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A B S T R A C T

The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been recommended as a reference
design for the proposed Electron-Ion Collider (EIC) program. This paper presents simulation studies of exclusive
J/𝜓 detection and selected physics impact results in EIC using the projected ECCE detector concept. Exclusive
quarkonium photoproduction is one of the most popular processes in EIC, which has a large cross section
and a simple final state. Due to the gluonic nature of the exchange Pomeron, this process can be related to
the gluon distributions in the nucleus. Preliminary results estimate the excellent statistics benefited from the
large cross section of J/𝜓 photoproduction and superior performance of ECCE detector concept. The precise
measurement of exclusive J/𝜓 photoproduction at EIC will help us to more deeply understand nuclear gluon
distributions, near threshold production mechanism and nucleon mass structure.
1. Introduction

The future Electron-Ion Collider (EIC) is a novel, large-scale particle
accelerator to be constructed at Brookhaven National Laboratory (BNL).
The EIC science program reviewed by the National Academy of Sciences
(NAS) [1] will address a broad set of fundamental questions. Probing
the gluon density and understanding how quark and gluon interactions
generate the nucleon mass are parts of key physics missions listed
in NAS 2018 report [1]. In this article, we present a collection of
physics impact studies related to exclusive J/𝜓 photoproduction based
on theoretical projections and detector simulations.

Nuclear parton distribution functions (nPDF) describe the behavior
of bound partons in the nucleus. Most of the understanding of nPDF
comes from fixed-target experiments. Determination of nPDF is through
global fits to existing inclusive deep inelastic scattering (DIS) data.
Constructing the ratio nPDF/PDF to quantified nuclear modifications
is natural, which can cancel many of the theory uncertainties. A ratio
below unity is called shadowing, while an enhancement is known
as anti-shadowing. Recently a moderate gluon shadowing has been
exhibited by J/𝜓 photoproduction data from LHC [2–4]. However, little
is known about anti-shadowing at middle parton momentum fraction
𝑥 ∼ 0.1. The realization of the EIC with variable ion beam species will
enable measurements of nPDF over a broad range of 𝑥 and momentum
transfer 𝑄2. Photoproduction of vector meson via photon-Pomeron
fusion is able to cleanly and clearly determine nuclear gluon PDFs
at the EIC. With broad 𝑥 coverage, J/𝜓 photoproduction can provide
precise measurements to deepen our understanding of shadowing and
anti-shadowing.

Exclusive photoproduction, which has a large cross section and a
simple final state, is projected to play a prominent role in the quarkonia
production processes at the EIC. In the reaction, a virtual incident
photon fluctuates into a quark–antiquark pair, which scatters elastically
off the target and emerges as a real quarkonium. The scattering process
3

occurs via the exchange of a color neutral object, Pomeron, which can
be viewed as two gluons with self interaction (gluon ladder) in the
language of QCD. Due to the gluonic nature of Pomeron, the exclusive
quarkonia photoproduction at EIC can be related to the gluon distribu-
tions in the proton and nucleus using perturbative QCD. Furthermore,
the distribution of momentum transfer from the target in the process
is sensitive to the interaction sites, which provides a powerful tool to
probe the spatial distribution of gluon in the nucleus.

Nucleons constitute about 99% of the mass of the visible universe. In
the standard model, Higgs mechanism describes gauge bosons’ ‘‘mass’’
generation. However it can only account for a small fraction of the
nucleon mass. The major part comes from the strong interaction that
binds quarks and gluons together. Understanding the hadron mass de-
composition from strong interaction has become a topic of great interest
in QCD. There are two key models [5–10] for the mass decomposition.
One contains a trace anomaly contribution which is quantified by
the energy–momentum tensor (EMT), and the other one agrees with
an energy decomposition in the rest frame of the system. Recently,
there has been sustained interest [11–13] among the nucleon structure
community in determining the anomaly contribution 𝑀𝑎 as a key to
understanding the origin of the proton mass. Specifically, it has been
proposed, based on some theorists’ suggestions [14–16], that𝑀𝑎 can be
accessed through the forward cross section via the exclusive production
of quarkonia states such as J/𝜓 and 𝛶 . The trace anomaly is sensitive
to the gluon condensate, with sensitivity greatest for production around
the threshold. Even though it is argued that the trace anomaly is not an
intrinsic part of the Hamiltonian, C′𝑒dric et al. stressed that measuring
it remains an essential input for the precise estimate of the various
contributions to a mass decomposition [17].

In this paper, we simulate exclusive J/𝜓 production using Fun4All
framework with the designed ECCE detector system. In the simulation,
we utilize eSTARLight model as the event generator for the exclusive
photoproduction process. We make a projection of the exclusive J/𝜓
measurement at ECCE under the designed integrated luminosity of one
year running for EIC to give an insight into related fruitful physics
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Fig. 1. Single track efficiency as a function of transverse momentum (𝑝𝑇 ) and rapidity (y). Efficiency is calculated as the ratio of the number of reconstructed to generated J/𝜓 ,
o it is actually acceptance × efficiency. Left Panel: 𝑒− efficiency with the 1.4 𝑇 Babar magnet. Right Panel: 𝑒+ efficiency.
opportunities, such as probing the nuclear gluon PDF, spatial distribu-
tion and proton mass decomposition. The major goal of this research
is to present the detection capability and the physics opportunities
which could be achieved with the ECCE detector setup for the exclusive
process of J/𝜓 photoproduction.

2. Simulation framework of ECCE detector setup for J/𝝍 detection

The proposed ECCE detector has been designed and recommended
as a reference detector concept following the U.S. Department of En-
ergy’s (DOE) Critical Decision 1 (CD-1) to accommodate the physics
program for the EIC. The ECCE detector is a cylindrical detector cov-
ering |𝜂| ≤ 3.5 and the full azimuth. ECCE’s tracking and vertexing
ystems use semiconductor and gaseous tracking detector technolo-
ies [18–20]: Monolithic Active Pixel Sensor (MAPS) based silicon
ertex/tracking detector and 𝜇Rwell based gas tracker derived from
as Electron Multiplier (GEM) technology. According to the simulation
f the designed tracking system, the momentum resolution of the
entral region and beam p-going direction is closed to or better than
he requirement of Yellow Report (YR) [18]. More details regarding
CCE subsystems, performance and other selected physics objectives
re provided in separate articles within the same issue [19–26].
For exclusive photoproduction of J/𝜓 , we adopt eSTARLight pre-

diction of the cross section for 𝑒𝑝 → 𝑒𝐽∕𝜓𝑝 process with two minor
improvements, detailed in Section 3. eSTARLight provides a photo-
Pomeron interaction model parameterized by HERA data. In this study,
two beam configurations, 5 × 41 GeV and 10 × 100 GeV, are used for
e+p and e+Au collisions.

The detector response simulation is done by a GEANT4 based pack-
age called Fun4All. Four detector concepts have been developed and
used in ECCE simulation and the latest January-Concept (2022) for the
fourth simulation campaign is tagged with ‘‘Prop.7’’ software branch
name [24]. In this work, the ‘‘Prop.7’’ detector concept is employed
in J/𝜓 reconstruction via dielectron channel. Single 𝑒+∕𝑒− Tracking
simulation results are shown as Fig. 1. The difference in efficiency
between 𝑒+ and 𝑒− at very low 𝑝𝑇 is due to the initial assumption
arameter in the Kalman filter. If the beginning parameter is set to
‘positron’’, negative charge particles will have a low match quality and
ill likely be rejected.
The kinematic distribution of J/𝜓 for exclusive photoproduction is

nitialized by the theoretical calculation from eSTARLight. With this as
nput, we can obtain J/𝜓 reconstruction efficiency from the Fun4All
ackage with ECCE detector setup seen in Fig. 2. The efficiency of J/𝜓
s almost independent of the rapidity and transverse momentum except
or the edge area at large forward and backward rapidity. We also study
he effect of magnetic field strength and bremsstrahlung energy loss
f electron on J/𝜓 detection, shown as Figs. 3 and 4. At very low 𝑝𝑇
0.5 < 𝑝 < 1.0 GeV/c), the improvement of the acceptance of the
𝑇

4

Fig. 2. Tracking efficiency of J/𝜓 as a function of rapidity from exclusive J/𝜓
simulation. ‘‘Efficiency’’ here is calculated as the ratio of the number of reconstructed
to generated J/𝜓 , so it is actually acceptance × efficiency.

Table 1
Efficiency of mass window cut for J/𝜓 reconstruction to assess the magnitude of
bremsstrahlung effect.
Mass window (GeV/𝑐2) Rapidity window

−3.5 < 𝑦 < −1.5 −1.5 < 𝑦 < 1.5 1.5 < 𝑦 < 3.5

2.8–3.2 0.931 0.943 0.934
2.9–3.2 0.903 0.917 0.907
3.0–3.2 0.835 0.866 0.843

lower magnetic field strength accounts for the higher efficiency. While
at larger 𝑝𝑇 (1.0 < 𝑝𝑇 < 2.0 GeV/c), there is no significant difference
between efficiencies of 0.7 T and 1.4 T. The bremsstrahlung energy
loss has already been put in tracking performance in the ‘‘Prop.7’’
concept detector, which constitutes the tail in the reconstructed mass
distribution depicted as in Fig. 4. We scale the mass distribution to
unity for the convenience of comparison, and the efficiencies of several
mass window cuts are detailed in Table 1. As expected, the tail effect is
more significant for the J/𝜓 at forward and backward rapidities (larger
momentum of decayed electrons than that at central rapidity). With a
proper mass cut window, the efficiency loss is minimal, implying that
the effect of bremsstrahlung on J/𝜓 reconstruction with ECCE setup is
not significant.

3. Theoretical setup for exclusive J/𝝍 production

This section presents the theoretical framework of exclusive J/𝜓
photoproduction in e+p and e+A collisions, which is employed in the
simulation. The cross section of exclusive vector meson photoproduc-
tion 𝜎(𝑒𝐴 → 𝑒𝐴𝑉 ) is derived by integrating the photon flux caused
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Fig. 3. Magnetic strength effect on efficiency as a function of rapidity at very low 𝑝𝑇
(0.5 < 𝑝𝑇 < 1.0 GeV/c).

Fig. 4. Bremsstrahlung energy loss effect on J/𝜓 reconstruction. The bremsstrahlung
effect on J/𝜓 reconstruction is displayed in three rapidity intervals for forward, central,
backward regions.

Fig. 5. The minimum momentum transfer (𝑡𝑚𝑖𝑛) as a function of incident photon energy
in the rest frame of the nuclear beam (target frame). Numerical line refers to true 𝑡𝑚𝑖𝑛
used in this study from energy–momentum conservation of the process. Approximation
line is the one used in eSTARLight.

by the electron beam and the virtual photon collision on the target
nucleus, as illustrated in Eq. (1):

(𝑒𝐴→ 𝑒𝐴𝑉 ) = ∫
𝑑𝑊
𝑊 ∫ 𝑑𝑘∫ 𝑑𝑄2 𝑑

2𝑁𝛾

𝑑𝑘𝑑𝑄2
𝜎𝛾∗𝐴→𝑉 𝐴

(

𝑊 ,𝑄2) , (1)

where the photon flux can be written as:

𝑑2𝑁𝛾
2
= 𝛼

2

[

1 − 𝑘
𝐸𝑒

+ 𝑘2
2
−
(

1 − 𝑘
𝐸𝑒

)

|

|

|

|

𝑄2
min
2

|

|

|

|

]

. (2)

𝑑𝑘𝑑𝑄 𝜋𝑘𝑄 2𝐸𝑒 |

|

𝑄
|

|

5

Fig. 6. The global fit of world-wide measurements of 𝜎(𝛾𝑝→ 𝑉 𝑝) [27].

The cross section of virtual photon collision on the nucleus can be
related to the production cross section with real photon:

𝜎𝛾∗𝐴→𝑉 𝐴
(

𝑊 ,𝑄2) =𝑓
(

𝑀𝑉
)

𝜎
(

𝑊 ,𝑄2 = 0
)

(

𝑀2
𝑉

𝑀2
𝑉 +𝑄2

)𝑛

𝑛 = 𝑐1 + 𝑐2
(

𝑄2 +𝑀2
𝑉
)

,

(3)

where 𝑐1 and 𝑐2 are parameters determined by the HERA measure-
ments. 𝑓

(

𝑀𝑉
)

is the Breit–Wigner distribution of the vector meson.
And the cross section at 𝑄2 = 0 can be calculated by the integration of
the forward scattering cross section and the square of the nucleus form
factor, revealed as Eq. (4):

𝜎
(

𝑊 ,𝑄2 = 0
)

= ∫

∞

𝑡min

𝑑𝑡
𝑑𝜎(𝛾𝐴→ 𝑉 𝐴)

𝑑𝑡
|

|

|

|𝑡=0
|𝐹 (𝑡)|2, (4)

where 𝑑𝜎(𝛾𝐴→𝑉 𝐴)
𝑑𝑡 |𝑡=0 can be determined by

𝑑𝜎(𝛾𝑝→𝑉 𝑝)
𝑑𝑡 |𝑡=0 via Glauber

approach. The cross section of 𝛾𝑝 → 𝑉 𝑝 can be parameterized using
the world-wide measurements [27]. The framework is almost the same
as eSTARLight [28,29], except for two minor improvements. At differ-
ent center of photon–proton mass, the minimum momentum transfer
squared 𝑡𝑚𝑖𝑛 at the proton vertex could not always reach zero, so the
low boundary of t is required in the integral of the cross section. In
eSTARLight, 𝑡𝑚𝑖𝑛 is approximated as 𝑡𝑚𝑖𝑛 = ((𝑀𝑣)2∕2𝑘)2. One can get the
minimum of t when the transverse momentum of the produced vector
meson is equal to zero. Then true 𝑡𝑚𝑖𝑛 can be obtained from energy–
omentum conservation of the 𝛾𝑝→ 𝑉 𝑝 process in the target frame as
qs. (5) and (6):

𝛾 + 𝑚𝑝 =
√

𝑀2
𝑣 +

(

𝐸𝛾 − 𝑃 ′2
𝑧
)

+
√

𝑚2
𝑝 + 𝑃 ′2

𝑧 , (5)

=
(

𝑃 ′ − 𝑃
)2 =

(√

𝑚2
𝑝 + 𝑃 ′2

𝑧 − 𝑚𝑝
)2

− 𝑃 ′2
𝑧 , (6)

here 𝑃 ′2
𝑧 is the longitudinal momentum of the final state proton. The

hoton energy dependence of 𝑡𝑚𝑖𝑛 can be found in Fig. 5. The approx-
mation in eSTARLight is proper at high photon energy. However, it
ould underestimate the magnitude at low values of photon energy, as
s the case for our projection at ECCE. Furthermore, in eSTARLight,
he parametrization of the 𝛾𝑝 → 𝑉 𝑝 cross section is only based on
igh-energy HERA data. The behavior of energy dependency is notably
ifferent between the high and low energy ranges, as demonstrated
n Fig. 6, which would skew the computations at EIC. With these
wo improvements, the calculated results of rapidity distribution for
xclusive J/𝜓 photoproduction in e+p and e+A collisions for 5 × 41 and
0 × 100 GeV collision energies are shown in Fig. 7. 𝑄2 dependence of
+p collision for 5 × 41 and 10 × 100 GeV with a rapidity range from
3 to 3 is illustrated in Fig. 8.
The raw counts per unit rapidity are shown in Fig. 9 for e+p and

e+Au collisions for 10 × 100 GeV. For the projection results in the
following section, we assume the integrated luminosity collected by
ECCE is 100 𝑓𝑏−1 for e+p collisions and 10 𝑓𝑏−1∕𝐴 for e+Au collisions,
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Fig. 7. Rapidity dependence of differential cross section of exclusive J/𝜓 photoproduction for 𝑄2 < 1 GeV2. Projection are displayed with two beam configurations, e(5 GeV) ×
p(41 GeV) and e(10 GeV) × p(100 GeV).
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Fig. 8. The 𝑄2 dependence of differential cross section of exclusive J/𝜓 photopro-
duction in e+p collision. Red and blue lines are for e(5 GeV) × p(41 GeV) and e(10
GeV) × p(100 GeV) collisions respectively.

where A is the mass number of Au. The figure shows that millions of
J/𝜓s would be observed with the designed ECCE setup, which provides
us with plenty of physics opportunities. And 𝑄2 dependence of the
statistics of e+p collision in 5 × 41 and 10 × 100 GeV are shown
in Fig. 10. As we can see, most events locate in the low 𝑄2 region,
especially for 𝑄2 < 1 GeV2.

. Physics opportunities with exclusive J/𝝍 photoproduction at
CCE

.1. Probe the nuclear gluon PDF

The gluon parton distribution functions (PDFs) in the proton and nu-
leus have large uncertainties because gluons do not carry any electric
harge and cannot be directly determined by the DIS measurements.
s mentioned in the introduction, the exclusive J/𝜓 photoproduction
ccurs via Pomeron exchange. Due to the gluonic nature of Pomeron,
his process is directly sensitive to the gluon PDF. According to the
alculation of perturbative QCD, the forward scattering cross section
s proportional to the square of the gluon density distribution, shown
n the following [30,31]:

𝑑𝜎(𝛾𝐴 → 𝑉 𝐴)
𝑑𝑡

|

|

|

|𝑡=0
=
𝛼2𝑠𝛤𝑒𝑒
3𝛼𝑀𝜉

𝑉

16𝜋3
⌊

𝑥𝑔𝐴(𝑥, 𝜇2)
⌋2 , (7)

where 𝛤𝑒𝑒 is the width of the electronic decay of J/𝜓 , 𝑔𝐴(𝑥, 𝜇2) is the
gluon density and the momentum fraction 𝑥 can be determined by the
rapidity of J/𝜓 :

𝑥 =
𝑀𝑉 𝑒𝑦 , (8)

2𝐸𝑁 i

6

where 𝐸𝑁 is the energy of nuclear beam per nucleon. Eq. (7) is de-
rived from leading order (LO) pQCD calculation in the non-relativistic
approximation [30], which indicates that the transverse momenta of
c quarks in J/𝜓 are negligible. In that case, it is prescribed that 𝜇2 =
𝑀2

𝑉 ∕4.
The nuclear gluon shadowing can be model-independently quanti-

fied by 𝑅𝑔 :

𝑅𝑔 =

√

√

√

√

√

√

𝑑𝜎(𝛾𝐴→𝑉 𝐴)
𝑑𝑡

|

|

|𝑡=0
𝑑𝜎(𝛾𝑝→𝑉 𝑝)

𝑑𝑡
|

|

|𝑡=0

. (9)

As shown in Eq. (7), if we make the forward scattering amplitude ra-
io between e+p and e+Au collisions, the shadowing factor 𝑅𝑔 of gluon
an be directly extracted. So measurements of J/𝜓 photoproduction can
rovide direct access to 𝑔𝐴(𝑥, 𝜇2).
Elastic J/𝜓 photoproduction processes are simulated in 10 × 100

GeV) e+p and e+Au collisions with the framework described in the
bove sections. From the simulation, we extracted the 𝑑2𝜎∕𝑑𝑡𝑑𝑦 of
J/𝜓 at𝑡 = 0 for both e+p and e+Au collisions to make projection
on 𝑅𝑔 . The uncertainty of the projection only includes the statistical
error. At a given 𝑥, we can transfer it to the corresponding 𝑦 value via
Eq. (8) and get the statistics with the detector response. Then we fit
he simulated t distribution with the predicted statistics and get the
it error of 𝑑𝜎∕𝑑𝑡 for e+p and e+Au collisions at 𝑡 = 0. The statistical
rror of projection can be extracted by the error propagation approach
ia 𝑅𝑔 equation in Eq. (8). As shown in Fig. 11, the measurement of
xclusive J/𝜓 production has a wide 𝑥 coverage down to 2 × 10−3 for
eam configuration 10 × 100 GeV. In the low 𝑥 region, the EPPS16 [32]
DF set has a large uncertainty band, while the projected statistical
rror for ECCE is negligible. This shows that the precision exclusive
/𝜓 measurements at the EIC will significantly reduce the uncertainty
f the nuclear gluon PDF at low values of 𝑥 (𝑥 < 10−2).

.2. Probe the gluon spatial distribution

The Pomeron is the exchange object for the diffractive process, and
iffraction is generally sensitive to spatial distribution. The momentum
ransfer from the target in the exclusive J/𝜓 photoproduction is sensi-
ive to the production site, which provides us with a powerful tool to
nfer the spatial distribution of gluon in both proton and nucleus.
In the simulation, the Woods–Saxon distribution is used as input of

he gluon source distribution F(b). We made a projection of t distri-
ution for the processes in 10 × 100 (GeV) e+Au collisions with both
oherent and incoherent J/𝜓 photoproduction. The results are shown
n Fig. 12, the red and blue curves are the coherent and incoherent con-
ributions from calculations, respectively. The solid data points are the
rojected results from simulation, in which the statistical uncertainty
s negligible. However, it should be noticed that according to the state
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e

Fig. 9. Rapidity dependence statistics of coherent exclusive production of J/𝜓 in e+p and e+A collisions for 10 × 100 GeV. ‘‘Branching ratio’’ means taking the dielectron decay
channel of J/𝜓 into account. ‘‘Detector response’’ refers to the yield considering detector efficiency modification. Left Panel: e+p collision. Right Panel: e+Au collision.
Fig. 10. The 𝑄2 dependence of J/𝜓 photoproduction in e+p. ‘‘Branching ratio’’ means taking the dielectron decay channel of J/𝜓 into account. ‘‘Detector response’’ refers to the
yield considering detector efficiency modification. Left Panel: 10 × 100 GeV. Right Panel: 5 × 41 GeV.
Fig. 11. Gluon nuclear shadowing factor as a function of momentum fraction 𝑥 from
10 × 100 (GeV) e+Au collisions compared with uncertainty band of the gluon for Au
at 𝑄2 = 2.25 GeV2 for EPPS16.

of the art theoretical calculation of elastic scattering, we will not get
this minimum at these dips [33,34]. So the model here is a simplified
and ideal one, and the purpose is to show the momentum resolution
impact on this t dependence. Due to the momentum smearing from
tracking system, the slope of the distribution is slightly different from
that of theoretical calculations, and the diffraction dips are fold out.
This suggests that the detector response should be precisely determined
to extract the gluon spatial distribution.

The projected t distributions in 5 × 41 and 10 × 100 (GeV) e+p col-
lisions are illustrated in Fig. 13 with the systematical and the statistical
rrors for different 𝑄2 regions (0–1, 1–3 and 3–10 GeV2). The statistical
7

Fig. 12. t dependence of exclusive J/𝜓 production in 10 × 100 (GeV) e+Au collision.
Wood–Saxon distribution is used as input.

error is determined with a similar approach given in Section 4.1.
The systematical uncertainty is determined by the maximum deviation
between the input and reconstructed t distribution. The statistical and
systematical uncertainties are added in quadrature.

4.3. The near-threshold production mechanism

The elastic near-threshold J/𝜓 production can provide new insight
into multi-quark, gluonic, hidden-color correlations of hadronic and
nuclear wave-functions in QCD. Moreover, the measurements of this
process probe the 𝑥 ∼ 1 configuration in the target, and the spectator
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Fig. 13. t dependence of exclusive J/𝜓 production in 10 × 100 (GeV) e+p collision in several 𝑄2 intervals. Left Panel: 10 × 100. Right Panel: 5 × 41.
𝑀

𝑀

Fig. 14. Projection of J/𝜓 photoproduction cross section near threshold in 10 × 100
GeV and 5 × 41 GeV e+p collisions. 2+3 gluon exchange production model is employed
to estimate the yield.

partons carry a vanishing fraction 𝑥 ∼ 0 of the target momentum. This
implies that the production rate behaves near 𝑥 → 1 as (1 − 𝑥)2𝑛𝑠 ,
where 𝑛𝑠 is the number of spectators. Then two gluon and three gluon
exchange contributions can be written as [35]:

𝑑𝜎
𝑑𝑡

= 2𝑔𝑣
(1 − 𝑥)2

𝑅22
𝐹 2
2𝑔(𝑡)

(

𝑊 2
𝛾𝑝 − 𝑚

2
𝑝

)2
, (10)

𝑑𝜎
𝑑𝑡

= 3𝑔𝑣
(1 − 𝑥)0

𝑅44
𝐹 2
3𝑔(𝑡)

(

𝑊 2
𝛾𝑝 − 𝑚

2
𝑝

)2
, (11)

here 𝑅 is the radius of proton, 𝑀 is the mass of J/𝜓 , and 𝑊𝛾𝑝 is the
enter of mass energy of 𝛾p.
The projected results for near-threshold production for 10 × 100

eV and 5 × 41 GeV e+p collisions are shown in Fig. 14. The GlueX
esults, two and three gluon exchange contributions are also shown
or comparison. All the theoretical curves and projection results are
ormalized with the GlueX measurements. The error bars on GlueX
easurements represent only statistical uncertainties. At low 𝑊𝛾𝑝 < 4.5
eV region, the cross section is dominated by three gluon exchange
rocess. At 𝑊𝛾𝑝 > 4.5 GeV, two gluon exchange process comes to take
ontrol. For 10 × 100 GeV e+p collisions, the center-of-mass energy
an only reach as low as 4.5 GeV due to the limited detector coverage.
ut for 5 × 41 GeV e+p collisions, they cover the whole near-threshold
ange. The GlueX experiment at JLab has already shed light on the near-
hreshold production mechanism as a sum of two-gluon and three-gluon
xchange and set limits on pentaquark production [36]. Measurements
f near-threshold with larger statistics and broader 𝑊𝛾𝑝 range at the
IC has the potential to impose more powerful constraints on the
roduction mechanism, like charmed pentaquark 𝑃𝑐 production [37,
8].
8

Fig. 15. Trace anomaly contribution as a function of 𝛾p center of mass energy in 5+41
GeV e+p collisions. The integrated luminosity for e+p collisions is 100 𝑓𝑏−1.

4.4. Trace anomaly and proton mass decomposition

According to QCD theory, there are four terms of decomposition in
nucleon mass as Eq. (12) [39]: quark energy 𝑀𝑞 , gluon energy 𝑀𝑔 ,
quark mass 𝑀𝑚 and the trace anomaly contribution 𝑀𝑎, and these
terms are sensitive to the momentum fraction a carried by all quarks
and the trace anomaly parameter 𝑏.

𝑀𝑞 =
3
4

(

𝑎 − 𝑏
1 + 𝛾𝑚

)

𝑀𝑁 ,

𝑔 =
3
4
(1 − 𝑎)𝑀𝑁 ,

𝑀𝑚 =
4 + 𝛾𝑚

4
(

1 + 𝛾𝑚
) 𝑏𝑀𝑁 ,

𝑎 =
1
4
(1 − 𝑏)𝑀𝑁 ,

(12)

Recent theoretical efforts from VMD model and Holographic model
[40–42] suggest that the trace anomaly parameter can be extracted
by the near-threshold exclusive quarkonia process via their production
at (𝑑𝜎∕𝑑𝑡)|𝑡=𝑡𝑚𝑖𝑛 . In the simulation, we made the projection of the
trace anomaly parameter restriction capability at ECCE. The results
are shown in Figs. 15 and 16, which can provide precise information
on the nucleon mass decomposition. The GlueX result [39] of the
trace anomaly is also shown for comparison. The projection uncertainty
consists of two parts, the statistical error using similar method as
Section 4.1 and systematical error defined in Section 4.2. The 𝑑𝜎∕𝑑𝑡|𝑡=0

can be related to the trace anomaly parameter with Eqs. (13), (14),
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Fig. 16. Trace anomaly contribution as a function of 𝑄2 in 5+41 GeV e+p collisions.
he integrated luminosity for e+p collisions is 100 𝑓𝑏−1.

15) [39],

𝑑𝜎𝛾𝑁→𝐽∕𝜓𝑁

𝑑𝑡

|

|

|

|

|𝑡=0
=

3𝛤
(

𝐽∕𝜓 → 𝑒+𝑒−
)

𝛼𝑚𝐽∕𝜓

(𝑘𝐽∕𝜓𝑁
𝑘𝛾𝑁

)2 𝑑𝜎𝐽∕𝜓𝑁→𝐽∕𝜓𝑁

𝑑𝑡

|

|

|

|

|

|𝑡=0

,

(13)

𝑑𝜎𝐽∕𝜓𝑁→𝐽∕𝜓𝑁

𝑑𝑡

|

|

|

|

|𝑡=0
= 1

64𝜋
1

𝑚2
𝐽∕𝜓

(

𝜆2 − 𝑚2
𝑁
)

|

|

|

𝐹𝐽∕𝜓𝑁
|

|

|

2
, (14)

here 𝑘2𝑎𝑏 =
[

𝑠 −
(

𝑚𝑎 + 𝑚𝑏
)2
] [

𝑠 −
(

𝑚𝑎 − 𝑚𝑏
)2
]

∕4𝑠 denotes the squared
omentum of center-of-mass of the corresponding two-body system, 𝛤
s the decay width of specific channel, 𝛼 is the fine structure constant.
=
(

𝑝𝑁𝑝𝐽∕𝜓∕𝑚𝐽∕𝜓
)

is the energy of nucleon in the 𝐽∕𝜓 rest frame. At
ow energy, the forward amplitude 𝐹𝐽∕𝜓𝑁 can be approximately written
s a function of (1 − 𝑏) in Eq. (15), and the relative uncertainty of
𝜎∕𝑑𝑡|𝑡=0 can be used to get the uncertainty of 𝑀𝑎∕𝑀𝑝 (∝ (1 − 𝑏)) via
he error propagation formula.

𝐽∕𝜓𝑁 ≃ 𝑟30𝑑2
2𝜋2
27

(

2𝑀2
𝑁 −

⟨

𝑁
|

|

|

|

|

|

∑

𝑖=𝑢,𝑑,𝑠
𝑚𝑖𝑞𝑖𝑞𝑖

|

|

|

|

|

|

𝑁

⟩)

≃ 𝑟30𝑑2
2𝜋2
27

(

2𝑀2
𝑁 − 2𝑏𝑀2

𝑁
)

≃ 𝑟30𝑑2
2𝜋2
27

2𝑀2
𝑁 (1 − 𝑏),

(15)

here 𝑟0 is the ‘‘Bohr’’ radius of 𝐽∕𝜓 , and 𝑑2 is the Wilson coefficient.
hese two parameters can be treated as constant in the relationship
etween 𝑑𝜎∕𝑑𝑡|𝑡=0 and (1−𝑏) at low energy, thus could be neglected in
he uncertainty determination.

. Summary

In this paper, we simulate exclusive J/𝜓 production using Fun4All
ramework with the designed ECCE detector system at the future EIC.
or J/𝜓 detection, ECCE has good reconstruction efficiency and broad
overage, with large statistics for the designed EIC luminosity. We
lso demonstrate the capability of ECCE to probe the related physics
pportunities for the exclusive J/𝜓 photoproduction process. For gluon
istribution in the proton and nucleus, the projection of the gluon
uclear shadowing effect shows an excellent capability of constrain-
ng the nuclear gluon PDF with the exclusive J/𝜓 forward scattering
easurements at ECCE. Benefited from the unprecedented coverage
nd excellent reconstruction capability, ECCE can provide a strong
onstraint to the near-threshold production mechanism of the exclusive
/𝜓 photoproduction process. Furthermore, the projection results of
he near-threshold exclusive quarkonia production also show an ex-
ellent capability to extract the trace anomaly parameter to precisely
etermine the nucleon mass decomposition.
9
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