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Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation.
While experimental advances have enabled improved PTM identification capabilities, the same
throughput for characterizing how structural changes caused by PTMs equate to altered physiological
function has not been maintained. In this Perspective, we cover the history of computational modeling
and molecular dynamics simulations which have characterized the structural implications of PTMs. We
distinguish results from different molecular dynamics studies based upon the timescales simulated and
analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for
modern research efforts on in silico PTM characterization may proceed given current state-of-the-art
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computing capabilities and methodological advancements.

1. Introduction

The basis of cellular function is rooted in atomistic movement.
Irrespective of the molecular form, atomistic interactions
resulting from these movements signal the need for necessary
biophysical actions. DNA replication, RNA transcription, protein
translation, and related signal transduction are all fundamental
molecular processes which are dynamically recruited to satiate
cellular need. Accordingly, an organism’s genomic architecture
equips its cells with the tools necessary to maintain homeostasis.
The genome encodes genetic and proteinogenic responses
to cellular perturbation. However, genomic architecture fixture
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occurs on evolutionary timescales. Thus any a priori information
available to cellular machinery via the genome may not always
possess the precision nor efficiency for any given stimulus
occurring along physiological and developmental timescales.
DNA and protein synthesis are essential provisions for main-
taining homeostasis and cellular feedback mechanisms, but
additional forms of spatiotemporal regulation are required to
guarantee that the cell can acclimate to emergent complexity." In
turn, cells developed a versatile biochemical arsenal through
posttranslational modifications (PTMs).>

PTM refers to either reversible or irreversible chemical
changes in proteins after translation, which often occur on
specific amino acid side chains.> PTM addition or removal is
executed by means of a covalent modification by bonding or
hydrolytic cleavage, typically occurring on side chains which
may behave as nucleophiles (Cys, Ser, Thr, Tyr, Lys, His, Arg,
Asp, Glu).* Hydroxylation of Pro and Asn act as exceptions.”
Approximating almost 700 unique entries in the UniProt database
to date,” the most common additive PTMs are phosphorylation,
acylation (includes ubiquitination), alkylation, glycosylation, and
oxidation; less common ones include hydroxylation/carboxylation,
the addition of peptide moieties to preexisting protein residues,
and sulfur-sulfur transfers, among others."®’ Proteolysis, deami-
dation, and eliminylation are examples of nonadditive PTMs.®
Some PTMs for commonly modified residues, which can be
computationally modeled, are shown in Fig. 1. Each PTM serves
a role in altering the target protein in some way, perhaps by
introducing stability or redirecting localization and subsequent
interactions post-installment.” In effect, target protein structure
and function are inherently changed upon PTM introduction, as
the PTM fundamentally changes the physicochemical properties
of its host amino acid.*®
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Fig. 1 Display of modeling capabilities for common PTMs on commonly
modified residues. Modifications are shown for residues which can be
readily modeled using the Vienna-PTM server '° PTMs are highlighted with a
black raspberry glow. Structures resulting from the server are only para-
meterized with GROMOS force fields. Phosphorylation is shown for (A)
lysine, (B) aspartate, (C) threonine, (D) histidine, (E) tyrosine, and (F) serine.
Glycosylation is shown for (G) serine, (H) threonine, and (I) asparagine.
Acetylation is shown for (J) lysine. Alkylation is shown for (K) arginine,
(L) histidine, (M) glutamine, and (N) cysteine. Oxidation is shown for (O)
methionine, (P) proline, and (R) glutamate. Amination is shown for (Q)
tyrosine. A color key is provided at the bottom of the image for distinction
of oxygen, nitrogen, sulfur, and phosphorous atoms. Colors not mentioned
in the key represent carbon for each of the amino acids.

Thousands of proteins exist within individual proteomes,
comprising a set of machinery capable of “reading”, “writing”,
and ‘“erasing” PTMs.''™® Reader proteins recognize PTMs
installed by writers (kinases, ubiquitin ligases, acetyltrans-
ferases), through molecular interactions for the preparation
of an adequate biological response to cellular conditions."® For
reversible PTMs, eraser proteins (phosphatases, deubiquiti-
nases, deacetylases) terminate molecular signal propagation
by removing PTMs."? Furthermore, target proteins may contain
multiple PTM sites, resulting in combinatoric PTM possibilities
which may redefine expected cellular outcomes that would
otherwise occur from just a single PTM instance." Although
PTMs may instantiate a sense of proteomic crosstalk, they are
also capable of intra-protein crosstalk, communicating allosteric
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information about what kind of conformation the target protein
should adopt in preparation for its next role in cellular signaling
and stress response.’® Interrogating how PTMs communicate
such intra- and inter-protein changes thus becomes central to
understanding how protein function is regulated throughout any
physiological state of the cell.

As experimental advances in mass spectrometry and
chemical biology have facilitated PTM discovery and methodo-
logies for characterization,"®*>'® the opportunity to system-
atically describe PTM functional outcomes gains clarity. Still,
barriers exist to an exhaustive experimental interrogation of
how PTMs influence protein function. Systematic studies using
mass spectrometry often consider identification for few mod-
ification types of a single PTM rather than considering the
existence or functional consequences of multiple PTMs.?
Exploration of multisite PTM characterization poses similar
challenges as seen for exploring higher-order mutations in
variant effect prediction with respect to throughput.'” Although
cellular assays can be performed to examine PTM effects on
protein expression, function, and downstream effects, dissecting
how these modifications relate to individual protein structure
and conformational changes requires more effort. Throughput
for spectroscopy and structure determination experiments is
limited by large scale efforts of in vitro heterologous expression
for both soluble and membrane proteins, as well as specialized
training for probe/label design or preventing protein precipita-
tion. However, in silico approaches to studying PTMs offer an
alternative for challenging experimental characterization efforts.

In this Perspective, we highlight the foundations laid by
PTM in silico research spanning the last 30 years to offer
insights towards future PTM characterization using computation.
Recent advances in computing power and simulation methodology
have rendered in silico molecular modeling and molecular
dynamics (MD) simulations an important, and increasingly
accessible, tool to understand biological macromolecules.'® >
Here we compare what MD simulations of PTMs have achieved
in the past using less computational power and fewer metho-
dological advances with what is now capable with more modern
resources and simulation techniques. Our goal is to illuminate
the eventual quality of PTM functional understanding so that it
may rival the increasing quantity of discovered PTMs.

2. Modeling posttranslational
modifications for molecular dynamics
simulations

2.1. Introducing molecular dynamics simulations

MD simulations require two inputs: initial positions extracted
from an experimentally determined (or computationally pre-
dicted) structure and a force field describing the interactions
between atoms. A typical force field consists of the following
terms: covalent bonds, bond angles, dihedral angles, electro-
static interactions, and other non-bonded interactions. According
to Newton’s second law of motion, the acceleration of each atom
can be computed. Using numerical integration techniques, the
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positions and velocities of every atom in the system can be
updated as a function of time. To ensure numerical stability,
the time steps in an MD simulation must be short - typically only
a few femtoseconds - so that each time step is shorter than the
timescale of the fastest chemical bond vibration. The output of an
MD simulation is a trajectory file containing the position of each
atom at each time step, describing the motion of the system at the
atomic level during the simulated time period.”® Preliminary
stages of simulation involving heating and restraint relaxation
are applied first, ensuring thermostability of modeled molecules
and their starting conformations. After undergoing short simula-
tions where restraints have been removed and the model system
has converged to a stable state, data can then be reliably recorded
from trajectories known as “production runs” with minimal fear
of simulation artifacts.**

Before committing to any computational study design, the
greatest bottleneck to conducting MD studies is the availability
of computing resources. This caveat is especially important, as
the simulation of a given biomolecular process must occur over a
specified timescale to accurately sample the conformational
ensemble for the dynamics of interest.">*>*® Scientific computing
costs have been alleviated as more powerful hardware has been
produced, but simulation throughput has historically not been as
efficient nor parallelizable as can be seen today. Within the first
decade of the 21st Century, the acceleration of MD simulations via
porting to graphical processing units (GPUs) was retarded by a
few lurking variables - namely scaling across multiple GPUs,
changing how memory was accessed on GPUs versus central
processing units (CPUs), and interfacing with compilers which
would allow for MD software to run on GPU source code.”” By
2010, these challenges were eventually overcome by software
developers, where MD simulation work performed on GPUs
became routine and continuous efforts were made to increase
simulation efficiency.*® " Naturally, the outcomes of GPU porting
achievements were amplified by the integration of MD workflows
onto large distributed computing as well as supercomputing
platforms (e.g., private clusters, Folding@Home, D.E. Shaw’s
Anton, the National Science Foundation’s Frontera, or National
Center for Supercomputing Resources like BlueWaters and XSEDE
initiatives).**”

MD methodologies can be applied for studying the evolution
of specific biomolecular processes, evaluating how these
processes may be perturbed following a controlled change, or
simply demonstrating conformational flexibility and stability
along some molecular structure.*® Technical advances for MD
simulation can be divided based on whether they address phase
space sampling or interpretation of resulting simulation data.
While we focus on MD study design with respect to PTMs later
in this Perspective, the different types of MD simulation
techniques, their application and development, have been
extensively reviewed elsewhere.*® On the other hand, the large
deluge of results and calculations derived from MD simulations
has prompted the use of machine learning for improved data
representation and analysis.>*™*"

Regardless of the method used for sampling, measures for
uncertainty quantification and sampling quality have been
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communicated as best practices when designing and conducting
MD simulation studies.** A variety of simulation techniques used
to calculate binding free energies, thermostability, or kinetic rates
of transition often come in exact agreement, or occur within error,
of experimental observations.***® Minimally, MD simulation can
offer qualitative agreement with experimental results. Simulation
accuracy is extremely sensitive to the initially modeled conditions,
but can be strengthened by repeated and systematic sampling of
the phase space for a given process. Outside of the modeled
structure and selected parameterization set quality, the predictive
power of MD simulations and the minimization of error lies in the
attempt for approximating statistical convergence of ensemble-
averaged properties.” Today, this is more easily achieved by
running longer and greater trajectories thanks to better comput-
ing and ensemble simulation-based approaches.*’

2.2. In silico installation of PTMs for preparing simulation
studies

Proteins are highly dynamical systems with functions governed
essentially by their dynamical behaviors.”® MD simulations
thus become a powerful tool for studying PTMs. Notably, MD
simulations can capture the dynamic behavior of biological
systems at atomistic resolution in a label-free manner. They can
therefore offer a unique structure-dynamics perspective in deci-
phering the roles of PTMs on proteins without any form of
perturbation introduced by probes.>"** Furthermore, the simula-
tion conditions can be carefully controlled by the simulation
practitioner. So by comparing simulations performed under
different PTM conditions, one can identify the effects of a wide
variety of PTMs, which is usually experimentally unfeasible.>
Accurate PTM modeling is still reliant on appropriate information
related to the PTM-bearing amino acid site and tools to introduce
and parameterize these changes to the protein structure.

Databases and informatic methods cataloguing general PTM
information,>*~®° as well as resources depicting experimentally-
validated or computationally-predicted sites specific for
phosphorylation,®” %8 80,8998 and acylation,®>%%'"°
among other modification forms, exist. These resources
can be used to identify PTM sites on target proteins for improved
molecular modeling. Traditionally, if a PTM was not already
present on a resolved crystal structure, covalent modifications
were made to input coordinate and topology files to reflect the
correct modification using modeling software or through manual
text editing of the input files. Such hands-on changes can be
introduced using either molecular visualization software'**™*® or
system preparation modules found in popular MD simulation
engines (e.g. AMBER, CHARMM, GROMACS, NAMD).>*3%:139:140
Eventually, standalone- and web-tools were developed to stream-
line PTM installation onto protein structures.

As a historiographic example, glycosylation efforts starting
from the late 1990s and continuing into the mid 2010s were
focused on modeling carbohydrate structures, although none
of these tools could directly merge the resulting sugars onto
protein coordinates and generate glycoprotein topologies
necessary for simulation."*'™'** That is, these software offer
limited accessibility to PTM modeling by making simulation

glycosylation,
80,120-132

26374 | Phys. Chem. Chem. Phys., 2022, 24, 26371-26397

View Article Online

PCCP

topology generation exceedingly nontrivial for nonexperts. In
2005, GLYCAM emerged as a tool developed specifically for
modeling glycoproteins and solution carbohydrates as AMBER
and CHARMM simulation inputs.'*® CHARMM developers then
introduced glycan reading and modeling functionalities
into the CHARMM-GUI webserver for glycoprotein structure
preparation."”™*° Similarly, GROMACS developers made
doGlycans for modeling GROMACS-compatible glycoprotein
structures.”® Although each of these tools enabled glycoprotein
structure preparation, preference for one MD engine over
another confound progress on PTM modeling. Features available
in some tools for one engine - i.e., sugar library chemical and
conformational diversity — may not be available for another,
requiring nontrivial file conversion and topology preparation
strategies using additional or third-party tools. Indeed, juxta-
posed singularity between different software and computational
tools is an inherent obstacle in molecular modelling!

By 2017, several MD engine camps had developed their own
respective tools for glycoprotein structure generation, inspiring
force field-independent efforts to make carbohydrate structures
available and amenable for MD input file preparation.’>’™'??
Outside of common PTMs like phosphorylation and ubiquiti-
nation, additional tools were developed to facilitate modeling.
The PyMOL plugin PyTM can model phosphorylation, acetylation,
carbamylation, citrullination, nitration, methylation, hydroxyla-
tion, aldehyde adduct formation, as well as any combination of
the above."™ The Vienna-PTM server offers residue templates
for over 256 (non)enzymatic modifications, although modified
output structures are designed to be used within a GROMACS
framework.'® Despite these advances, CHARMM-GUI maintains
popularity because of its ease of access; its phosphorylating, lipid
anchoring (acylate), glycosylating, and peptide stapling capabil-
ities; and its file output schemes that maximize compatibility
with diverse MD engines (Fig. 2).">>™*” Another reason for the
popularity of CHARMM-GUI is its ability to archive structures of
interest for modelers to download and immediately use in their
own research. A great example of this is the recent availability of a
fully glycosylated, full-length SARS-CoV-2 spike protein model
in a realistic viral membrane, which has been used directly for
subsequent computational study.'”®*** Regardless of the methods
used for PTM installation, modified amino side chain orientations
may be further optimized using rotamer libraries or through
equilibration simulations.'®®

With protein structure files covalently modified, PTM para-
meterization is required to ensure that simulations accurately
depict biophysical behaviors as expected from experiment.
Initially, PTM models did not necessitate their own specific
force fields. MD practitioners could then argue that accuracy of
PTM-containing simulations was not significantly compro-
mised, as atom parameters could be assumed by analogy from
preexisting libraries. Such practice was acceptable at the turn of
the 21st Century, before more PTM-specific force fields were
developed. For common PTMs, phosphorylation moieties could
borrow nucleotide parameters to describe their phosphate
groups; likewise, glycosylation, ubiquitination, and acylation
additions shared atoms with protein and small molecule force
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Fig. 2 Modified screenshot of CHARMM-GUI PDB Reader function high-
lighting specific PTM options for input protein structure manipulation.

fields. Missing parameters were otherwise developed as needed
by specific research groups without immediately being publicly
available. Specific force field developments for particular PTMs,
such as phosphorylation and glycosylation, were later expanded
into addons and were incorporated into libraries commonly
used for each of the popular MD engines."®*'7® 1t is worth
noting that the majority of discussed modeling and parameter-
ization efforts were first dedicated to characterize biologically
common PTMs, suggesting that a need for improved modeling
of less common PTMs still remains.

3. Designing molecular dynamics
approaches for the study of
posttranslational modifications

Perhaps the beauty of molecular simulation lies in its unfet-
tered power to describe molecular systems in almost unlimited
detail. Extent of available computational resources and meth-
odologies will always be a bottleneck to data procurement,
but the onus of appropriate research design and meaningful
analyses falls to the MD practitioner.

Generally, trajectory analyses assume either a time-dependent
or time-independent form. Time-dependent data collection
regimes incorporate analyses that project some feature against
the order parameter of time, following observations exactly as
they transpired along individual trajectories. In contrast, time-
independent data collection regimes instead employ analyses
that project data against order parameters as a timeless ensem-
ble, where data points occupy positions within a dimensional

This journal is © the Owner Societies 2022
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phase space with respect to the selected order parameters.'”” %
Removing reliance on time allows for data to be viewed from a
perspective of population density as opposed to mere frequency
of occurrence within a trajectory. Such a style of data projection
can be seen in free energy landscapes (FELs), where aggregate
data points occupying highly frequent regions in the projected
dimensional space can be identified as either metastable or
transitionary macrostates.

Each analysis and data collection approach has its strengths
and weaknesses. Time-dependent data collection and analyses
are typically employed to focus on specific interactions given a
starting structure and with or without a target structure in
mind. These types of results follow ‘“‘single” or “few” trajectory
simulation schemes where coordinate and velocity information
are retained to maintain the existence of a long trajectory.
As such, time-dependent data representations offer a simplified
perspective reinforced by multiple replicates of production
runs observing similar molecular events. Because data output
by individual time-dependent trajectories is not aggregated,
enhanced sampling methods are often used instead of just
classical MD simulations to capture molecular transitions
occurring along longer timescales. Approaches like accelerated,
targeted, or steered MD are examples of such techniques."®" "
Although studies following a time-dependent data collection
regime can utilize time-independent analyses, these studies
tend to lack sufficient sampling to offer comprehensive con-
clusions beyond the direct research question in focus.

On the other hand, time-independent data collection and
analyses are employed to observe a desired transitionary path
from one macrostate to another along order parameters which
are not based in time. Data representation can then naturally
take the form of FELs. Studies designed using time-dependent
approaches are still capable of capturing a FEL but may not be
able to do so for longer timescale processes. Time-independent
approaches achieve this goal by combining the results from an
aggregation of “brute force” classical MD simulations or by
biasing potentials along selected order parameter(s). Such a
biasing method includes metadynamics, where the choice of
order parameters directly affects how easily transitions may be
sampled.’®* Results from brute force simulation of unbiased
parallel trajectories need to be “‘stitched” together using kinetic
frameworks like Markov state models (MSMs) or milestoning,'®>™%%
while path search and optimization protocols can otherwise
be biased along potentials using approaches like umbrella sam-
pling, replica exchange, or the string method."®*** Although
nontrivial to implement, results from unbiased and biased simula-
tions can be augmented into a single multiensemble kinetic
framework for time-independent data representation.*® Depending
on the extent of collective variable exploration, time-independent
data representation can demand extremely more resources than
research designs relying on a time-dependent data collection and
analysis approach.

Herein, we describe the evolution of MD studies on PTMs
and their effect on protein structure-function. We begin by
discussing methodologies and results from studies observing
how PTMs influence protein structure and function along
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shorter timescales. In these studies, the dominant styles of
molecular simulation include time-dependent data collection
and analysis regimes, as well as path optimization methods like
replica exchange MD (REMD) given available experimental
structures. Subsequently, we transition to studies employing
FELs for detailing how PTMs impact the range of protein
function. Thanks to increased computing capabilities and
methodological advances, PTM MD studies wielding a FEL-
based approach have recently become more widespread within
the literature.

4. Foundational insights on
posttranslational modifications
revealed by studies using trajectory-
specific approaches

During the mid-1990s, MD practitioners were first challenged
with the task of modeling and simulating covalently modified
proteins. At first, it was questioned whether results from PTM
simulations could even concur with experiments. The initial
quest to address how PTM dynamics regulated protein function
was confounded by other lurking variables, too. As described in
Section 2, few existing tools to easily modify protein structures
were available; therefore, initial works were constrained to
studying proteins whose resolved structures already contained
PTMs. Additionally, GPU-based acceleration of MD simulations
was not implemented until the late 2000s, meaning that
approaches to modeling PTMs needed to be carefully designed
so that they could efficiently offer unique insights with minimal
data and computing time requirements. Many of these initial
simulation studies between 1990 and 2010 were therefore
performed along picosecond to nanosecond timescales, focusing
on specific regions of protein structures or interactions with
covalently modified peptides. Short timescale MD studies were
capable of modeling intramolecular protein sidechain contacts
and whether target protein or peptide structures were altered by
PTM installation. Identifying how hydrogen bonding networks
could be altered after PTM introduction was a worthwhile
contribution for the time, as NMR experiments could not always
distinguish hydrogen bonding interactions involving PTMs
which lacked hydrogens. Despite how early computing capabil-
ities limited MD to the study of short timescale transitions like
changes in hydrogen bonding, any atomistic details offered from
experiments alone were still incomplete without the help of
molecular modeling.

4.1. Characterization of active and binding site
rearrangement through PTM interactions

What was first of interest included the structural consequences
of PTMs on sidechain orientation and peptide secondary structure
within binding pockets and recognition interfaces. In 1995, the
basis of aldolase inhibition by a synthetic peptide matching the
first 15 residues of human erythrocyte peptide band 3 (B3P) was
characterized using MD simulation of NMR-resolved aldolase
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structures.'**

The structure of the peptide in complex with
aldolase was determined via NMR, and a phosphorylated version
of the peptide was then docked into the aldolase binding pocket
and simulated for 5 ps. An unphosphorylated hydroxyl moiety of
the peptide’s tyrosine group was able to experience favorable
interactions within the docking site, but pTyr resulted in unfavor-
able interactions and inhibited certain rotational ranges of
motion because of electrostatic repulsion. These findings offered
an explanation as to how B3P phosphorylation inhibited glycolytic
function of aldolase off phosphate electrostatics alone."> Using
computing capabilities available before the year 2000, the binding
of unmodified, P;-bound and phosphopeptide-bound phospholi-
pase SH2 domain MD simulations were modeled in a separate
study.’®® To give perspective on the available computing power,
SH2 was simulated for 250 ps at a rate of 3 ps day ' in this
study.’®® These phospholipase simulations demonstrated how
PTMs recruit mostly the same residues as their solution-based
counterparts (e.g., P; versus pTyr), as Pi-bound and pTyr simula-
tions highlighted the importance of a conserved arginine triad in
stabilizing phosphate group positioning within the SH2 binding
pocket (Fig. 3).'”® Here, short simulations could suggest an
evolutionarily conserved role within binding pockets for select
residues when handling PTMs by maintaining the hydrogen
bonding network of the active site.

In other cases, there exists a possibility for active site
rearrangement following PTMs, which need not necessarily be a
result of direct residue-residue interactions with the covalently
modified PTM site. Comparison between catalytic domains
seen in the phosphorylated structures of inactive (closed) Src
tyrosine kinase and active (open) Lck kinase suggested that
phosphorylation-induced conformational change along a polypep-
tide linker was required to reflect kinase active state (Fig. 4)."** To
study this dynamic hinge motion hypothesized for maintaining
active versus inactive states upon phosphorylation, a targeted MD
approach was used where increasing amounts of harmonic
restraints were applied across increments of 60 ps to the Src
kinase hinge region Co atoms.’® From this, targeted MD

A /‘3\38 B

Fig. 3 SH2 domain phosphate binding pocket hydrogen bonding net-
work. (A) Hydrogen-bonding network shown for phosphopeptide binding
to the phosphate binding site. (B) Hydrogen-bonding network for inor-
ganic phosphate to the phosphate binding site. Both binding simulations
depict central role of conserved arginine triad in stabilizing phospho-
moieties. Adapted with permission from M.-H. Feng, M. Philippopoulos, A.
D. MacKerell and C. Lim, J. Am. Chem. Soc., 1996, 118, 11265-11277.1%%
Copyright 2022 American Chemical Society.
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Fig. 4 Comparison of Src kinase inactive structure (left) versus Lck active
structure (right). A common strategy for exploring PTM-induced confor-
mational change at reduced computational cost was to use covalently
modified starting structures in different conformations. This case study
used the Lck kinase phosphorylated active structure to create a homology
model for the active Src kinase structure. Adapted with permission from
J. Mendieta and G. Gago, J. Mol. Graph. Model., 2004, 23, 189-198.14
Copyright 2022 Elsevier.

converted pTyr416 Src kinase from the resolved closed state to a
target pseudoactive open state based off the Lck crystal
structure."* Targeted MD could not exactly mimic an Lek-like
extended conformation until bound ATP was replaced with ADP,
which then forced immediate conformational change within
800 ps in support of experimentally proposed intramolecular
autophosphorylation of Tyr416. Thus, in this 2004 study, Src
kinase could only achieve the active conformation when the active
site reorganized around pTyr416 and ADP interactions.'** Similar
perturbations to cofactor coordination in cyclin-dependent kinase
2 (CDK?2) active site residues were seen during 60 ps classical MD
simulations of inhibitory phosphorylation along the G-loop.'
Still, the position for phosphorylation is critical for determining
the effect on active site rearrangement. For CDK2, it was reported
from classical simulations ranging between 3-10 nanoseconds
that pThr160 activation occurred by constraining the active site
T-loop for phosphotransfer; meanwhile pThri4 and pTyr15 intro-
duced enough flexibility in the G-loop to widen the active site,
destabilize cofactor placement, and inhibit phosphotransfer.'*®%”
Thus, PTM installation can rearrange loop conformations to
alter protein function by generating new cavities for accommo-
dating protein-specific activation functions."®

Active site reorganization can also occur through solvation
effects. Phosphorylation of human eukaryotic translation initiation
factor 4E, or eIF4E, found that pSer209 narrowed the dinucleotide
cap binding pocket after shortening nearby backbone Co-Co dis-
tances by about 10 A throughout an 800 ps simulation performed
in 2003."° However, this tightening of the dinucleotide binding
pocket could be accredited to dianionic phosphate recruiting a
large solvation shell as a consequence of the pSer209 phosphate
group’s electronegative charge. This localized electronegativity thus
created a force that pushed active site residues away and further
enclosed the dinucleotide binding site.'® Either by electropositive
amino acid composition or hydration, positive charge is needed
in order for phosphopeptide binding or phosphorylation to be
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supported.”’® In the case of phosphorylation, constrained confor-
mational change is likely the means by which proteins accommo-
date the introduction of negative charge.

4.2. Influence of PTMs on protein structure, thermostability,
and allosteric communication

Outside of active site studies, other short peptide simulations
would proceed to computationally characterize the effects of
phosphorylation by highlighting the importance of electrone-
gativity introduced by phosphorylation. Phosphorylation was
seen to induce conformational changes in a 10-residue region
of tyrosine hydroxylase where most metastable states depicted
peptide compression after 5 ps of simulation, unlike what
was seen in the unphosphorylated structure.?®® Salt bridges
seen in the unphosphorylated tyrosine hydroxylase peptide
were broken, leaving many charged residues solvent-exposed
as the pSer moiety hydrogen bonded with terminal residues.
New interactions and conformations caused by Ser phosphory-
lation at one tyrosine hydroxylase site were argued to be the
cause for cooperative increases seen in experimental phosphor-
ylation at additional sites along the peptide region.*®' Peptide
compression in response to phosphorylation has been reported
in additional studies spanning from 2002 to 2012, too, as well
as the breaking of native salt bridges in order to generate
hydrogen bonds for mitigating the negative charge of phos-
phate groups.’*>?% Other forms of conformational change
for Ser phosphorylation have been reported, such as stabilized
alpha-helical secondary structure formation based on phosphate-
backbone electrostatic interactions,”** as well as preferred
dihedral orientations introduced at the phosphorylation site.?*®
Thr-specific phosphorylation was also seen to increase helicity in
100 ns classical simulations of p53 and p73 proteins, although
decreases in helical content have been seen for other
proteins.”*®?°” Even as recent as 2019 has the interplay of
individual PTM forms been found to stabilize N-terminal
helices through phosphate charge neutralization and
backbone-sidechain hydrogen bonding via advanced REMD
simulations.?’® From the large body of phosphorylation mod-
eling and simulation research, modification along specific
amino acids and in different local environments will alter
the probabilities of distinct resulting conformations. Work
from the Jacobson group using umbrella sampling and quan-
tum mechanical studies found in 2007 that hydrogen bond
strength with phosphate groups noticeably changes in
response to the geometry assumed by different phosphory-
lated residues based on their amino acid identity and their
local environments.** Similarly, REMD simulations on glyco-
sylated proteins also showed in 2010 that protein secondary
structure can be altered in a site-specific manner based on
shifted backbone dihedral preferences after glycosylation.>*°

Intrinsic disorder and repositioning of flexible loops serve as
strategies for proteins to rapidly change their local environ-
ments in response to dynamic processes. PTM installation
along disordered regions can instead exacerbate cellular per-
turbation response strategies of proteins by altering
thermostability.*'" In 2008, the Levy group designed an elegant
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study by systematically modeling glycan groups onto an SH3
domain protein to distinguish the entropic versus enthalpic
effects of glycosylation on protein function (Fig. 5A).>'>*'
Coarse-grained modeling of the glycosylated SH3 structures
enabled this systematic study design, where 63 different glyco-
sylated SH3 domains could be efficiently simulated at different
temperatures and in replicates. By varying temperature for the
different simulations, Arrhenius-style free energy projections
showed how increased extent of glycosylation increased protein
thermal stability, where both enthalpy and entropy were
reduced by the addition of glycans (Fig. 5B-D). The addition
of glycans to SH3 was found to rigidify the protein structure,
thereby lowering the enthalpy as the glycan moieties restrict
protein dynamics. Similar results and effects on dynamics were
seen on a variety of glycosylated protein structures by the Im
group in a 2015 study.”’® Given the breadth of collected
simulation data for the time, Shental-Bechor and Levy’s study
could offer direct insights towards SH3 stabilization that could
not be offered by experiments alone.>'*?!* Even the restriction
of potential dynamics by PTM installation could impose
significant biological implications, as the PTM offers other
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contributions to the target protein structure. For example,
the Woods group found through 1 ps simulations of various
SARS-CoV-2 spike protein glycoforms that glycosylation shields
on average approximately 40% of the glycoprotein surface from
antibody recognition."* In this case, the evolutionary advent of
a PTM enables the SARS-CoV-2 virus to better bypass human
immune systems and promote host infection.'®*

Even if PTMs may not principally operate through electro-
static perturbations, the entropic and enthalpic contributions
offered by a specific covalent modification contribute to how
the effects of a PTM manifest in a site- and modification-
specific manner. Modeling and simulation by the Levy group
have accurately predicted glycosylation-induced destabilization
of WW-domain protein in regions where large numbers of
contacts in native topology models preexist, as glycan installa-
tion would disrupt otherwise stabilizing interactions.*'®
However, the opposite is not necessarily true when comparing
simulation to experiment. The same 2010 study found that just
because a glycosylation site along the WW-domain scaffold
appears as if it can sterically accommodate a glycan does not
universally imply that such a modification will result in
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Fig. 5 Glycosylation effect on thermodynamic stability of SH3 domain protein. (A) SH3 domain represented as a blue ribbon, with glycosylation moieties
represented as grey sticks. This modified protein was simulated using a coarse-grained native topology model rather than the all-atom version presented
here. (B) Folding free energy (AGy) of the SH3 domain protein. (C) SH3 domain protein folded state thermodynamics, broken down by enthalpic and
entropic contributions. (D) SH3 domain protein unfolded state thermodynamics, broken down by enthalpic and entropic contributions. Panels B—-D
represent free energy as a function of the length of the glycan chains added. Adapted with permission from D. Shental-Bechor and Y. Levy, Proc. Natl.
Acad. Sci. U. S. A., 2008, 105, 8256-8261.2'2 Copyright 2022 National Academy of Sciences.
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stabilization.”™ Entropic stabilization could instead arise
through PTM-based dehydration, as WW-domain protein PEGy-
lation simulations suggest that solvent removal from the
protein surface by PEGylation improves solubility and folded
state preference.”'® Thus, it can be expected that entropy-based
PTM effects are tied to the hydrophobicity and stericity inherent
to that modification. In 2016, the Jacobson group found that the
entropic effects of ubiquitination on a human kinase could not
be replicated when performing acetylation at the same site, as an
active-like conformation caused by ubiquitination was not
observed across 10 ns simulations of an acetylated structure.*"”
The difference in effect between acetylation versus ubiquitination
could be attributed to the difference in size and bulk between
the two types of covalent modification, a finding which likely
applies to other forms of PTMs as well. For instance, a 2020
modeling and MD simulation of diverse PTMs onto the central
coiled-coil connector of fibrinogen varied from having zero to
severe structural effects.”"®

The impacts of PTMs on protein conformation extend
beyond local environments and into long-range contacts and
allosteric communications. As the Levy group helped identify
how loss in natively stabilizing interactions upon glycosylation
underscored structural destabilization in 2015, they further
showed how interactions lost from glycosylation also include
long-range contacts in the case of simulations of glycosylated
MM1 protein.>'® Additionally, long-range communication
between covalently-modified residues is also site-specific, as
only modifications on certain regions of a protein may induce
conformational change in regions distinct from the site of
modification.”*® For example, terminal phosphorylation only
increased cross-correlated motion between the SH2 and SH3
peptide binding domains in c-Src kinase, but not for other parts
of the protein during simulations from 2001.>>" In the case of
multiple PTM sites, only acetylation on a specific H4 histone tail
lysine residue uniquely altered the simulated conformational
ensemble in 100 ns REMD simulations, although acetylation at
any lysine along the tail increased long-range backbone contacts.>*>
Synchronous residue-residue contacts can also been influenced by
PTM crosstalk. Different REMD system setups modeling combina-
toric acetylation of High Mobility Group Box (HMGB) protein
lysines found that contact networks in HMBG:DNA complexes
differed despite each combination being minimally comprised of
the same two to four lysine site acetylations.”*®

4.3. Summary of PTM simulations using “single”” or ‘“‘few”
trajectory approaches

Despite using short trajectories analyzed in time-dependent
manners, most of the works discussed above illustrated key
findings with respect to how PTMs impact protein dynamics
and function. Binding of covalently modified peptide sub-
strates indicated direct interactions between protein binding
interfaces, where side chain reorientation accommodated new
electrostatic or steric forces brought by the PTM. When
installed onto part of the target protein structure, PTMs were
seen to alter secondary structure of disordered regions by
affecting backbone hydrogen bonding preferences and again
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calling for side chain reorientation to offset any destabilizing
interactions with stabilizing ones. Conformational preference
thus reciprocates the nature by which a protein structurally
responds to a particular PTM. Subversive changes in local side
chain environments in response to changed hydrophobicity or
electrostatic potential nearby the PTM site are perhaps the
driving forces which help guide a modified protein towards a
metastable state. Systematic modeling of PTMs indicative of yeast
stress responses have shown that covalently modified structures
simulated for 20 ns classical MD simulations do demonstrate
conformational change, but that the extent of conformational
change largely persisted as side chain fluctuations instead of
backbone movements.*** Site-specificity underlies all PTM effects
on the ability for a protein to bind and function. In an enormous
study on the effect of phosphorylation on G-protein-coupled
receptor activation and arrestin binding in 2020, the Dror group
performed 1 ms of independent simulations to show that site-
specificity of phosphorylation patterns results in different extents
of activation and arrestin binding.>** In reference to other studies
mentioned so far, each PTM position and type were shown to
display unique effects per protein, which may not necessarily be
confined to the neighborhood of the PTM site. This point was
emphasized by the Shukla group in their 2022 study on the effects
of N-linked glycosylation on SLC6 transporters.”*® From over 1 ms
of independent simulations using combinatoric glycosylation
patterns across four different SLC6 transporters, Chan and Shukla
concluded that the impacts of glycosylation should be character-
ized at a per-protein level regardless of shared function within a
family.”® And amazingly, across all studies implementing the
“single” or “few” trajectories approach, decent extents of con-
formational change, and the conversion between different states,
could be observed in very short amounts of simulation time.
What one should notice about this style of MD simulation
and analysis is that its popularity as a design strategy has
remained popular throughout the entire history of PTM
simulations. That is, sufficient observations could be made
from either classical or biased MD performed along shorter
timescales. Conversely, these types of studies still have their
limitations. Thermodynamic and kinetic insights are often not
obtained from studies utilizing a ‘“single” or “few” trajectory
approach. However, the descriptive power of these studies is
enabled because of the dramatic conformational changes
caused by introduction of steric bulk or electrostatics by the
specified PTM(s). Because of computational expense, a number
of studies enumerated within this section simulated regions of
proteins as peptides, which may affect how their findings
translate to the effects PTMs have on their respective protein’s
global structure. In most of the exemplary literature cited in
this section, a chief complaint written in their discussion
sections was that not enough simulation could be performed
because of available computing resources. Given how substantive
conformational change could be seen even along the pico- to
nano-second timescales, these foundational studies underscore
the impact PTMs have on their local and distal environments.
Still, one cannot help but wonder what could be seen from PTM
simulations ranging from micro- to milli-second timescale
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trajectories, generating aggregate datasets, and/or implementing
more advanced enhanced sampling methodology.

5. Using aggregate datasets for the
modulation of conformational free
energy by posttranslational
modifications

Free energy landscape (FEL) representations of MD datasets
are useful in that they represent a probability distribution as to
how often a particular protein macrostate is observed given a
finite extent of sampling. Because FELSs represent distributions,
they involve sampling to observe a given process. The extent of
sampling required for a given process depends on its timescale,
where rare events require enhanced sampling because they are
higher energy. Rare events occur on slower timescales and are
therefore less likely to record during unbiased simulation.
Sufficient FEL coverage offers a comprehensive view of all possible
conformations related to a protein’s function (as described with a
given order parameter set). Sampling rare events is then necessary
to fully understand how a protein uses intermediate states as
transitions between metastable states; note that these transition-
ary conformations are very difficult to resolve experimentally
and can often only be observed computationally. Thus, time-
independent data collection regimes using FELs of datasets
gathered by enhanced sampling methods offer the unique oppor-
tunity to describe how PTMs affect entire protein conformational
ensembles. The timeframe for PTM studies implementing
FEL-based approaches is primarily split across two time periods:
the turn of the 21st Century and after 2015.
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5.1. Ensemble-based sampling of short timescale processes
using classical molecular dynamics

Depending on the timescale of the modeled process, PTM
studies implementing a time-dependent research design can offer
useful FEL-based insights. Examples of this include demonstrat-
ing how phosphorylation of a peptide shifts backbone torsion or
dihedral angle conformational preferences.’**?%>207,227,228
Another process with a relatively short timescale includes
dynamics of reasonably sized loops. Comparing 2.5 ps classical
MD data of loop movement versus solvent accessible surface
area of an E2 ubiquitin ligase enzyme showed that phosphory-
lated variants could only occupy an open, but not a closed,
conformation because of the increased solvation required to
satiate electronegativity along the installed phosphate
groups.”*® FEL projection of principal component analyses for
1 ps WNK1 kinase simulations were also able to isolate specific
activation loop conformations, demonstrating that a ~3 keal mol
free energy barrier prevented the unphosphorylated activation
loop from adopting an extended conformation readily seen in
phosphorylated WNK1 simulations.>*® More stringent FEL
analyses using dihedral angles further showed that unpho-
sphorylated WNK1 data hardly had any conformational overlap
with structures seen during phosphorylated simulations (Fig. 6).
However, the free energy difference between phosphorylated and
unphosphorylated WNK1 in regions of shared dihedral angle
conformational sampling still approximated ~3 kcal mol *.>*°

5.2. Use of biasing potentials for simulating PTM dynamics

When following single trajectory analyses, sometimes ‘“‘vanilla”
MD simulations performed at standard temperature and pressure
conditions are insufficient for capturing processes associated
with PTM-based conformational change. High temperature
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Fig. 6 Free energy landscapes for WNK1 kinase activation loop dynamics projected using order parameters derived from dihedral principal component
analysis. (A) Unphosphorylated WNK1. (B) Phosphorylated WNKZ1. Note that the minima for one proteoform’s landscape is distinct from the other’s, where
any regions of overlapped sampling experience opposite favorability depending on phosphorylation state. Adapted with permission from N. A. Jonniya,
M. F. Sk, and P. Kar, ACS Omega, 2019, 4, 17404-17416.2%° Copyright 2022 American Chemical Society.
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simulations have been used to facilitate unfolding of covalently
modified proteins within the nanosecond timescale, suggesting
how different helices stabilize binding interactions involving
covalent modification by projecting helical unfolding FELs.>*"
High temperature simulations can also facilitate FEL exploration
by lowering transition barriers. Work from the Gervasio group
done in 2017 combined high temperature unbiased MD with
parallel tempering metadynamics to obtain more than 115 ps
of total simulation data on p38x kinase activation upon
phosphorylation.>*> Metadynamics simulations of up to 25 ps
each for unphosphorylated, apo and holo dually phosphory-
lated p38a resolved conformational FELs were performed,
where the order parameters used were distances distinguishing
the active from inactive conformations (Fig. 7). These p38a
kinase FEL landscapes demonstrated that the unphosphory-
lated apo protein is unable to sample the active conformation,
although phosphorylated apo protein can but at a much higher
energetic cost. However, introduction of ATP-Mg>" encouraged
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deeper minima formation for phosphorylated p38xa kinase
surrounding an active conformation, whereas binding of ATP-
Mg®" and the MK2 docking peptide drastically smoothened
barriers between and deepened minima for phosphorylated
intermediate and active states. That is, p38a kinase phosphor-
ylation was shown to decrease the probability of inactive state
conformations during metadynamics simulations. To confirm
the thermo-stability or -instability of the metastable states seen
for each system setup during metadynamics simulations,
Gervasio and coworkers ran ten independent 1 ps-long classical
MD simulations at 380 K from the respective p38a kinase
crystal structures, extending simulation durations for any runs
which happened to cross barriers into minima observed from
metadynamics simulations. The independent unbiased runs
showed strong agreement with the metadynamics results, as
projecting the time-based progression of the independent data
runs over the FELs showed that classical simulations resided in
the aforementioned minima for longer periods of time.**’
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While there was agreement between the biased and unbiased
datasets, the conformational requirements for existing in a
relatively active versus inactive conformation were further
supported by FEL exploration from longer metadynamics
trajectories. Otherwise, reliance on just the respective crystal
structure conformations may have made comparisons between
simulated states too stringent, possibly limiting how well
phosphorylation was understood to impact extent of p38a
activation.”®'

Other biased methods can be used to explore how
PTMs affect transitions between metastable states. The impact
of seven different combinatoric phosphorylation states on the
activation and ATP-binding of plant receptor kinase BAK1 was
explored via independent 500 ns Gaussian accelerated MD
trajectories in 2020.** Comparing these phosphorylated proteo-
forms to unphosphorylated BAK1, the activation loop in unpho-
sphorylated BAK1 was found to have the largest computed
root-mean-square fluctuations. By contrast, the activation loop
root-mean-square fluctuations for each of the other phosphory-
lated BAK1 proteoforms was reduced, suggesting a stabilizing
role. Specifically, Thr455 phosphorylation appeared to be of
secondary importance, further stabilizing the activation loop
only when Thr450 was also phosphorylated. Comparison of each
of the FELs, simulations involving pThr450 in any PTM combi-
nation always resulted in free energy minima surrounding an
active BAK1 conformation. Thus, phosphorylation of Thr450
was suggested to be essential for stabilizing the BAK1 activation
loop in an active conformation. Estimates of unbiased potentials
of mean force through multistate Bennett acceptance ratio
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reweighting demonstrated that pThr450 uniquely engaged in
salt bridges in each BAK1 phosphorylation scenario.>*

Using the phosphorylated and unphosphorylated cystatin
and NtrC crystal structures as case study proteins, the Wolynes
group implemented an associated memory Hamiltonian for
transferable structure prediction to model the effect of phos-
phorylation on each protein’s folding FEL.>** Here, the authors
mutated the residue occupying the phosphorylation site into
glutamic acid, where the Hamiltonian-based method enabled
“supercharging” of the phosphorylation mimic. For cystatin,
these Hamiltonian simulations predicted that phosphorylation
makes transitions between the unfolded and folded states more
energetically favorable for a simple two-state folding model
(Fig. 8A and B). Principal component analysis of cystatin snap-
shots from both the phosphorylated and unphosphorylated
simulation datasets showed that transitionary semi-unfolded
states were most similar, suggesting that cystatin is likely
phosphorylated when occupying an intermediary structure
somewhere closer to the unfolded state (Fig. 8C). Meanwhile,
NtrC FELs derived from the Hamiltonian simulations suggested
that NtrC folding proceeds through a three-state folding model
with a well-defined intermediate structure, regardless of phos-
phorylation status (Fig. 6D and E). For NtrC, the largest extent of
overlap for principal component analysis of simulation snap-
shots showed that the unfolded states for phosphorylated versus
unphosphorylated states are most similar, suggesting that phos-
phorylation would likely occur on unfolded NtrC (Fig. 8F).>**
Here, FELs enabled direct comparison between phosphorylated
and unphosphorylated dynamics, where overlap in accessible
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folded state (PC™'%) and phosphorylation state (PCP"°%) (C and F). For PCA plots, green data describes the unphosphorylated proteoform while purple data
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(B) forms. Cystatin PCA suggested that phosphorylation could occur along a slightly unfolded transitionary state, due to the overlap in data sampled
(C). NrtC folding was found to exhibit three-state behavior for the unphosphorylated (D) and phosphorylated (E) forms. NrtC PCA suggested that
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conformations suggested which kinetic states could undergo
phosphorylation in cellulo.

5.3. Aggregate sampling for elucidating the impact of PTMs
on conformational dynamics

Another way to summarize a biomolecular process through FEL
coverage is to run multiple parallel trajectories and then project
the aggregate data against appropriate order parameters. Note
that kinetic reweighting schemes (e.g., MSMs, milestoning)
should accompany aggregate dataset projections, as even the
selection of seed structures for classical MD trajectories does
bias the resulting FEL.

5.3.1. Ensemble-based sampling of short timescale pro-
cesses using classical molecular dynamics. Aggregate sampling
approaches have been applied to study the effects of PTMs.
One flavor of aggregate sampling studies is to run several
trajectories from any given point and to then evaluate the total
data based on some order parameters. For example, up to 5 ps of
aggregate simulation for site-specific and additive villin headpiece
carbonylation simulations were performed to examine the effects
of carbonylation on villin thermostability in 2011.>*> Although
time-dependent analyses demonstrated consistent increases in
root-mean-square deviation; increased solvent accessible surface
area within the hydrophobic core; and decreases in alpha-helical
content as a result of carbonylation, the exact conformational
effects differentiating villin headpiece native topology from
carbonylated variations of villin could best be discerned using FEL
projections.”® Specifically, FELs comparing molecular hydropho-
bicity potential versus the sum of distances between phenylala-
nines occupying the villin hydrophobic core demonstrated that
combinatoric carbonylations experienced a distinct metastable
state, but could sample molecular hydrophobicity potentials and
hydrophobic core compactness indicative of native or fully carbo-
nylated minima. However, the opposite is not true, as the native
and fully carbonylated villin structures predominantly occupied
metastable states at either end of the distribution.>*

5.3.2. Markov state models on distinguishing PTM-based
thermodynamic and kinetic changes. Another flavor of aggre-
gate sampling study designs is to use adaptive sampling to
explore a conformational landscape. In adaptive sampling, the
MD practitioner guides FEL exploration by running multiple,
short, and parallel, unbiased trajectories in tandem as part of a
“round” of simulation.>**>*° Seed structures for subsequent
rounds are selected based on certain selection criteria that help
facilitate efficient exploration of a landscape based on some
order parameters. Methodology has been proposed for making
seed state selection as statistically unbiased as possible, as
adaptive sampling can use any frame from a previous trajectory as
a starting seed for the next round.>**>** Because adaptive sam-
pling regimes incorporate selection of multiple trajectories per
round based on preexisting landscape coverage, they can improve
statistical characterization of rare high energy regions between
minima; traditionally, long trajectories struggle to capture rare
events in more than one transition. Adaptive sampling workflows —
and their representation through FELs - are easily amenable to
Markov state model (MSM) generation,*/1857187245-251
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MSMs and adaptive sampling have been used to study the
structural and regulatory effects of PTM on protein function.
What matters most in these types of studies is that there is
sufficient coverage of the FEL. In a 2017 study on the effect
of S-glutathionylation on the plant receptor kinase BAK1,
the Shukla group first used accelerated MD to accumulate
~22 ps of simulation data, from which starting structures were
taken to seed an aggregate 132 ps of classical MD through an
adaptive sampling workflow.>*> For this study, four simulation
systems were constructed and compared: nonglutathionylated
BAK1 core kinase domain (BAK1-SH) as a reference system, and
then three singly glutathionylated on each possible glutathio-
nylation site. After MSM construction, the authors quantified
the global effects of S-glutathionylation on BAK1 conforma-
tional dynamics using the Kullback-Leibler divergence, a mea-
sure of similarity between two probability distributions.**
These analyses suggested that one of the glutathionylation
sites, Cys408, may serve as an inhibitory S-glutathionylation
site responsible for the decrease of activity in ABK1. Firstly,
glutathionylation on C408 caused dramatic effects on BAK1
structure throughout the kinase domain, whereas little changes
were observed during the other glutathionylation simulation
datasets. Furthermore, C408 glutathionyation shifted the free
energy landscapes away from the active-like state, while modifica-
tions of other sites retained most features of the unmodified
protein. Here, adaptive sampling-based exploration of the BAK1
kinase activation FEL provided sufficient input data for explaining
how S-glutathionylation allosterically controlled kinase activity.”>*

The Shukla group constructed an MSM from ~320 ps of
aggregate MD data on plant abscisic acid (ABA) receptors to
delineate the role of tyrosine nitration ABA signaling inhibition
during 2019.>** Comparing the conformational FELs of the
PYL5 receptor with and without nitration revealed that ABA
cannot bind to PYL5 after tyrosine nitration (Fig. 9). Instead,
ABA was stabilized by multiple hydrogen bonds formed by
residues surrounding one of the nitrotyrosine residues. Tyrosine
nitration was found to significantly shift nearby residue
backbone positions when compared to unmodified PYL5.
Collectively, tyrosine nitration of the PYL5 receptor rearranged
the binding pocket to prevent ABA from reaching the final
binding site and therefore inhibiting ABA signaling.>** Although
MSMs offer a kinetic framework based on the aggregate stitching
of individual trajectories, their resulting transition probabilities
calculated for interconversion between different clustered
microstates can be used to instantiate a single trajectory. Often
sampled using Monte Carlo simulations along the MSM, a single
unbiased trajectory can then be generated which directs a
biomolecular system from one conformation to another, all
while simultaneously capturing each of the transitions identified
along the specified path. The Shukla group’s PYL5 receptor study
used Monte Carlo sampling to generate a 3 ms trajectory
depicting unmodified PYL5 activation.>>* While the same analysis
was not performed on nitrated PYL5 because its FEL did not
sample an activated state, trajectories formed from MSM-based
Monte Carlo sampling could be used to consolidate data from
aggregate sampling for time-dependent analyses.
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In addition to demonstrating how PTMs perturb the likelihood
of a certain conformation being accessed, MSMs can also provide
information about the timescale for kinetic transition between
different macrostates observed along a FEL. The Shukla group
did so by implementing transition path theory in their NRT1.1
phosphorylation study.?*>?3¢ The plant nitrate transporter NRT1.1
is regulated by phosphorylation. With affinity inverse to the levels
of environmental nitrate, NRT1.1 is either a low-affinity transporter
during saturating nitrate conditions or a high-affinity transporter
during desaturating nitrate conditions.>”” Additionally, the phos-
phorylation state determines the oligomeric state of NRT1.1, as the
transporter is known to dimerize when in the unphosphorylated
state.>>*>*® To explore the effects of phosphorylation on enhanced
transport and transporter oligomerization, the Shukla group per-
formed unbiased MD simulations for four systems: unphosphory-
lated NRT1.1 (UnpNRT1.1) (~9 ps) and phosphorylated (pNRT1.1)
(~5 ps) dimer, as well as UnpNRT1.1 (~ 142 ps) and pNRT1.1 (~63
us) monomer.>>® Cross-correlation analyses among all Co atoms
within each system demonstrated that dynamic coupling disap-
peared at the dimeric interface for pNRT1.1 versus UnpNRT1.1
dimer (Fig. 10A-C). Meanwhile, dynamic correlation within

26384 | Phys. Chem. Chem. Phys., 2022, 24, 26371-26397

View Article Online

PCCP

each monomer in pNRT1.1 was enhanced compared with the
UnpNRT1.1 dimer. Thus, phosphorylation appeared to decouple
the dimer and allow the two monomers to behave independently.
Increasing independent behavior by each participating monomer
enhanced their respective structural flexibility, leading to a higher
transport rate. Using transition path theory calculations, the
average time required for one complete cycle from inward-
facing to outward-facing conformations was 5 &+ 2 ps and 18 +
3 ps for pNRT1.1 and UnpNRT1.1 monomer, respectively. FELs
further reflect these differences in transport rate (Fig. 10D and E).
UnpNRT1.1 and pNRT1.1 monomer FELs show how phosphor-
ylation stabilized the outward-facing state while eliminating
unnecessary intermediate state, thereby facilitating transport by
hastening the transition from inward-facing to outward-facing
states. Overall, this study suggested that phosphorylation accel-
erates necessary conformational transitions, resulting in a higher
transport rate.>>

5.4. Summary of PTM simulations using ensemble-based
approaches for free energy landscape construction

Studies implementing aggregate sampling approaches to cover
a FEL still fundamentally provide similar insights as studies
strictly following single trajectories and their time-dependent
analyses.

As the Shukla group constructed MSMs on over 600 ps of
aggregate simulation data to demonstrate that Thr276-
phosphorylated human serotonin transporter experienced
lower relative free energy barriers for transitions between
occluded to inward-facing states, the basis for this lower free
energy barrier was due to rearrangements in nearby hydrogen-
bond networks lining the intracellular gate.”*® Time-dependent
approaches to studying PTM with MD simulation have indeed
declared similar results; changes in hydrogen bonding net-
works or sidechain orientations are indeed the immediate
response mechanism to local PTM installation, where these
changes may allosterically communicate the need for long-
range structural rearrangements as well. But what separates
previous studies from those implementing aggregate sampling
and/or MSMs is that the latter works are able to define what
constitutes a specific conformational state, as well as identify
the path by which one conformational state transitions into
another. That is, aggregate simulation studies can evaluate
the thermostability of different conformations through more
rigorous statistical sampling. Based on the ergodic assumption
that all MD trajectories will eventually sample the same phase
space for a given biomolecular process, aggregate sampling just
uncovers a greater extent of the stationary density for the
process under inspection. MSMs, however, also provide kinetic
insights on the evolution of a given molecular process.
A specific PTM may not alter the phase space but instead change
the kinetics required to traverse across FELs. Trajectory-driven
results can offer a relative perspective on the residence time for a
given molecular event, but are otherwise unable to provide kinetic
rates for transitioning between metastable states separated by
larger extents of conformational change. Said calculations do
come at a cost, requiring more involved simulation and analyses
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workflows, often accompanied with greater computational site-specific PTMs, structural changes, and altered protein
resource needs. Additionally, uncertainty estimates and other function. Luckily, molecular modeling and simulation are
postprocessing for statistical validation are necessary to ensure  perfectly poised to embrace the challenge of PTM characteriza-
convergence around ensemble averages.***° tion laid ahead. Structural and informatic modeling of PTMs in

kinases has shown their phosphorylation sites to be relatively

conserved, suggesting a potential for in silico PTM characteriza-
6. Outlooks on PTM modeling and tions to at least universally apply to proteins within the same
simulations family.>®" Still, proteins and their covalently modified proteo-

forms need to be systematically studied so that the relationship
It has proven difficult to say exactly how any given PTM between regulatory roles and structural effects of PTMs can be
universally affects some proteins’ structures and functions. fundamentally understood. Much of the advances seen in
Experimental throughput makes characterization at atomistic machine learning capabilities have been applied towards the
resolution difficult, leaving much of the burden to molecular prediction and identification of PTMs and their respective sites
modeling for explaining cause-and-effect relationships between for covalent modification. As the input data for PTM prediction
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and identification is based on mass spectrometry results,
machine learning-based predictions on functional characteri-
zation will require larger datasets focused on characterizing
PTM function. In this sense, molecular dynamics simulations
are unrivaled in their ability to generate large swaths of data
from which distributions of molecular descriptors can be
compared to covalent modification status using regression-
based models.

Changing focus from simulation outputs, innovation in
computing capabilities means that simulation inputs and their
parameterization can also be expected to improve. PTM
chemical diversity must be appropriately covered by all force
field sets for more amenable simulated applications to any
research problem. The GROMOS force field library offers tre-
mendous coverage of PTMs. Still, MD practitioners gravitate
towards specific force field libraries when tackling specific
research problems. For instance, plans to simulate membrane
proteins may result in CHARMM force field parameterization
given its fantastic coverage of lipid diversity with over 2000 lipid
molecules in different starting conformations for lipid bilayer
building.*¢*?%* Still, CHARMM parameterization with compa-
tible force fields for less common PTMs are not necessarily
automatically, nor easily, incorporated into existing computa-
tional tools as is seen per the GROMOS library.'®*** As
observed in the development of a membrane protein-specific
OPLS-AA force field,'”® it is only a matter of time before force
field libraries recognize their application-specific deficiencies
and offer the same research opportunities for modeling PTMs
with equivalent ease of access. That is, until efforts like the
Open Force Field Initiative and machine learning-based force
field libraries can consistently offer the accuracy of ab initio
methods without incurring the same computational cost.>*> ¢’
The same argument applies to the efficient use of polarizable
force fields when dealing with PTM protonation state.>¢%2%°

Aside from parameterization improvements, advances in
structure prediction methodology raise the possibility of
predicting covalently modified proteoform conformations.
Software like DeepMind’s AlphaFold, along with the Baker lab’s
RoseTTaFold, have now revolutionized protein structure
prediction with their machine learning-based template-free
methods that, in most cases, can rival experimental structure
quality.>’°>” How these software are learning from numerous
multiple sequence alignments and pairwise evolutionary con-
straints to generate a distribution of probable models suggests
that incorporating the effects of PTMs in state-of-the-art con-
former prediction is not so farfetched. Previous efforts using
molecular mechanics showed that it was possible to predict
protein conformational change upon covalent modification
given an unmodified structure.”’* Now, tools like Privateer
have already been developed to graft glycan PTMs directly onto
AlphaFold predicted structures.”’” Inter-residue impacts of
PTM-containing structures in the Protein Data Bank could be
learned and included as a stage within these state-of-the-art
structure prediction pipelines.>’® Given how a majority of PTMs
(excluding ubiquination) occur along intrinsically disordered
regions of proteins, integrated modeling of PTMs onto even
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difficult-to-predict protein structures is more feasible than ever
because of AlphaFold.>”” Including post-predictional modifica-
tions could offer a unique opportunity for seeding MD simula-
tions from more unique starting structures for more efficient
PTM characterization.

Regardless of the inputs provided, future PTM simulation
studies that will capture vast free energy landscape coverage
should strive to standardize analyses as to leverage their
extensive sampling of macrostate population densities. As
PTM installment can mirror the effects of mutation in shifting
free energy landscapes, performing routine allosteric analyses
on vast PTM simulation datasets could make the interpretation
of long-range effects of PTMs more systematic across different
proteins.”’®28! PTM studies incorporating MSMs should report
the exact transition probability matrix weights and calculate
macrostate kinetic flux rates via transition path theory.'8>7187:2%¢
In doing so, how often a PTM proteoform exists in a specific
conformation (e.g., active versus inactive) can be ascertained.
Offering probability distributions relative to the specific activity
of a protein after PTM installation could drastically improve the
accuracy of systems-scale kinetic analyses for multiscale mod-
eling endeavors."**>%* State-of-the-art structure predictions
and faster computing hardware now unleash an array of in
silico opportunities to realistically characterize PTMs for pro-
teins that lack experimentally resolved structures or are simply
understudied.”® Together, modern MD simulations can join
theory and experiments in informing us as to how the structure-
dynamic perturbations caused by PTMs impact whole-cell
physiology.>#3284

Despite the opportunities they provide in characterizing
PTMs, it is worth recognizing the caveats of molecular simula-
tions. A major caveat to molecular simulations is that the
process of covalent bond breakage and formation is extremely
expensive to model. This reality is a major driver for the
development of machine learning-based force fields so that
molecular mechanics simulations can be performed with para-
meterization done at the accuracy level of quantum mechanics
simulations. Thus, simulations are likely unable to provide as
valuable insights as experiments when it comes to dynamical
modeling for the direct instance of PTM, such as the rate of
covalent modification or cellular trafficking. Experimental char-
acterization can further delineate spatio-temporal factors
underlying PTM effects which are not easily, if entirely possible
to be, modeled using MD simulations. What is a simple task for
computational research is often an arduous one for experi-
ments, and vice versa. Still, the level of control and atomistic
resolution offers a glimpse as to what could be happening given
explicit conditions and sufficient sampling.

Throughout this perspective, we have highlighted almost
30 years’ worth of PTM research using in silico molecular
modeling and simulation techniques. Much of this work has
demonstrated how molecular dynamics simulations can char-
acterize the structural consequences induced by PTMs. With
recent computing developments and simulation methodologies
enabling MD to be more efficient than ever before, the future of
PTM-based molecular dynamics research can more easily employ
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currently established enhanced sampling and structure prediction
methodology. Computational research efforts surrounding PTMs
and their modeling will shift towards identifying new conforma-
tions caused by PTMs, and the frequency at which these
conformations are sampled within the stationary density for the
specified proteoform. Systematic computational characterization
leveraging larger extents of sampling will lead to systematic
translational gains in experimental efforts surrounding therapeu-
tic developments and bioengineering. The predictive power of MD
simulations is limited insofar as the realism used to model the
system. As efforts have been cast to make the modeling of lipid
bilayers and membrane proteins match experiments with
improved realism,*®® so too shall efforts surrounding PTM simu-
lation strive to make our biophysical understanding of processes
regulating protein function more complete.
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