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A B S T R A C T

To analyze changes in water quality conditions in water distribution systems (WDS), such as disinfectant
byproduct formation, chlorine residual, and biofilm growth, water utilities can use coupled hydraulic and
chemical models. Model-based operational decisions are complicated by uncertainties in model input param-
eters, which propagate through the model resulting in uncertain model predictions. Previous works have
focused on conducting sensitivity analyses of input parameters in various water quality reactions and the
interactions with hydraulic factors, but have overlooked the specific contribution of hydraulic and chemical
parameter uncertainty. In this work, a framework for assessing the hydraulic and chemical uncertainty in water
quality models is presented and demonstrated using monochloramine decay in WDSs supplied by gravity and
pumping systems. In the first step, a sensitivity analysis is conducted to determine the influential and non-
influential chemical parameters which govern the rate of monochloramine decay. In the second step, Monte
Carlo simulations are used to explore the individual and combined effects of uncertainty in hydraulic and
chemical parameters. Results show that uncertainty in modeled monochloramine concentration increases with
water age and higher reaction rates, varies throughout the course of a day, and heavily depends on hydraulic
variability, emphasizing the need to account for input uncertainty. The computational tool developed in this
work can be extended to other reaction mechanisms, water quality parameters, and distribution systems for
case-specific conditions, and used to evaluate system-wide effects of uncertainty on water quality.
1. Introduction

The core function of municipal water utilities is to ensure safe and
reliable water supply to its consumers. Within the United States, the
Safe Drinking Water Act (SDWA) provides the regulatory framework
for sufficient water quality, promulgating legal requirements for a
variety of chemical constituents (e.g., chlorine residual, disinfection
byproducts, turbidity) (Tiemann, 2017). The SDWA details specific
ocations and frequency of water quality samples at treatment plants,
eading to a high degree of certainty regarding the quality of water as
t leaves the treatment plant. However, as water travels from treatment
lants to consumers through a complex network of pipes in the water
istribution system (WDS), chemical reactions, such as decay of chlo-
ine residual (Pasha and Lansey, 2010; Pfaller et al., 2021), corrosion
f heavy metals (Masters et al., 2016; Lytle and Liggett, 2016), and
formation of disinfection byproducts (Chowdhury et al., 2009; Pfaller
t al., 2021), impact water quality, which as a result can exhibit high
egrees of spatial and temporal variability (Blokker et al., 2014). Water
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utilities maintain different levels of oversight to ensure adequate water
quality by relying on periodic water quality grab sampling at different
locations in the WDS following various EPA rules (e.g., Lead and
Copper Rule, Total Coliform Rule) (American Water Works Association,
2013). However, these sampling protocols provide limited spatial and
temporal coverage of the underlying water quality conditions in the
WDS. Hence, there is a higher degree of uncertainty regarding the water
quality conditions within a WDS compared to that leaving a treatment
plant. To overcome some of these limitations, coupled hydraulic and
chemical models can be useful tools to quantify changes and predict
where diminished water quality may occur (Rossman et al., 2020;
Shang et al., 2008; Chang et al., 2012)

Although models can augment grab samples to estimate water
quality at all locations within a WDS, due to the deterministic nature
of simulation models, even a well-parameterized model excludes the
inherent hydraulic and chemical uncertainty within an actual WDS.
Therefore, this research proposes a methodology for quantification of
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chemical and hydraulic uncertainty in model predictions. The pro-
posed computational framework can be applied to different chemical
reactions and species (e.g., chlorine decay, bacterial growth, and thri-
alometne formation). We demonstrate the application of the proposed
framework towards exploring the uncertainty related to the fate of
monochloramine in WDSs. Monochloramine is used as a secondary
disinfectant in approximately 25% of drinking water utilities in the
United States (Alpert et al., 2017). Utilization of monochloramine as
secondary disinfectant has recently increased to enable compliance
ith the Stage 1 and Stage 2 Disinfectants and Disinfection Byprod-
cts Rules, since the use of monochloramine lowers the levels of
isinfection byproduct formation compared to the use of free chlo-
ine (Khiari, 2019). Hence, identifying the key factors contributing
to the uncertainty and quantifying the uncertainty related to the fate
of monochloramine is critical for model-based decisions for managing
water quality in WDSs.

The main mechanism by which hydraulic uncertainty affects water
quality is by changing flow conditions. As a result, water age is affected,
altering the time that a chemical reaction can occur before water
reaches a consumer. Water age is a useful surrogate indicator for water
quality, where lower water ages indicate water quality more similar to
treatment plant effluent (U.S. Environmental Protection Agency, 2002).
Hydraulic factors which affect water age and contribute to uncertainty
include fluctuations in consumer demands, residence times and mixing
within storage tanks (Gibson et al., 2020) and junctions (Pankaj et al.,
2022). A hydraulic model calibrated to the average daily demand,
may mischaracterize water quality, if random fluctuations, seasonal
variability in water usage, or long-range conservation trends are not
considered (Hatam et al., 2021; Abokifa et al., 2020; Zhuang and Sela,
020).
Uncertainties also exist in the parameterization of chemical re-

ctions, such as rate constants and equilibrium constants that often
etermined from laboratory experiments and may not be representative
f actual drinking water (Morris and Isaac, 1983). Some chemical
arameters, e.g., chlorine wall decay rate, are site specific and can-
ot be measured or experimentally verified. Moreover, some complex
hemical processes, such as formation of certain disinfection byprod-
cts, are not adequately characterized, yielding uncertainty when using
implified chemical representations (Zhang et al., 2022).
Previous works have focused on different aspects of chemical and

ydraulic uncertainty contributing to water quality in WDSs (Smith,
013). For example, the authors in Hart et al. (2019) and Rodriguez
t al. (2021) have investigated optimal sampling strategies to reduce
ncertainty within a WDS by sampling in areas where models suggest
reater uncertainty exists. Monte Carlo (MC) analyses have been con-
ucted to determine the effect of model parameters, such as bulk and
all chlorine decay coefficient, pipe diameter and roughness, consumer
emands, tank mixing, and contaminant intrusion (Pasha and Lansey,
010; Gibson et al., 2020; Hart et al., 2019). The authors in Abhijith
t al. (2021) developed a simplified reaction scheme between chlorine
ecay, bacterial growth, and trihalomethane (THM) formation based
n Abokifa et al. (2016) and evaluated the impact of each chemical pa-
ameter on bacterial regrowth, chlorine decay, and THM concentration.
imilarly, the authors in Di Cristo et al. (2014) compared uncertainty
ssociated with three different kinetic models for THM formation.
The sensitivity of monochloramine decay has been examined in the

ontext of wastewater treatment plant effluent with hydraulic processes
nd some reactions that are specific to the river ecosystem and do
ot apply to WDSs (Ciffroy and Urien, 2021). In addition, the authors
n Ricca et al. (2019) demonstrated that modeled monochloramine
oncentrations within a WDS can be reasonably approximated using
ield-sampling data, but did not specifically account for uncertainty
ssociated with chemical or hydraulic influences. A literature review
ualitatively describing factors influencing monochloramine decay in
DSs was performed in Li et al. (2019), however, it did not provide
2

quantitative tool to assess the influence of uncertain water quality
arameters on monochloramine decay.
In the context of previous works, we identify three main gaps: (1)

ith the increase in the utilization of monochloramine by water util-
ties, analyzing the uncertainty related to the fate of monochloramine
ecay in WDSs is needed, (2) the complex water quality dynamics
ecessitates robust and computationally efficient uncertainty quantifi-
ation methods, and (3) a unified, publicly available computational
ramework that can be used to assist researchers and practitioners to
xplore uncertainty in water quality predictions is needed.
To address these research gaps, we conduct an uncertainty char-

cterization and propagation analysis for modeling monochoramine
ecay in WDSs. We characterize hydraulic uncertainty by accounting
or spatial and temporal variability in water demands and chemical
ncertainty by investigating the temporal variability of over 20 pa-
ameters in the monochloramine decay model. We utilize the Morris
ethod (Saltelli et al., 2004), a global method for sensitivity analysis,
o identify and quantify the impact of the influential and non-influential
arameters. We then propagate uncertainty using MC simulations to
uantify the contribution of hydraulic and chemical drivers by varying
he influential chemical parameters identified in the previous stage. We
emonstrate the results using two different WDSs supplied by gravity
nd pumping systems. Additionally, by decoupling the hydraulic and
hemical uncertainty, we show that monochloramine decay in complex
DSs can be approximated using a simplified model (i.e., batch reac-
or), thus avoiding the need for detailed and calibrated water quality
odels, which are often unavailable for water utilities. Finally, to
mprove the useability of research, all codes to reproduce the chem-
cal parameter uncertainty quantification in this work and a general
emplate that can be used to analyze other chemical reactions and
eneralized to other WDSs, are made publicly available in a GitHub
epository (Frankel and Sela, 2022).

. Methods

This section describes the methods used to conduct the uncertainty
nalysis. First, the monochloramine decay model is presented, includ-
ng the species, rate constants, and rate expressions. Next, the sources
f chemical uncertainty are described, and the Morris method (Saltelli
t al., 2004) and its implementation for chemical uncertainty are pre-
ented. Subsequently, the process to propagate and compare the con-
ribution of hydraulic and chemical uncertainty to model predictions
sing MC simulations is described.

.1. Chemical model

The monochloramine decay mechanisms modeled in this work in-
lude the inorganic chloramine instability and the inorganic chloramine
emand attributed to reaction with total organic carbon (TOC). The
odel describing inorganic chloramine instability, commonly referred
o as the unified model (Jafvert and Valentine, 1992), consists of 14
eactions describing the chloramine formation and decay. The reactions
nvolving TOC, monochloramine and hypochlorous acid were devel-
ped and described in Duirk et al. (2005). Water age was also included
s a modeled species within the WDS. Several simplified models of
onochloramine decay have been proposed in Ozekin et al. (1996)
nd Roy et al. (2020), which rely on assumptions that are only valid
ithin certain water quality ranges (Wahman, 2018). For example, the
odel proposed in Roy et al. (2020) was only experimentally verified
or pH between 7.5–8.5. Therefore, we utilize the unified model for
onochloramine decay which remains valid under a wide range of
ater quality conditions (Wahman, 2018).
The reactions involved in the unified model (listed in Table 1

s reactions 1–14), are comprised of four types of reactions: sub-
titution/hydrolysis, disproportionation, redox in the absence of free
hlorine, and redox in the presence of free chlorine. The unified model
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Table 1
Chloramine reactions and rate expressions implemented in the reaction model (Jafvert and Valentine, 1992; Duirk et al., 2005).
Reaction Reaction Rate expression Rate Value at Range Reference
number constant 25 ◦C

1 HOCl + NH3 NH2Cl + H2O 𝑘1[HOCl][NH3] 𝑘1 4.2 × 106 𝑠−1 ±25%c Morris and Isaac (1983)
2 NH2Cl + H2O HOCl + NH3 𝑘2[NH2Cl] 𝑘2 2.1 × 10−5 𝑠−1 ±25%d Morris and Isaac (1983)
3 HOCl + NH2Cl NHCl2 + H2O 𝑘3[HOCl][NH2Cl] 𝑘3 280 𝑠−1 ±25%d Morris and Isaac (1983)
4 NHCl2 + H2O HOCl + NH2Cl 𝑘4[NHCl2] 𝑘4 6.5 × 10−7 𝑠−1 ±25%d Margerum et al. (1978)
5a NH2Cl + NH2Cl NHCl2 + NH3 𝑘5[NH2Cl]2 𝑘5H 6.9 × 103 𝑀−2𝑠−1 ±25%d Granstrom (1955)

𝑘5HCO3
2.2 × 10−1 𝑀−2𝑠−1 ±25%d Peter et al. (2001)

𝑘5H2CO3
11 𝑀−2𝑠−1 ±25%d Peter et al. (2001)

6 NHCl2 + NH3 NH2Cl + NH2Cl 𝑘6[NHCl2][NH3][H+] 𝑘6 6.0 × 104 𝑀−2𝑠−1 ±25%d Hand and Margerum (1983)
7e NHCl2 + H2O I 𝑘7[NHCl2][OH

−] 𝑘7 110 𝑀−1𝑠−1 ±25%d Jafvert and Valentine (1987), Jafvert (1985)
8e I + NHCl2 HOCl + N2 + 3 H+ + 3 Cl– 𝑘8[I][NHCl2] 𝑘8 2.8 × 104 𝑀−1𝑠−1 ±25%d Leao (1981)
9e I + NH2Cl N2 + 3 H+ + 3 Cl– 𝑘9[I][NH2Cl] 𝑘9 8.3 × 103 𝑀−1𝑠−1 ±25%d Leao (1981)
10 NH2Cl + NHCl2 N2 + 3 H+ + 3 Cl– 𝑘10[NH2Cl][NHCl2] 𝑘10 1.5 × 10−2 𝑀−1𝑠−1 ±25%d Leao (1981)
11b HOCl + NHCl2 NCl3 + H2O 𝑘11[HOCl][NHCl2] 𝑘11CO3

6.0 × 106 𝑀−2𝑠−1 ±33%c Hand and Margerum (1983)
𝑘11OCl 9.0 × 104 𝑀−2𝑠−1 ±44%c Hand and Margerum (1983)
𝑘11OH 3.28 × 109 𝑀−2𝑠−1 ±3%c Hand and Margerum (1983)

12 NHCl2 + NCl3 + 2 H2O N2 + 2 HOCl + 3 HCl 𝑘12[NHCl2][NCl3][OH
−] 𝑘12 5.56 × 1010 𝑀−2𝑠−1 ±25%d Jafvert and Valentine (1992)

13 NHCl2 + NCl3 + H2O N2 + HOCl + 3 HCl 𝑘13[NH2Cl][NCl3][OH
−] 𝑘13 1.39 × 109 𝑀−2𝑠−1 ±25%d Jafvert and Valentine (1992)

14 NHCl2 + 2 HOCl + H2O NO –
3 + 5 H+ + 4 Cl– 𝑘14[NHCl2][OCl

−] 𝑘14 231 𝑀−1𝑠−1 ±25%d Jafvert and Valentine (1992)
15 NH2Cl + DOC1 NH3 + Products 𝑘DOC1

[NH2Cl][DOC1] 𝑘DOC1
5.4 𝑀−1𝑠−1 ±55%c Duirk et al. (2005)

16 HOCl + DOC2 Products 𝑘DOC2
[HOCl][DOC2] 𝑘DOC2

180 𝑀−1𝑠−1 ±10%c Duirk et al. (2005)

17 AGE 1 – – – –

a𝑘5 = 𝑘5H[H+] + 𝑘5HCO3
[HCO−

3 ] + 𝑘5H2CO3
[H2CO3].

𝑘11 = 𝑘11CO3
[CO2−

3 ] + 𝑘11OCl[OCl
−] + 𝑘11OH[OH

−].
Uncertainty range cited or inferred from literature.
Uncertainty range not reported, range is assumed.
𝐼 is an unidentified intermediate species.
Table 2
Equilibrium reactions and constants.
Reaction Reaction Equilibrium constant Reference
number at 25 ◦C

17 HOCl H+ + OCl– 2.79 × 10−8 Morris (1966)
18 NH +

4 NH3 + H+ 5.05 × 10−10 Bates and Pinching (1950)
19 H2CO3 HCO –

3 + H+ 4.37 × 10−7 Snoeyink and Jenkins (1980)
20 HCO –

3 CO 2–
3 + H+ 4.40 × 10−11 Snoeyink and Jenkins (1980)

21 H2O OH– + H+ 1.09 × 10−14 Snoeyink and Jenkins (1980)
also includes equilibrium reactions between free chlorine, ammonia,
and carbonate species (listed in Table 2). Table 1 lists the values of the
rate constants reported in the literature and the associated uncertainty
range (described further in Section 2.2.1). Additional details on the
unified model can be found in Jafvert and Valentine (1992).

Oxidation of TOC by monochloramine was modeled using the two
reaction pathways described in Duirk et al. (2005), represented by
reactions 15 and 16 in Table 1. The first pathway involves the oxidation
of TOC by monochloramine, while the second pathway involves the
oxidation of TOC by hypochlorous acid (HOCl) formed as a result
of monochloramine hydrolysis. The first pathway occurs at a much
higher rate than the second pathway (Duirk et al., 2005). Reactions
15 and 16 include species DOC1 and DOC2 that represent the overall
fraction of TOC, which is active for each reaction pathway. Additional
parameters, S1 and S2, represent the fraction of TOC involved in each
reaction pathway (see Table 3), and are used to calculate the initial
concentration of DOC1, i.e. S1 × TOC and the initial concentration of
DOC2, i.e, S2 × TOC.

We note important properties of the rate of monochloramine decay
(see Fig. 1). We use a simplified model, i.e., the batch reactor model,
to simulate the dynamics of the chemical reactions without the effect
of hydraulic conditions within a complex network of pipes in the WDS.
As seen in Fig. 1, there is an initial rapid decrease in monochloramine
concentration, followed by a prolonged decrease at a slower rate.
Though all reactions are occurring simultaneously, the initial rapid
decline in monochloramine concentration is a result of the oxidation
of DOC1 by monochloramine. After the concentration of DOC1 has
3

been depleted, the oxidation of DOC2 forms hypochlorus acid, and
Table 3
Initial species concentrations, selected to represent the composure of a hypothetical
drinking water treatment plant effluent.
Parameter Value Range

pH 7–9.5 Variesa

TOTNH 0.15 mg
l
as N ±25%

TOTCO 200 mg
l
as CaCO3 ±25%

TOC 1.5 mg
l

±25%
S1 0.016 ±40%b

S2 0.57 ±24%b

aAdditional information on the pH used in each simulation detailed in Section 3.2.2.
bUncertainty range inferred from Duirk et al. (2005); TOTNH refers to initial concen-
tration of total ammonia; TOTCO refers to initial concentration of total carbonate; TOC
refers to initial concentration of total organic carbon.

the additional reactions in the unified model continue. The magnitude
of the initial drop in monochloramine concentration is approximately
equal to the initial concentration of DOC1, since there is a one-to-
one stoichometric ratio in the reaction between monochloramine and
DOC1. The dynamics of the rate of monochloramine decay as a re-
sult of the two different pathways is relevant to our discussion of
influential chemical parameters in Section 3.2. In addition, we use
Fig. 1 to demonstrate the difference between chemical and hydraulic
uncertainty, discussed further in Section 2.3. Hydraulic uncertainty
refers to uncertainty in water age observed at a particular location in a
WDS, while chemical uncertainty refers to uncertainty in the modeled
concentration of monochloramine at a specific water age.



Journal of Cleaner Production 407 (2023) 137056M. Frankel et al.

2

s
p
F
p
i
o
c
d
d
m
c
2
t
m
e
a
s
w
i
t
c

(
v
e
p
a
𝛺
a
𝑘
o

f
e
p
𝑥

𝑑

d
a
(

2

m
p
a
i
o
(
(
f

Fig. 1. Example of monochloramine decay in a batch reactor.

.2. Characterizing chemical uncertainty

The first step in the uncertainty analysis is to determine the sen-
itivity of the rate of monochloramine decay based on each chemical
arameter listed in Table 1. The purpose of this analysis is two-fold.
irst, having insight to the most influential parameters is useful to
rioritize which chemical parameters should be experimentally ver-
fied or adjusted for a specific water source. Second, identification
f non-influential parameters allows for those parameters to be held
onstant since they do not affect model predictions, thus reducing the
imensionality of the problem. The Morris method, which has been
emonstrated to be robust and computationally efficient, was used esti-
ate the sensitivity in model predictions associated with uncertainty in
hemical parameters (Yang, 2011; Herman et al., 2013; Saltelli et al.,
004). The Morris method involves iteratively changing input parame-
ers one-at-a-time to quantify the influence of each input parameter on
odel output, and provides similar insights to more computationally
xpensive methods (e.g., Sobol method) (Herman et al., 2013; Silva
nd Ghisi, 2020; Pannier et al., 2018). The Morris method is a global
ensitivity method, which yields two metrics for each parameter: 𝜇∗,
hich indicates the level of influence of each parameter, and 𝜎, which
ndicates the level of interaction with other parameters. In our context,
he Morris method provides a good compromise between accuracy and
omputational efficiency.
Executing the Morris method involves the following main steps:

1) For each 𝑘 uncertain parameters, a range of possible parameter
alues is defined. (2) The range of each parameter is divided into
qual size intervals, yielding a 𝑘-dimensional grid (𝛺) representing the
arameter space. (3) Initial parameter values are assigned by selecting
coordinate (randomly according to a uniform distribution) within
, and the model is evaluated. (4) 𝑘 additional model evaluations
re conducted, where for each successive model evaluation one of the
parameters is modified to a different value within 𝛺. The process
f defining initial parameter values and iteratively conducting 𝑘 + 1
model evaluations (steps 3 and 4) is defined as a trajectory. (5) In
order to evaluate the overall influence of each parameter over its entire
range and level of interaction with other parameters, 𝑟 trajectories are
conducted, requiring a total of 𝑟(𝑘+ 1) model evaluations. (6) After all
model evaluations are completed, the elementary effect of each uncer-
tain input parameter is computed based on the change in model output
in response to the change in each uncertain input parameter. Then, the
absolute mean (𝜇∗) and standard deviation (𝜎) of the elementary effects
are computed to quantify the influence of each uncertain input model
parameter.

Specifically, for each input parameter, (𝑥1,… , 𝑥𝑖,… , 𝑥𝑘), a lower
bound, 𝐿𝑖, and upper bound 𝑈𝑖 is defined. The parameter space 𝛺 is a
k-dimensional grid, with bounds 0 and 1, representing the normalized
values between 𝐿𝑖 and 𝑈𝑖 along each dimension. The grid is then
discretized into 𝑝-levels, with 𝑝−1 cells in each dimension. Intuitively,
4

the hyper-parameter 𝑝 defines the resolution of the grid. For example,
if a parameter 𝑥𝑖 has a defined range between 0 and 1, and 𝑝 = 4
(i.e., 4 points and 3 intervals), then the size of each cell is 1

4−1 =
0.33. An additional hyper-parameter 𝛿, which defines the size of the
perturbation or change in the value of each uncertain parameter, is
selected. For example, if 𝑝 = 4 and 𝛿 = 2

3 , we will move two cells
when changing the model parameter. Saltelli et al. (2004) showed that
selecting values of 4 and 2

3 for the values of 𝑝 and 𝛿, respectively, are
desirable for coverage of the entire range of possible parameter values.

We now describe how the values of 𝜇∗ and 𝜎 are calculated, and
ormally define the term elementary effect. In essence, an elementary
ffect is the change in model output as a result of changing a model
arameter as described previously. The elementary effect of parameter
𝑖 and trajectory 𝑗 (𝑑𝑗𝑖) is defined as:

𝑗𝑖 =
𝑓 (𝑥1,… , 𝑥𝑖 + 𝛿,… , 𝑥𝑘) − 𝑓 (𝑥1,… , 𝑥𝑖,… , 𝑥𝑘)

𝛿
(1)

where 𝑓 is the model output. The metric 𝜇∗
𝑖 is the mean of the absolute

values of the elementary effects in the set (𝑑1𝑖,… , 𝑑𝑗𝑖,… , 𝑑𝑟𝑖) and
indicates the influence of parameter 𝑥𝑖. The metric 𝜎𝑖 is the standard
deviation of the elementary effects of parameter 𝑥𝑖, which indicates
the level of interaction between 𝑥𝑖 and the other parameters. Conduct-
ing additional trajectories increases the combinations of model input
parameters, allowing for increased coverage of the overall parameter
space to be reflected in the calculated values of 𝜇∗ and 𝜎. Additional
etails on the Morris method can be found in Saltelli et al. (2004), and
n example implementation can be found in the Supporting Information
SI).

.2.1. Application to monochloramine decay
The Morris method was applied to the monochloramine decay
odel to determine the sensitivity of model predictions to each model
arameter as a function of time. The concentration of monochloramine
t time 𝑡 is defined as 𝑐(𝑥, 𝑡). Parameter set 𝑥 consists of rate constants
n the monochloramine reaction model, initial concentrations of total
rganic carbon (TOC), total ammonia (TOTNH), and total carbonate
TOTCO), and the fraction of TOC involved in the fast (S1) and slow
S2) reactions with monochloramine and hypochlorus acid. The bounds
or each parameter, shown in Tables 1 and 3, were estimated from
literature values of each parameter. In some instances, a range of
uncertainty for a parameter is noted. For example, Morris and Isaac
(1983) specifically notes that based on the underlying experimental
data, the uncertainty surrounding rate constant k1 is ±25%. In other
instances, no uncertainty bound for a parameter was reported in the
literature, and a range of ±25% from the nominal value was used in lieu
of a specified uncertainty range. In order to evaluate the sensitivity of
each parameter as a function of time, i.e., water age, values of 𝜇∗

𝑖 and
𝜎𝑖 were calculated for all timesteps of each model evaluation.

In the implemented monochloramine model, the pH is not affected
by the reactions involving monochloramine decay. Yet, pH affects the
reaction dynamics since the disproportionation of monochloramine (re-
action 5 in Table 1) is acid-catalyzed, and speciation between acid and
conjugate base species (ammonia, carbonate, and free chlorine) affects
reaction kinetics. In order to illuminate the interaction between pH and
each parameter, the Morris method analysis was repeated for values
of pH between 7.0 and 9.5 (representing pH of various WDSs) with
increments of 0.5, and at pH 7.75, for a total of 7 repetitions. The initial
concentration of monochloramine of the finished water at the treatment
plant was held constant at 3.0 mg/l as Cl2, representing a typical value
of finished water monochloraine concentration within major water
utilities in the State of Texas (Houston Public Works, 2021; Dallas
Water Utilities, 2021; Austin Water Utility, 2021), and was not treated
as a source of uncertainty in this study. For all model evaluations,
temperature was held constant at 25◦C, representing typical conditions

).
within a WDS (Agudelo-Vera et al., 2020; Pfaller et al., 2021
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2.3. Characterizing hydraulic uncertainty

In this section, we conceptually demonstrate the difference between
chemical and hydraulic uncertainty, characterize the source of hy-
draulic uncertainty used in this study, and then describe how we propa-
gated hydraulic uncertainty to quantify the impact to monochloramine
concentrations.

Water quality in a WDS is mainly governed by transport (or advec-
tion) and chemical reactions, with minimal impact from diffusion and
dispersion (Abokifa et al., 2016). We return to Fig. 1 to differentiate
between chemical and hydraulic uncertainty. Chemical uncertainty
affects the rate of a chemical reaction, leading to uncertainty in the
concentration of a chemical concentration at any given water age. On
the other hand, hydraulic uncertainty ultimately results in variation
of velocities within a WDS (and therefore water age), describing the
amount of time that a chemical reaction is able to occur while the water
travels from a treatment plant to a consumer at a specific location in the
system. The batch reactor model (illustrated in Fig. 1) will be used in
Section 3.3.2 to demonstrate how the propagation of uncertainty affects
onochloramine concentrations at different locations within a WDS. To
uantify the effect of uncertain hydraulic conditions in a WDS, and the
ubsequent contribution to water quality variability, we use the metric
f water age.
We consider the variability in consumer demands as the source of

ydraulic uncertainty, since it has been demonstrated to be a signif-
cant source contributing to the variability in water quality within a
DS (Hatam et al., 2021; Zhuang and Sela, 2020). For a given WDS,
e first classify each demand node into a particular consumer class
i.e., residential, commercial, or mixed-use). Next, uncertainty in user
emand is modeled using a multivariate normal (MVN) distribution,
hich is parameterized by mean vector and correlation matrix (Tong,
012). Using a MVN distribution accounts for correlations between
emands among user groups, enabling simulation of realistic cases in
hich user demands are correlated. For example, positive correlation
etween user groups could represent a scenario in which residen-
ial and mixed-use demands increase during peak hours and decrease
uring off peak hours according to a similar pattern. Similarly, neg-
tive correlation could represent a scenario simulating the effects of
ocial distancing policies (e.g., during COVID-19 pandemic), result-
ng in an increase in residential demand, but a decrease commercial
emand (Spearing et al., 2021).

.4. Propagating chemical and hydraulic uncertainty

We now seek to propagate chemical and hydraulic uncertainty
ithin a WDS using MC simulations and compare the overall effects of
ncertainty in chemical parameters with the uncertainty in hydraulic
onditions. Three different demand scenarios were considered, each
ith different correlation structure. To account for chemical uncer-
ainty, the influential parameters identified using the Morris method
ere varied, and parameters shown to be non-influential remained
onstant. For the MC simulations in which chemical parameters were
aried, a uniform distribution was assumed between the lower and up-
er bound specified in Tables 1 and 3. Chemical parameter values were
enerated using Latin Hypercube sampling to maximize coverage of the
arameter space while constraining the number of evaluations (Mckay
t al., 1979). Finally, scenarios accounting for joint chemical and
ydraulic uncertainty were also evaluated. Overall, seven different
cenarios were evaluated (as described in Section 3.3). Results of
the MC simulations were summarized qualitatively and quantitatively
using different summary statistics (e.g., mean, standard deviation, per-
centiles, and histograms) and used to evaluate the temporal and spatial
variability in monochloramine concentrations and water age at each
5

location in the WDSs. e
2.5. Software

All hydraulic and chemical simulations were conducted using
EPANET-MSX, a publicly available software for simulating multi-species
chemical reactions within WDSs (Shang et al., 2008). Python was
used to interact with the EPNAET-MSX programmer’s toolkit functions,
set up the simulations, pre- and post-process results. The results of
our monochloramine decay model implemented in EPANET-MSX were
validated by comparing model results with (Wahman and Speitel,
2012; Wahman, 2018) to ensure no inadvertent errors. The Morris
method was implemented using the SALib python package (Iwanaga
et al., 2022; Herman and Usher, 2017). Model evaluations were run
on the Stampede2 cluster at the Texas Advanced Super Computer at
the University of Texas (TACC - Texas Advanced Computing Center,
2020). The codes used to set up the multi-species reaction model
in WDSs and execute the chemical uncertainty analysis are publicly
available in GitHub repository (Frankel and Sela, 2022). The codes
can be seamlessly generalized to be applied towards different reaction
schemes (including species attached to a pipe wall) and other WDSs.

3. Results

3.1. Description of the water systems

The proposed methodology was tested and applied towards three
water systems, each with increasing complexity, as follows: (1) Water
ystem 1 (WS1) – is a batch reactor used to simulate the dynamics of
he chemical reactions without the influence of hydraulic conditions
ithin a WDS. (2) Water system 2 (WS2) – is adopted from (Ormsbee
t al., 2022) (commonly referred to as PA2). WS2 represents part of
distribution system in Harrisburg, PA. The hydraulic model of WS2
onsists of 288 pipes and 263 nodes (a node in the model represents
cross connection between different pipes and/or a consumer), with a
otal daily demand of approximately 4163 cubic meters per day. The
ystem is supplied by gravity, has one water source, and no storage
anks. The mean water age in the network is 17 h. A schematic of WS2,
ncluding the demand at each node, is shown in Figure S1a in the SI.
dditional details can be found in Ormsbee et al. (2022). (3) Water
ystem 3 (WS3) – is adopted from (Ormsbee et al., 2022) (commonly
eferred to as Net3). WS3 is based on the North Marin Water District
n Novato, CA. The hydraulic model of WS3 consists of 117 pipes and
7 nodes, and total demand of approximately 18,549 cubic meters per
ay. There are two sources of water, two pumping stations, and three
torage tanks within the network. The mean water age of the network is
5 h, however, water age can reach 150 h in certain nodes as a result of
ater held in a storage tank and subsequently routed to a demand node.
schematic of WS3, including the demand at each node, is shown in
igure S1b in the SI. Additional details can be found in Ormsbee et al.
2022).
The simulation duration for WS1 was 7 days, and the entire period

as used for the Morris method. When conducting model evaluations
or WS2 or WS3 using the MC method, the simulations were performed
or an extended duration to allow the chemical concentrations within
he network to reach a steady state, which was 10 and 18 days,
espectively. The results of the final 24-h period in WS2 and WS3 were
sed for analysis.

.2. Chemical uncertainty analysis

Our first objective is to identify the influential and non-influential
hemical parameters governing monochloramine decay and track the
volution of the uncertainty in time. In order to maximize coverage
f the input parameter space while keeping the number of model
valuations relatively low, the method developed in Ruano et al. (2012)
as implemented, in which 𝑚 potential trajectories are randomly gen-

rated, and then the most disparate 𝑟 trajectories are selected for model
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Fig. 2. Results of the Morris method applied to WS1 at pH 7.75. (a) Parameter-specific uncertainty range, as shown in Tables 1 and 3. (b) All parameter uncertainty ranges fixed
t ±25%. Non-influential parameters are shown with thin gray lines.
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valuations. In our implementation, the values of 𝑚 and 𝑟 were selected
s 1000 and 10, respectively. To track the evolution of uncertainty with
ime, the duration of each simulation was 7 days with 5-min timestep,
nd 𝜇∗ and 𝜎 were evaluated at every timestep. The values of 𝜇∗ for
ach parameter as a function of time, indicating the influence of each
arameter on the concentration of monochloramine at each timestep,
re shown in Fig. 2a.
Fig. 2a shows a clear delineation between influential and non-

nfluential parameters. The non-influential parameters maintain values
f 𝜇∗ below 0.001 for the entire duration of the simulation (shown
ith thin gray lines), contrasted with the parameters for which the
alues of 𝜇∗ are relatively higher. Among the influential parameters,
ig. 2a reveals two main trends in parameter sensitivity. Parameters
DOC1, S1 and TOC exhibit greatest values of 𝜇∗ at water ages less
han 10 h and then wane, while the value of 𝜇∗ for other parameters
teadily increases with water age. The initial increase in the values of
∗ exhibited by parameters kDOC1, S1 and TOC is due to the parameters
ffect on the fast initial decay in monochloramine decay (as described
n Section 2.1). The product of TOC and S1 represent the initial con-
entration of DOC1, which is approximately equal to the magnitude of
he initial drop in monochloramine concentration as a result of the fast
onochloramine-TOC reaction pathway (reaction 15 in Table 1). After
ll of the DOC1 has been oxidized by monochloramine at approximately
0 h, the reaction ceases and the value of kDOC1 is inconsequential for
he remaining reaction. The value of 𝜇∗ for TOC wanes throughout the
emainder of the simulation, but remains high due to its participation
n the slow-reaction pathway with monochloramine (reaction 16 in
able 1). The remaining influential parameters consist of parameters
nvolved in the unified model and slow reaction pathway between
onochloramine and TOC. The influential parameters are (in order of
escending value of 𝜇∗ at water age of 7 days): k1, k2, k3, TOTNH,
6

OTCO, k5H2CO3
, kDOC2

, and S2. t
.2.1. Impact of parameter uncertainty range
In order to differentiate between the effect of input parameter range,

nd the effect of the parameter itself, the analysis was repeated with
ncertainty ranges for all parameters of ±25%. Fig. 2a shows the results
ith parameter uncertainty ranges according to Tables 1 and 3, while
ig. 2b shows the results with all parameter ranges at ±25%. The differ-
nce between Fig. 2a and Fig. 2b illuminates the effect of the parameter
nput uncertainty ranges. The main effect is observed in the values of 𝜇∗

or parameters S1 (thick gray), TOC (black), and kDOC1 (green). The rate
xpression for the fast-reaction pathway of TOC is kDOC1[NH2Cl][DOC1],
here the initial concentration of DOC1 = TOC × S1. Therefore, it
ollows that when S1, TOC, and kDOC1 all exhibit uncertainty of ±25%,
1 and TOC have equal values of 𝜇∗ (while the fast-reaction pathway
s active), since the product of the two parameters have equal effect
n determining the initial concentration of DOC1, as shown in Fig. 2b.
owever, data from (Duirk et al., 2005) suggests that the uncertainty
ounds on kDOC1 and S1 are ±55% and ±40%, respectively, while TOC
as assumed to remain at ±25%. Therefore, the increased uncertainty
ttributed to higher peak values of 𝜇∗ for parameters kDOC1

and S1,
s shown in Fig. 2a. This demonstrates that the range of uncertainty
ssigned to a particular parameter contributes to its reported level
f influence in the Morris method (via the values of 𝜇∗ and 𝜎), and
hat to the extent possible, modelers should take care to accurately
haracterize parameter uncertainty ranges.
In addition to evaluating the level of influence of each parameter

ndicated by 𝜇∗, the level of interaction between each parameter and
ll other parameters, indicated by 𝜎, also conveys valuable insights.
igure S2 in the SI shows the values of 𝜎 for each timestep. Figure S2
emonstrates that the relative level of interaction of each parameter
ith other parameters generally aligns with its level of influence (𝜇∗).
n addition, multiple parameters exhibit interactions, giving creedence
o our approach for sampling from a range of all influential parameters

o capture the effects of the interactions.
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Table 4
Mean values of the base demand factor for each scenario.
Scenario Residential Commercial Mixed use

Hyd1 1 1 1
Hyd2 0.7 1 1.3
Hyd3 1.3 0.75 1.2

3.2.2. Impact of pH
pH is an important factor in the rate of monochloramine decay,

as it controls the ratio of ammonia, carbonate, and free chlorine
species between each acid/conjugate base pair. In addition, the dis-
proportionation of monochloramine (reaction 5 in Table 1), which
is the rate-controlling reaction for monochloramine decay, is acid-
catalyzed (Jafvert and Valentine, 1992). Therefore, the rate of
monochloramine decay increases as pH decreases (i.e. the water in-
creases in acidity). Figure S3 in the SI shows the difference in monochlo-
ramine decay at values of pH 7.0–9.5, demonstrating that the rate
of monochloramine decay attributed to the unified model increases
as pH decreases (as is expected given the acid-catalyzed nature of
monochloramine decay); however, the initial drop in monochloramine
decay attributed to the fast reaction pathway with TOC is the same
for all pH levels. Therefore, the Morris method was repeated for WS1,
in which the pH was varied between 7 and 9.5 to assess how the
values of 𝜇∗ vary at different pH levels (see Figures S4-S12 in the SI).
Comparison of the values of 𝜇∗ reveals multiple trends in parameter
sensitivity. First, although the fast reaction pathway of TOC oxidation
is not chemically affected by pH, the influence of S1 (measured by
the value of 𝜇∗) increases. This is because as pH increases, the decay
attributed to the unified model decreases, and the initial drop in
monochloramine has a larger overall influence on monochloramine
concentration throughout the duration of the simulation. Similarly,
for k5H2CO3

, as pH increases, the rate of decay of monochloramine
decreases as a result of the unified model and slow reaction pathway
with TOC (reactions 1–14 and 16 in Table 1). As a result, the value of 𝜇∗

for each parameter (except for k5H2CO3
) decreases with increasing pH.

The increase in values of 𝜇∗ for k5H2CO3
with increasing pH is attributed

to its role in catalyzing the disproportionation of monochloramine
(reaction 5 in Table 1). Since the concentrations of H2CO3 and H+,
by definition, decrease with increasing pH, the proportion of influence
of the overall value of k5 is attributed to k5H2CO3

and TOTCO.

3.3. Comparison of hydraulic and chemical uncertainty

The contribution of chemical and hydraulic uncertainty to uncer-
tainty in monochloramine predictions was evaluated and compared for
different scenarios using MC simulations. The distribution of monochlo-
ramine concentration over a 24-h simulation period at each node were
compared to assess the overall sensitivity to chemical and hydraulic
factors. For each scenario, 150 hydraulic model evaluations were con-
ducted, which was sufficient to achieve stable mean and characterize
the expected distribution of monochloramine concentrations.

The chemical parameters found to be influential were sampled from
uniform distribution using Latin Hypercube sampling scheme (Mckay
et al., 1979), with the upper and lower bounds of each parameter
specified in Tables 1 and 3. To propagate hydraulic uncertainty, the
nodes in WS2 and WS3 were classified into one of three user groups:
residential, commercial, and mixed use. The user groups associated
with each node are shown in Figure S13 in the SI. Three scenarios
were considered with different hydraulic uncertainty. In each scenario,
demands were varied by scaling the base demand at each node based on
MVN. For each scenario, each user group was assigned a scaling factor
with mean and correlation shown in Tables 4 and 5, with a standard
deviation of 0.1. For example, scenario Hyd1 represents the underlying
uncertainty and variability of normal WDS operations. Scenarios Hyd2
and Hyd3 represent group-wide shifts in water usage, with different
7

Table 5
Correlation matrix between user groups.
Scenario 𝐂𝐫𝐜 𝐂𝐫𝐦 𝐂𝐜𝐦

Hyd1 0 0 0
Hyd2 −0.5 0.6 −0.3
Hyd3 0.4 0.0 0.0

𝐂𝐫𝐜: residential and commercial user groups; 𝐂𝐫𝐦: residential and mixed use user
groups; 𝐂𝐜𝐦: commercial and mixed use user groups.

Table 6
Mean and standard deviation (std) of monochloramine concentrations (mg/l as Cl2).
Scenario WS2 WS3

Mean (std) Mean (std)

Chem 2.70 (0.20) 2.76 (0.13)
Hyd1 2.70 (0.21) 2.76 (0.11)
Hyd1-Chem 2.70 (0.22) 2.76 (0.12)
Hyd2 2.72 (0.21) 2.76 (0.11)
Hyd2-Chem 2.72 (0.22) 2.76 (0.12)
Hyd3 2.72 (0.24) 2.75 (0.18)
Hy3d-Chem 2.72 (0.24) 2.75 (0.19)

correlation structure. Scenario Hyd3 is based on the correlation ob-
served among different users based on data collected at the University
of Texas at Austin and analyzed in Frankel et al. (2021). In addition, for
each of the three hydraulic scenarios, MC simulations were executed
again varying the hydraulic and chemical conditions simultaneously.
Overall, seven scenarios were considered: Chem – considering only
chemical uncertainty; Hyd1, Hyd2, Hyd3 – three demand scenarios; and
Hyd1-Chem, Hyd2-Chem, Hyd3-Chem – joint demand and chemical
scenarios.

3.3.1. System-wide analysis
Fig. 3 shows the mean monochloramine concentration for WS2 and
S3 for scenario Hyd1-Chem, where the color of each marker repre-
ents the mean and the size the standard deviation of the monochlo-
amine concentration at each node. Fig. 3 shows that most nodes in
oth networks have mean monochloramine concentrations near 2.75
g/l as Cl2, and that nodes with lower mean monochloramine con-
entration also exhibit greater standard deviations (the relationship
etween low concentration and higher variability in monochloramine
oncentration is further explained in 3.3.3). Similar system-wide results
ere obtained for the other uncertainty scenarios. Table 6 shows the
ean and standard deviation for all nodes for each scenario for WS2
nd WS3. We observe that for each system all scenarios result in similar
ean and standard deviation of monochloramine concentration. Hence,
ased on the system-wide results alone, for the systems utilized in this
tudy, it is inconclusive whether hydraulic or chemical uncertainty is a
reater driver of overall monochloramine uncertainty at each location
ithin the WDSs. However, we garner insights into this question by
urther observing the dynamics of individual locations in the WDSs.

.3.2. Location-specific analysis
We use node 141 in WS3 (see Fig. 3) to demonstrate the relationship

etween water age, hydraulic uncertainty, and chemical uncertainty.
ig. 4 shows the modeled water age and monochloramine concentration
ver 24 h. Fig. 4a shows the water age profile under the baseline
emand conditions (i.e., no hydraulic uncertainty) with chemical un-
ertainty (i.e., scenario Chem). Similarly, Fig. 4b shows the water
ge profiles in the same node considering also hydraulic uncertainty
i.e., scenario Hyd1-Chem). Fig. 4c and d show the distribution of
onochloramine concentrations at each timestep for the same scenar-
os, Chem and Hyd1-Chem, respectively. At each timestep, the different
olors represent different percentiles: 0-25% (blue), 25-50% (green),
0-75% (yellow), and 75-100% (orange).
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Fig. 3. Mean monochloramine concentrations for scenario Hyd1-Chem: (a) WS2 and (b) WS3.
m

Fig. 4. Results at node 141 in WS3: (a) predicted water age with chemical un-
certainty, (b) predicted water age with chemical and hydraulic uncertainty, (c)
predicted monochloramine concentrations with chemical uncertainty, (d) predicted
monochloramine concentrations with chemical and hydraulic uncertainty.

Fig. 4a shows that there is an abrupt variability in the water age
at the given location. For example, during simulation hours 3–9, water
age is approximately 5 h, and during simulation hours 10–12, water
age significantly increases to 140 h. This is a result of the specific
system dynamics, such that the water age is relatively low when water
is supplied directly from the source, which is characterized by shorter
travel times, compared to higher water ages when water is supplied
from the storage tanks. Fig. 4b shows that when hydraulic uncertainty
is introduced, there is variability in predicted water age (i.e., output
uncertainty). In this network, the main driver of water age variability
is related to the dynamics of the tanks in relation to changing demands.
The stochastic water demands within the network manifest in varied
times in which node 141 is supplied directly from the source versus
from water in the tank. For example, at simulation hour 4, for all 150
simulations, water age is approximately 5 h because water is supplied
directly from the source. However, at nearly all other times in the
simulation, variability in water age at node 141 is attributed to whether
or not water is supplied directly from the source or from a tank, and
the equilibrium water age within the tank.

There are multiple pertinent observations regarding the uncertainty
of monochloramine concentration with respect to water age. First,
there is greater distribution in monochloramine concentration at times
when water ages are higher. Considering only chemical uncertainty
(scenario Chem), the distribution of monochloramine concentrations at
8

relatively high water ages (e.g., water age of 145 h at hour 22) reveals o
higher output uncertainty compared to lower water ages (e.g., water
age of 8 h at hour 5), see Fig. 4(c). Second, including hydraulic un-
certainty introduces significant variability in water age, and in turn, in
monochloramine concentrations (see Fig. 4d). Third, comparing Figures
Fig. 4(c) and Fig. 4(d) shows the effect of hydraulic uncertainty on the
monochloramine concentrations. Including hydraulic uncertainty in-
creases temporal variability in monochloraine concentration, which has
implications for sampling protocols. For example, at time 17 h, if only
considering chemical uncertainty, the monochloramine concentration
is expected to be between approximately 2.70 and 2.85 mg∕l, but ranges
between approximately 1.70 to 2.85 mg∕l when considering hydraulic
and chemical uncertainty. Similar results are shown for node 89 in WS2
in Figure S14 in the SI, however, because WS2 is supplied directly from
the source and does not utilize storage tanks, the abrupt changes in
water age (and therefore monochmoramine concentration) are not ob-
served in WS2. Finally, since most nodes within WS3 are supplied with
water directly from the sources and not from the tanks, the aggregated
mean and standard deviation of monochloramine concentration for the
entire network (shown in Table 6) masks the important water quality
implications at specific nodes within the WDS.

Fig. 5 further demonstrates the variability in monochloramine con-
centrations throughout the course of a day for selected nodes in WS2
(top) and WS3 (bottom). The hourly mean monochloramine concen-
tration is represented by color of each dot, and the hourly standard
deviation is represented by the size of each dot. As seen in Fig. 5,
each node varies in regards to its daily monochloramine concentra-
tion profile. For WS2, standard deviation and mean concentration are
consistent for each node throughout a day. However, for WS3, there is
greater variability in the monochloramine concentrations among nodes,
and the time of day in which monochloramine concentrations vary is
different between nodes. For example, in WS3, Node 253 experiences
greatest variability and lowest concentrations between hours 0–5, and
much higher concentration with low variability throughout the rest of
the day. In contrast, Node 131 in WS3 experiences greater variability
throughout the course of the day, with lower concentrations between
hours 9–11 and 18–23. As previously demonstrated for node 141 in
WS3, the tanks and the specific hydraulic conditions impact water
trajectory (i.e., directly from the source or passed through storage
tanks) and greatly affect the monochloramine concentrations. Nodes
197, 121 and 101 are all in close proximity and are directly supplied
by the sources, leading to higher monochloramine concentrations and
low variability. On the other hand, nodes 131, 179, 139, and 253
receive water from storage tanks during parts of the day, resulting
in decreased monochloramine concentrations and higher variability.
For comparison, Figure S15 in the SI shows the average fraction of
water that was supplied by the tanks in WS3. The analysis shown
in Fig. 5 provides a concise summary of the temporal variability in
onochloramine concentrations, which can be used to identify times
f greater uncertainty.
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Fig. 5. Dot heat map showing hourly mean and standard deviation of monochloramine
concentration at selected nodes for: (a) WS2 and (b) WS3. Dot color represents mean
concentration and size represents standard deviation.

3.3.3. Estimating output uncertainty using the batch reactor model
In order to further illuminate the influence of chemical and hy-

draulic input uncertainty on model predictions, we return to the batch
reactor model (WS1). We demonstrate that when considering species in
the bulk phase only (i.e., not including wall species), output uncertainty
in a WDS can be approximated using the simple batch reactor model
that only accounts for the chemical reactions, and the water age distri-
bution at a node. We demonstrate this using WS2. We estimate output
uncertainty in the batch reactor by conducting 150 MC simulations
using the same set of chemical parameters used in the Chem scenario,
and compare the results to the results of the Hyd1-Chem scenario
within WS2.

Fig. 6 shows the monochloramine concentration as a function of
ater age in the batch reactor (gray lines) for the 150 simulations con-
idering chemical uncertainty. As water age increases, so too does the
ariability in monochloramine concentration. This is expected since the
ncertainty in monochloramine decay rate has more time to propagate.
Additionally, Fig. 6 shows the predicted monochloramine concen-

ration and water age in WS2 for the 150 simulations considering
hemical and hydraulic uncertainty. Two nodes and were selected
o demonstrate the difference in monochloramine concentration for a
ode located near (node 258, green) and far (node 89, orange) from
he source (see Fig. 3). Each marker represents the concentration and
ater age at each time step of each simulation. To distinguish the
verlapping markers, the histograms aligned with the 𝑥-axis shows
he distribution of the water age at the two nodes, demonstrating a
arrower spread of the water age at node 258 compared to node 89.
imilarly, the histogram aligned with the 𝑦-axis shows the distribution
9

o

Fig. 6. Monochloramine concentrations as a function of water age in the batch reactor
(gray lines), and nodes 89 (orange) and 258 (green) in WS2 at each timestep of the
Hyd1-Chem scenario.

of the monochloramine concentrations at the two nodes, demonstrating
similar behavior with a greater variability in concentrations as the
water age increases. For Node 258, the mean water age is 3 h, and
the mean monochloramine concentration is 2.83 mg/l as Cl2 with a
standard deviation of 0.04 mg/l as Cl2, while node 89 has a mean
water age of 83 h, with a mean monochloramine concentration of 2.25
mg/l as Cl2 and a standard deviation of 0.09 mg/l as Cl2. We observe
that the monochloramine concentrations for the two nodes in the WS2
generally fall within the bounds of the concentrations simulated using
the batch reactor. This result indicates that for a given water age in a
WDS, monochloramine concentrations and associated uncertainty can
be reasonably estimated using the simplified batch reactor model.

4. Discussion

Hydraulic uncertainty affects the water age of a parcel of water
that is demanded by a user, and in turn, chemical uncertainty affects
the range of potential monochloramine concentrations to be expected
for a given water age. It follows that monochloramine concentration
of a parcel of water demanded by a user is a function of the joint
chemical and hydraulic uncertainty. The results of this study indicate
the important factors to consider when determining whether hydraulic
or chemical uncertainty is the main driver for the overall uncertainty
in monochloramine concentrations at a given location within a WDS.
The results of this work have multiple implications for water utility
operations:

(1) Chemical uncertainty grows with water age because the uncer-
tainty has more time to propagate in the chemical reaction (see Fig. 4).
n addition, due to the exponential nature of monochloramine decay, a
arginal increase in water age is more influential to the mean expected
onochloramine concentration at lower water age than at higher water
ge. Therefore, accurately quantifying the water age distribution at a
ode is critical for characterizing monochloramine concentrations.
(2) Since the increase of uncertainty with water age is a direct

ause of propagation of uncertainty of the decay reaction, as the rate
f chemical decay increases (e.g., lower pH), the overall contribution
f chemical uncertainty increases (see Fig. 2). Therefore, accurately
haracterizing chemical uncertainty in water utilities with high rates
f monochloramine decay is imperative to maintaining appropriate
isinfectant residual throughout-out the distribution system.
(3) Variability of monochloramine concentrations changes through-

ut the day, hence selecting the time of sampling can be critical for
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estimating the underlying conditions in the WDS. Water quality is sig-
nificantly affected by the specific path that a parcel of water takes as it
travels throughout the distribution system and whether that parcel was
retained in a storage tank. For example, Fig. 4d shows how the distri-
bution of potential monochloramine concentration changes throughout
the course of a day. At hour 4, there is little uncertainty in the expected
monochloramine concentration, with the range of monochloramine
between approximately 2.7–2.9 mg/l as Cl2. However, at hour 11,
uncertainty in monochloramine concentration is much greater, ranging
between approximately 2.7–1.6 mg/l as Cl2. Fig. 5 is used to further
this analysis by showing how monochloramine concentration varies
throughout the day for multiple nodes in a WDS. A water utility could
use the modeling results to tailor the time of day that samples are
collected at a given location at times when high uncertainty or low
monochloramine concentrations is expected, in which a grab sample
would provide certainty to the actual monochloramine concentration.

(4) We show that monochloramine concentration within the WDSs
studied remain well above the Texas regulatory minimum value of
monochloramine concentration of 0.5 mg/l as Cl2 (Texas Administra-
tive Code, 1977). Even with a maximum water age of approximately
200 h the minimum monochloramine concentration in WS3 was ap-
proximately 1.5 mg/l as Cl2 (see Fig. 4d). While conditions of all WDSs
vary, we demonstrate that with appropriate initial monochloramine
concentration, and even when accounting for hydraulic and chemical
uncertainty, monochloramine concentrations remain above regulatory
standards. This method could be repeated for other chemical species
and reveal areas within the distribution system which are at risk of
violating the regulatory standard for that species.

(5) The comparison between WS2 and WS3 demonstrates the impact
of storage and pumping on water quality within a WDS. As shown in
the difference between Figs. 4, 5, and S13 in the SI, tanks contribute
significantly to hydraulic uncertainty, and subsequently, to uncertainty
in monochloramine levels within a WDS. Though important for main-
taining hydraulic pressure regulation and storing water within the
WDS, tanks contribute to increased water age within the WDS. For
example, in WS3, a pump from one of the water sources was turned
on/off based on the water level within the tank nearest to Node 141,
exemplifying another relation between hydraulic operation and water
quality within the WDS. Therefore, it is imperative to understand how
the specific pumping and tank operations effect hydraulic uncertainty,
and the implications for water quality in a particular WDS.

(6) Simulating and conducting uncertainty analyses of monochlo-
ramine decay in a batch reactor can provide useful insight into estimat-
ing monochloramine concentration and associated uncertainty within
a WDS. By using a hydraulic model to characterize the water age at
a certain location within a WDS, the influential chemical parameters
can then be identified and the monochloramine concentration can
be estimated using the batch reactor model without evaluating the
chemical model throughout the entire distribution network (which can
be computationally expensive for large networks). We note that the
batch model is not a replacement for a full-scale WDS chemical model,
especially if the reaction scheme includes species attached to pipe
walls, or if investigating the impact of contaminant intrusion within
a WDS (Hu et al., 2022; Bazargan-Lari, 2014).

4.1. Limitations and further research

There are multiple avenues for extending the proposed research.
First, while the chemical reactions represented in this study are the
main drivers of abiotic monochloramine decay, there are other causes
of monochloramine decay. Processes, such as nitrification, and interac-
tions with pipe walls and attached biofilms, which can contribute to
the rapid decay of monochloramine, were excluded from this analy-
sis (Wolfe et al., 1990; Wahman et al., 2016). Further studies should
investigate the role of these chemical phenomena as it relates to the
10

uncertainty in monochloramine levels within a distribution system. In
addition, further research should investigate uncertainty of monochlo-
ramine decay over a wider range of water quality conditions. As
previously noted, both temperature and pH are important factors which
influence the rate of monochloramine decay in the unified model,
and the results MC analyses would differ under conditions other than
25 ◦C and pH 7.75 used in this study. Finally, because the uncertainty
attributed to analytical measurement of monochloramine concentra-
tion is low compared to the chemical and hydraulic mechanisms of
uncertainty, this source of uncertainty was not incorporated into this
study.

5. Conclusions

Coupled hydraulic and chemical models of water distribution sys-
tems can be useful tools for water utility personnel to analyze wa-
ter quality within a water distribution system. However, commonly
used hydraulic and water quality modeling software, such as EPANET-
MSX, produce deterministic output, even though input parameters
are inherently uncertain. Therefore, this work proposes a method for
investigating uncertainty in water quality within a water distribution
system applied to the decay of monochloramine. Specifically, this work
(1) conducted a sensitivity analysis of the chemical parameters in the
monochloramine decay chemical model, (2) investigated the role of
chemical versus hydraulic factors in overall chemical uncertainty in two
sample water distribution networks, and (3) developed a set of Python
codes to implement the proposed method to be applied towards other
reaction schemes, quality parameters, and water distribution networks.

The proposed chemical sensitivity analysis in a batch reactor can
be used in other settings to reveal which of the chemical parameters
are influential to monochloramine decay when considering the unified
decay model and reactions with TOC. Thus, the parameter space can
be reduced when implementing model calibration, sensitivity analysis,
or other computational methods. In addition, based on the results
of the MC analysis, the water age distribution at each node is the
main driver in determining uncertainty related to monochloramine
decay, with more uncertainty in monochloramine concentration as
water age increases. Further, we show that uncertainty in monochlo-
ramine concentrations varies throughout the course of a day, and is
heavily influenced by the operating conditions of storage and pumping.
Hence, it is important to include system operations when evaluating
water quality within WDSs. As confidence in model-based decisions for
managing urban WDSs depends highly on the validity of the models, the
proposed approach further emphasizes the importance of accounting
for uncertainty in the context of estimating water quality in WDSs.
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Introduction 

Figures and tables included in the main text were chosen to convey findings, and also to maintain 
brevity. The additional information in this file reports additional findings from our work that are 
not essential for understanding the experimental results, but bolster our findings and support 
claims made in the main text. Figures include a depiction of the level of influence of chemical 
parameters at differing levels of pH, classification of users within each water system, and results 
of a MC simulation for WS2. 

 

 

 

 

 

 

 

 

 



S1. Morris Method – Illustrative Example 

An example of the implementation of the Morris method is presented for the arbitrary 
function f(x), with three input parameters: x1, x2, and x3. Suppose that the bounds [Li, Ui] for 
each parameter are [0,12], [400,520], and [22,25], respectively, and the values of p, δ and r  are 
4,  2/3, and 3, respectively. Table S1 shows the three trajectories, input parameters to be used in 
each model evaluation, and value of f(x) for each set of input parameters. Trajectory 1 starts with 

a random sample x = (0,440,22). Then, in the next step, only x2 is modified by  
ଶ

ଷ
ሺ520െ 400ሻ ൌ

80, and the function f(x) is evaluated. In the next step of trajectory 1, x1 is perturbed by 
ଶ

ଷ
ሺ12െ

0ሻ ൌ 8 and the rest of the parameters are kept constant. Finally, x3 is perturbed by  
ଶ

ଷ
ሺ25െ

22ሻ ൌ 2 and f(x) is evaluated again. This completes one trajectory.  For each parameter xi, one 
elementary effect per trajectory is calculated. The elementary effects of parameter x1 are 
calculated based on Eq. 1 using model evaluations f(x) (see Table S1). For example, the first 
elementary effect of parameter x1, using function evaluations 2 and 3, is calculated as  𝑑ଵଵ ൌ
଻଼଴ି଻ଵ଺

మ
య

ൌ 960. Similarly, the second and third elementary effects can be calculated based on 

model evaluations 6 and 7, and 10 and 11, respectively, with d21 = 96 and d31 = 192. Then, µଵ
∗  is 

computed as the absolute mean of all elementary effects for parameter 1, i.e., 128 ൌ ଽ଺ାଽ଺ାଵଽଶ

ଷ
. 

Similarly, µଶ
∗  = 432 and µଷ

∗  = 198, indicating the influence of each parameter relative to the other 
parameters. In this particular case, the function f(x) is most sensitive to the value of x2, least 
sensitive to x1, and slightly more sensitive to x3 than x1. The values of σ are 55.4, 31.2, and 31.2 
for parameters x1, x2, and x3, respectively, which indicate that x1 has the highest level of 
interaction with the other parameters. Values of σ are equal for x2 and x3, indicating that there is 
equal level of interaction of x2 and x3 with other parameters. 

Table S1: Function evaluations to demonstrate the Morris method for an arbitrary function f(x), 
based on three input parameters: x1, x2, and x3} 

Trajectory 
Model 

Evaluation 
x1 x2 x3 f(x) 

1 

1 0 440 22 452 
2 0 520 22 716 
3 8 520 22 780 
4 8 520 24 936 

2 

5 8 400 23 444 
6 8 400 25 564 
7 0 400 25 500 
8 0 480 25 800 

3 

9 12 400 23 524 
10 12 400 25 644 
11 4 400 25 516 
12 4 480 25 816 



 

Figure S1: Layout, locations of reservoirs and tanks, and magnitude of demands at each node for: 
(a) WS2 and (b) and WS3. 

 

 

Figure S2: Level of interaction between each parameter and all other parameters, indicated by 
sigma, for all parameters at pH 7.75 



 

Figure S3: Monochloramine decay at varying levels of pH, with all other parameters values 
constant, demonstrating the effect of pH on monochloramine decay rate 

 

 

Figure S4: Results of Method of Morris applied to the Batch model at pH 7, with parameter-
specific uncertainty ranges 



 

Figure S5: Results of Method of Morris applied to the Batch model at pH 7.5, with parameter-
specific uncertainty ranges 

 

Figure S6: Results of Method of Morris applied to the Batch model at pH 8, with parameter-
specific uncertainty ranges 



 

Figure S7: Results of Method of Morris applied to the Batch model at pH 8.5, with parameter-
specific uncertainty ranges 

   

Figure S8: Results of Method of Morris applied to the Batch model at pH 9, with parameter-
specific uncertainty ranges  



 

Figure S9: Results of Method of Morris applied to the Batch model at pH 9.5, with parameter-
specific uncertainty ranges 

 

 

Figure S10: Influence of parameter k1 on monochloramine decay at levels of pH between 7 and 
9.5 



 

Figure S11: Influence of parameter TOC on monochloramine decay at levels of pH between 7 
and 9.5 

 

 

Figure S12: Influence of parameter 𝑘ହுమ஼ைయ on monochloramine decay at levels of pH between 7 

and 9.5 

 

 



 

Figure S13: Assignment of user groups to each node in (a) WS2 and (b) WS3 

 

 

Figure S14: Results at node 89 in WS2: (a) predicted water age with chemical uncertainty, (b) 
predicted water age with chemical and hydraulic uncertainty, (c) predicted monochloramine 
concentrations with chemical uncertainty, (d) predicted monochloramine concentrations with 

chemical and hydraulic uncertainty. 



 

 

Figure S15: Fraction of water supplied from tanks to each node in WS3 over the course of a 24-
hour period. A value of 0.4 indicates that on average, 40% of the water demanded at that node 
was supplied from a storage tank and 60% directly from the source. Node labels correspond to 

the nodes shown in Figure 5.  
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