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ABSTRACT: Machine learning is increasingly applied to improve
the efficiency and accuracy of molecular dynamics (MD) simulations.
Although the growth of distributed computer clusters has allowed
researchers to obtain higher amounts of data, unbiased MD
simulations have difficulty sampling rare states, even under massively
parallel adaptive sampling schemes. To address this issue, several
algorithms inspired by reinforcement learning (RL) have arisen to
promote exploration of the slow collective variables (CVs) of complex
systems. Nonetheless, most of these algorithms are not well-suited to
leverage the information gained by simultaneously sampling a system
from different initial states (e.g., a protein in different conformations
associated with distinct functional states). To fill this gap, we propose
two algorithms inspired by multiagent RL that extend the
functionality of closely related techniques (REAP and TSLC) to situations where the sampling can be accelerated by learning
from different regions of the energy landscape through coordinated agents. Essentially, the algorithms work by remembering which
agent discovered each conformation and sharing this information with others at the action-space discretization step. A stakes function
is introduced to modulate how different agents sense rewards from discovered states of the system. The consequences are three-fold:
(i) agents learn to prioritize CVs using only relevant data, (ii) redundant exploration is reduced, and (iii) agents that obtain higher
stakes are assigned more actions. We compare our algorithm with other adaptive sampling techniques (least counts, REAP, TSLC,
and AdaptiveBandit) to show and rationalize the gain in performance.

1. INTRODUCTION
Molecular dynamics (MD) simulations are a well-established
computational method in chemistry, condensed matter
physics, materials science, and biology. They are useful to
probe properties of atomic-scale systems at time scales and
levels of resolution rarely accessible by experimental
techniques.1 Despite the significant improvements in the
performance of hardware and software utilized to run MD
simulations, sampling conformational changes in large systems
remains challenging in common practice.2 This is due to the
onerous computational cost of running MD simulations. In
biological applications, most modern studies are restricted to
sampling systems for a few microseconds only. However,
cellular processes of interest occur at slower time scales, such
as protein folding,3 activation of signaling proteins,4,5 transport
across transmembrane proteins,6−8 and ligand binding.9,10

To alleviate this problem, numerous enhanced sampling
methods have been proposed.11 The shared goal of these
techniques is to reduce the required run time to obtain
adequate sampling of the system at hand. Nonetheless,
different techniques are usually developed with different
applications in mind, and thus the best choice of method
may vary depending on the goal of a study. Enhanced sampling
methods can be roughly divided into two categories depending

on their requirement of collective variables (CVs). CVs are
functions of one or more degrees of freedom of the system and
they are useful because they can describe state transitions in a
reduced dimensional space.12 Methods that require the user to
define appropriate CVs use this information to bias the
sampling along these coordinates to accelerate the exploration
of states of interest. A subset of this class of methods (e.g.,
metadynamics, umbrella sampling) achieves this by biasing the
underlying potential along the CVs.13,14 A different subset of
CV-based methods, which are the focus of this study,
statistically bias the sampling along user-defined coordinates
or bins by adaptively selecting new simulation starting points
(e.g., least counts adaptive sampling, weighted ensemble
MD).15−17 These methods are particularly well-suited to
exploit the power of large clusters through parallel
simulations.2,17,18 It must be noted that some adaptive
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sampling methods are not dependent on reaction coordi-
nates.19,20 The second class of enhanced sampling methods
alter the system’s Hamiltonian to enhance exploration across
all degrees of freedom (e.g., accelerated MD, REMD-SSA).21,22

Since MD simulations typically seek to explore relevant
regions of the system’s phase space, a natural trade off that
often occurs is termed the exploration-exploitation dilemma.23

The dilemma is whether we should devote computational
resources to sample already explored areas of the phase space
to improve the estimate of a metric of interest (e.g., the free
energy of a protein’s metastable state) or explore new areas of
the space to find new relevant regions (e.g., a rare state
transition). Diverse forms of this dilemma occur in many areas
of science and have been addressed particularly by a branch of
machine learning (ML) denominated reinforcement learning
(RL).24 In RL, the optimization problem is formulated in
terms of reward maximization rather than loss minimization.25

Developments in ML methods have informed the workflows
used by MD simulation practitioners. ML-based techniques are
now used to both conduct MD simulations and analyze the
resulting data.26,27 In this way, several enhanced sampling
techniques based on RL principles or algorithms have arisen
(e.g., FAST,23 REAP,28 TSMD,29 AdaptiveBandit,30 and
TALOS31).
Since the thermodynamic ensembles sampled by MD

simulations usually follow a Boltzmann distribution, the
probability of sampling a state decays exponentially with its

energy. For this reason, exploration of the rare transitions is
often more computationally challenging than the sampling of
known metastable states. Therefore, RL-based enhanced
sampling methods tend to focus on encouraging the
exploration of the energy landscape under the assumption
that researchers can later extend sampling of discovered states
to reduce the uncertainty of their measurements.
RL-based adaptive sampling (REAP) is a technique that

enhances the exploration of the energy landscape along user-
defined CVs. Unlike other similar techniques, it utilizes a
reward function where each CV is weighted based on
knowledge from the data collected so far. These weights are
iteratively updated, so that the user can interpret which CV is
more relevant at a given point of the simulation. In general, the
REAP algorithm can be summarized as follows: A set of MD
trajectories is first clustered to discretize and reduce the size of
the set of conformations from which new simulations can be
run (action space discretization). Clusters with the lowest
number of members are selected as candidates. Then, the
weights of the CVs are updated such that the cumulative
rewards from the candidates are maximized. Finally, new
simulations are spawned from the conformations with highest
rewards. This cycle is repeated until the system reaches a
desired final state.28

REAP was intended to explore free energy landscapes where
a few orthogonal CVs can describe the relevant transitions.
Biologically relevant examples of such landscapes include

Figure 1. Diagrams showing the different behavior of adaptive sampling algorithms in a hypothetical landscape. The red and green X’s mark the
starting structures for the sampling. The states are divided by a grid, rather than clusters. Green grid cells represent states that would be rewarding
for each algorithm. The star in (c) represents the approximate location of the mean of the data distribution. (a) LC selects restarting states that
contain the fewest observed frames. (b) FAST employs a binomial reward function that biases the choice of restarting states toward the states with
maximum (or minimum) values of a single CV. The undirected term favors exploration by rewarding states with low frame counts. (c) REAP
assigns rewards based on the distance of conformations to the average of the population. If sampling is started in two different states, pooling all the
data together may result in a reward function that only favors conformations that exhibit extreme values of the CVs, rather than conformations that
approach a rare or intermediate state. (d) Multiagent REAP incorporates multiple agents that compartmentalize their data, allowing them to
independently sample along high-variance CVs and sharing data only when in proximity to another agent’s discovered states.
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kinase activation,4,32,33 transmembrane transport,34 and
protein folding.3 In those cases, the system has to diffuse
across orthogonal CVs to reach the final state. Here, REAP can
effectively “push” the system from one state to another by
learning which CV must be prioritized.28

However, the functionality of REAP is limited by the
assumption that new regions of the landscape will tend to show
new extrema along the prioritized CVs. A simple example
where such an assumption is violated is when MD practitioners
start sampling a system from different states. For example, a
transporter may be studied via MD simulations through
parallel runs from its inward facing and outward facing states.
The REAP algorithm would not be suitable in this situation
because it preferentially selects conformations that show
extreme values of the CVs. However, it is possible that
unexplored regions of the conformational landscape that are
crucial for the transition between states are contained within
the range of the CVs (Figure 1c). In such cases, even the
simpler least counts (LC) sampling scheme might show better
performance at capturing this transition (Figure 1a).16,35

Moreover, we can imagine a case where a researcher starts
independent simulations from different states of a system but
does not combine the resulting data until sampling is deemed
appropriate. In this case, the risk is that regions of the
landscape that were already discovered are redundantly
sampled, thus wasting computational resources.
In order to provide a sampling scheme that incorporates the

benefits of REAP and is better suited to simultaneously harness
data from different regions of a free energy landscape, we
turned to multiagent reinforcement learning (MARL) to
develop multiagent (MA) REAP. For the remainder of the
paper, the terms REAP and single-agent (SA) REAP will be
used interchangeably and in contrast to the multiagent
implementation. An agent is defined as a learning system
that must find an optimal function (the policy) to map agent
states (e.g., set of discovered conformations) into actions (e.g.,
which conformations to use to launch new trajectories). In
most MD literature drawing on MARL terminology, there is a
tendency to equate an agent with a single trajectory (multiple
walker metadynamics,36 TALOS31). However, such corre-
spondence is not theoretically required, and in this study we
think of an agent as a mathematical model that manages a set
of simulations on behalf of the researcher.
In comparison to the baseline REAP algorithm, the value

added by this multiagent formulation comes from two features
that were absent in the single-agent implementation: data
compartmentalization and information sharing. Data compart-
mentalization arises from the fact that conformations are
labeled and utilized by the agent who discovers them, so each
agent learns the parameters to compute the rewards from
different data points. This is done with the intention to
constrain what information will be used to score the
conformations in a region of the landscape. Moreover, the
agents share information at the action-space discretization step
to signal to others what conformations should be deprioritized
based on the structures they have already observed.
The idea of utilizing prior known states of a system to

accelerate MD simulations has been explored in the past. For
instance, FAST and TSMD use scoring functions that can be
set to the RMSD between the current conformation and the
desired final state to guide simulations. Nonetheless, the goal
of multiagent REAP is not to observe transitions between
predetermined conformations; if two agents start exploring a

landscape from different initial states, their exploration
efficiency may improve by interacting with each other to
avoid resampling observed regions, but no assumptions are
made about the new states that may be discovered.
Tangent space least adaptive clustering (TSLC) is an

algorithm tightly related to REAP but whose clustering and
reward schemes are better suited to handle nonlinear CVs.37

Given that this algorithm belongs to the family of adaptive
sampling regimes that perform a discretization of the action
space, our multiagent formulation can be easily extended to
this algorithm. To show the flexibility of the main idea behind
our multiagent formulation, we also introduce a multiagent
version of TSLC (multiagent TSLC) and compare it against its
single-agent baseline.
The rest of this paper is organized as follows: The Methods

section describes the modified versions of REAP and TSLC.
Then, performance comparisons are made on artificial toy
potentials to illustrate the behavior of the multiagent
algorithms. Following, a comparison between multiagent
REAP and AdaptiveBandit is done using MD simulations of
alanine dipeptide. Lastly, we compare the original and
multiagent REAP algorithms on realistic systems (Src kinase,4

OsSWEET2b38) using kinetic Monte Carlo (KMC) sampling
based on data from previous studies. We found that in all cases,
the multiagent algorithms were able to more quickly explore
the free energy landscape compared to their single-agent
counterparts and AdaptiveBandit.

2. METHODS
2.1. Multiagent REAP Algorithm. Algorithm 1 shows the

outline for multiagent REAP. Since this method shares most of

its logic with the original REAP algorithm,28 we will focus on
describing the changes in the multiagent formulation.
The first notion to discuss is the definition of an agent. In

general, an agent is an object that can collect observations from
an environment. Based on its observations, the agent falls into
a specific state from a potentially infinite state set. The policy
function will then map the agent’s state into the next set of
actions. The environment will return new observations
dependent on the actions taken. To guide the behavior of
the agent, a reward function is defined such that it dictates the
development of the agent’s policy.25 Namely, the policy will
select actions that optimize the current or future rewards.
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For multiagent REAP, the definitions of environment, state,
and action remain unchanged in comparison to the original
REAP algorithm. The environment is usually the Hamiltonian
of a many-body system. An important feature of such a
Hamiltonian is that its free energy landscape lies near a low-
dimensional manifold. This low-dimensional space is spanned
by a set of CVs. Each REAP agent can rank user-given CVs to
prioritize a direction of exploration, but no new variables can
be discovered. The agents can make observations by sampling
a thermodynamic ensemble of the system using standard MD
methods. The state of an agent is defined as the set of
conformations that the agent has discovered. An action is
defined as a conformation from which the agent can launch an
MD trajectory.
The reward function of multiagent REAP differs from that of

the original implementation. To explain the difference between
the single- and multiagent reward functions, we introduce the
concept of an agent’s stake in an action. REAP relies on a
clustering step where the action space is reduced and
discretized. In other words, the large amount of possible
conformations from which to launch new simulations is
reduced to a relatively small number of representative clusters.
Usually, the centroids of the clusters conform the reduced
action space. In multiagent REAP, the data from all agents are
pooled together during action-space discretization (step 5 in
Algorithm 1), so agents are effectively sharing information.
Moreover, each agent possesses a “stake” in each cluster. The
stake sa

q that agent a has on action q is computed as a function
of the number of conformations discovered by agent a
classified into the cluster corresponding to action q . A simple
example of a stake function is one that returns the fraction of
frames in the cluster of action q that belong to agent a. We
propose other alternatives (see eqs 3−6), but note that the
choice among these functions does not dramatically alter the
results (see Supporting results). Stakes are intended to fulfill
the condition =s 1a a

q for any action q . In essence,
multiagent REAP uses each agent’s stake to weight the reward
that it feels from a given cluster. Since the REAP algorithm is
intended to encourage exploration, the reward is proportional
to the standardized Euclidean distance between the action and
the mean of the discovered conformations in CV space.
Although the use of different distance functions is possible, this
metric is retained by our multiagent formulation.
The single-agent reward function is defined as

=
| |

r w q w
q

( , )K

i

K

i
i i

i
single

(1)

where K is the number of CVs, wi is the weight assigned to CV
i, q is a cluster center (in CV space), is the mean of all the
discovered conformations, and is the standard deviation.
Building from eq 1, the reward an agent assigns to an action is
simply expressed as
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q
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where sa
q is the stake that agent a has on cluster center q , wa are

agent’s a weights, and a and a are the mean and standard
deviation of all the conformations discovered by agent a. The
stake is computed using a function . The proposed forms of
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where the length of fq is the number of agents and each entry

contains the number of frames classified as action q that each
agent discovered, I is the indicator function, κ is a tunable
parameter, and is a normalization factor. In simple terms,

fraction returns the fraction of conformations that agent a
possesses in action q , max assigns a stake of 1 to the agent with
the largest number of conformations in the action (and 0 to
the rest), equal assigns equal stakes to all agents with at least
one frame in the cluster, and logistic provides the option of a
tunable function that can produce intermediate behaviors
according to the value of κ (for large κ, it approximates max
and for small κ, it approximates equal).
Once the agents’ stakes have been assigned, the CV weights

are updated by optimizing the reward. It is important to
highlight that the agents only share information during action-
space discretization. For this reason, all other parameters
remain constant when updating the weights. Since the reward
function only depends on the weights from the given agent, we
can carry out agent-wise optimization at step 8 of Algorithm 1.

affects the reward optimization by determining how much
weight each cluster will carry according to the relative
representation of each agent. Employing max would result in
agents only optimizing the reward with respect to the clusters
where they are highly represented, whereas utilizing equal

would allow the agents to equally weight all the clusters they
have observed at least once. fraction results in the clusters being
weighted in direct proportion to the representation of the
agent in the cluster. Results of logistic will depend on the value
of κ. For a comparison among these functions, see the
Supporting Information results. fraction was used in all the tests
unless otherwise noted.
In regards to the policy followed to choose the actions, the

single-agent implementation simply selects the top M actions
when ranked by their reward. However, the multiagent
implementation must deal with the nontrivial question about
how to combine the rewards from different agents. We propose
three ways in which the actions can be selected. The proposed
schemes to combine the rewards are

=q r w q( ) ( , )
a

a
K

acollaborative
(7)

=q r w q( ) max ( , )
a

a
K

anoncollaborative (8)
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=q q q( ) 2 ( ) ( )competitive noncollaborative collaborative (9)

In eq 7, the rewards from all agents are added together. In
the RL literature, such schemes where rewards are added to
select the most optimal global actions are termed collaborative
regimes.39 On the other hand, eq 8 sets the reward of the
action as the maximum reward assigned by a single agent. We
term this regime noncollaborative. Finally, we proposed a
competitive regime where the global reward of an action is the
maximum reward set by an agent minus the reward assigned by
all others. Intuitively, the exploration of a free energy landscape
can be framed as a collaborative task; if an action is deemed to
be highly rewarding by all agents, then it should be selected.
We cannot discard the (albeit counterintuitive) possibility that
a competitive regime may lead to better performance in
settings where actions that are deemed rewarding by multiple
agents should be discouraged. Nonetheless, we did not detect a
significant difference between reward combination regimes in
our tests (see Results and Discussion section).
The new data generated after selecting action q are assigned

to the agent that possesses the highest stake in that action. In
other words, the agent whose stake is maximal for a selected
action is the one that “executes” it. A consequence of this
decision is that the agents that are the most “proficient” at
exploring the landscape will continue receiving higher rewards
and executing new actions. Therefore, computational resources
are distributed unequally across agents.
2.2. Multiagent TSLC Algorithm. The multiagent REAP

algorithm shows improved performance in systems with linear
and orthogonal CVs (see Results and Discussion section).
However, when the relevant CVs that describe the slow
dynamics of the system are not linear, a different method to
derive the weights may be better suited. Tangent space least
adaptive clustering (TSLC) was introduced as an extension of
REAP precisely to handle these cases.37 However, despite its
ability to capture nonlinear CVs, TSLC shows limitations
similar to those of single-agent REAP, and for this reason we
introduce Algorithm 2. This extension of TSLC is analogous to
that presented in Algorithm 1 for REAP.

TSLC utilizes a distinct clustering function termed
Clust.37 The clustering of the data is independent of
which agent discovered each conformation (i.e., the data is
shared among agents during this step as in multiagent REAP).
The distribution parameters that the agents use to obtain their
rewards are replaced by a matrix Aa that is computed in the
same way as in Buenfil et al.,37 except for the fact that the stake
modulates how the cluster is weighted by the agent (step 10 in
Algorithm 2). The matrix Aa is constructed by first
approximating the local tangent space of each cluster (using
PCA, step 7), finding the gradients of the CVs at each cluster
center (step 8), and then adding the contribution of each
cluster in step 10. In step 11, we find the linear combination of
the gradients of the CVs that maximize the projection onto the
tangent spaces. This maximization is expressed as an
eigenvalue problem, and the final weights are the squared
entries of the eigenvector associated with the largest
eigenvalue. The last steps are identical to those in Algorithm
1, noting that the values r w q( , )K

a p are computed to select the
actions but not to optimize the CV weights.

3. RESULTS AND DISCUSSION
3.1. Cross Potentials. We begin by showing the behavior

of multiagent REAP in two idealized potentials where a single
particle diffuses following a Langevin dynamic.28 These
examples represent “adversarial” landscapes for single agent
REAP because they showcase its shortcomings in comparison
to the multiagent implementation. LC runs were also
performed and are used as baselines to compare the
algorithms. Details of the simulations are described in
Supporting Information methods.
Figure 2 shows the results of comparing the algorithms in a

symmetric cross potential. The potential is shaped like a cross;
diffusion along the x variable is more relevant for the
exploration of the horizontal arms, while the y variable is
more relevant for the exploration of the vertical arms. The
agents are initially placed on the horizontal arms (see Figure
2a). Figure 2c shows the difference in area explored (defined as
difference in normalized number of grid points discovered)
between multiagent REAP and LC. The difference between
single agent REAP and LC is also plotted. The error bars show
the 95% confidence intervals after 500 repetitions of the
simulations. There are statistically significant differences
among all methods, while multiagent REAP is able to explore
a larger area compared to LC, the single-agent implementation
performs worse after roughly 10 epochs. The curves show that
around epoch 10, multiagent REAP reaches the maximum
difference in area explored with respect to LC (approximately
10%) and after that both methods start to converge (as
expected for long enough simulation times). However, the
single agent REAP implementation continuously selects
actions at the edge of the horizontal arms (Figure 2b),
which results on the lack of exploration of the vertical arms. On
the other hand, the snapshot of the multiagent REAP run
shows that the agent starting on the left arm reached the
extremes of the vertical arms (and therefore, the other agent
does not have the need to launch trajectories in those areas).
One may argue that a user of the original REAP algorithm

would simply start two independent REAP runs that do not
share any information at each starting conformation (i.e.,
incommunicado agents), so that exploration would not become
hampered by the greedy selection of actions at the extremes of
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the x variable. But in this case, the agents redundantly explore
the same areas of the landscape (see Figure 2d), thus wasting
computational resources.
Employing different reward combination regimes did not

yield differences (see Figure S2).
Figure 3 shows the comparison results on an asymmetric

cross potential. This potential is similar to the symmetric one,
but the minimum at the left extreme of the horizontal arm is
deeper than the one on the right. The initial positions of the
agents are set to the extremes of the horizontal arms. In this
comparison, it is noticeable once again that the multiagent
REAP algorithm is more efficient at exploring the landscape
than the LC adaptive sampling scheme (Figure 3c), while the
single agent REAP implementation suffers from similar
nonoptimal behavior as in the previous example. However, in
this case, the reason for this difference in performance stems
from the ability of multiagent REAP to allocate more actions to
agents that discover new states and earn higher rewards. As the
snapshots in Figure 3b show, the agent starting at the right arm
is better-poised to explore the landscape in comparison to the
left agent, which starts in a deep free energy minimum (e.g., a
kinetic trap or absorbing state). Given that the agent starting
on the right explores a wider area, it possesses all the stakes in
the newly discovered sates, it receives higher rewards, and it is
assigned more actions as the run continues (Figure 3d).
In summary, our multiagent implementation retains the

ability of REAP to sample landscapes where there is a clear

advantage to preferentially sample along a relevant variable.
This is demonstrated by the higher exploration area of
multiagent REAP when compared to LC adaptive sampling.
Moreover, our algorithm addresses the shortcomings that
single agent REAP presented when attempting to utilize
information from distinct regions of the landscape simulta-
neously. This is evidenced by the ability of multiagent REAP to
compartmentalize information (the agents only learn from data
that comes from their explored region), reduce redundant
sampling (area overlap between agents is diminished in
comparison to independent agents), and distribute the
workload unequally (the agent that explores more is assigned
more actions).

3.2. Alanine Dipeptide. In this section, we simulate
alanine dipeptide, a usual example of an all-atom system
typically employed to compare MD simulation methods. We
compare the performance of multiagent REAP against
continuous MD and another adaptive sampling regime based
on the classical multiarmed bandit algorithm (AdaptiveBan-
dit).30 For details on the simulations, see the Supporting
Information methods.
Figure 4 shows the results of the comparison among the

three simulation methods. The CVs used for exploration were
the ϕ and ψ dihedral angles (for both multiagent REAP and
AdaptiveBandit). We observed that, for a total simulation time
of 16 ns, multiagent REAP was able to reach and thoroughly
explore the state with ϕ > 0 (Figure 4, bottom panels). This

Figure 2. Results on the symmetric cross potential. (a) Plot of the free energy landscape. The white and pink stars mark the initial positions of the
agents (both positions are observed by the unique agent in single agent REAP). (b) Snapshots of the trajectories generated by single agent REAP
(left) and multiagent REAP (right) after a full run. Trajectories are colored according to the agent who executed the simulation. Black dots indicate
the last set of selected actions. (c) Comparison of normalized area explored. The blue and orange curves show the differences (mean ±95%
confidence interval) between the areas explored by multiagent REAP or single agent REAP and LC. (d) Comparison in overlap area between
agents. Overlap is defined as the fraction of grid points that both agents have observed over the total number of explored grid points. The curve
shows the difference (mean ±95% confidence interval) between multiagent REAP and two incommunicado agents.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00683
J. Chem. Theory Comput. 2022, 18, 5422−5434

5427

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00683/suppl_file/ct2c00683_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00683/suppl_file/ct2c00683_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00683/suppl_file/ct2c00683_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00683?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00683?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00683?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00683?fig=fig2&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


state was not reached by a continuous MD simulation of the
same length (Figure 4, top panels). Although AdaptiveBandit
sampled a low number of frames in this state, the algorithm did
not readily select such structures to restart simulations (Figure
4 middle panels). The result was a largely unexplored area of
the landscape.
The result is likely due to the fact that the reward function

for AdaptiveBandit balances the exploration of new regions of
the landscape with the exploitation of known metastable states,
as reflected by its binomial reward function.30 In this case, the
presence of highly stable states with ϕ < 0 favors the
exploitation of the well-characterized actions over the
exploration of the states with uncertain rewards. Since
AdaptiveBandit is grounded on the basis of the upper
confidence bound (UCB1) algorithm, this sampling scheme
presumably obeys the optimal theoretical bound on its regret
Lt, kT L( log )t .

30 However, optimally bounding this definition
of regret is not necessarily the reason an adaptive sampling
technique is utilized. Given that the reward function from
AdaptiveBandit is defined as the expected value of the negative
free energy, actions that do not achieve the absolute free
energy minimum (i.e., the optimal action) will be assigned
lower action values. Nonetheless, MD practitioners often
desire to enhance the sampling of rare transitions, excited
states, or off-equilibrium processes which are associated with
high energies. Therefore, it is favorable for a wide variety of

applications to sacrifice the theoretical upper boundary on the
regret to accelerate the sampling of such high-energy states.
A user of multiagent REAP would hypothetically harness the

ability of our algorithm to quickly explore the landscape of the
system to later execute an “exploitation” step, where longer,
continuous simulations are launched from the observed states
to improve the sampling statistics. Similar workflows have been
employed in studies such as Zimmerman et al.2

We can also observe that the probability density distribution
along the ϕ CV in both AdaptiveBandit and multiagent REAP
deviates from the equilibrium value (computed from three 250
ns continuous MD simulations retrieved from mdshare).40,41

Nonetheless, after employing an adaptive sampling scheme, the
probability density of an observable would be reweighted
through a Markov state model (MSM) to eliminate the
statistical bias caused by the repeated restart of simulations
from selected states.42

3.3. Src Kinase. In this section, we compare the
performance of single agent REAP and multiagent REAP
employing Src kinase, a realistic system involved in critical
signaling pathways whose malfunction is associated with
cancer.43 We utilize a previously constructed MSM4 to carry
out KMC simulations. For details about the simulations, see
Supporting Information methods. The discovery of inter-
mediate states in this system is particularly relevant because
they may exhibit allosteric sites that can be targeted by drug

Figure 3. Results on the asymmetric cross potential. (a) Plot of the free energy landscape. The white and pink stars mark the initial positions of the
agents (both positions are observed by the unique agent in single agent REAP). (b) Snapshots of the trajectories generated by single agent REAP
(left) and multiagent REAP (right) after a full run. Trajectories are colored according to the agent who executed the simulation. Black dots indicate
the last set of selected actions. In the multiagent snapshot, the agent that starts at the right arm explores most of the landscape because it is assigned
more actions. (c) Comparison of normalized area explored. The blue and orange curves show the differences (mean ±95% confidence interval)
between the areas explored by multiagent REAP or single agent REAP and LC. (d) Cumulative percentage of actions assigned to each agent after
the given epoch for the run plotted in part (b).
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design but that are absent in the active or inactive
conformations.4

Figure 5 shows the results of the KMC simulations.
Simulations were started from the active and inactive
conformations of the kinase (Figure 5a,b), mimicking the
initial information that a researcher would possess from
resolved crystal structures.44,45 The same initial states were
used for both the single and multiagent algorithms. The two
CVs that are utilized to project the MSM states are the RMSD
of the A-loop and the distance between K295 and E310.4

Figure 5c shows the difference in the number of states
discovered between multiagent REAP (blue curve) or single
agent REAP (orange curve) and LC adaptive sampling. Both
SA and multiagent REAP discover more intermediate states
than LC for the same simulation time, but multiagent REAP
outperforms single agent REAP until both methods converge
around 6 μs (all methods should converge for long enough
simulation times).
Figure 5d shows the distribution of number of states

explored (normalized to the maximum achieved) for the 500
trials after 2 μs. The vertical dashed lines show the means of
the distributions. We can observe that multiagent REAP
achieves a higher average performance than single agent REAP
and LC. Unsurprisingly, both single and multiagent REAP
improve upon the continuous MD run performance.
Unlike the results in Figures 2c and 3c, single agent REAP

performs better than LC (Figure 5c,d). There are two reasons
for this. First, the cross potentials were specifically crafted as
adversarial examples for single agent REAP, so it is expected
that the single-agent algorithm will perform particularly poorly.
Second, KMC simulations allow the system to change states

discretely rather than simulating Langevin diffusion. Therefore,
selecting actions that present extreme values of the CVs may
still result in transitions that uncover intermediate states,
avoiding continuously launching unproductive trajectories.
We can also observe that it takes roughly 1 μs for multiagent

REAP to display its full advantage with respect to other
methods (Figure 5c). This is likely due to the time it takes
agent 2 (initially in the active conformation) to learn
advantageous weights (Figure S5). For this agent, moving
along the K-E distance CV leads to the discovery of more
intermediate states. We observe that both agents contribute to
exploration by plotting the workload distribution (Figure S6).
In summary, we have shown that multiagent REAP discovers

intermediate states more efficiently compared to REAP and LC
in a KMC simulation of a realistic system.

3.4. OsSWEET2b. OsSWEET2b is a vacuolar glucose
transporter in rice.46,47 The study of this system is relevant to
the improvement of crop yields.48 Similarly to our Src kinase
comparison, we perform KMC on an MSM previously built on
the glucose-bound transporter.38 Unlike the previous example,
the landscape does not present the typical L-shape where
REAP is expected to carry a clear advantage.28 This is due to
the existence of hourglass-like intermediate states.38,49,50 We
start our simulations from the inward facing (IF) and outward
facing (OF) states (Figure 6a,b). The same initial states were
used for both the single and multiagent algorithms. Details of
the simulations are described in Supporting Information
methods.
As a consequence of the characteristics of this system, the

advantage of REAP and multiagent REAP compared to single
runs is less accentuated (Figure 6d). Nonetheless, both SA and

Figure 4. Alanine dipeptide simulation results. (Left panels) Probability density distribution along the ϕ dihedral angle for a single run (top),
AdaptiveBandit (middle), and multiagent REAP (bottom). Curves show mean ± standard error across replicates. (Right panels) Snapshots after a
total of 16 ns of MD simulation. The stars represent the starting configurations for the multiagent REAP agents and the AdaptiveBandit run. For
multiagent REAP (bottom), the frames obtained by different agents are colored differently. Multiagent REAP thoroughly explores the region
between the red dashed lines, while a continuous MD simulation and AdaptiveBandit fail to sample this area.
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multiagent REAP still show better performance than
continuous MD (defined as number of states discovered).
Single agent REAP performs worse or no better than LC after
approximately 1.5 μs, while multiagent REAP maintains a
modest advantage (Figure 6c).
Although multiagent REAP shows generally better perform-

ance than LC and its single-agent counterpart, it shows a small
disadvantage at t < 0.5 μs. Such initial setback can be attributed
to the time that it takes the agents to learn advantageous
weights to facilitate exploration (see Figure S7b). Namely,
agent 2 (which starts at the outward facing state) only starts
prioritizing state transitions along the cytoplasmic distance CV
after roughly 0.5 μs. Before that, the agent observes mostly
transitions along the periplasmic distance CV. Conversely,
agent 1 (initially at the inward facing state) only begins
prioritizing exploration along the periplasmic distance CV after
roughly 1 μs. Before that time, this agent observes mostly
transitions involving changes in the cytoplasmic distance CV.
On the other hand, the weights for the single agent (Figure
S7a) show a fluctuating behavior until t = 1.5 μs, after which
the periplasmic distance CV is prioritized. Rather than
improving the performance of the agent, these weights harm
its ability to explore new states as shown by the drop in
performance after 1.5 μs. This is likely due to the overselection
of actions at the extremes of the periplasmic distance variable,

which results in unproductive trajectories in a similar way to
what was shown in Figures 2 and 3.
In this section, we have shown that multiagent REAP is

more favorable compared to LC, even in energy landscapes
where we would not expect our algorithm to perform better.
Moreover, the multiagent implementation explored more
states than the original, single-agent one.

3.5. Toroidal Potential. In this section, we show that the
main idea behind the multiagent REAP algorithm can be
applied to other adaptive sampling schemes. More specifically,
we show that a multiagent version of TSLC explores a model
potential more efficiently than the original algorithm when we
allow for multiple starting points in a Langevin diffusion
simulation. For details about the simulation, see the
Supporting Information methods.
Unlike the idealized potentials from Figures 2a and 3a, the

potential in Figure 7a, termed toroidal or circular37 potential,
possesses a slow variable that cannot be expressed as a linear
combination of the particle coordinates. The appropriate CV is
the angle, θ = arctan(y/x) (with its quadrant-dependent sign),
but the weight derivation method employed in Algorithm 1
cannot consistently assign the highest weight to this variable.37

However, the weight derivation employed in Algorithm 2 is
better suited to learn the weights for this system thanks to its

Figure 5. KMC simulation results on Src kinase. (a) Projection of the MSM states on two collective variables (x-axis: RMSD of A-loop, y-axis:
distance between K295 and E310). The stars represent the starting conformations for the simulation. (b) Representative structures of the active
(A) and inactive (I) states. The A-loop is colored in red. K295 and E310 are labeled. (c) Performance difference between adaptive sampling
schemes. The y-axis corresponds to the difference in number of states discovered between MA or single agent REAP and LC. The plotted curve is
the mean ±95% confidence interval for 500 repeats. (d) Histogram of the normalized number of states discovered by single MD simulation runs,
LC, single agent REAP, and multiagent REAP after 2 μs of simulation. Normalization is with respect to the maximum number of discovered states.
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ability to capture global geometric information from locally
estimated tangent spaces.
Figure 7 shows the result of comparing the original TSLC

algorithm to the multiagent implementation when sampling is
started from two initial points, θ1 = 3/4π and θ2 = 1/4π (white
and pink stars in Figure 7a, respectively). After the single-agent
has explored enough of the circle to reach the supplementary
angle to either θ1 or θ2, TSLC falls into an unproductive loop
where actions that are either diametrically opposite in the
circle or maximally distant along the x- or y-coordinate keep
getting selected, even though they do not lead to further
exploration along the angle CV (Figure 7c, left). On the other
hand, multiagent TSLC continues selecting actions along the
unexplored edge of the circle (Figure 7c, right). Due to this
difference in behavior, we observe a clear difference in
performance between the two algorithms (Figure 7b). The
difference continues to increase as the number of epochs grows
because the single-agent implementation does not continue
exploring the circle after falling in the unproductive loop. The
multiagent formulation of TSLC preserves the ability to
estimate the CV weights like the original algorithm (Figure
S8). Employing different reward combination regimes did not
yield differences (see Figure S9).

4. CONCLUSION
In this study, we developed adversarial examples where REAP
performs worse than LC adaptive sampling and empirically
demonstrated that multiagent REAP overcomes the limitations
of its predecessor. Moreover, we showed that multiagent TSLC
explores an idealized energy potential more effectively than
TSLC. We additionally demonstrate the advantage of multi-
agent REAP in three test systems: alanine dipeptide, an Src
kinase, and the transporter OsSWEET2b. We provide evidence
to show that multiagent REAP more effectively samples the
rare state transitions of alanine dipeptide compared to
traditional MD simulations or AdaptiveBandit. For Src kinase
and OsSWEET2b, we demonstrate that multiagent REAP
explores more states than LC or single agent REAP for the
same simulation time. Interestingly, for all the cases we tested,
the combination regime for the rewards did not affect the
results (see Figures S2 and S9). However, there might be
landscapes for which the choice of reward combination regime
does affect the performance. Optimal selection of remains a
point of investigation.
The number of agents to be used in our algorithms is limited

by the number of known distinct states of the system that the
researcher can employ as initial coordinates. If those states are

Figure 6. KMC simulation results on OsSWEET2b MSM. (a) Projection of the MSM states on two collective variables: x-axis: periplasmic distance
(distance between residues D190 and R70) and y-axis: cytoplasmic distance (distance between F165 and F43). The stars represent the starting
conformations for the simulation. (b) Representative structures for inward-facing (IF) and outward-facing (OF) states. (c) Performance difference
between adaptive sampling schemes. The y-axis corresponds to the difference in number of states discovered between MA or single agent REAP
and LC. The plotted curve is the mean ±95% confidence interval for 200 repeats. (d) Histogram of the normalized number of states discovered by
single MD simulation runs, LC, single agent REAP, and multiagent REAP after 2 μs of simulation. Normalization is with respect to the maximum
number of discovered states. The x-axis starts at 0.5 for clarity.
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known, scaling the number of agents is trivial for both
algorithms presented here. For illustration, we show a
multiagent REAP simulation on the symmetric cross potential
where four agents are utilized instead of two (see Figure S11).
There are no reasons to expect a better performance from the
multiagent formulations when all agents observe the same
initial state. This bears similarity to a limitation present in
multiwalker metadynamics, where placing the walkers in the
same energy minimum results in suboptimal sampling because
the trajectories must become uncorrelated before the land-
scape converges.36

Since we compared intrinsically parallel algorithms,
computational power was held constant in the simulations
(i.e., the same number of trajectories were launched per epoch
regardless of the adaptive sampling method used). The number
of trajectories launched in multiagent REAP/TSLC is
independent of the number of agents N, so there is no direct
scaling relationship between N and the explored area. The
benefit of employing the multiagent algorithms will depend on
the prior information on the system (known states) and the
nature of its free energy landscape. In this way, the differences
in performance that we observed are purely due to algorithmic
differences; multiagent REAP/TSLC accelerate the exploration
due to their ability to compartmentalize and share information,
not due to a trivial increase in computational resources.
In comparison to FAST, our methods have the advantage of

ranking the CVs according to their relative importance for

sampling. Since FAST is not intended to combine information
from different CVs, we do not directly compare against this
algorithm. A comparison between FAST and AdaptiveBandit is
available in the literature.30 On the other hand, other unbiased
enhanced sampling methods such as PaCS-MD51 and TS-
MD29 are too distant in scope for a comparison to be
warranted.
Additionally, we did not compare multiagent TSLC with

multiagent REAP. A comparison between the single-agent
versions exists in the literature.37 The choice between TSLC or
REAP (single or multiagent versions) will largely depend on
the characteristics of the free energy landscape. TSLC-derived
weights will offer an advantage when the CVs are not
orthogonal and linear. It is unlikely that this information will
be available to a researcher prior to simulating a system. In this
regard, the biggest limitation of all CV-based methods is that
the important reaction coordinates may be unknown prior to
executing the simulations. However, past works explore the
possibility of extracting relevant CVs from evolutionary
information and applying them in adaptive sampling regimes
for proteins.52

In terms of future improvements for multiagent REAP/
TSLC, the reward function for multiagent REAP is purely
geometrically motivated; rewards are directly proportional to
the deviation of conformations from the mean populations. In
multiagent TSLC, more information about the local topology
of the landscape is utilized, but we must make stronger

Figure 7. Results on the toroidal potential. (a) Plot of the free energy landscape. The white and pink stars mark the initial positions of the agents
(both positions are observed by the unique agent in single agent REAP). (b) Comparison of normalized area explored. The curve shows the
difference (mean ±95% confidence interval) between the areas explored by multiagent TSLC and single agent TSLC. (c) Snapshots of the
trajectories generated by single agent TSLC (left) and multiagent TSLC (right) after a full run. Trajectories are colored according to the agent who
executed the trajectory. Red dots indicate the last set of selected actions.
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assumptions about the characteristics of the landscape. In both
cases, no thermodynamic information is used. In Adaptive-
Bandit, the free energy is estimated in the reward function to
represent the exploitation term, but we observed that this
choice hindered exploration (Figure 4). The question of how
to encourage exploration has been pondered in the RL
literature; perhaps, reformulating the reward function in the
form of an entropy-regularized reward24,53 might result in a
theoretically grounded formulation that guides exploration.
Moreover, recent works in multiple-agent coordination54 may
inspire new formulations of the reward function with improved
performance.
In conclusion, we imported the concept of multiagent RL

into the development of adaptive sampling algorithms for MD
simulations. We introduced modifications that yielded new
algorithms which extend the functionality and improve the
performance of REAP and TSLC. More specifically, our
multiagent formulations record which agent discovered each
conformation and share this information at the action-
discretization step. Moreover, the stakes function modulates
how different agents sense the rewards originating from
discovered states of the system. These modifications improved
exploration performance in all tested cases. Beyond the
algorithms proposed here, a key takeaway from this work is
that agent coordination can be incorporated into most adaptive
sampling strategies, thus opening new avenues to develop
methods that are better suited to harness information from
different regions of the energy landscape.
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