({er:y2>0}).

Then Q) converges to Q in the Hausdorff sense. Since f; and gi are positive and
Holder continuous, u* € C2(X) by Caffarelli’s boundary regularity theory ([5]).
Thus uél = “11{2 along dX. In turn, by the formal maximum principle argument
above,

diam(Y
uk < #X%I
0

n .
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Taking the limit, k — oo, proves (6.3).
In summary, if we have orthogonality rather than strict obliqueness,
u < Cx3in Q(u) and v < Cy} in Q(v), (6.4)

where the estimate on v is by duality.
To conclude, let I'y determine dY near the origin. Corollaries 3.13, and 3.8 and
(6.4), applied in succession, imply that

Ch* = | (u, 0)[|Vu(Sy (u, 0))]
= ¢[Su(u, 0)[|Sh (v, 0)]

>clfxeX:xi < 0,5 <ch?}[[{y €V :y, <0,y <ch?}
> ch2T3 (ch)hiT5 " (ch?).

Dividing through by 42 yields

ry'(ch?) Ty ' (ch?)

C = 1 1
ch? ch2

Since Iy (0) = T'}(0) = 0, by assumption, (I'y")'(0) = (I'y')'(0) = +o0, but
this implies that the right-hand side above tends to infinity when /4 tends to zero,
which is impossible. O

6.2. Blow-Ups

In this section, we blow-up. That said, in order to blow-up to the flat setting
studied in Sect. 4, we have to not only use Lemma 6.1 but choose the right trans-
formation to normalize sections.

6.2.1. A First Normalization Up to a translation and subtracting an affine func-
tion, we assume that

0€dXNaY, u0) =0 =v(0), and Vu(0) = 0 = Vv(0).

From our strict obliqueness estimate, a shearing transformation exists that aligns
the inner unit normals of X and dY at the origin, which after a rotation can be
prescribed. In particular, a ® exists such that

X=0"!'XCc{x,>0land Y :=O'Y C {y, > 0}

have {x, = 0} and {y, = 0} as tangent planes to their boundaries at O respectively.
Moreover, det ® = 1. Then defining

u(x) :=u(Ox),
we find that

(Viysf = &
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where

e e dyx (©x) 1"
f= ada;( with a(x) := a(®x)|:—d35((x) i|

and

dar(®_’y)]’5

¢ = bd”. with b(y) := b(@~"
8 oy With b(y) := b( y)[ >0

By [22, Lemma 6.1],@ € C*(X) and @ > 0. Similarly, b € C®(Y) and b > 0.

Remark 6.2. The restrictions on A with respect to o and B explicitly, rather than
via y, come from this normalization. Indeed, a, for instance, as the product of
two Holder continuous functions, will be Holder continuous. Yet between the two
Holder exponents it could inherit, it will inherit the smaller one.

It will be convenient to suppress the tildes in these definitions, and write « rather
than u, for example.

6.2.2. A New Ellipsoid In the proof of Lemma 4.2, we found ellipsoids com-
parable to sections whose axes were parallel to the coordinate axes. The same
construction applies here. The only difference is that the § in (4.14) now depends
on the doubling constants of f and g, dimension, and the Lipschitz semi-norm of
0X. For simplicity, we let w, = wy.;, as defined a few lines above (4.14). It will
be convenient to normalize these ellipsoids as we blow-up.

6.2.3. A Blow-Up Limit In this section, we show that the boundaries of X and
Y flatten as we normalize. Since X and Y are C''! and uniformly convex, near the
origin,

X cin>pxlyand {y2 > ¢ Y2 C ¥ C {2 > gy}

{x2>p~
for two constants p, g > 0.

Lemma 6.3. For each k € N, there is an hy > 0 such that dy, > ku),zlk.

Proof. Suppose the lemma fails to hold; that is, a k € N exists for which
dp < le% forall h < h.
Let
Ay = diag(wy, di), Xp = A, 'X, and ¥, := h ALY,
and consider the normalized potentials

u(Apx) v(A, " hy)

nd v, (x) := A

up(x) :=
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along with their normalized densities

fi(x) := (det Ap) f(Apx) and g5 (y) := h*(det A Dg (A hy).
Now observe that

- —1
1x%} C Xp C{x2 > d, w;zlpxlz}

{x2 > dh_lw,zlp
and
[yz > hdhw;fzq*]ylz] cYC {yz > hdhw;ZZCIY%}
By convexity,
dp > cpwi.
Thus, taking k larger if needed,

<cp<— <k

8|§~

| =
B

Hence, up to a subsequence, as 1 — 0, we find two limiting domains X and Y such
that

(2> kp~'xf) C X = (2 > pOr)} C (2 > k'),
for some convex p that vanishes only at 0, and
Y ={y >0}
Moreover, recalling our balancing condition (4.15),
1y S
C h2+B
we find a convex function %, smooth in X , and such that

det D2ii(x) = i SQE2 = PEDT L S

b(0)iil

and
iy = 0 along {x» = p(x1)}.

Up to multiplying & by a constant, we may assume that ma(0)/b(0) = 1. (The
constant m = limy,_,.qg my,.)
Set

Lw := ﬁija,-jw.
First, notice that there is a C > 0 such that

CxY > iip on 88, (i1, 0).
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If 5 := supg, u.0) (@2 — Cx;) is achieved at X € S|(u, 0), then 11(X) = C)E%/ +s
for some s > 0, and

0> L(ii, — Cx}) (%)

~y—1
1 Cyx} 1. —1=l—y ~y—2
== - = —C 'y 'x Cy(y — Dx
Xy — p(x1) Cx) +5 2 2
1 1
>a——=——-By+y—-D=—
X2 — p(xX1) X2
> 0,

provided & > 0, an impossibility. (Because i, and Cx; + s touch at X, their
gradients agree at X. Since 77’/ is the inverse of ii; j»wehave thatii 122 +i%2i2 = 1.
Moreover, ii12(X) = (Cx; +5)1(X) = 0.Inturn, 722 (%) (¥) = 1, which explains
the second equality line.) So we find that

i < Cxy™ in 8@, 0).

If « = 0, then consider the power y — € rather than y, with € > 0 arbitrary but
small. In particular, Cx; ~¢, for some C > 0 independent of €, is an upper barrier;
the right-hand side, in this case, becomes € (1 + 8)x, I'>o. Applying the maximum
principle and then sending € to zero, yields the same inequality. Thus,

1
d(1,0) > ct v,

Since uj, converges to # locally uniformly,

1
dy (up, 0) > %tm forall h < 1.
Moreover,
d[/’l(u) wth(u)
d 9 0 = — d , O = .
i (un, 0) ) and w; (uy, 0) o

So our balancing condition holds for u;, as well after replacing C by C2. In turn,

wy (up, 0)> < Ct.

Then
1
=] 2
Ct1+y - di(up, 0) zdﬂﬂ yes
t wi(up, 02 dyp w?,
However, taking t < 1, we find this inequality impossible. O

Swapping the roles of # and v and @ and § (also p and g), we find a dual lemma.

Lemma 6.4. For each k € N, there is an hy > 0 such that khydy, < w;zlk.
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A consequence of Lemmas 6.3 and 6.4 is that the boundaries of X and Y flatten
under A;l and h Aj, respectively; up to a subsequence, in the Hausdorff sense,

Xp — {xo >0} and Y}, — {y> > 0},

as h — 0. In turn, up to multiplication by a constant and the same subsequence,
locally uniformly in R2,

up — U= P(x1)+ﬁmle .

by Theorem 1.4. Furthermore,
1
[Vi| < —in S51(i, 0),
r

where r > 0 is the constant from Corollary 3.5.

6.3. Conclusion

Up to a multiplication by a constant and determinant 1 transformation in the x’
variables (both depending on the constant » > 0 from Corollary 3.5, i.e., only on
the doubling constants of f and g), we find that, after choosing 4 > 0 sufficiently
small, the rescaling

u:=up
satisfies the hypothesis of Proposition 5.1. First, notice that
u(0) =0=|Vu(0)],
which is (5.2), since u(0) = 0 = |Vu(0)|. Second, for any € > O,
|t — U| < €inCa,

by the conclusion of the previous section. (The constant and determinant 1 trans-
formation turn « into U.) By convexity,

Vi(XNC) c¥YNCy,.
By construction, Vi maps dX to dY. Also,
{x2 > dh_lw,zlt%p_lx%} CXCix>0)

and

2 > hdyw 177153 C ¥ C (32 > 0),
so(5 ~1 ) follovgs by Lemmas 6.3 and 6.4 as well as the definition of 1. These estimates
on dX and 0Y together with the estimates

ja(x) = 1] < delx|* and |b(y) — 1] < 8e|y|*

imply that the inequalities on det D7 hold. Thus, applying Proposition 5.1 proves
that u is C>** at O when y > 1 and C'7(1+®) 4t 0 when y < 1.
Since ® and r > 0 are uniform over points in d X, Theorem 1.2 is proved.
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