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ABSTRACT: Rapid computational exploration of the free energy
landscape of biological molecules remains an active area of research
due to the difficulty of sampling rare state transitions in molecular
dynamics (MD) simulations. In recent years, an increasing number
of studies have exploited machine learning (ML) models to
enhance and analyze MD simulations. Notably, unsupervised
models that extract kinetic information from a set of parallel
trajectories have been proposed including the variational approach
for Markov processes (VAMP), VAMPNets, and time-lagged
variational autoencoders (TVAE). In this work, we propose a
combination of adaptive sampling with active learning of kinetic
models to accelerate the discovery of the conformational landscape
of biomolecules. In particular, we introduce and compare several
techniques that combine kinetic models with two adaptive sampling regimes (least counts and multiagent reinforcement learning-
based adaptive sampling) to enhance the exploration of conformational ensembles without introducing biasing forces. Moreover,
inspired by the active learning approach of uncertainty-based sampling, we also present MaxEnt VAMPNet. This technique consists
of restarting simulations from the microstates that maximize the Shannon entropy of a VAMPNet trained to perform the soft
discretization of metastable states. By running simulations on two test systems, the WLALL pentapeptide and the villin headpiece
subdomain, we empirically demonstrate that MaxEnt VAMPNet results in faster exploration of conformational landscapes compared
with the baseline and other proposed methods.
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1. INTRODUCTION

Molecular dynamics (MD) simulations have become a widely

types of methods, sometimes in combination, with satisfactory
results.''” The choice of a suitable method will largely

applied computational tool to disentangle the details of
nanoscopic systems relevant to a wide range of fields, from
materials engineering”” to fundamental biology.” The reason
for their widespread use lies in their ability to resolve the
dynamics of molecular systems at excellent time and space
resolutions. Nonetheless, the fine-grained time steps of MD
simulations also result in high computational costs if the
processes to be observed occur at long time scales. Precisely,
the time interval at which an MD simulation can update atomic
positions is typically restricted to the order of femtoseconds,
whereas most molecular processes of interest take place at the
microsecond to millisecond scale. In biology, examples of such
processes include transport across transmembrane proteins,
signal relays,,é’7 ligand binding,g’9 and protein folding.10

A myriad of approaches have emerged to tackle the long
time scale challenge in atomistic MD simulations."’ While
numerous methods enhance the sampling of the system by
modifying the potential function or the thermodynamic
ensemble,'””~'* others pursue the same goal by selectively
restarting trajectories from initial conditions that favor a
sampling criterion'>~"” (see the Adaptive Seeding section in
ref 11). Different problems have been studied by using both
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depend on the nature of the problem at hand. In general,
adaptive seeding methods are well-suited to exploit the
capabilities of large computer clusters through massively
parallel simulations””*'
of the system through statistical models such as Markov state
models (MSMs).”

For biological systems, the thermodynamic ensembles of
interest are typically isothermal—isobaric ensembles. Con-
sequently, the probability of sampling a state decays with its
energy following a Boltzmann distribution. For this reason, one
of the challenges associated with the long time scale problem
in MD simulations is the sampling of rare or transition states,
which are characterized by high energies and low probabilities.
While biased methods can accelerate the sampling of rare

and to recover the unbiased kinetics
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states, this advantage may come at the cost of sampling an
unphysical transition. In this work, we investigate the ability of
unbiased simulations to explore a diverse conformational
ensemble, and therefore, our proposed techniques fall under
the adaptive seeding category.

Adaptive seeding methods can be divided into weighted
ensemble and adaptive sampling techniques."' Weighted
ensemble techniques rely on the “splitting” and “merging” of
trajectories according to their relative importance for a
sampling criterion. In these methods, weights for each
trajectory are tallied; splitting reduces the weight, and merging
increases it. These weights are introduced with the goal of
recovering statistically unbiased observables.”> On the other
hand, adaptive sampling techniques tend to prioritize the
exploration of a diverse set of molecular conformations by
iteratively restarting short simulations from poorly sampled
states. In past approaches, these states are obtained by using
some discretization of the conformational space, such as
clustering. After satisfactory coverage of the conformational
landscape is obtained, the short trajectories are statistically
unbiased using, for instance, MSMs.** All methods presented
in this study fall within the adaptive sampling category.

Machine learning (ML) is becoming critically relevant to the
field of enhanced MD simulations. In particular, ML
techniques have been utilized to model force fields, ™
approximate optimal biasing potentials,”**’ derive reaction
coordinates,””*" and extract information from MD data.*”* For
adaptive sampling, in particular, manifold learning®>** and
reinforcement learning (RL) algorithms'”***>*® have been
applied in the past to guide simulations. Among ML
methodologies, deep neural networks (DNNs) are especially
promising because of their ability to learn arbitrarily complex
nonlinear functions.’”

An interesting application of ML models to MD that
motivates the current study is the extraction of kinetic
information from a set of trajectories. The reason is that
kinetics can potentially be exploited to improve the selection of
initial conditions for adaptive sampling. The variational
approach to Markov processes (VAMP)***” can discover an
optimal mapping from input features (functions of the degrees
of freedom of the system) and the slow reaction coordinates of
the process. This is achieved by maximizing a variational score,
often termed the VAMP score.” A family of DNN models that
are trained to maximize the VAMP score for a set of
trajectories has also been proposed,®*' with the simplest of
them being termed VAMPNet."" In contrast to the linear
approach used in VAMP (see feature TCCA),” the DNN
models can find nonlinear combinations of features and may
incorporate soft state discretization as part of their
architecture.*’

A priori, it is unclear how to use the output of a DNN model
that maximizes a VAMP score to guide adaptive sampling
simulations. When such a model is fitted without a
discretization layer, the mapping can be interpreted as a
learned embedding spanned by the slowest-changing collective
variables (CVs) or reaction coordinates (RCs) of the system.
This is a dimensional reduction if the output layer is smaller
than the input layer. In this case, one may employ the DNN
model in a similar way VAMP***” or time-lagged independent
component analysis (tICA)**~*" are used in adaptive sampling
workflows: the model projects the conformations along the
slow processes and the state discretization and selection take
place in this learned embedding. This is expected to improve

performance when it is difficult to resolve state transitions in
feature space, and the number of dimensions must be reduced
to achieve a reasonable clustering.

When incorporating the state discretization layer (usually
realized as a softmax operation*®), the output of these models
can be interpreted as the membership probabilities of a
microstate in the kinetically metastable states. Given this
probabilistic interpretation, we propose incorporating an
information theoretic metric to guide the choice of new
restarting points for adaptive sampling. Shannon entropy is a
metric that reveals the uncertainty of a model against the
possible outcomes of an event (in this case, the uncertainty of
the model in placing a microstate into a metastable state). It
has been connected to statistical mechanics*® and used to
combine experimental data with MD simulations.**™** A
popular adaptive sampling technique, Least Counts, may be
cast as a maximum entropy method, where the entropy is taken
over the sampled state space, although there is no explicit
usage of Shannon’s metric. In this study, we empirically show
that selecting the microstates that maximize the Shannon
entropy of a VAMPNet leads to improved exploration in
adaptive sampling, measured as the volume of CV or tIC space
observed by the generated trajectories. We term this method
maximum entropy (MaxEnt) VAMPNet. The workflow is as
follows: after collecting some initial MD trajectories, a
VAMPNet is fit to the data. Then, the VAMPNet is used to
calculate state-assignment probabilities for all conformations. A
limited number of conformations that obtain the highest
entropy values are used as seeds for the following round of
simulations. The process is iterated after retraining the
VAMPNet with the new data. Sampling is terminated once
exploration of the landscape is satisfactory.

Recent work by Tian et al.* also exploits the idea of
retraining an ML model (in this case, a variational autoencoder
or VAE) in successive rounds of adaptive sampling simulations.
The current study differs from that work in two main aspects:
(1) we use time-lagged ML models to learn kinetically relevant
latent spaces (as opposed to learning a latent representation of
structure space) and (2) MaxEnt VAMPNet uses the entropy
to select new simulation seeds (as opposed to the lowest
probability structures).

We divide our study in two phases: in the initial exploratory
phase, we focused on three kinetic models available in the
Python library deeptime,”® VAMP,” VAMPNets,"’ and time-
lagged variational autoencoders (TVAEs)," and combined
them with two adaptive sampling methods: least counts (LC)
adaptive sampling and multiagent reinforcement-learning-
based adaptive sampling (MA REAP)."” LC is a common
baseline for adaptive sampling; in this technique, the states are
obtained by clustering, and the starting structures are selected
from the clusters with the fewest members.”' In MA REAP, the
states are also obtained by clustering, but the starting
structures are selected by following a reward function that
depends on the deviation of the structure with respect to the
mean of the data.'” We compared these methods based on
their ability to explore the conformational landscape of a
flexible pentapeptide (sequence WLALL).> Inspired by the
results from these comparisons, we introduced the entropic
metric for VAMPNets in the second phase of the study, where
we showed that this last method achieves superior exploration
when applied to two systems of different complexity: the
WLALL pentapeptide and a fast-folding protein subdomain,
the villin headpiece.>
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The rest of the paper is organized as follows: the section
explains all of the techniques introduced and compared in this
paper. The section is divided into three parts. In the first part,
we present the results of the exploratory phase of the study. In
the second part, we introduce the Shannon entropy criterion
with VAMPNets for adaptive sampling and compare it with the
techniques analyzed in the exploratory phase. Lastly, we
compare the two most promising methods in a realistic system
(the villin headpiece protein) to validate the results observed
in the previous subsection. We conclude with a discussion of
the advantages and limitations of our proposed methods.

2. METHODS

2.1. Coupling Adaptive Sampling and Active Learn-
ing. Adaptive sampling MD is an iterative technique in which
the conformational landscape of a molecular system is
progressively discovered by restarting simulations from poorly
sampled states. Typically, the iteration is divided into two
steps: running trajectories and data analysis. In the first step,
trajectories are initiated from the specified conformations. In
the second step, the sampled points are clustered to discretize
the conformational landscape into distinct states. Subse-
quently, a strategy is employed to determine which states to
initiate the simulations anew. In the next iteration, new

trajectories are executed from the selected states. This process
continues until the sampling is satisfactory. The selection
strategy for the restarting points has a profound impact on the
sampling behavior.'"”* Since only unbiased trajectories are
typically utilized during adaptive sampling, the restarting
selection strategy is the hinge point that researchers
manipulate to alter the behavior of their algorithms.

Interestingly, there is a subset of ML termed active
learning™ that realizes training as an iterative process where
a model is first fit to an available data set, and then new data
points are queried to an oracle based on some criterion that
maximally improves learning. Active learning has previously
been used in combination with MD simulations to efficiently
explore chemical space’ > and to find model parameters.®”’
Since both adaptive sampling and active learning follow a two-
stage process, we can couple both techniques. In other words,
the data analysis phase of adaptive sampling becomes the
learning phase of active learning. Similarly, the MD integrator
acts as the oracle, so the querying phase of active learning
becomes the simulation step in adaptive sampling. The
information extracted by the ML model is used to select the
restarting points for new simulations, which, in turn, will be
utilized to refine the model in the next iteration. This workflow
is summarized in Algorithm 1.

Algorithm 1 Coupled active learning—adaptive sampling

Input: potential V (&), machine learning model ), reward/acquisition function R, number
of epochs F, trajectory length T, trajectories per epoch M

1: Sample initial data X starting from V (z)

2: foreinl...E do
3:  Train Y on X¢!

r=RY*Y) =[R(yy) .. R(Yera)]

for all =, € X, do

end for

Yerl = Y(X) = V(wo) - Y(@erm)] = [0 - - Yerud]
Let Xy = {@,,} such that {R()Y(x,,))} achieves the max-M-sum in r

Sample 7' new data starting from V'(z,,)

10:  Concatenate new data to X¢ ! to obtain X¢

11: end for

In Algorithm 1, the function R outputs a scalar that is used
to rank the conformations according to how desirable it is to
restart simulations from them. Depending on the adaptive
sampling regime employed, an additional model might be used
to optimize R.'”%" For this reason, R can be interpreted as a
reward function when the adaptive sampling regime depends
on a RL model or an acquisition function when it does not.

2.2. Combining Kinetic Models with Adaptive
Sampling Regimes. For Algorithm 1 to work, we must
identify a suitable model Y that is able to extract useful
information from the parallel trajectories. A relevant family of
models®*~*"** is based on identifying the slowest processes
that occur in a system. Arguably, these processes will be rate-
limiting for state transitions. The models learn the slowest
processes by finding the transformations that maximize a
variational score for a set of trajectories, which is usually
termed the VAMP score.®” In mathematical terms, for a set of

. . iI\N i i i

trajectories {X'};.Z; where X' = [x...x7], we can compute the

covariance matrices Cy, and C;;, and time-lagged covariance
: 39,40

matrix Cy; as follows

T-pt

N
1 1 Z i i
Cpq x — 2 : X, (xt)x (xt+(q—p)‘r)T
N~=T-1 * 4 1
i t=1+qr (1)

where p and q must be replaced by 0 or 1 and 7 is the lag time
measured in time steps. ¥, and y; represent transformations
from features or CVs to latent variables. It is possible to have y,
and y,; be identical, and these transformations can be machine-
learned through stochastic methods.”” Once these matrices
have been estimated from data, they are preprocessed to
remove the mean and obtain centered covariance matrices Cy,
Cyyp and C,,. Then a version of the VAMP score (VAMP-2)*’
can be computed as

2
Pl (2)

1

R, = ‘ Co0*CoiC11?
where the norm F is the Frobenius norm.

Different ML models have been proposed to find the

transformations {¥, x;} and have been implemented in

deeptime.”’ Namely, the models that we employ in this
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study are VAMP,”” VAMPNets,** and TVAEs."' By using the
VAMP-2 score as the gain function, these models learn useful
mappings from the input features to the slowest-changing
processes in the system.’”~*' These learned embeddings can
be used to discriminate between kinetically different states. If
the output of the model has fewer dimensions than the input
feature vector, then the model performs a dimensionality
reduction.

In this study, we use VAMP to refer to feature time-lagged
canonical correlation analysis (feature TCCA).” Time-lagged
independent component analysis (tICA)*** and the varia-
tional approach to conformational dynamics (VAC)*® are
subclasses of this technique. In this case, the basis sets {xy, x1}
are simply the user-defined features or CVs. VAMP works by
performing a truncated singular value decomposition on the
matrix Cpi/2Cy,C7? to obtain U'KV'". Then the coefficient
matrices U and V are computed as U = Cy/?U’ and V =
C1i/?V'. Finally, the learned projections, i.e., the left and right
singular functions, can be found as u/y, and vy, respectively,
where u; and v, are the ith column vectors of U and V.***°

In contrast to VAMP, VAMPNets are based on DNNs. They
are typically implemented as multilayer perceptrons (MLPs),
but other architectures have been proposed.”’ Although in
their original form VAMPNets were designed with a softmax
layer for output processing to learn a soft discretization, they
can also be utilized without one to learn the projection from
feature space onto the slow variables of the system. There
exists literature that refers to such models as “state-free”
VAMPNets.”> The transformations {¥,, x;} can be stochasti-
cally learned by DNN5s because the variational score in eq 2 is
differentiable, and thus the update gradient is well-defined."’

TVAEs can be conceived as extensions of VAMPNets where
the DNN employed is a variational autoencoder. This is a
network that consists of an encoder, which compresses the
input at time ¢ into a small number of dimensions or a latent
space. Then, the decoder reconstructs the input from the
compressed dimensions at time t + 7. Since this is a time-
lagged autoencoder, the encoder essentially performs a
nonlinear version of TCCA.”® The variational qualifier refers
to the fact that the TVAE learns a probability distribution over
the latent space as opposed to simply mapping inputs to fixed
points on the dimensionally reduced coordinates. The use of
variational autoencoders offers the possibility of employing the
trained model for generative tasks.”’ However, as presented in
the Results and Discussion, the TVAE-based sampling
techniques did not perform on par with the VAMPNet-based
ones.

In the exploratory phase of this study, we asked whether
combining such kinetic models with different adaptive
sampling schemes would yield better exploration performance.
We tested two adaptive sampling schemes: least counts (LC)
and multiagent reinforcement learning-based (MA REAP)
adaptive sampling. While the former is a typical baseline for
adaptive sampling, the latter utilizes a more complex reward
function to select the restarting points for simulation.

When employing LC adaptive sampling in combination with
a kinetic model, we project the conformations onto the learned
embedding and then cluster the data points into discrete states.
To seed the next round of simulations, we choose the centers
of those clusters with the fewest number of members. In other
words, R is the inverse of the frame count that falls in the same
cluster as the evaluated conformation.

To combine these kinetic models with MA REAP, the first
steps are identical as for LC: project the conformations, cluster
them, select cluster centers as the states, and select a subset of
candidates on the basis of the least counts criterion. However,
when employing MA REAP, the starting structures are selected
through a stakes-based reward function'”

73()’; {I‘ta }i\]:u {o-ta}i\]:u
K a |

c by — u
N i it
willy) = D se ) wi————
a i Ot (3)

where N is the number of agents and K is the number of
output dimensions. y is a cluster center or state (projected
onto the embedding learned by V), and pf and of are the
mean and standard deviation of the data (as estimated up to
time t) for agent a. sy represents the stake that agent a has on
state y, which becomes relevant only when multiple agents are
scouting the conformational landscape. The stake essentially
determines which agent collects the data from a trajectory
started at y to change its estimates of p and 67. w{, represents
the weight that is assigned to a given dimension; therefore, if a
conformation displays a larger deviation along a latent variable
with a higher weight, the reward is larger. The inner sum of eq
3 can be interpreted as a weighted standardized Euclidean
distance. Both sy and wj are fit from the trajectories, but sy is
determined at the clustering steg and wy{ is set to maximize R
through quadratic optimization.'*’

One may ask if, in the multiagent case, one distinct version
of Y should be learned by each agent given only their own
data. If this were the case, the outer sum in eq 3 would lack a
meaningful interpretation, since the K output dimensions
would differ across agents. Therefore, we restrict all agents to
use the same instance of a kinetic model. It might be possible
to modify eq 3 to accommodate the alternative design choice,
but this is outside the scope of the present study. Learning
different versions of Y/ may alter the behavior of the algorithm
by forcing agents to rely on local kinetic maps, rather than on a
global model.

Utilizing the three aforementioned kinetic models with two
adaptive sampling regimes yields six combinations, which are
denominated {VAMP, VAMPNet, TVAE} + {LC, MA REAP}
according to the model and the regime employed in each case.

2.3. Maximum Entropy VAMPNets. Unlike the pre-
viously described approaches, where the model Y projects a
conformation onto the slow-changing dimensions of the
system, here we are interested in VAMPNets that perform a
“fuzzy clustering” by incorporating a final softmax layer. The
softmax operation can be expressed as

e

X ek @)

where p,(y) can be interpreted as the probability that
conformation y is in the output state i € {1, .., K}. For
VAMPNet, each output state corresponds to a kinetically
distinct state or metastable state. Due to this probabilistic
interpretation, we can compute the Shannon entropy for a
given conformation:

ply) =

K
H(y) = - ) p(»)log p(y) “
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Figure 1. lllustration of the MaxEnt VAMPNet selection criterion in the original Lorenz system.”> (A) Projection of state 1 probabilities on the
validation trajectory. Inset shows projections on the x—y plane. (B) Projection of the Shannon entropy on the validation trajectory. Black dots
indicate the 20 data points with the highest entropy. Inset shows projection on the x—y plane. It can be observed that the entropy maxima occur at

the interface between states.

which is maximized when the predicted probability over the K
output states is uniform or p,(y) = 1/K Vi. In other words,
H(y) is maximized when the model is uncertain to which
metastable state the conformation “belongs”. H can be
interpreted as a choice for R in Algorithm 1 when the output
of Y is a probability distribution.

In the active learning community, the Shannon entropy is
one of the most general and popular choices of uncertainty
metric.>®> Nonetheless, to the best of our knowledge,
uncertainty sampling has never been used in combination
with VAMPNets, including entropy-based sampling. In our
proposed adaptive sampling technique, after Y/ has been fit to
the data and the membership probabilities p,(y) have been
obtained, the Shannon entropy, H(y), of each conformation
(or a representative subset when memory becomes a concern)
is computed. Then, the structures that maximize H(y) are
selected to seed the next round of simulations, and the
workflow of Algorithm 1 proceeds. The intuition behind this
method is that the VAMPNet will select structures that cannot
be easily categorized, and therefore the conformations that are
poorly sampled and/or lie at the interface between metastable
states will be prioritized as starting simulation conditions.
Figure 1 illustrates this selection criterion at play on a chaotic
deterministic model, termed the Lorenz system.®® Here, a two-
state VAMPNet was trained on a trajectory with initial
conditions x, = (8,7,15)T and default deeptime™ parameters
for {o, p, p, h}. When projecting the output of this VAMPNet
on a different trajectory obtained with x, = (7, 8, 14)T) it is
clearly observed that the data points that maximize the entropy
(black dots) correspond to transitions between lobes (Figure
1B). In the rest of the paper, we refer to this method as
MaxEnt VAMPNet or MaxEnt for brevity.

3. RESULTS AND DISCUSSION

3.1. Uncertainty-Based Selection Criteria Achieve
Superior Exploration Performance. We begin by compar-
ing the techniques described in section 2.2 using a
pentapeptide of the sequence WLALL.>” This model is small

enough to quickly prototype and test different methods, but it
also contains a nontrivial number of degrees of freedom and
slow variables. For details about the simulations, refer to the
Supporting Information methods.

The input features used to fit the kinetic models were all ¢
and y dihedral angles (eight features in total; ¢b; and y; are
undefined). The models were used to project the conforma-
tions in 2D space. For the VAMPNets, a MLP*” was employed
with lobe duplication.*” The dimensions of each layer were [8,
15, 10, 10, 5, 2] with a rectified linear unit (ReLu) as the
activation function. These were also the dimensions of the
TVAE’s encoder, while the decoder was an MLP with
dimensions [2, S, 10, 10, 15, 8]. In all cases, the lagtime was
set to 20 ps, and the batch size was 1024. We do not split the
collected data into training and validation sets because our goal
is to maximize the exploration rather than to validate the
quality of the kinetic model. Keeping trajectories out of the
analysis would preclude selecting starting structures from
them.

All simulations were started from the same two metastable
structures obtained from a previous study.”” The clustering
method utilized was regular space clustering (implemented in
deeptime)*® with identical parameters in all cases (max
distance = 0.001, max centers = 104). For MA REAP, two
agents with “equal” stakes and the “collaborative” regime'”
were used. As for other MA REAP parameters, CV weights
were initialized as {wg}ﬁr:l: [0.5, 0.5], 8 = 0.0S, and SO LC
candidates were selected per round.”” Each round consisted of
S trajectories of 2 ns each and 100 training epochs of the
DNN-based kinetic models. We ran all methods for 60 rounds
with 20 replicates each (total simulated time of 96 us).

Figure 2 shows the results of the comparison in terms of the
volume of dihedral space explored by each technique against
the LC baseline. Dihedral space refers to a vector space where
each dimension corresponds to a dihedral angle in the
molecule (see Figure S1). Figure 2A shows the results for
the methods employing a combination of LC adaptive
sampling and a kinetic model, while Figure 2B shows the
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Figure 2. Relative increase in dihedral space volume explored on
WLALL pentapeptide across the techniques. The same baseline, LC
adaptive sampling with no kinetic model, was used in both plots
(dashed line). Curves show mean for 20 replicates with a 95% CL (A)
Comparison with {VAMP, VAMPNet, TVAE} + LC. (B)
Comparison with MA REAP and {VAMP, VAMPNet, TVAE} +
MA REAP.

same results for the techniques involving MA REAP. Figure 2A
shows that combining LC adaptive sampling with a VAMPNet
produced a considerable advantage against the LC baseline
(100% increase in explored volume after 600 ns). On the other

hand, TVAE + LC only yielded an advantage of approximately
25%, but for t < 600 ns, the difference is smaller and not
statistically significant. VAMP + LC did not yield a statistically
significant advantage for the length of the simulations tested.
The results from Figure 2B show that MA REAP increased the
explored volume by approximately 40% after 60 rounds, but in
this case, the use of the kinetic models only produced marginal
gains. The difference in performance between MA REAP and
the combination of {VAMP, VAMPNet, TVAE} + MA REAP
was not statistically significant.

Figure 3 provides a visual depiction of dihedral space
exploration by the baseline (LC) and the best method
(VAMPNet + LC). The figure shows the Ramachandran
plots for the three central amino acids in the WLALL peptide
for the first three replicates (for all replicates, see Figures S2—
SS). These plots show that the states with ¢, > 0 were not
thoroughly explored by LC, whereas most replicates for
VAMPNet + LC discovered this portion of the landscape.

The first point of interest raised by these results is the
success of VAMPNet + LC at accelerating exploration, even
when compared to VAMPNet + MA REAP, which uses the
same kinetic model and a more sophisticated adaptive
sampling regime. This result can be explained by the fact
that the reward function in MA REAP (eq 3) relies on a
distance metric between the states and the distribution mean.
Since the kinetic model is fit with a data set that incorporates
new trajectories after each round, the mapping from feature
space to latent space changes, distorting distances, and,
consequently, the deviations of the states. This is likely to
result in an ineflicient estimation of the weights that MA REAP
utilizes to prioritize a given direction in exploration. Thus, we
observe poor performance gains from combining MA REAP
and a kinetic model. Another important comparison to make is
that between VAMPNet + LC and {VAMP, TVAE} + LC. In
this case, the same adaptive sampling regime is used but the
kinetic model changes. The poor performance of VAMP + LC
against VAMPNet + LC arises from the fact that a linear
method is inefficient at discriminating between kinetically
distinct states because the boundaries are not linear in dihedral
space. On the other hand, TVAE is also based on a DNN, and

Least Counts

State 1 A

VAMPNet + Least Counts

Figure 3. Ramachandran plots for central amino acids in the WLALL peptide for the baseline method (LC) and most successful method
(VAMPNet + LC). Each row corresponds to a different replicate, each column to a different amino acid. (Left) Initial states employed in all
simulations. These conformations were projected on the plots. (Center) Ramachandran plots for LC. (Right) Ramachandran plots for VAMPNet +

LC.
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Figure 4. Results for comparison involving MaxEnt VAMPNet. (A) Relative increase in dihedral space volume explored on the WLALL peptide
across techniques. LC adaptive sampling with no kinetic model (dashed line), was used as baseline. Curves show mean for 20 replicates with a 95%
CI. (B) Projection of the three VAMPNet states with non-empty populations on the Ramachandran plots of L2-A3-L4 from the first replicate of
MaxEnt. (C) Conformations that maximize the probability for the output states 1, 2, and S from (B). Percentage populations are shown below each

state.

the encoder can learn a latent space that separates the
metastable states. However, training a variational autoencoder
is more demanding than training a MLP, as the TVAE must
learn the probability distribution over the latent space, and a
decoder must be simultaneously fit. Although it remains
interesting to utilize models such as TVAEs (which allow for
generative inference) in future applications, in this study we
limit ourselves to observe that they do not accelerate adaptive
sampling at a rate similar to that of simpler MLP-based models
(VAMPNets).

Overall, in this section, we showed that VAMPNet + LC
achieved an advantage of ~100% against the LC baseline and
~60% against MA REAP methods in the pentapeptide model.
This observation motivated the steps taken in the following
section.

3.2. MaxEnt Achieves Faster Discovery of the
Conformational Landscape. Inspired by the results from
the previous section, we further investigated the origin of the
large advantage displayed by VAMPNet + LC. In general, LC
is better than continuous MD simulations, because it
prioritizes the sampling of poorly characterized states. We
hypothesized that a determining factor in the success of
VAMPNet + LC is the selection of data points that lead to
“informative” trajectories for the VAMPNet. In other words,
LC selected structures that resulted in better training examples
for the DNN model, allowing a productive separation of states
in the latent space and thus encouraged the discovery of new
regions of the conformational landscape in future iterations. If
this is the case, then another selection regime that queries data
points to maximize learning should result in advantageous
exploration, even if that regime is not related to a known
adaptive sampling technique. For this reason, we decided to
utilize entropy-based sampling, which is a common choice in
the active learning community (see Methods) and termed the
new method MaxEnt VAMPNet. In this method, the output of

the VAMPNet is not interpreted as coordinates in latent space
but rather as membership probabilities in the output states. For
this reason, we used a larger output layer (eight states) and
included a softmax layer as the final operation. The number of
parameters in the hidden layers were also increased; the new
dimensions were [8, 16, 32, 64, 128, 256, 128, 64, 32, 16, 8].
New runs with VAMPNet + LC were performed with identical
layer sizes to observe the effect of increasing the number of
parameters. The number of training epochs per round was kept
at 100, but the batch size was increased to 2048. Other details
were identical to those in the previous section. The length of
trajectories, number of rounds, and number of replicates were
also kept identical for a total simulated time of 36 us.

Figure 4 shows the results from this trial. The VAMPNet +
LC result from the previous section is also plotted in Figure 4A
for clarity. This plot shows that MaxEnt reached the same level
of performance improvement as VAMPNet + LC (with the
smaller DNN from the previous section). However, the
entropy-based method reached this level of advantage after
only ~150 ns instead of ~300 ns for VAMPNet + LC. It is
important to observe that using a larger VAMPNet with more
output dimensions harms the performance of VAMPNet + LC.
This is likely due to the fact that the quality of clustering
degrades when using eight output dimensions instead of two.
This highlights an advantage of MaxEnt, as this technique does
not rely on clustering and state assignment is handled directly
by the VAMPNet. For a projection of the data from all
replicates of MaxEnt on Ramachandran plots, see Figures S6
and S7.

Although we do not expect MaxEnt to produce a fully
validated kinetic model, we inspected the output of the
VAMPNet obtained by this technique. Figure 4B shows the
projection on Ramachandran plots of the only three states with
nonempty memberships obtained from the first replicate of
MaxEnt. In general, we observe gradients that indicate that the
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VAMPNet has learned a useful separation of states in dihedral
space. However, state 5 shows very diverse conformations,
unlike states 1 and 2 (Figure 4C), showing that the model
could lump unrelated conformations into the same state.

While adaptive sampling techniques are traditionally used to
obtain converged thermodynamic and kinetic properties with
shorter trajectories, many previous studies, including recent
applications™ of these techniques, split the sampling into two
stages: exploration and extensive simulations. In the explora-
tion phase, the goal is to cover as much of the conformational
landscape as possible to obtain informative seeds (i.e., states
that are representative of the conformational ensemble) for the
following phase, where the researcher will run longer
simulations to obtain better estimates of thermodynamic and
kinetic properties. The advantage of this two-stage approach
(as opposed to simply running long simulations initially) is
that using shorter trajectories accelerates the discovery of the
conformational landscape, which reduces the time needed by
the long trajectories to encounter the system’s states for the
first time. Our algorithms are intended to tackle the first phase
of this two-stage approach.

Nonetheless, we have fitted Markov State Models (MSMs)**
on the pentapeptide data sets for the three most relevant
methods: the Least Counts baseline and the two most
competitive methods, VAMPNet (small network) + LC and
MaxEnt VAMPNet. To fit an MSM, we use regular space
clustering (as implemented in deeptime®”) with 3000 max
clusters and 1.4 minimum distance. We use PCCA®* to obtain
a three-macrostate model. The lagtime used was 32 timesteps.
The state populations are shown in Figure S8. The implied
time scales (ITS) are shown in Figure S9. The Chapman—
Kolmogorov (CK) test results are presented in Figures S10—
S12. The tests show that the MSMs obtained with VAMPNet
+ LC and MaxEnt show converged ITS and are Markovian,
while the MSM fitted on the LC data set does not show these
properties.

In summary, in this section we showed that MaxEnt can
achieve the same advantage as VAMPNet + LC in a shorter
amount of time, suggesting that the former option is a more
favorable choice of the adaptive sampling regime. In the
following section, we compare these two techniques in a more
realistic model to assess whether the trends observed in the
pentapeptide model translate to a larger protein.

3.3. MaxEnt Shows an Advantage in a Realistic
System. The villin headpiece subdomain (PDB ID: 1YRF)®
is a 35 amino acid, fast-folding protein that represents a more
realistic system for MD simulations. The input features used
were all pairwise C, distances (separated by at least two
residues). Therefore, we obtained 528 features. Since the
number of features is too large to produce a reasonable
clustering for LC without applying dimensionality reduction
techniques, we drop this baseline and instead use VAMPNet +
LC as the standard to assess the performance of MaxEnt.
According to the results from the previous sections, this new
baseline is significantly more demanding than vanilla LC. In all
cases, the dimensions of the VAMPNets were [528, 512, 256,
128, 64, 32, 16, 8]. Batch size was set to 1024 and lobe
duplication was employed. Lagtime used was 100 ps. Each
round consisted of 10 trajectories of 10 ns each and 100
training epochs for the VAMPNet. We performed 10 replicates
per method with 10 rounds per replicate (total simulated time
of 20 us). Other details were identical to those in previous

sections. For details about the MD simulations, refer to the
Supporting Information methods.

Since it is impractical to compute the explored volume in a
528-dimensional space, we pool all the data from both
methods and fit a VAMP model to project the trajectories
onto a common 8-dimensional tIC space. We then computed
the explored volume in this space. Figure S shows the

tIC space exploration comparison
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Figure S. Relative increase in tIC space volume explored for MaxEnt
simulations of the villin headpiece subdomain. VAMPNet + LC
(dashed line) was used as baseline. The curve shows the mean for 10
replicates with a 95% CIL

comparison for VAMPNet + LC vs MaxEnt. We can observe
that there are no statistically significant differences between the
two methods until ¢ = 700 ns. After 1 us, MaxEnt shows an
average exploration advantage of ~50% with a 95% confidence
interval of approximately [20%, 90%]. The volume explored by
individual replicates is plotted in Figure S13 to easily observe
the distribution for each method.

Figure 6A shows the tIC1—tIC2 landscapes for the first
replicate of each method and for a single continuous trajectory
of the same total length. The landscapes for all replicates are
available in Figures S14—S17. While 1 s simulations are
insufficient to observe unfolding at T = 300 K, we can observe
differences in the conformational ensemble explored by
MaxEnt since it discovers an area of the landscape that
remains uncharted by the continuous trajectory and VAMPNet
+ LC.

Figure 6B shows a representative set of conformations
discovered by each technique. State 1 represents the native
folded structure; state 2 is a “closed” conformation where the
C-terminus interacts with FS51 and G352, state 3 is a
conformation where the N-terminal a-helix bends perpendic-
ularly to the plane spanned by the two other a-helices, and
state 4 (often observed by MaxEnt but not by VAMPNet +
LC) is an intermediate state between 2 and 3. MaxEnt shows
improved performance compared to VAMPNet + LC due to
its ability to choose starting conformations that are more likely
to result in the sampling of kinetically distinct states. This is a
consequence of the entropy score, which specifically targets
conformations that cannot be confidently assigned to a
metastable state. In the villin headpiece simulations, this can
be observed as MaxEnt samples state 4 (Figure 6B) with a
higher chance than that of VAMPNet + LC, resulting in a
higher explored volume.

In summary, MaxEnt showed a statistically significant
advantage in exploration against the challenging VAMPNet +
LC baseline in a realistic system, indicating that entropy-based
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Figure 6. (A) tIC1—tIC2 landscapes for the villin headpiece corresponding to the first replicate of each method. (B) Representative conformations

of different states discovered by each technique.

sampling is likely to be a better choice between these two
techniques. Due to the long time scale of villin unfolding,"’
neither method reached a denatured conformation, but this
was expected for the simulation conditions.

4. CONCLUSIONS

In this study, we propose new techniques involving active
learning of DNN-based kinetic models to accelerate explora-
tion in adaptive sampling MD simulations. Our results show
that entropy-based sampling of a VAMPNet achieves the
fastest exploration of the conformational landscape in both
simulated systems. Besides showing better exploration
behavior, VAMPNet grants MaxEnt the convenience of
skipping the clustering step altogether. This eliminates design
decisions, because clustering parameters must be set. Using a
suboptimal set of clustering parameters in adaptive sampling

can frustrate the rate of exploration or obfuscate subsequent
data analysis.

However, MaxEnt also suffers from limitations. Training a
VAMPNet in each iteration of adaptive sampling can be time-
consuming and computationally intensive. Nonetheless, this
task is expected to represent a small fraction of the
computational expense in adaptive sampling because MD
simulations of large systems remain slow in comparison.
Another challenge in the use of VAMPNets for adaptive
sampling is their validation. Arguably, a researcher has a few
options to validate the model at each sampling iteration: (1)
set aside some trajectories to use as an uncorrelated validation
set, (2) exclude some random {x, x,.} pairs to use as a
(correlated) validation set, or (3) use some k-fold cross
validation approach. All options have advantages and down-
sides. For (1), setting aside entire trajectories can harm the
exploration rate since the validation conformations cannot be
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selected to restart simulations. However, this method ensures
that the validation set is uncorrelated with the training set;
therefore, the validation score is more reliable. In (2), the
opposite is the case. Since the validation structures are
correlated to those used in training, the user can select
conformations that are similar to those withheld, but the
validation score may not be indicative of the true performance
of the model. Finally, (3) can produce an unbiased validation
score if the data are divided into uncorrelated groups. After
applying k-fold cross validation, the model can be retrained on
the entire data set to select new structures for simulation.
However, this alternative is computationally expensive in
comparison to (1) or (2). Validating the model may alert the
researcher that the VAMPNet employed is underfitting or
overfitting the data, and thus, the model must be modified
before proceeding. This represents an onerous effort that is not
found in other adaptive sampling algorithms. A particularly
relevant validation parameter is the number of output states
utilized. A simple approach to constrain this number is to
compute the populations of each state with all of the available
data. If there are empty states (output nodes that never achieve
the maximum probability for any conformation), then these
could be eliminated from the model. In our trials, we decided
to test our techniques without submitting the kinetic models to
validation and observe whether an exploration advantage was
achieved regardless. Future work will involve studying the
relationship between the validation scores and exploration
performance. It must be noted that entropy-based sampling is
expected to provide robustness to MaxEnt because this
uncertainty metric inherently makes the least assumptions
about the model’s knowledge.”

Another limitation is the existence of corner cases regarding
the entropy scores. For example, given two probability vectors
p1 = [0.49, 0.49, 0.02] and p, = [0.7, 0.15, 0.15], one would
expect that the first one would be selected, but it actually has a
lower entropy than p,. Although we did not observe this
phenomenon in our data analysis, it could be mitigated by
weighting the entropy score by the complement of the
maximum probability, 1 — max(p) (see Figure S18). Future
studies will analyze the impact of this modified scoring
function.

Although it is regular practice among adaptive sampling MD
practitioners to use tICA*** to reduce the dimensionality of
the input features before applying a selection criterion to
restart simulations, our tests involving similar approaches (i.e.,
VAMP + {LC, MA REAP}) did not yield promising results in
comparison to those of VAMPNet + {LC, MaxEnt}.
Nonetheless, this does not preclude that, for other systems,
an advantage might be achieved by employing VAMP or tICA
in combination with LC instead of applying LC on the feature
space. In terms of applying MaxEnt in practice, the common
workflow of adaptive sampling is not radically altered. In all
adaptive sampling schemes, the data must be centralized at
some point to perform the analysis step. This step can be
replaced by the fitting of 2 VAMPNet (or an ensemble of
VAMPNets for the sake of robustness) on the collected data.
Once that the starting conformations are selected, the
trajectories can be run in decentralized clusters as usual.

Lastly, it is important to note that, to the best of our
knowledge, there is no theoretical foundation that indicates
that the VAMP-2 gain function is the optimal choice to
accelerate adaptive sampling through entropy-based sampling.
This choice is intuitive because a VAMPNet trained to

maximize this score learns to discriminate between metastable
states,*” and therefore, the conformations that maximize the
Shannon entropy are more likely to be low-probability and/or
poorly sampled structures. Moreover, there are several other
active learning approaches besides entropy-based sampling”®
that have not been explored in this work. Future studies in this
direction will explore questions of the optimal choice of the
loss function and active learning regime for the purposes of
adaptive sampling.

B ASSOCIATED CONTENT

Data Availability Statement
All code necessary to reproduce the data is available on
https://github.com/ShuklaGroup/MaxEntVAMPNet.

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00040.

Supporting methods and Figures S1-S18 (PDF)

B AUTHOR INFORMATION

Corresponding Author
Diwakar Shukla — Center for Biophysics and Quantitative

Biology, University of Illinois at Urbana— Champaign,
Urbana, Illinois 61801, United States; Department of
Chemical and Biomolecular Engineering, Department of
Bioengineering, and Department of Plant Biology, University
of Hllinois at Urbana— Champaign, Urbana, Illinois 61801,
United States; ® orcid.org/0000-0003-4079-5381;
Email: diwakar@illinois.edu

Author
Diego E. Kleiman — Center for Biophysics and Quantitative
Biology, University of Illinois at Urbana— Champaign,
Urbana, Illinois 61801, United States; ©® orcid.org/0000-
0002-3833-5872

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.3¢00040

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

The authors acknowledge support from the National Science
Foundation Early CAREER Award (NSF MCB-1845606).

B REFERENCES

(1) Lau, D.; Jian, W,; Yu, Z.; Hui, D. Nano-engineering of
construction materials using molecular dynamics simulations:
Prospects and challenges. Compos. B. Eng. 2018, 143, 282—291.

(2) Jackson, N. E. Coarse-graining organic semiconductors: the path
to multiscale design. J. Phys. Chem. B 2021, 125, 485—496.

(3) Weigle, A. T.; Feng, J.; Shukla, D. Thirty years of molecular
dynamics simulations on posttranslational modifications of proteins.
Phys. Chem. Chem. Phys. 2022, 24, 26371.

(4) Chan, M. C.; Selvam, B.; Young, H. J.; Procko, E.; Shukla, D.
The substrate import mechanism of the human serotonin transporter.
Biophys. J. 2022, 121, 715—730.

(5) Feng, J.; Selvam, B.; Shukla, D. How do antiporters exchange
substrates across the cell membrane? An atomic-level description of
the complete exchange cycle in NarK. Structure 2021, 29, 922—933.

(6) Shukla, D.; Meng, Y.; Roux, B.; Pande, V. S. Activation pathway
of Src kinase reveals intermediate states as targets for drug design.
Nat. Commun. 2014, S, 3397.

https://doi.org/10.1021/acs.jctc.3c00040
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00040/suppl_file/ct3c00040_si_001.pdf
https://github.com/ShuklaGroup/MaxEntVAMPNet
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00040?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00040/suppl_file/ct3c00040_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Diwakar+Shukla"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4079-5381
mailto:diwakar@illinois.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Diego+E.+Kleiman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3833-5872
https://orcid.org/0000-0002-3833-5872
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00040?ref=pdf
https://doi.org/10.1016/j.compositesb.2018.01.014
https://doi.org/10.1016/j.compositesb.2018.01.014
https://doi.org/10.1016/j.compositesb.2018.01.014
https://doi.org/10.1021/acs.jpcb.0c09749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c09749?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/D2CP02883B
https://doi.org/10.1039/D2CP02883B
https://doi.org/10.1016/j.bpj.2022.01.024
https://doi.org/10.1016/j.str.2021.03.014
https://doi.org/10.1016/j.str.2021.03.014
https://doi.org/10.1016/j.str.2021.03.014
https://doi.org/10.1038/ncomms4397
https://doi.org/10.1038/ncomms4397
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(7) Kohlhoff, K. J.; Shukla, D.; Lawrenz, M.; Bowman, G. R;
Konerding, D. E.; Belov, D.; Altman, R. B.; Pande, V. S. Cloud-based
simulations on Google Exacycle reveal ligand modulation of GPCR
activation pathways. Nat. Chem. 2014, 6, 15-21.

(8) Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; Seeliger, M.
A.; Shaw, D. E. How does a drug molecule find its target binding site?
J. Am. Chem. Soc. 2011, 133, 9181—-9183.

(9) Chen, J.; White, A.; Nelson, D. C.; Shukla, D. Role of substrate
recognition in modulating strigolactone receptor selectivity in
witchweed. J. Biol. Chem. 2021, 297, 101092.

(10) Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Shaw, D. E. How
fast-folding proteins fold. Science 2011, 334, 517—520.

(11) Hénin, J.; Leliévre, T.; Shirts, M.; Valsson, O.; Delemotte, L.
Enhanced Sampling Methods for Molecular Dynamics Simulations
[Article v1. 0]. Living J. Comp. Mol. Sci. 2022, 4, 1583.

(12) Hamelberg, D.; Mongan, J.; McCammon, J. A. Accelerated
molecular dynamics: a promising and efficient simulation method for
biomolecules. J. Chem. Phys. 2004, 120, 11919—11929.

(13) Yu, T.-Q; Ly, J.; Abrams, C. F.; Vanden-Eijnden, E. Multiscale
implementation of infinite-swap replica exchange molecular dynamics.
Proc. Natl. Acad. Sci. US.A. 2016, 113, 11744—11749.

(14) Laio, A.; Rodriguez-Fortea, A.; Gervasio, F. L.; Ceccarelli, M.;
Parrinello, M. Assessing the accuracy of metadynamics. J. Phys. Chem.
B 2008, 109, 6714—6721.

(15) Zimmerman, M. L; Porter, J. R.; Sun, X;; Silva, R. R.; Bowman,
G. R. Choice of adaptive sampling strategy impacts state discovery,
transition probabilities, and the apparent mechanism of conforma-
tional changes. J. Chem. Theory Comput. 2018, 14, 5459—5475.

(16) Zuckerman, D. M.; Chong, L. T. Weighted ensemble
simulation: review of methodology, applications, and software.
Annu. Rev. Biophys. 2017, 46, 43.

(17) Kleiman, D. E.; Shukla, D. Multiagent reinforcement learning-
based adaptive sampling for conformational dynamics of proteins. J.
Chem. Theory Comput. 2022, 18, 5422—5434.

(18) Moffett, A. S.; Bender, K. W.,; Huber, S. C.; Shukla, D.
Molecular dynamics simulations reveal the conformational dynamics
of Arabidopsis thaliana BRI1 and BAK1 receptor-like kinases. J. Biol.
Chem. 2017, 292, 12643—12652.

(19) Zhao, C.; Shukla, D. Molecular basis of the activation and
dissociation of dimeric PYL2 receptor in abscisic acid signaling. Phys.
Chem. Chem. Phys. 2022, 24, 724—734.

(20) Zimmerman, M. I; Porter, J. R; Ward, M. D.; Singh, S;
Vithani, N.; Meller, A.; Mallimadugula, U. L.; Kuhn, C. E.; Borowsky,
J. H.; Wiewiora, R. P.; et al. SARS-CoV-2 simulations go exascale to
predict dramatic spike opening and cryptic pockets across the
proteome. Nat. Chem. 2021, 13, 651—659.

(21) Russo, J. D.; Zhang, S.; Leung, J. M.; Bogetti, A. T.; Thompson,
J. P,; DeGrave, A. ]J,; Torrillo, P. A; Pratt, A; Wong, K. F; Xia, J;
et al. WESTPA 2.0: High-performance upgrades for weighted
ensemble simulations and analysis of longer-timescale applications.
J. Chem. Theory Comput. 2022, 18, 638—649.

(22) Chan, M. C.; Shukla, D. Markov state modeling of membrane
transport proteins. J. Struct. Biol. 2021, 213, 107800.

(23) Aristoff, D.; Copperman, J; Simpson, G.; Webber, R. J;
Zuckerman, D. Weighted ensemble: Recent mathematical develop-
ments. . Chem. Phys. 2023, 158, 014108.

(24) Husic, B. E.; Pande, V. S. Markov state models: From an art to
a science. J. Am. Chem. Soc. 2018, 140, 2386—2396.

(25) Blank, T. B.; Brown, S. D.; Calhoun, A. W.; Doren, D. J. Neural
network models of potential energy surfaces. J. Chem. Phys. 1995, 103,
4129—4137.

(26) Smith, J. S.; Nebgen, B. T.; Zubatyuk, R; Lubbers, N.;
Devereux, C.; Barros, K; Tretiak, S.; Isayev, O.; Roitberg, A. E.
Approaching coupled cluster accuracy with a general-purpose neural
network potential through transfer learning. Nat. Commun. 2019, 10,
2903.

(27) Gkeka, P.; Stoltz, G.; Barati Farimani, A.; Belkacemi, Z.;
Ceriotti, M.; Chodera, J. D.; Dinner, A. R.; Ferguson, A. L.; Maillet, J.-
B.; Minoux, H.; et al. Machine learning force fields and coarse-grained

variables in molecular dynamics: application to materials and
biological systems. J. Chem. Theory Comput. 2020, 16, 4757—4775.

(28) Wang, D.; Wang, Y.; Chang, J.; Zhang, L.; Wang, H; E, W.
Efficient sampling of high-dimensional free energy landscapes using
adaptive reinforced dynamics. Nat. Comput. Sci. 2022, 2, 20—29.

(29) Guo, A. Z; Sevgen, E.; Sidky, H.; Whitmer, J. K.; Hubbell, J. A;
de Pablo, J. J. Adaptive enhanced sampling by force-biasing using
neural networks. J. Chem. Phys. 2018, 148, 134108.

(30) Sultan, M. M.; Pande, V. S. Automated design of collective
variables using supervised machine learning. J. Chem. Phys. 2018, 149,
094106.

(31) McCarty, J.; Parrinello, M. A variational conformational
dynamics approach to the selection of collective variables in
metadynamics. J. Chem. Phys. 2017, 147, 204109.

(32) Glielmo, A.; Husic, B. E,; Rodriguez, A.; Clementi, C.; Noé, F.;
Laio, A. Unsupervised Learning Methods for Molecular Simulation
Data. Chem. Rev. 2021, 121, 9722—9758.

(33) Buenfl, J; Koelle, S. J.; Meila, M. Tangent Space Least
Adaptive Clustering. ICML 2021 Workshop on Unsupervised Reinforce-
ment Learning, 2021; https://openreview.net/forum?id=00thAjcutwh
(accessed 08-19-2021).

(34) Preto, J.; Clementi, C. Fast recovery of free energy landscapes
via diffusion-map-directed molecular dynamics. Phys. Chem. Chem.
Phys. 2014, 16, 19181-19191.

(35) Zimmerman, M. I; Bowman, G. R. FAST conformational
searches by balancing exploration/exploitation trade-offs. J. Chem.
Theory Comput. 2015, 11, 5747—-5757.

(36) Perez, A.; Herrera-Nieto, P.; Doerr, S.; De Fabritiis, G.
AdaptiveBandit: A Multi-armed Bandit Framework for Adaptive
Sampling in Molecular Simulations. J. Chem. Theory Comput. 2020,
16, 4685—4693.

(37) Hornik, K;; Stinchcombe, M.; White, H. Multilayer feedforward
networks are universal approximators. Neural Netw 1989, 2, 359—366.

(38) Niiske, F.; Keller, B. G.; Pérez-Hernandez, G.; Mey, A. S. J. S.;
No¢, F. Variational Approach to Molecular Kinetics. J. Chem. Theory
Comput. 2014, 10, 1739—1752.

(39) Wu, H.; Noé, F. Variational Approach for Learning Markov
Processes from Time Series Data. J. Nonlinear Sci. 2020, 30, 23—66.

(40) Mardt, A.; Pasquali, L.; Wu, H.; Noé, F. VAMPnets for deep
learning of molecular kinetics. Nat. Commun. 2018, 9, 5.

(41) Wehmeyer, C; No¢, F. Time-lagged autoencoders: Deep
learning of slow collective variables for molecular kinetics. J. Chem.
Phys. 2018, 148, 241703.

(42) Schwantes, C. R.; Pande, V. S. Improvements in Markov state
model construction reveal many non-native interactions in the folding
of NTL9. J. Chem. Theory Comput. 2013, 9, 2000—2009.

(43) Pérez-Hernandez, G.; Paul, F.; Giorgino, T.; De Fabritiis, G.;
No¢, F. Identification of slow molecular order parameters for Markov
model construction. J. Chem. Phys. 2013, 139, 015102.

(44) Wu, H,; Niiske, F.; Paul, F.; Klus, S.; Koltai, P.; Noé, F.
Variational Koopman models: Slow collective variables and molecular
kinetics from short off-equilibrium simulations. J. Chem. Phys. 2017,
146, 154104.

(45) Jaynes, E. T. Information Theory and Statistical Mechanics.
Phys. Rev. 1957, 106, 620—630.

(46) Bottaro, S.; Bengtsen, T.; Lindorff-Larsen, K. Methods in
Molecular Biology; Springer US, 2020; pp 219—240.

(47) Boomsma, W.; Ferkinghoff-Borg, J.; Lindorff-Larsen, K.
Combining Experiments and Simulations Using the Maximum
Entropy Principle. PLoS Comput. Biol. 2014, 10, No. e1003406.

(48) Amirkulova, D. B.; White, A. D. Recent advances in maximum
entropy biasing techniques for molecular dynamics. Mol. Simul. 2019,
45, 1285—1294.

(49) Tian, H; Jiang, X,; Xiao, S.; La Force, H.; Larson, E. C.; Tao, P.
LAST: Latent Space-Assisted Adaptive Sampling for Protein
Trajectories. J. Chem. Inf. Model. 2023, 63, 67—75.

(50) Hoffmann, M.; Scherer, M.; Hempel, T.; Mardt, A.; de Silva, B;
Husic, B. E,; Klus, S.; Wu, H.; Kutz, N,; Brunton, S. L, et al

https://doi.org/10.1021/acs.jctc.3c00040
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://doi.org/10.1038/nchem.1821
https://doi.org/10.1038/nchem.1821
https://doi.org/10.1038/nchem.1821
https://doi.org/10.1021/ja202726y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jbc.2021.101092
https://doi.org/10.1016/j.jbc.2021.101092
https://doi.org/10.1016/j.jbc.2021.101092
https://doi.org/10.1126/science.1208351
https://doi.org/10.1126/science.1208351
https://doi.org/10.33011/livecoms.4.1.1583
https://doi.org/10.33011/livecoms.4.1.1583
https://doi.org/10.1063/1.1755656
https://doi.org/10.1063/1.1755656
https://doi.org/10.1063/1.1755656
https://doi.org/10.1073/pnas.1605089113
https://doi.org/10.1073/pnas.1605089113
https://doi.org/10.1021/jp045424k?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00500?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00500?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00500?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1146/annurev-biophys-070816-033834
https://doi.org/10.1146/annurev-biophys-070816-033834
https://doi.org/10.1021/acs.jctc.2c00683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00683?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1074/jbc.M117.792762
https://doi.org/10.1074/jbc.M117.792762
https://doi.org/10.1039/D1CP03307G
https://doi.org/10.1039/D1CP03307G
https://doi.org/10.1038/s41557-021-00707-0
https://doi.org/10.1038/s41557-021-00707-0
https://doi.org/10.1038/s41557-021-00707-0
https://doi.org/10.1021/acs.jctc.1c01154?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c01154?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jsb.2021.107800
https://doi.org/10.1016/j.jsb.2021.107800
https://doi.org/10.1063/5.0110873
https://doi.org/10.1063/5.0110873
https://doi.org/10.1021/jacs.7b12191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b12191?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.469597
https://doi.org/10.1063/1.469597
https://doi.org/10.1038/s41467-019-10827-4
https://doi.org/10.1038/s41467-019-10827-4
https://doi.org/10.1021/acs.jctc.0c00355?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00355?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00355?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s43588-021-00173-1
https://doi.org/10.1038/s43588-021-00173-1
https://doi.org/10.1063/1.5020733
https://doi.org/10.1063/1.5020733
https://doi.org/10.1063/1.5029972
https://doi.org/10.1063/1.5029972
https://doi.org/10.1063/1.4998598
https://doi.org/10.1063/1.4998598
https://doi.org/10.1063/1.4998598
https://doi.org/10.1021/acs.chemrev.0c01195?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c01195?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://openreview.net/forum?id=00thAjcutwh
https://doi.org/10.1039/C3CP54520B
https://doi.org/10.1039/C3CP54520B
https://doi.org/10.1021/acs.jctc.5b00737?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00737?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00205?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00205?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1021/ct4009156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s00332-019-09567-y
https://doi.org/10.1007/s00332-019-09567-y
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1063/1.5011399
https://doi.org/10.1063/1.5011399
https://doi.org/10.1021/ct300878a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300878a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300878a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4811489
https://doi.org/10.1063/1.4811489
https://doi.org/10.1063/1.4979344
https://doi.org/10.1063/1.4979344
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1371/journal.pcbi.1003406
https://doi.org/10.1371/journal.pcbi.1003406
https://doi.org/10.1080/08927022.2019.1608988
https://doi.org/10.1080/08927022.2019.1608988
https://doi.org/10.1021/acs.jcim.2c01213?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01213?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Deeptime: a Python library for machine learning dynamical models
from time series data. Mach. Learn.: Sci. Technol. 2022, 3, 015009.

(51) Bowman, G. R; Ensign, D. L.; Pande, V. S. Enhanced Modeling
via Network Theory: Adaptive Sampling of Markov State Models. J.
Chem. Theory Comput. 2010, 6, 787—794.

(52) Scherer, M. K; Trendelkamp-Schroer, B.; Paul, F.; Pérez-
Hernéndez, G.; Hoffmann, M.; Plattner, N.; Wehmeyer, C.; Prinz, J.-
H; Noé, F. PyEMMA 2: A Software Package for Estimation,
Validation, and Analysis of Markov Models. J. Chem. Theory Comput.
2018, 11, §525—5542.

(53) Zoldak, G.; Stigler, J.; Pelz, B.; Li, H.; Rief, M. Ultrafast folding
kinetics and cooperativity of villin headpiece in single-molecule force
spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 18156—18161.

(54) Hruska, E.; Abella, J. R; Niiske, F.; Kavraki, L. E.; Clementi, C.
Quantitative comparison of adaptive sampling methods for protein
dynamics. J. Chem. Phys. 2018, 149, 244119.

(55) Settles, B. Active Learning; Springer International Publishing,
2012.

(56) Smith, J. S.; Nebgen, B.; Lubbers, N.; Isayev, O.; Roitberg, A. E.
Less is more: Sampling chemical space with active learning. J. Chem.
Phys. 2018, 148, 241733.

(57) Shmilovich, K.; Mansbach, R. A.; Sidky, H; Dunne, O. E.;
Panda, S. S.; Tovar, J. D.; Ferguson, A. L. Discovery of self-assembling
m-conjugated peptides by active learning-directed coarse-grained
molecular simulation. J. Phys. Chem. B 2020, 124, 3873—3891.

(58) Thompson, J.; Walters, W. P.; Feng, J. A.; Pabon, N. A;; Xu, H.;
Goldman, B. B.; Moustakas, D.; Schmidt, M.; York, F. Optimizing
Active Learning for Free Energy Calculations. Artif. Intell. Life Sci.
2022, 2, 100050.

(59) Lindsey, R. K; Fried, L. E,; Goldman, N.; Bastea, S. Active
learning for robust, high-complexity reactive atomistic simulations. J.
Chem. Phys. 2020, 153, 134117.

(60) Shamsi, Z.; Cheng, K. J.; Shukla, D. Reinforcement Learning
Based Adaptive Sampling: REAPing Rewards by Exploring Protein
Conformational Landscapes. J. Phys. Chem. B 2018, 122, 8386—8395.

(61) Ghorbani, M.; Prasad, S.; Klauda, J. B; Brooks, B. R.
GraphVAMPNet, using graph neural networks and variational
approach to Markov processes for dynamical modeling of
biomolecules. J. Chem. Phys. 2022, 156, 184103.

(62) Chen, W.; Sidky, H.; Ferguson, A. L. Nonlinear discovery of
slow molecular modes using state-free reversible VAMPnets. J. Chem.
Phys. 2019, 150, 214114.

(63) Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci.
1963, 20, 130—141.

(64) Roblitz, S.; Weber, M. Fuzzy spectral clustering by PCCA+:
application to Markov state models and data classification. Adv. Data.
Anal. Classif. 2013, 7, 147—179.

(65) Chiu, T. K,; Kubelka, J.; Herbst-Irmer, R.,; Eaton, W. A,;
Hofrichter, J.; Davies, D. R. High-resolution x-ray crystal structures of
the villin headpiece subdomain, an ultrafast folding protein. Proc. Natl.
Acad. Sci. US.A. 2008, 102, 7517—7522.

https://doi.org/10.1021/acs.jctc.3c00040
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


https://doi.org/10.1088/2632-2153/ac3de0
https://doi.org/10.1088/2632-2153/ac3de0
https://doi.org/10.1021/ct900620b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct900620b?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00743?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.5b00743?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1311495110
https://doi.org/10.1073/pnas.1311495110
https://doi.org/10.1073/pnas.1311495110
https://doi.org/10.1063/1.5053582
https://doi.org/10.1063/1.5053582
https://doi.org/10.1063/1.5023802
https://doi.org/10.1021/acs.jpcb.0c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.0c00708?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ailsci.2022.100050
https://doi.org/10.1016/j.ailsci.2022.100050
https://doi.org/10.1063/5.0021965
https://doi.org/10.1063/5.0021965
https://doi.org/10.1021/acs.jpcb.8b06521?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.8b06521?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.8b06521?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0085607
https://doi.org/10.1063/5.0085607
https://doi.org/10.1063/5.0085607
https://doi.org/10.1063/1.5092521
https://doi.org/10.1063/1.5092521
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
https://doi.org/10.1007/s11634-013-0134-6
https://doi.org/10.1007/s11634-013-0134-6
https://doi.org/10.1073/pnas.0502495102
https://doi.org/10.1073/pnas.0502495102
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00040?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

