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ABSTRACT

The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the “glue”
that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at
Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently
ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already
starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is
a consortium that proposed a detector design based on a 1.5 T solenoid. The EIC detector proposal review
concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a
comprehensive optimization of the ECCE tracker using Al. The work required a complex parametrization of
the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design
space driven by multiple objectives that encode the detector performance, while satisfying several mechanical
constraints. We describe our strategy and show results obtained for the ECCE tracking system. The Al-assisted
design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of

sub-detectors to further optimize the performance of the EIC detector.

1. Introduction

The Electron Ion Collider (EIC) [1] is a future cutting-edge discovery
machine that will unlock the secrets of the gluonic force binding the
building blocks of the visible matter in the universe. The EIC will
consist of two intersecting accelerators, one producing an intense beam
of electrons and the other a beam of protons or heavier atomic nuclei;
it will be the only electron-nucleus collider operating in the world.
The EIC Comprehensive Chromodynamics Experiment (ECCE) [2] is
an international consortium assembled to develop a detector that can
offer full energy coverage and an optimized far forward detection
region. ECCE has investigated a detector design based on the existing
BABAR 1.5T magnet; this detector will be ready for the beginning of
EIC operations. More details on the ECCE detector design and what is
described in the following can be found in [3].

ECCE is an integrated detector that extends for about 40 m, and
includes a central detector built around the interaction point and
far-forward (hadron-going direction) and far-backward (electron-going
direction) regions [1]. To fulfill the physics goals of the EIC, the central
detector needs to be hermetic and provide good particle identification
(PID) over a large phase space. The central detector itself consists of
multiple sub-detectors: a tracking system made by inner and outer
tracker stations allows the reconstruction of charged particles moving
in the magnetic field; a system of PID sub-detectors will cover the barrel
and the electron-going and hadron-going directions; electromagnetic
and hadronic calorimeters are used to detect showers and provide
complete information on the particle flow which is essential for certain
event topologies, e.g., those containing jets.

As outlined in [1], Artificial Intelligence (AI) can provide dedicated
strategies for complex combinatorial searches and can handle multi-
objective problems characterized by a multidimensional design space,
allowing the identification of hidden correlations among the design
parameters. ECCE included these techniques in the design workflow
during the detector proposal. At first this Al-assisted design strategy
was used to steer the design. After the base technology is selected using
insights provided by Al its detector parameters can be further fine-
tuned using Al. During the ECCE detector proposal stage, the design of
the detector underwent a continual optimization process [4].

The article is structured as follows: in Section 2 we provide an
overview of design optimization and describe the Al-assisted strategy;
in Section 3 we introduce the ECCE tracker and describe the software
stack utilized in this work to which Al is coupled for the optimization;
in Section 4 we describe the implemented pipeline that results in
a sequential strategy, fostering the interplay between the different
working groups in a post hoc decision making process; in Section 5
we present perspectives and planned activities.

The ECCE detector at the EIC will be one of the first examples of
detectors that will be realized leveraging Al during the design and R&D
phases.

2. Al-assisted detector design

Detector optimization with Al is anticipated to continue in the
months following the detector proposal towards CD-2 and CD-3. Op-
timizing the design of large-scale detectors such as ECCE - that are
made of multiple sub-detector systems — is a complex problem. Each
sub-detector system is characterized by a multi-dimensional design
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Fig. 1. Workflow of detector design assisted by AI: physics events are injected in a
detector characterized by given design parameters. Reconstructed events are analyzed
and figures of merit are quantified and passed to an Al-based strategy, which in
turn suggests the next design point in this sequential approach; note that Al can also
intervene in the simulation and reconstruction steps.

parameter space. In addition, detector simulations are typically com-
putationally intensive, and rely on advanced simulation platforms used
in our community such as Geant4 [5] to simulate the interaction
of radiation with matter. Additional computationally expensive steps
are present along the data reconstruction and analysis pipeline. The
software stack that is utilized in the detector design process involves
three main steps: (i) generation of events, (ii) detector simulations and
(iii) reconstruction and analysis.

As pointed out in [6], the above bottlenecks render the generation
and exploration of multiple design points cumbersome. This in turn rep-
resents an obstacle for deep learning (DL)-based approaches that learn
the mapping between the design space and the functional space [7-
9], which could facilitate the identification of optimal design points. In
principle fast simulations with DL can reduce the most CPU-intensive
parts of the simulation and provide accurate results [10], although
several design points need to be produced with Geant4 before injection
in any DL architecture. Similar considerations exist in deploying DL for
reconstruction during the design optimization process.

In this context, a workflow for detector design that has gained
popularity in recent years [11] is represented by the schematic in Fig. 1.
It consists of a sequential Al-based strategy that collects information
associated with previously generated design points, in the form of
figures of merit (called objectives in the following) that quantify the
goodness of the design and suggest promising new design points for
the next iteration.

The ECCE AI Working Group achieved a continual multi-objective
optimization (MOO) of the tracker design. Our approach deals with
a complex optimization in multidimensional design space (describing,
e.g., geometry, mechanics, optics, etc.) driven by multiple objectives
that encode the detector performance while satisfying several me-
chanical constraints. This framework has been developed in a way
that can be easily extended to other sub-detectors or to a system of
sub-detectors.

The definition of a generic MOO problem can be formulated as
follows:

min £,(x) m=1,....M
st gi(x) <0, j=1L..,J
! )
h, (x) =0, k=1,...,K
xiLgxinly, i=1,...,N

where one has M objective functions f,, to optimize (e.g, detector res-
olution, efficiency, costs), subject to J inequalities g §169) and K equality
constraints 4, (z) (e.g., mechanical constraints), in a design space of N
dimensions (e.g., geometry parameters that change the Geanr4 design)
with lower and upper bounds on each dimension." Notice that overlaps

1 Constraints are described later in Table 3.
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Fig. 2. Example of Pareto frontier in a two-dimensional objective space: Point C is
not on the frontier and is dominated by both point A and point B. All the other
points which are dominated by the Pareto frontier and that satisfy any constraints in
the optimization problem are called feasible solutions; The hypervolume is used as a
metric for convergence and is calculated with respect to a reference point r.
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Fig. 3. The NSGA-II Workflow: At time 7, an offspring Q(r) is created through
a genetic algorithm [15] from an N-sized population of design points P(r). The
two populations are combined into an augmented population which is classified into
different non-dominated fronts F; (Fig. 2), starting from the first front F,. To restore
the initial size of the population, the augmented space of solutions is trimmed. A metric
called crowding distance is used to reject solutions from the least performing front and
eventually provide an updated population of size N at time 7+ 1. .

in the design are checked before and during the optimization and are
excluded by the constraints and ranges of the parameters. In solving
these problems, one can come up with a set of non-dominated or trade-
off solutions [12], popularly known as Pareto-optimal solutions (see
also Fig. 2).

In this setting, we used a recently developed framework for MOO
called pymoo [13] which supports evolutionary MOO algorithms such
as Non-Dominated Sorting Genetic Algorithm (or NSGA-IL, [14]).? The
rationale behind this choice instead of, for example, principled ap-
proaches such as Bayesian Optimization [11], emanates from the ECCE
needs at the time of the detector proposal, such as the capability to
quickly implement and run multiple parallel optimization pipelines im-
plementing different technology choices and the possibility of dealing
with non-differentiable objectives at the exploratory stage.

The main features of NSGA-II are (i) the usage of an elitist principle
that retains the best individuals, (ii) an explicit diversity preserving
mechanism, and (iii) ability of determining non-dominated solutions.
The latter feature is of great importance for problems where objectives
are in conflict with each other: that is an improved performance in an
objective results in worse performance in another objective.

The NSGA-II workflow is described in Fig. 3 and can be briefly
summarized in the following steps:*

(D Initial population generation: a random population Py of N design
points is created. The population is sorted based on non-domination

2 The pymoo framework also supports other MOO approaches and a full
list is documented in [13].

3 The readers are directed to [13,14,16] for a comprehensive explanation
of the algorithm.
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Fig. 4. Flowchart of continual optimization during proposal: Al assists the design
optimization process by providing insights and capturing hidden correlations among
the design parameters. This has been used during the entire detector proposal process
to steer the design. At a given instant in time, N alternative candidate configurations
are studied. For each, we create an optimization pipeline, which results in a Pareto
front of solutions. This new information helps steer the design: some configurations are
rejected, while other ones (also dubbed ‘new references’) are identified to potentially
improve the design. New optimization pipelines are defined inspired by the new results
and the process is iterated. During the design process, Al propelled the fundamental
interplay between the ECCE Teams working on Physics, Detector and Computing.

as briefly described in Fig. 2. Each solution is assigned a fitness value
equal to its non domination-level (see [16]). (ii) Creation of offspring
population: an offspring (also called child) population is created using
standard operators of genetic algorithms [15], namely binary tour-
nament selection, crossover, and mutation operators; this creates a
child population Q. (iii) Sorting the combined population: the combined
population of design points is characterized by the set Ry = Py U Q.
The same procedure is applied at any time 7, so this can be generalized
to R, = P, U Q,. The combined population R, is sorted according to non-
domination. (iv) Creation of new population through crowding distance:
the new parent population P, is formed by gathering solutions from
the first front and continuing to the other fronts (F;, F,,...) until the
size of P, exceeds the initial size N with the inclusion of the last
acceptable front. A metric called crowding distance [14] is used to select
the solutions of the last accepted front and trim all the other solutions,
in such a way that P, ; eventually consists of N solutions, i.e., it has
the same size of P,. It can be shown that the crowding distance allows
to keep those points in the last front that contribute to the highest
diversity [14].

For our purposes, we also tested NSGA-III which is suitable for the
optimization of large number of objectives [17].*

During the design optimization process of the tracking system, we
used full Geant4 simulations of the entire ECCE detector. Al played
a crucial role in helping choose a combination of technologies for
the inner tracker and was used as input to multiple iterations of the
ECCE tracker design, which led to the current tracker layout. This
was the result of a continual optimization process that evolved in
time: results were validated by looking at figures of merit that do not
enter as objective functions in the optimization process (more details
can be found in Appendix B); the decision making is left post hoc
and discussed among the Computing, Detector and Physics teams. A
flowchart describing this continual optimization process is shown in
Fig. 4.

Ultimately this continual Al-assisted optimization led to a projective
design after having extended the parametrized design to include the
support structure of the inner tracker. The latter represents an ongoing
R&D project that is discussed in the next sections.

Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167748
3. ECCE tracking system simulation

The simulation and detector response shown in this document is
based on Geant4 [18] and was carried out using the Fun4All frame-
work [19,20].

The optimization pipelines are based on particle gun samples of
pions, where we used =~ and tested that the performance with z*
were consistent. Performance in the electron-going direction was also
checked post-hoc with particle gun samples of electrons. The im-
proved performance is further validated with physics analyses, using
the datasets generated during the ECCE simulation campaigns; in
Section 4 we show in particular results based on semi-inclusive deep
inelastic scattering (SIDIS) events.

The ECCE tracking detector [21], represented in Fig. 5 (left), con-
sists of different layers in the barrel and the two end-caps, and is tightly
integrated with the PID detectors:

(i) The silicon vertex/tracking detector is an ALICE ITS-3 type high
precision cylindrical/disk vertex tracker [22,23] based on the new
Monolithic Active Pixel Sensor (MAPS); the barrel detector consists of
5 MAPS layers (3 ITS3 Vertex ITS3 layers, 2 ITS3 Sagitta layers); the
silicon hadron endcap consists of 5 MAPS disks (FST — Forward Silicon
Trackers); and the silicon electron endcap (EST — Electron Silicon
Trackers) has 4 MAPS disks.

(ii) A gas tracking system is based on yRwell technology, that is
a single-stage amplification Micro Pattern Gaseous Detector (MPGD)
that is a derivative of the Gas Electron Multiplier (GEM) technology. In
ECCE uRwell layers will form three barrel tracking layers further out
from the beam-pipe than the silicon layers; namely, two inner-barrel
layers and a single outer-barrel yRwell layer. All yRwell detectors will
have 2D strip based readout. The strip pitch for all three layers will be
400 pm.

(iii) The tracking system is completed by AC-LGAD-based (TTL —
Timing Tracking Layers [24]) time of flight (TOF) detectors providing
additional hit information for track reconstruction as well. In the
central region, a TOF (dubbed CTTL-Central TTL) is placed behind
the high-performance DIRC (hpDIRC); in the hadron-going side a TOF
(dubbed FTTL-Forward TTL) is placed before the dual RICH (dRICH)
and a pRwell placed after the dRICH; in the electron-going direction,
a uRwell layer is placed before the modular RICH (mRICH), which is
followed by a TOF later (dubbed ETTL-Electron TTL).

An important consideration for all large-scale detectors is the provi-
sion of readout (power and signal cables) and other services (e.g., cool-
ing). Clearly the aim is to minimize the impact of readout and services
in terms of affecting the detector’s acceptance or tracking resolution,
for example. This effort is ongoing R&D for the project.

In the following sections, the reader can find more details on the
implementation of the optimization pipelines and utilized computing
resources.

4. Analysis Workflow

The optimization of the ECCE-tracking system [3,21] has been
characterized by two main phases during which the sub-detectors
composing the tracker evolved into more advanced renditions.

Phase I optimization. > The Geant4 implementation of the detectors
were at first simplified, e.g., detector modules were mounted on a
simplified conical support structure made of aluminum. The optimiza-
tion pipelines consisted of symmetric arrangement of detectors in the
electron-going and hadron-going directions (5 disks on each side). The
DIRC detector for PID in the barrel region was modeled with a simple
geometry made by a cylinder and conical mirrors. AC-LGAD-based

4 For > 4 objectives, NSGA-III is expected to perform better than NSGA-II.

5 Phase I corresponds to a timeline between June-2021 to Sept-2021.
Preliminary studies done between March-2021 to May-2021 are not reported
here.
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Fig. 5. Tracking and PID system in the non-projective (left) and the ongoing R&D projective (right) designs: the two figures show the different geometry and parametrization
of the ECCE non-projective design (left) and of the ongoing R&D projective design to optimize the support structure (right). Labels in red indicate the sub-detector systems that
were optimized, while the labels in blue are the sub-detector systems that were kept fixed due to geometrical constraint. The non-projective geometry (left) is a result of an
optimization on the inner tracker layers (labeled in red) while keeping the support structure fixed, The angle made by the support structure to the IP is fixed at about 36.5°. The
projective geometry (right) is the result of an ongoing project R&D to reduce the impact of readout and services on tracking resolution.

TOF detectors were modeled as simplified silicon disks at first; the
outer trackers had more fine-grained simulations implemented, with
realistic support structures and services implemented. The optimization
pipelines included various combinations of detector technologies for
the inner trackers. At the end of this phase, a decision on the choice
of the barrel technology and the disk technologies was made using the
Al results.

Phase II optimization. ° These pipelines had a more realistic implemen-
tation of the support structure incorporating cabling, support carbon
fiber, cooling system, etc. More detailed simulation of the PID Detectors
(e.g., DIRC bars and dRICH sub-systems) were integrated as well as
fine-grained simulations of TTL layers (CTTL, ETTL, FTTL) previously
simulated as simple silicon layers modules. More stringent engineering
constraints were considered such as the sensor size for MAPS detector
(ITS3). This phase also considered an asymmetric arrangement of the
detectors in the endcap regions, with a maximum of 4 EST disks in the
electron-going end-cap and 5 FST disks in the hadron-going endcap:
due to this asymmetric spatial arrangement, the angle subtended by
detectors in the two endcap regions could be varied. This eventually
developed into the idea of a projective geometry in a pipeline that
characterizes an ongoing R&D project for optimizing the design of the
support structure.

A detailed description of the most recent parametrization used
for the detector proposal can be found in Appendix A, along with
the parametrization used in an ongoing R&D project to optimize the
support structure of the inner tracker.

Fig. 5 shows a comparison of the ECCE reference non-projective
design and the projective design from the ongoing R&D, both of which
resulted from the Al-assisted procedure described in this paper.

4.1. Encoding of Design criteria

Design criteria need to be encoded to steer the design during
the optimization process. For each design point we need to compute
the corresponding objectives f,,, namely the momentum resolution,
angular resolution, and Kalman filter efficiency.

We will refer in the following only to the more recent Phase II opti-
mization.” Phase II has been characterized by two types of optimization
pipelines: the first used a parametrization of the inner tracker during
the optimization process and led to the ECCE tracker non-projective

6 Phase II corresponds to optimization pipelines that run from Sept-2021 to
Nov-2021.
7 Similar considerations apply also for Phase I optimization.

Table 1

Summary of the hyperparameters of the design optimization: the values reported
in the table have been used during the optimization of the non-projective design of
the ECCE tracker. For completeness and when they differ from the non-projective case,
we also report in parentheses the values corresponding to the ongoing R&D project for
the projective design of the support structure.

Description Symbol Value

Population size N 100

# objectives M 3

Offspring o 30

Design size D 11 (9

# calls (tot. budget) - 200

# cores - same as offspring
# charged r tracks N 120k

# bins in 5 N, 5

# bins in p N, 10

design; the second branched off the first as an independent R&D effort
that included the parametrization of the support structure and led to a
projective design.

Details on the two types of optimization pipelines can be found
in the following tables: Table 1 describes the main hyperparameters
and the dimensionality of the optimization problem, in particular of
the design space and the objective space; Table 2 reports the range of
each design parameter®; Table 3 summarizes the constraints for both
the non-projective and projective geometries.

The parameters corresponding to the non-projective case in Table 2
were optimized sequentially over at least three optimization pipelines,
with each having a set of parameters fixed. For instance, the EST/FST
disks were optimized during the first iteration assuming symmetric
design, and for the subsequent iterations, the EST disks were optimized
further in the electron endcap region. Two types of geometrical con-
straints have been implemented in the design optimization problem
according to the definitions of Table 3: (a) strong constraints cannot
be violated during the optimization (e.g., a safe minimum distance be-
tween the disks of 10 cm has been considered) and hence result in high
penalties during this process; (b) soft constraints can be violated by the
MOO and then one can quantify the degree of unfeasibility (see [13]);
soft constraints have been introduced to control the coverage of the
disks and central layers with sensors, e.g., the difference between the
outer and inner radii of each disk, namely R, - R;,, is required to be a

out in’
multiple of the sensor cell size (17.8 mm x 30.0 mm); this requirement

8 The design points are normalized in the range [0-1], using a min-max
scaler x; = x(X,,5x — X,in) + X, Where x; is the normalized design point with
a un-normalized design point x generated between the range [x

min> Xmax -
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Table 2

Ranges of the design parameters: the table summarizes the design
points that are optimized for the non-projective and the projective case.
The optimization range is also given for each parameter.

ECCE design (non-projective)

Design parameter Range

HRWELL 1 (Inner) (r) Radius [17.0, 51.0 cm]
HRWELL 2 (Inner) () Radius [18.0, 51.0 cm]
EST 4 z position [-110.0, —=50.0 cm]
EST 3 z position [-110.0, —40.0 cm]
EST 2 z position [-80.0, —30.0 cm]
EST 1 z position [-50.0, —20.0 cm]
FST 1 z position [20.0, 50.0 cm]
FST 2 z position [30.0, 80.0 cm]
FST 3 z position [40.0, 110.0 cm]
FST 4 z position [50.0, 125.0 cm]
FST 5 z position [60.0, 125.0 cm]

ECCE ongoing R&D (projective)

Design parameter Range

[25.0°, 30.0°]
[25.0, 45.0 cm]
[-171.0, —161.0 cm]

Angle (Support Cone)
HRWELL 1 (Inner) Radius
ETTL z position

EST 2 z position [45, 100 cm]
EST 1 z position [35, 50 cm]
FST 1 z position [35, 50 cm]
FST 2 z position [45, 100 cm]

FST 5 z position
FTTL z position

[100, 150 cm]
[156, 183 cm]

Table 3

Constraints in the design optimization: the table summarizes constraints for both the
projective and the non-projective designs. The reader can find a thorough explanation
in the text.

Constraint

. disk:

EST/FST disks  z

Sub-detector Description

soft constraint: sum of
residuals in sensor

J ‘} coverage for disks; sensor
dimensions: d = 17.8

(30.0) mm

EST/FST disks

R =Ry Ryu=R;,
d d

strong constraint:
minimum distance between
2 consecutive disks

w1 — Zy >=10.0 cm

soft constraint: residual in
28 e [z,,,wm J ‘} sensor coverage for every

layer; sensor strip width: w
=17.8 mm

sagitta layers min{

strong constraint:
minimum distance between
uRwell barrel layers

uRWELL Fupp — 1, >=5.0 cm

can be slightly violated, since minor adjustments on tiling up the pixels
can be done post hoc in such a way that the detector geometry is still
realizable.

Two additional constraints are implicitly taken into account by
internal parametrization and reflected in the Geant4 design: the inner
radii of the disks in the endcap and the inner vertex layer in the barrel
have to be compatible with the beam envelope dimensions; the barrel
layers lengths and the outer radii of the disks have to be compati-
ble with the tracking support structure [25]. Also, potential overlaps
among modules are checked before and during the optimization.

These constraints are common to non-projective and projective
designs. For more details on the parametrizations and on the corre-
sponding detector performance the reader can refer to Appendix A and
Appendix B, respectively.

The objectives depend on the kinematics and are calculated in 5
main bins in pseudorapidity (1): (i) —3.5 < # < —2.0 (corresponding to
the electron-going direction), (ii) —2.0 < # < —1.0 (the transition region
in electron-going direction), (iii) —1 < 5 < 1 (the central barrel), (iv) 1
< n < 2.0 (the transition region in the hadron-going direction) and (v)
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Fig. 6. Fit strategy: a double-Gaussian fit function is utilized to extract the
resolutions. Such a fit function provided good reduced x> and more stable extractions
compared to single-Gaussian fits. The resolution is obtained as an average of the two
o’s weighted by the relative areas of the two Gaussians according to Eq. (3). The figure
represents the results corresponding to a particular bin in » and p.

2.0 < 5 < 3.5 (the hadron-going direction). The rationale behind this
binning is a combination of different aspects: the correspondence with
the binning in the EIC Yellow Report [1], the asymmetric arrangement
of detectors in electron-going and hadron-going directions, and the
division in pseudorapidity between the barrel region and the endcap.
Particular attention is given to the transition region between barrel and
endcaps as well as at large |5| ~ 3.5 close to the beamline.

Charged pions are generated uniformly in the phase-space that cov-
ers the range in momentum magnitude p € [0,20] GeV/c and the range
in pseudorapidity # € (-3.5,3.5). Each bin in 7 is further subdivided
into 15 bins in momentum p. For each design point, we simulated N,,, =
120k charged pions.® This number ensured large enough statistics over
the entire phase space and the stability of the fits in all of the bins of
Egs. (4).

In order to calculate the relative momentum (cf. Fig. B.13) and ab-
solute angular resolution (cf. Fig. B.14) we fit the following objectives:

ﬂ — Preco — Ptrue
p ptrue (2)
A0 =0,,., — 0,

reco true

Following the definitions of Eq. (2), histograms of the relative
momentum resolution and the absolute angular resolution are produced
for each bin in 5 and p, and the corresponding fits are calculated. Using
single-Gaussian (SG) fits (also utilized in the Yellow Report [1]) implies
systematically better resolutions but worse reduced y?: therefore we
decided to utilize double-Gaussian (DG) fits, as shown in Fig. 6. This
provided a more robust fit strategy. The reduced y? range with DG fits
ranges from 1.2 to 2.8 at most, with the majority of the fits stable at
lower values. The largest numbers correspond either to the transition
between the barrel and endcaps — where tracks cross more material
in the non-projective design — or to large pseudorapidity, particularly
close to the inner radii of the disks. By using SG fits, the reduced y?
values can be as large as 10-20 in the transition region. A detailed study
comparing SG to DG fits is shown in Fig. B.13.

9 From Phase I to Phase II, the design became asymmetric in the two
endcaps, therefore we needed to extend the -coverage and increase the
statistics. The momentum range was reduced to [0,20] GeV/c to optimize the
computing budget.
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The final DG resolution has been defined as an average of the two
o’s weighted by the relative areas of the two Gaussians:*’
Ajo; + Ayoy
Pl il Wil i }
DG A + 4
The results obtained for the resolutions in each bin corresponding to
each new design point are divided by the values corresponding to the
baseline design, so that in each bin a ratio R(f),, is provided. Finally
a weighted sum of these ratios is performed to build a global figure of
merit (for both the relative momentum and the angular resolutions):

‘R
RN=53 <—p — (f)"'"> )

nn Zp wl’»ﬂ

where the objective function f is either the momentum or the angular
resolution described by Eq. (2), and the weight w,, = 1 /o2 (f o) 18
calculated in each #, p bin and it is proportional to the inverse of the
variance corresponding to the objective functions f.

An additional objective function has been included in the opti-
mization problem: this is a global objective function corresponding to
the fraction of tracks that are not reconstructed by the Kalman filter
(KF [26]), or equivalently the KF inefficiency:

3)

N(tracks not reconstructed)

R(KF) =
(KF) N(total number of tracks)

(5)

Following the above definitions, the design problem corresponds to
minimizing the objective functions defined in Egs. (4), (5): a weighted
average ratio smaller than one and a KF inefficiency as close as possible
to zero correspond to an improvement in performance compared to the
baseline design.

4.2. Convergence and performance at Pareto front

We remind the reader that the Pareto front is the set of trade-off
solutions to our problem. Fig. 7 shows the convergence plot obtained
utilizing the hypervolume, which is a standard metric [27] used as a
performance indicator for the optimization problem. Given a reference
point r as outlined in Fig. 2, this metric calculates the hypervolume
subtended by the approximated Pareto front in the objective space. The
MOO steers the approximated front towards the true front, therefore
the growth of the hypervolume is monotonic by construction and in an
ideal case it asymptotically converges to the true Pareto front.

One can deploy a variety of convergence criteria and analyze the
convergence as mentioned in [13].}' For our studies, and given the
complexity of our design problem summarized in Table 1, the termi-
nation criterion is defined using a moving window of 5 consecutive
calls and is triggered if either of the following conditions are true:
the relative change in any of the design parameters is less than 10~°
(design tolerance); the relative improvement in the constraint violation
is less than 1077 (constraint tolerance); the improvement in any of
the objectives is less than 2.5 -10~3 (objective tolerance). Finally we
also utilize a total budget of 200 calls, after which we interrupt the
execution of MOO.

A petal diagram is used to visualize the values of three objectives
corresponding to one of the solutions extracted from the Pareto front.
Checkpoints are created to store the NSGA-II-updated population of
design points. A survey of the detector performance is created after
each call to monitor the potential anomaly behavior of the fits. The
fitting procedure is quite stable: if an exception occurs the analysis has
been automated to adjust the fitting parameters and ranges. In case of
persistent anomalous behavior, a flag is raised, the critical design point
purged from the population, and examined.

10 A different definition could be based on the weighted average of the
variances 012_2 to obtain the final variance o2 . This typically implied a few
% relative differences on the final value of ¢,; which has been considered a
negligible effect.

11 Early stopping can occur if a change in the hypervolume is within the

tolerance observed after a certain number of evaluations.
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Fig. 7. Metric for convergence and performance at Pareto front: (left) The
hypervolume can be used as a metric for convergence. Checkpoints are created during
the optimization and snapshots of the evolving designs are saved. (right) A petal
diagram with the three objectives corresponding to one solution in the Pareto front. The
momentum and angular resolutions are expressed as ratios with respect to a baseline
design to improve; the KF inefficiency is taken as an absolute value. An optimal design
optimizes all of the above-defined objectives.

The improvement obtained with the continual multi-objective op-
timization process is summarized in Fig. 8, where the momentum
resolution obtained during phase-I optimization using a preliminary
detector concept is compared to both the non-projective and the pro-
jective R&D designs which are instead derived from fully developed
simulations in phase-II optimization.

A detailed description of the optimized performance for all the ob-
jectives (momentum, angular resolutions and Kalman Filter efficiency)
can be found in Appendix B.

4.3. Physics analysis

To show a comparison in physics performance between the non-
projective and projective designs, we analyzed D° meson decay into
#+K~. Data have been produced utilizing SIDIS events generated with
Pythia6 [28], corresponding to ep events with 18 GeV x 275 GeV and
high Q2.'2

In Fig. 9, the #tK~ invariant mass is fitted with a double-sided
Crystal Ball function [30,31].

The decay events are selected in such a way to have at least one
particle (either = or K, or both) in the pseudorapidity bin 1.0<|n|<1.5,
where the projective design is expected to improve the performance by
concentrating all the material in a smaller dead area compared to the
non-projective design.

The analysis shows that the resolution obtained with the projective
design is improved by more than 10% relative to that obtained with
the non-projective design. We also calculate the efficiency, defined as
the number of reconstructed D° mesons divided by the number of true
D" mesons. The efficiency obtained with the two designs is consistent
within the statistical uncertainties.

5. Computing resources

Parallelization. A two-level parallelization has been implemented in
the MOO framework: the first level creates the parallel simulations
of design points, the second level parallelizes each design point (see
Fig. 10). The evaluation itself can be distributed to several workers or
a whole cluster with libraries like Dask [32].

Computing budget. Computing time studies have been carried out to
evaluate the simulation time of each single design point as a function of
the number of tracks generated. We made this study with simulations
that included the tracking system and the PID system and estimated an
effective simulation time of 0.2 s/track after removing an initial latency

12 Production: prop.5/prop.5.1; generator: pythia6; kinematics: ep-18 x 275-
q2-high. More info can be found in [29].
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Fig. 8. Evolution of momentum resolution driven by the continued MOO: Momentum resolutions in four bins of n. From left to right, respectively: |#| < 1.0 corresponding
to the barrel, 1.0 | <5 < | 1.5 corresponding to the transition region, and 1.5 < |#| < 2.5 and 2.5 < 7 < 3.5 corresponding to the two end-caps. Black points represent the first
simulation campaign, and a preliminary detector concept in phase-I optimization which did not have a developed support structure; blue points represent the fully developed
simulations for the final ECCE detector proposal concept; red points the ongoing R&D for the optimization of the support structure. Compared to black, there is an improvement
in performance in all # bins with the exception of the transition region, an artifact that depends on the fact that black points do not include a realistic simulation of the material
budget in the transition region. In the transition region, it can be also appreciate the improvement provided by the projective design.
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Fig. 9. Analysis of SIDIS events with Al-assisted detector designs: The z*K~
invariant mass obtained from the SIDIS events reconstructed in ECCE. A comparison
of the resolution on the D° meson obtained with the non-projective and the projective
design of the ECCE tracker is shown. In order to emphasize the improvement in the
region between 1.0 < |5| < 1.5, a selection was made such that both the tracks z* or
the K~ are within the region of interest. The resolution with the projective design is
improved by more than 10% relative to the resolution obtained with the non-projective
design.
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Fig. 10. Flowchart of the two-level parallelization implemented for detector
design: Multiple design points are produced in parallel, and each design point
is parallelized. The design is assisted by an Al-strategy, in this case MOO with
evolutionary algorithms supported by pymoo [13].

time. Similarly we made studies of the computing time taken by the
Al-based algorithm in generating a new population of design points.
Results of these studies are summarized in Fig. 11.

A larger population allows to approximate the Pareto front with
larger accuracy. Extension of the design parameter space and the
objective space to larger dimensionality implies a larger amount of CPU
time which is mainly dominated by simulations if the population size
remains smaller than 104-105, see Fig. 11.

For our goals the optimization pipelines of the ECCE tracking system
were parametrized with 10-20 design parameters and 3-4 objectives;
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Fig. 11. The computing time taken by the genetic algorithm and the sorting in
NSGA-IIL:. Performance has been benchmarked with test problems like DTLZ1 [17] (red
points) and the scaling ~ M N? (see Table 1) has been verified with convergence to
the Pareto front. The simulation time dominates the AI time during the optimization
process (blue point). A two-level parallelization has been introduced in the framework
to reduce this bottleneck. The AI contribution typically becomes dominant when a very
large population size is needed to accurately approximate the Pareto front (cf.[34]).

this allowed us to achieve good convergence with evolutionary MOO
using a two-level parallelization strategy, and deployment on single
nodes of 128 CPU cores available on the sci-comp farm at Jefferson
Lab [33]."* The population size N is chosen considering the dimen-
sionality of the design space and objective space, the simulation time
of each design point, and the computing resources available.

Planned activities. As described in this document, detector optimization
with Al is an essential part of the R&D and design process and it
is anticipated to continue after the detector proposal. The Al-assisted
design optimization of the ECCE inner tracker was based on evolu-
tionary algorithms. During the detector proposal multiple optimization
pipelines were run each with a population size of 100, representing
different detector design configurations. At each iteration, Al updated
the population. The total computing budget for an individual pipeline
amounted to approximately 10k CPU-core hours. This number depends
on the dimensionality of the problem. Larger populations may need to
be simulated to cope with the increased complexity in order to improve
the accuracy of the approximated Pareto front. Different Al-based
strategies will be compared.

Activities are planned to continue the detector optimization: new
optimization pipelines can deal with a larger parameter space to in-
clude a system of sub-detectors or to combine tracking and PID in the

13 Work is in progress to efficiently distribute the optimization pipeline to
multiple nodes.
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optimization process. We also plan to optimize other sub-detectors like,
e.g., the dRICH, leveraging on the expertise internal to the ECCE col-
laboration regarding specifically the design of the dRICH with Al-based
techniques [11]. As a future activity we aim to encode physics-driven
objectives in the MOO problem. A thorough comparison of results
obtained with different Al-based strategies (e.g., MOO based on genetic
algorithms or Bayesian approaches) can be also studied.

We anticipate for 2022 roughly 1M CPU-core hours for these activ-
ities.

6. Summary

Large scale experiments in high energy nuclear physics entail un-
precedented computational challenges and the optimization of their
complex detector systems can benefit from Al-based strategies [6].

In this paper we described the successful implementation of a multi-
objective optimization approach to steer the multidimensional design
of the ECCE tracking system, taking into account the constraints from
the global detector design. This work was accomplished during the EIC
detector proposal, and was characterized by a continued optimization
process where multiple optimization pipelines integrating different
configurations of sub-detectors were compared using full Geant4 sim-
ulations. The insights provided by Al in such a multi-dimensional
objective space characterizing the detector performance (e.g., tracking
efficiency, momentum and angular resolutions), combined to other
aspects like risk mitigation and costs reduction, helped selecting the
candidate technology of the ECCE tracker. This approach is being used
in an ongoing R&D project where the design parametrization has been
extended to include the support structure of the tracking system.

The design optimization can be also extended to tune the param-
eters of a larger system of sub-detectors. Physics analyses are at the
moment done after the optimization for a given detector design solution
candidate, but they can be encoded during the optimization process
as physics-driven objectives in addition to objectives representing the
detector performance.

Detector optimization with Al is anticipated to continue after the
detector proposal, and activities are planned to further optimize the
tracking system, including PID sub-detectors, particularly the dual-
RICH [11].
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Appendix A. Details on parametrization

Tracking system parametrization

Vertex layers. There are three vertex barrel layers in the ECCE tracking
system made of MAPS technology. The vertex cylinder consists of strips
which are made of pixels, where the individual sensor unit cell size is
17.8 mm x 30.0 mm. The length of the vertex layers is fixed at 27 cm;
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the radii of the three vertex layers are fixed to 3.4, 5.67, 7.93 cm,
respectively. For the non-projective design, the angle of the support
structure with respect to the interaction point is fixed (6 = 36.5°) and
the radius of the support is at 6.3 cm, while the length of it is 17 cm. For
the projective design, the radius of the support structure is the same,
while the length is calculated based on the angle of projection and the
radius as shown in Fig. A.12.

Sagitta layers. There are two sagitta barrel layers in the ECCE tracking
system. The sagitta barrel layers are made of MAPS technology and
have fixed length of 54 cm. For the non-projective design the radii of
the sagitta layers are 21.0, 22.68 cm, respectively. For the projective
parametrization, the radius of the sagitta barrel is calculated such that
there are no gaps in the acceptance of the region enclosed by the
barrels, according to the following equation: r,;,, = I”g% tan 6.

The radius of the sagitta layers is also constrained since the strips
have fixed width w = 17.8 mm; therefore we want to minimize the

quantity:
min { } R

where |x| represents the ceiling of x.

2

sagitta ”rsagitm
-1 I
w

2xr

uRwell layers. In the ECCE tracking system there are three cylindrical
uRwell layers, each endowed with a support ring. An extended sup-
porting plateau is included at either ends of the pRwell to rest the
entire cylindrical detector on this platform. This results in a constant
shift of the support cone by the plateau length (5 cm) as shown in
Fig. A.12. For both the non-projective design and the projective design
the yRwell-1 radius is a free parameter. The length of the yRwell-1 is
calculated based on the angle of the conical support structure. In the
non-projective design we have the conical support structure angle fixed
(6 = 36.5°), therefore the length of yuRwell-1 depends only on its radius;
uRwell-2 has its radius as a free parameter; since the angle of the
conical support structure is fixed the length of yRwell-2 depends on its
radius. In the projective design instead the uRwell-2 has a fixed radius
of 51 cm (i.e. , r,,+ 1 cm). The length of the yRwell-2 is calculated
based on the angle of the conical support structure. The length of the
uRwell takes into account the constant shift due to the plateau. The
dimensions of yRwell-3 are fixed in both non-projective and projective
designs; the yRwell-3 is outside of the inner tracking system and it has
radius of 77 cm and a total length is 290 cm.

EST/FST disks. For both the non-projective and projective designs,
R,,;, of the disks must be compatible with the beam pipe envelope
which increases in radius as a function of z; R, of the disks is
parametrized to be compatible with the support cone structure shown
in Fig. A.12 which has an angle 6 that is variable in the projective
design and fixed in the non-projective case. For the non-projective
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Fig. B.13. Momentum resolution for the ECCE tracker reference design and the projective design (ongoing R&D): The Ap/p are extracted with single-Gaussian (SG) fits
(circles) to be consistent with the YR PWG and compared to double-Gaussian (DG) fits (triangles). DG (see Eq. (3)) is used in the Al-assisted pipelines as it provides more stable
fits. DG results are systematically larger than the SG ones as they capture more realistic distributions (see Fig. 6). This effect is larger in 1 < || < 1.5 for the non-projective design
(blue points) since more material is traversed by the tracks; the same effect is moderately present also in 0.5 < |5| < 1 for the same reason. In the same bins, the ongoing R&D
design shows a significant reduction of the impact of the readout and services and SG (red circle) and DG (red triangles) are close to each other. DG points are systematically large
in 3<n<3.5 and in —-3.5 <75 < 3.0, and this corresponds to edge effects at large |»| values close to the inner radii of the disks in the endcaps. In the region —1 < # < 3.0 4p/p is
consistent with the YR physics requirements with SG. Note that physics in the backward region relies on the EM calorimeter also, and in the proposal it has been demonstrated

that larger resolutions are acceptable.
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Fig. B.14. Angular resolution (d6) for ECCE projective geometry and ECCE simulation: The resolution shows an improvement in the transition region between 1.0 < |5| < 1.5.

These plots have been produced using double-Gaussian fits.

design, the z positions of the disks were all free parameters in the
first optimization pipelines. However, to maximize the hit efficiency,
some disks have been eventually placed within the support cone at
the beginning of every plateau (Fig. A.12 with fixed angle 6 = 36.5°).
Therefore, two disks in the electron-going direction and two disks in the
hadron-going direction are not free to vary in z. For instance, consider
Fig. 5 (right), where EST3, EST4, FST3, FST4 are placed at the begin
of the plateau, whereas the disks EST1, EST2, FST1, FST2, FST5 are
free to vary in z position. The same parametrization is extended to the
projective design and made compatible with a varying conical support
structure.

As the disks are tiled up using MAPS pixels, the difference between
R,,;, and R, is constrained to optimize the sensor coverage for all
disks; this is implemented by means of two functions, namely:

all disks i
Rout

B R:'n _ LR:mt

d

- R,
d

I ¢

i

11

where d = 17.8, and 30.0 mm. This limits the amount of violation made
by a design solution.

TOF system. The central barrel TOF (CTTL) is an AC-LGAD based TOF
detector with a fixed radius of 64 cm and a fixed length of 280 cm.
The TOFs at the electron-going endcap (ETTL) and the hadron-going
endcap (FTLL) are AC-LGAD-based TOF disks. For the non-projective
design the TOF detectors have fixed dimensions. For the projective
design the TOF detectors in the end cap regions have their z positions
as free parameters. R;, and R, of the ETTL/FTTL disks depends on the
position of the disk z. The R;, of the disk should be compatible with
the radius of the beam envelope which increases linearly as a function
of z; R,,, of the disks varies as a function of z such that the acceptance
coverage by the ETTL/FTTL is roughly unaltered.

PID detectors. The Detection for Internally Reflected Cherenkov light
(DIRC) is a detector for PID in the barrel region. DIRC system has
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Fig. B.16. Angular resolution (d¢) for ECCE projective geometry and ECCE simulation: The resolution shows an improvement in the transition region between 1.0 < |5| < 1.5.

These plots have been produced using double-Gaussian fits.

fixed dimensions and occupies a radial space from 71.5 cm to 76.6 cm.
The modular RICH (mRICH) is a Ring Imaging Cherenkov detector
system in the e-going direction with fixed dimensions. mRICH has a
z position starting at —135cm extending in z to —161cm. The dual
Radiator Imaging CHerenkov (dRICH) detector is a detector system in
the forward direction with fixed dimensions. dRICH has a z position
starting at 180 cm and extends up to 280 cm.

The thickness of the detectors and support structures are also
taken into account to avoid overlaps between the detectors. The most
recent optimization pipelines were extended to also include in the
parametrization the outer tracking layers in the two endcaps, as ex-
plained in Section 4.1. An overlap check is performed each time a new
design point is evaluated during the optimization process.

Support structure parametrization

The implementation of the projective geometry of the inner tracker
is described in Fig. A.12, which shows the parametrization used for the
support cone structure of the inner tracker. Some parameters have been
considered fixed and other free to vary within their ranges. Parame-
ters that are fixed typically do not have much room for optimization

12

considering the constraints of the design and potential overlaps. The
non-projective design can be realized by fixing the support structure
angle to (0 = 36.5°) shown in A.12. Therefore, the non-projective
design solutions are a subset of solutions that can be achieved by this
parametrization.

Appendix B. Baseline and r&d designs

Resolutions and efficiency

A thorough comparison between the non-projective ECCE simula-
tion and the ongoing R&D was carried out to optimize the support
structure through a projective design. Fig. B.13 shows a study of the
obtained momentum resolution in bins of pseudorapidity. Similarly
Fig. B.14 shows the angular resolution while Fig. B.15 shows the
Kalman filter efficiency as defined in Eq. (5).

Validation

Validation is performed by looking at figures of merit that are
not used during the optimization process. In Section 4.3 we already
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Fig. B.18. Comparison between non-projective and projective inner tracker: a comparison in momentum resolution as a function of the pseudorapidity # between the non-projective
and the projective designs in three bins of momentum. The projective design concentrates the material in a smaller dead area resulting in better resolution on a wider range of
the pseudorapidity.

described a physics analysis with SIDIS events that further consolidates [6]
our conclusions. We show here additional examples of validation:
Fig. B.16 and Fig. B.17 display the azimuthal angular resolution and the (7]
reconstruction efficiency obtained for both the non-projective and the
projective tracker designs. The azimuthal resolution looks consistent (8]
within the uncertainty while the reconstruction efficiency looks in
general better for the projective design, particularly in the 1 < || <
1.5 region where the non-projective design has a larger dead area that [91
affects the reconstruction of tracks.
A comparison between the non-projective and projective designs of
the inner tracker is also shown in Fig. B.18, where the projective design (10]
concentrates the material in a smaller dead area resulting in better 1]
resolution on a wider range of the pseudorapidity.
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