Environmental Modelling and Software 158 (2022) 105554

journal homepage: www.elsevier.com/locate/envsoft

Contents lists available at ScienceDirect

Environmental Modelling and Software

Position Paper

PTSNet: A Parallel Transient Simulator for Water Transport Networks based

on vectorization and distributed computing

Gerardo Riafio-Bricefio, Ben R. Hodges, Lina Sela

Check for
updates

Department of Civil, Architectural and Environmental Engineering, the University of Texas at Austin, TX 78712, US

ARTICLE INFO ABSTRACT

Dataset link: https://github.com/gandresr/PTS

Modeling transient flow in water transport networks (WTNs) is characterized by hyperbolic partial differential

NET equations. Existing commercial and open-source software for transient modeling in WTNs have limitations,

Keywords:

Transient flow

Networked water systems
Parallel computing
High-performance computing
Message Passing Interface

such as lack of scalability and compatibility with high-performance computers, difficulty to systematically
execute simulations and analyze results. This work proposes a novel open-source Python package that relies on
vectorization and distributed computing to overcome the limitations of existing software. The proposed library,
the Parallel Transient Simulator for Water Networks (PTSNet), surpasses in computational performance existing
modeling tools and incorporates novel analytics functionalities. PTSNet has been tested on WTNs composed
of tens, hundreds, and thousands of hydraulic elements using a personal and a supercomputer, running from

tens to hundreds of processors. We show through rigorous analyses that PTSNet is scalable, accurate, and
significantly speeds up simulations with sufficiently dense numerical grids.

Software availability

Name of software: PTSNet

Software requirements: Python 3.6, 3.7, 3.8, 3.9 and Python dependen-
cies (i.e., NumPy, tqdm, scipy, h5py, pandas, wntr, mpi4py, numba)
Availability: PTSNet source codes are available from a GitHub repository
at https://github.com/gandresr/PTSNET

1. Introduction

Modeling hydraulic processes in environmental systems is critical
for management, operation, and control of water transport networks
(WTN) in natural and urban environments. Particularly, modeling tran-
sient scenarios, such as the surcharge of water mains in drainage
systems, or sudden pressure changes in water distribution systems due
to the operation of pumps, is essential to prevent failures that may
result in high economic losses (Boulos et al., 2005). Failures attributed
to rapid flow accelerations and drastic changes in pressure include
floods, system fatigue or pipe ruptures, pump and device malfunc-
tioning, and intrusion of pathogens and contaminants through leaks,
cracks, and other defects (Boulos et al., 2005; LeChevallier et al.,
2003; Fox et al., 2014). This paper focuses on modeling transients in
WTNs, which involves solving partial differential equations (PDEs) that
describe the water-transport phenomenon in terms of conservation of
mass and momentum relationships. PDEs for transient flow modeling
can be solved using a variety of numerical methods, including the

* Corresponding author.

method of characteristics (MOC) (Wylie et al., 1993; Nault et al.,
2018), finite difference methods (Chaudhry and Hussaini, 1985; Kiuchi,
1994; Blanco et al., 2015; Verdugo et al., 2019; Cao et al., 2020), or
finite volume methods (Zhao and Ghidaoui, 2004; Castro et al., 2006;
Ferndndez-Pato and Garcia-Navarro, 2014; Mesgari Sohani and Ghi-
daoui, 2019). Overall, MOC has been predominantly used over other
numerical schemes due to its ease of implementation and accuracy.
However, since most WINs are composed of thousands of hydraulic
elements and cover extensive areas, modeling transient phenomena for
realistic WTNs can be intractable with current simulation tools.
Recent advances in computational fluid dynamics demonstrate that
distributed computing and vectorization can significantly speed up
computations for modeling water transport in environmental and urban
systems. In Lin and Zhang (2021), the authors propose a method-
ology that divides hydrologic and hydraulic zones for a 2D flood
simulation, computing the hydrodynamic behavior of the zones across
multiple processors. The model runs 10 times faster than traditional
sequential implementations, yet sacrifices accuracy for computational
performance. Similarly, in Burger et al. (2014), the authors present a
parallel version of the EPA’s storm water management model (SWMM)
that runs six to ten times faster than sequential SWMM on a twelve-
processor system. In Carlotto et al. (2021), the authors developed
SW2D-GPU, an open-source 2D shallow water model that parallelizes
computations across multiple processing units in a general-purpose

E-mail addresses: griano@utexas.edu (G. Riafo-Bricefio), hodges@utexas.edu (B.R. Hodges), linasela@utexas.edu (L. Sela).

https://doi.org/10.1016/j.envsoft.2022.105554

Received 10 August 2022; Received in revised form 28 September 2022; Accepted 10 October 2022

Available online 21 October 2022
1364-8152/© 2022 Elsevier Ltd. All rights reserved.

http://www.elsevier.com/locate/envsoft
http://www.elsevier.com/locate/envsoft
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
mailto:griano@utexas.edu
mailto:hodges@utexas.edu
mailto:linasela@utexas.edu
https://doi.org/10.1016/j.envsoft.2022.105554
https://doi.org/10.1016/j.envsoft.2022.105554
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2022.105554&domain=pdf

G. Riafio-Bricefio et al.

graphic processing units (GPGPUs), achieving 36 times faster running
times. Similarly, Anguita et al. (2015) proposes a 3D semi-implicit
hydrodynamic model for shallow water that can be executed in parallel.
In all the previous works, the improvement in computational efficiency
is typically greatest when running highly-dense numerical grids, which
are sometimes necessary to capture nonlinearities in large-scale simula-
tions (Abhyankar et al., 2020). Likewise, there is a generalized adoption
of partitioning algorithms and distributed computing to accelerate
models in water systems (Zhu et al., 2019; Xu et al., 2021; Tiernan and
Hodges, 2022). For example, there have been significant advancements
in the parallelization of shallow water equations, which are essential
for open-flow modeling, e.g., river and drainage modeling, speeding up
simulations several orders of magnitude (Carlotto et al., 2021; Burger
et al.,, 2014). However, fewer works have focused on studying the
problem of parallelization to solve transient flow in pressurized WTNs.

In the context of urban water systems, packages for transient sim-
ulation in WTNs include commercial software, such as Bentley Ham-
mer (Bentley Systems, 2019), KYPipe (KYPipe, 2019), InfoSurge (In-
novyze, 2019), and TransAM (McInnis and Karney, 1998). Commercial
packages share similar functionalities and are of limited use for large-
scale applications. Commercial packages come with limitations in com-
putational efficiency, such as lack of scalability and compatibility with
high-performance computers. Moreover, the usability of commercial
packages is limited since commercial codes are delivered to users as
black boxes and, thus, do not provide opportunities for improving
state-of-the-art models, modifying or extending its functionalities, nor
running transient simulations systematically, i.e., through program
commands rather than interacting with a graphical user interface (GUI).
Therefore, it is difficult to extract, analyze, and visualize numerical
results.

On the other hand, open-source packages can be categorized as
transient-focused and general-purpose. Transient-focused packages,
which solve the specific system of hyperbolic PDEs that models tran-
sient flow in WTNSs, include TSNet (Xing and Sela, 2020) and the free-
open-source implementation of MOC presented in Kjerrumgaard Jensen
et al. (2018). Transient-focused packages are computationally ineffi-
cient with respect to commercial packages when modeling medium-
and large-size WTNs. Conversely, general-purpose packages allow users
to solve a systems of hyperbolic PDEs defined by the user. Some of
the available general-purpose packages include Modelica (Fritzson,
2011), OpenFOAM (Jasak et al., 2007), FEniCSx (Scroggs et al., 2021),
and PETSc’s DMNetwork (Abhyankar et al., 2020). General-purpose
packages incorporate state-of-the-art methods to run distributed com-
putations across multiple processors, but are typically based on implicit
numerical schemes whose solution is found via adjoint or iterative
methods, e.g., conjugate gradients, which have proven to be compu-
tationally inefficient when running in parallel for inherently sparse
systems such as WINs (Burger et al., 2016; Abhyankar et al., 2020).
More critically, the usability of general-purpose packages can be cum-
bersome for users that need to run transient simulations of WTNs,
because users need to manually define the topology of the WTN and its
properties to formulate the system of PDEs and its boundary conditions.
Defining simulation parameters for a large-scale simulation can be
highly time-consuming and prone to errors given the multitude of
boundary conditions that are present in WTNs.

This study presents and demonstrates a new open-source software
package — the Parallel Transient Simulation in Networks (PTSNet) —
that addresses the limitations of computational efficiency and code
usability of both commercial and open-source packages. For compu-
tational efficiency we build upon our DV-MOC work in Riano-Bricefio
et al. (2021a), which uses vectorization and distributed computing for
efficient computation. In Riano-Bricefio et al. (2021a) we demonstrate:
(1) a new vectorized formulation of the transient-flow equations, which
is specifically designed to fit an efficient memory allocation scheme and
(2) a parallel algorithm that distributes the load among processors to
further speed up vectorization and adopts to general WTNs topologies

Environmental Modelling and Software 158 (2022) 105554

and many boundary conditions. The numerical solution uses an explicit
time-marching scheme to reduce the computational overhead of paral-
lel communications. The readers are referred to Riafio-Bricefio et al.
(2021a) for the theoretical derivations.

This paper contributes to the: (1) definition of the software ar-
chitecture to support the novel vectorized and parallel scheme for
general WTNs, and (2) development of new analytics tools, such as
automated input file processing, selection of the best time step and
number of processors for a transient simulation running in parallel.
The code is written in Python using OpenMPI and HDF5 libraries that
are compatible with high-performance computing systems. For code
usability, we equip PTSNet with functionalities to automatically extract
the WTN properties from standardized input files, i.e., the EPANET .inp
file (Rossman, 1994), which have been widely adopted in both industry
and academia (Sela and Housh, 2019; Sela et al., 2019). In addition,
PTSNet contains a set of functionalities that allows users to extract and
analyze simulation data, both quantitatively and visually, facilitating
parameter selection and the storage, retrieval, and analysis of results.

The remainder of the paper is organized as follows: Section 2
provides an overview of the DV-MOC transient flow model and PTSNet
functionalities. Section 3 describes the underlying architecture of the
library and its main data structures for users interested in building
new functions. Sections 4 and 5 focus on explaining model setup and
execution through code snippets. In Section 6, the package is validated
for modeling medium- and large-size networks, by comparing simula-
tion results with widely accepted computational packages for transient
modeling. Additionally, PTSNet’s performance is compared with that of
its counterparts, showing that the DV-MOC offers significantly better
simulation times and extends the capabilities of currently available
software. Finally, in Section 7, conclusions and future directions are
provided.

2. Software description

PTSNet is an open-source Python package capable of computing the
dynamics of flowrates Q(x, r) and hydraulic heads H(x,) in time (r) and
space (x) for a pressurized WTN under the effect of transient scenarios,
such as valve opening and closure, pump start-up and shut-off, and
bursts. Modeling WTN dynamics in PTSNet requires defining the WTN
properties using the industry-standard EPANET .inp format defined by
Rossman (1994). Input files can be generated systematically using code
scripts based on the WNTR package (Klise et al., 2018) or via EPANET’s
GUI (Rossman, 1994). PTSNet relies on other open-source Python pack-
ages that need to be installed through a conda environment following
the instructions provided in PTSNet’s repository (Riafo-Briceno et al.,
2022). In particular, we chose the WNTR package over other available
libraries that can systematically extract information from general text
files, because WNTR is supported and maintained by the US Environ-
mental Protection Agency (EPA) that is responsible for defining the .inp
file standard. Moreover, we use mpi4py to handle the open message
passing interface (OpenMPI) standard, which enables distributed pro-
gramming and is broadly used in industry and academia (Graham et al.,
2005). Once all the dependencies are installed, PTSNet’s installation
is done via the PyPi repository using the pip install ptsnet
terminal command, as described in Riafio-Briceno et al. (2022). We
note that, since PTSNet is continuously updated, by using the previous
command, users will install the latest version of the package. To install
the version presented in this paper, users should use: pip install
ptsnet==0.1.7.

PTSNet’s functionalities can be categorized into four distinct groups:
(1) Model Setup, (2) Execution of Simulation, (3) Extraction of Results,
and (4) Analytics, as illustrated in Fig. 1. The first three groups of
functionalities allow users to run a transient simulation using one
or multiple processors and create workspaces to save simulation re-
sults. The fourth group are functionalities to help with model setup
and results analysis. The remainder of this section presents a descrip-
tion of the underlying transient flow model and describes PTSNet’s
functionalities.

G. Riafio-Bricefio et al.

Environmental Modelling and Software 158 (2022) 105554

(1) Model Setup

] 2) Execution

- Extract properties from EPANET's input file
- Validate model compatibility

- Allocate memory

- Perform wave speed adjustment

- Setup transient scenarios

- Perform network partitioning

- Compute initial conditions

- Compute flowrates and heads within pipes
- Compute boundary conditions

- Exchange information between processors

[(3) Extraction

] ((4) Analytics

- Write results in parallel on HDF5 files
- Manage workspaces

- Plot network properties
- Compute simulation times
- Compute optimal number of processors

Fig. 1. Main functionalities of the PTSNet library.

2.1. Transient flow model

Transient flow within pipes is characterized by a system of hy-
perbolic PDEs that describes conservation of mass and momentum
relationships (Wylie et al., 1993). These equations are prognostic since
they predict the value of flowrates and hydraulic heads for some time
in the future based on current-time conditions (Holton, 1973). When
pipes are connected to other WIN elements such as valves, pumps,
leaks, bursts, surge protections, reservoirs, dead-ends, and demands,
transient flow is modeled by coupling prognostic and diagnostic equa-
tions, the latter being equations that link flowrates and/or heads at
identical times (Holton, 1973). PTSNet is based on the distributed
and vectorized method of characteristics (DV-MOC) of Riafo-Bricefio
et al. (2021a), which has advantages for accuracy, ease of imple-
mentation, and suitability for large-scale simulations with significantly
lower computational times than sequential implementations. Details
of the DV-MOC method are found in Riafio-Briceno et al. (2021a),
with an abbreviated description provided below. The DV-MOC time-
marching scheme can be executed by one or multiple processors to
solve conservation of mass and momentum equations (Wylie et al.,
1993):

OH(x,1) N @* 00(x,1) _

0, !

ot ga O0x @

OH(D) | 10000 | b o, @
0x ga ot

where H and QO represent head and flowrate respectively, a is the cross-
section area of a pipe, w is the pressure wave celerity, referred to as
wave speed from now on, and g is the gravitational acceleration. The
term F(x,?) in Eq. (2) represents the friction head loss per unit length,
estimated for steady, quasi-steady, and unsteady conditions (Nault
et al.,, 2018). In this work, we solve Eq. (2) using a steady friction
model where F(x,1) = |Q(x,1)|Q(x,1)f /(2gda?), d is the pipe diameter,
and f is the Darcy-Weisbach dimensionless friction factor for pipes.
Derivations of prognostic Eqs. (1) and (2) and their numerical solution
can be found in Riafo-Bricefio et al. (2021a) and Riafio-Bricefio et al.
(2021b). The formulation of diagnostic and prognostic equations for
hydraulic devices (e.g., valves, pumps) is described in Section S1 of
the Supporting Information (SI).

The DV-MOC numerical scheme is guaranteed to be linearly stable
for model time steps satisfying the Courant-Friedrichs-Lewy (CFL) con-
dition (Courant et al., 1967). This behavior is achieved by discretizing
longer pipes lengths into segments and adjusting the local wave speed
values for the global time step to ensure that the CFL number remains
less than 1 for every pipe segment in the network. This local adjustment
of wave speed is a standard approach for MOC solutions (Wylie et al.,
1993).

The discrete versions of Egs. (1) and (2) are solved at the “solu-
tion points”, which can be classified as interior and boundary points

depending on their association with the WTN elements. While inte-
rior points are those within pipes, boundary points are those where
the coupling between Egs. (1) and (2) with boundary conditions oc-
cur (Riano-Bricefio et al., 2021a). To illustrate, Fig. 2 shows a WIN
formed by several pipes in series connecting an upstream reservoir
through a pump to supply a downstream demand regulated by a valve.
The flow moves across the x axis from left to right. Downstream the
pump there is a surge protection device and upstream the valve there
is a leak. The pipes of the WTN in Fig. 2 are discretized into pipe
segments of length §, forming interior points marked with black dots,
and boundary points associated with the reservoir, general junction,
valve, pump, and surge protection device, marked at the ends of the
pipes with icons that differentiate the types of the boundary points.
The relationship between the system and its model abstraction, as
illustrated in Fig. 2, is useful in understanding how simulation settings
(time step, wave speed, and the § segment length) will affect both the
computational time and model error. Smaller time steps, faster wave
speeds, and smaller pipe segments will provide a more precise solution,
but at the cost of increased computational time. We further discuss
these settings in Section 4.

2.2. Functionalities

Using PTSNet involves using the functionalities presented in Fig. 1
to set up a transient model, determine simulation settings, such as
time step and number of processors, execute a parallel simulation,
and extract results. A simulation can be initialized using Model Setup
functionalities, which extract information from the input file, allocate
memory for the model, compute initial conditions, define transient
scenarios, and run a compatibility check. The compatibility check
validates that the WIN meets PTSNet’s connectivity requirements as
follows: valves and pumps must be connected to a single pipe upstream
and downstream; reservoirs can only be connected to valves or pumps
through a pipe; no leaks or demands are allowed at valves or pumps;
demand values cannot be negative; and valves cannot have zero head
loss if their initial flowrate is greater than zero. As part of the model
setup, users must define the number of processors and the simulation
time step either manually or using Analytics functionalities, as described
in Sections 5.1 and 5.2. Once the model is set up, users run a PT-
SNet simulation, read and plot results after completion using Execution
and Extraction functionalities, respectively. Note that Model Setup and
Execution functionalities are invoked in the same Python script, and
separate scripts can be used to invoke Extraction and Analytics func-
tionalities. The next section describes the software architecture and
its underlying data structures, followed by demonstration of PTSNet
functionalities through snippets of code.

G. Riafio-Bricefio et al.

Environmental Modelling and Software 158 (2022) 105554

. 4
— e T ® 2 o Ppg o
5 leak
GO o——hre—t—e——e| [F———e-ti——ire—— e
>
B Reservoir O General Junction q Valve

0 Pump

[] Surge Protection

1 Pipe Segment

Fig. 2. Discretization of a water transport network. The system schematic is shown on top and its discretization below.

B0 Network Information Dependencies
P y4i
“a (t-1) (t-1)
0 w 7 8 .1 3 ‘\ 14 1& ' Processor 2 Q[H 14, 17] Q[10,13,16]
1 6 16 U 3 29 ’ H(t—l)
% 4 5 "LeT /- 32 -7 11 14 17] [10,13,16]
W o
9 // 17 1 : 1 «28 : Processor 3 Q(t 1)
10 S : < ° ___ ' 22 28 31] 21,29,30,32]
% - * ST (t-1)
T ST —— ! !
J1 @30 ~ [22 28 31] [21,29,30,32]
~ L]
~1219 20 211 '22 2324 25 26'

Point Arrays

2 3 45 6 7 8 9101113141617

A\ 4
10 11 12 13 14 15 16 17 18 19 20 21 22 28 29 30 31 32

Y Y
21 22 23 24 25 26 27 28 29 30

(0 N P N I e 3 5) KN A R A

[is]7] |

i ——

Processor 2

[]
* I

IAI |
A

Processor 3

Fig. 3. Data partitioning for the small-scale system.

3. Software architecture

This section describes the underlying mechanisms of vectorization
and distributed parallel computing that run within PTSNet, including
specifications of the data structures that enable these mechanisms.
Using the small-scale example described below and presented in Fig. 3,
we show how vector operations take place when solving Egs. (1) and
(2) numerically, how tasks are divided between processors, and how
information is exchanged between processors to compute an MOC step.
Furthermore, we describe how simulation files are stored and organized
within workspaces, and how array data structures are stored in memory
using parallel HDF5.

Example (Small-scale System). The small-scale test case presented on
the top left corner of Fig. 3 comprises a reservoir, nine pipes, five
general junctions, and a valve that regulates water demand down-
stream. As described in Section 2.1, each pipe in the system is divided
into segments, such that heads and flowrates are computed at solution
points, which are enumerated from O to 32. Boundary points at the
extreme of the pipes are marked with squares, and interior points
within the pipes are marked with ticks. For illustration purposes, the
network data is partitioned among three processors (Fig. 3 bottom),
thus creating information dependencies between processors (Fig. 3 top
right).

3.1. Vectorization

Modern central processing units (CPUs) have single instruction,
multiple data (SIMD) functionalities (Grama et al., 2003), which allow
simultaneous computations of basic operations, such as addition and
multiplication. This capability, referred to as vectorization, is executed
when a loop is replaced in the code by an SIMD instruction so that
instead of computing a single operation for a single solution point at
every time step, multiple solution points can be processed simultane-
ously in a fraction of the time (Grama et al., 2003). The first step
towards vectorization consists of expressing the numerical solution of
Egs. (1) and (2) in terms of vector operations. To illustrate, we show
how flowrates are computed for a partition of the small-scale example.
Based on the DV-MOC framework, flowrates at interior points located
at x and time (¢) are computed based on the previous solution in time,
at time (#) minus the time step z, as follows:

o _ W(I T) H’(:) H)(ct) _ Ditfr) Wx(tfr) _ D$77> 5
(O yi=o -) - B U(r—r)’ 3
X X X + X
.
ct c”
where
B = 2 4 O aps(o¥ pO=H" -B0O"
x = ga zgdaz x+6)’ X x+68°
B, R,

UY = B_+ R_abs w®=n" +B,0" .

] R (1)
x X X (Qx—5) ’

G. Riafio-Bricefio et al.

Environmental Modelling and Software 158 (2022) 105554

Sequential
for i in [22, 23, 24, 25, 26, 27, 28, 31]:

QIi] = (W[i] - DI[4i]) / (BI[i]l + UI[i])
Wag — Dag| |Wag — Dag| |Wag — Dog| |Was — Dos | |Wag — Dag| |Way — Doy | |Wag — Dag| W31 — D3
Bag +Upp | | Bag +Uss | | Bag +Usq | | Bas +Uss | | Bog +Usg | | Bay +Usy | | Bog +Usg | | B31 +Usy
Vectorized
idx = [22, 23, 24, 25, 26, 27, 28, 31] # Interior Points
Q[idx] = (W[idx] - D[idx]) / (B[idx] + U[idx])

-
(Wag, Wa3, Wayg, Was, Wog, Waz, Wag, W1

-
— [Dag, D3, Doy, Das, Dag, Doy, Daog, D31 |

(B2, Bag, By Bas, Bag, By, Bog: B3] T + [Uag, Uas, Usy, Uas, Uag, Uz, Usg, Usy | T

Fig. 4. Comparison between sequential an vectorized code for the computation of flowrates by processor 3 for the small-scale system (see Fig. 3).

The information associated with each interior point is stored in
custom vector data structures that inherit the properties of a NumPy
array. In addition, we store the indexes associated with interior points
on a separate array referred to as selector. In the case of the small-
scale example, if processor 3 is in charge of computing the points in
the network that are marked in blue, the selector of interior points for
processor 3 is given by [22,23,24,25,26,27,28,31]T. Once the selector
is defined, Eq. (3) can be solved either with sequential or vectorized
programming, as shown in Fig. 4. When the sequential code is ex-
ecuted in a CPU with eight pipelines, the computation of flowrate
vector entries takes eight iterations (one iteration per pipeline, sequen-
tially), whereas the vectorized computation takes a single iteration
(eight pipelines computed simultaneously). Vectorization is executed
via NumPy’s fancy indexing functionality, as shown in Fig. 4, to create
new vectors with contiguously allocated data of W, B, D, and U based
on the corresponding selector. Once the vectors are created, vector
operations take place and flowrates and heads are updated. Note that
the number of simultaneous operations is limited and depends on the
architecture of the CPU. For example, for Intel’s Xeon Phi x200 (Knights
Landing) CPUs, which we used to produce some of the results presented
in Section 6, the maximum number of simultaneous fused multiply-
add operations per cycle is eight when using 64-bit floating-point
data (McCalpin, 2022).

One of the main challenges of implementing vectorization and
making it practical for efficient numerical operations for networked
systems is the proper definition of selectors. Since vector operations
are invoked recurrently within PTSNet, we decided to pre-compute and
pre-allocate all the necessary selectors to replace any for-loop with
array instructions. By doing so, we avoid allocating and deallocating
selectors at every iteration. This is possible given that the structure
of the numerical grid remains constant throughout the simulation.
Table S1 in the SI lists the selectors for points and nodes that can be
accessed via the PTSNetSimulation.worker.where dictionary.
The PTSNetSimulation.worker.where data structure is broadly
used within the simulation.funcs module, as well as within the
results module, facilitating not only the computations of results, but
also the extraction of results.

Data that are used in vectorized operations are stored within a
PTSNETTable. The PTSNETTable was designed to allow data ex-
traction either by label or by a collection of indexes. Users will mostly
interact with two types of PTSNETTable data structures, i.e., system

states and results. System states refer to a collection of tables that store
properties of different system elements. Specifically, these are nodes,
pipes, valves, pumps, open and closed surge tanks. Each element type
is associated with a specific set of states, which can be constant or vari-
able, as defined in the source code (see the simulation.constants
module). Table properties are stored in ordered arrays such that every
position in the array is associated with a specific element label. Since
element labels cannot be used to extract information out of ordered
arrays in Python, tables internally translate element labels into array
indexes, as shown in Fig. 5. Table indexing is done through a Python
dictionary that operates as a hash function f : K — Z, taking a label
k € K and mapping it to a positive index. The associated collections
of states are stored within the PTSNetSimulation.ss dictionary.
In order to extract information about system states, users need to
use a special syntax. To illustrate, reading the initial head (ihead)
at a specific node involves calling the PTSNETTable, extracting the
ihead property, and using a numerical index or a label to extract the
value, as shown in Fig. 5. In the example, the initial head at the node
JUNCTION-1 is extracted.

3.2. Distributed parallel computing

PTSNet leverages the computational power of multiple processors
using distributed parallel computing. In practice, the overall MOC
problem is divided in smaller parts, such that every processor concur-
rently computes a smaller vectorized MOC problem. When distributed
parallel computing is used, each processor has its own private memory
making it necessary to exchange information among processors. Once
information is passed, processors perform computations independently
from each other, spending different amounts of time to run a single
time step. Therefore, processors need to synchronize with each other
at the end of each time step to ensure that all the solutions of heads
and flowrates at time ¢ are available to compute the solutions at time
t + 7. Hence, given k processors the networked numerical grid must
be partitioned such that the time spent in communication between
processors is minimized and the load on each processor is balanced.
In general, we assume that boundary conditions can only be computed
by one processor, and because of this, boundary points belonging to
the same boundary condition are assigned to a single processor. For
example, in Fig. 3 (top left) we show the corresponding subgraphs that
result from a three-way heuristic partitioning. The graph that represents

G. Riafio-Bricefio et al.

Table entry

Table property

PTSNETTable

sim.ss[’node’] .ihead[> JUNCTION-1’]
(g

Environmental Modelling and Software 158 (2022) 105554

sim.ss[’node’]

’idemand’l | | || | |

abead> | [| [] |

Fig. 5. The PTSNETTable data structure. Values can be extracted using labels, which are internally converted into numerical indexes.

the networked numerical grid consists of thirty-three points that are
divided into three sub-graphs, each of them containing 16, 18, and 12
points respectively. Moreover, processors 1 and 2 exchange information
from points 11, 14, and 17 coming from processor 2, and points 10, 13,
and 16 coming from processor 1. Therefore, information dependencies
are bidirectional given that processors not only receive information
from their neighbors, but also send information to them.

The partitioning algorithm included within PTSNet achieves balance
of work between processors by dividing the number of solution points
into approximately equal parts. For example, creating a simulation
with the small-scale network using a time step of 0.07 s produces a
numerical grid with 33 solution points. This simulation is partitioned
to be executed by three processors; hence each processor allocates
memory for the points it is in charge of, plus the external information
dependencies necessary to compute the MOC equations. Each point
in the network receives a global index used to determine informa-
tion dependencies and export results, and a local index to facilitate
local vector operations and information retrieval. Local operations are
those executed by an individual processor for a specific region of
the WTN, e.g., computation of specific solution points. In contrast,
global operations are those executed for the entire WIN by multiple
processors, e.g., storing results. For the example presented in Fig. 3,
notice that processor 1 is in charge of computing points 0-11, 13,
and 16. However, to compute the solution of boundary points 8, 13,
and 16, it is necessary to use information from solution points 7, 14,
and 17. Therefore, processor 2 needs to communicate information from
points 14 and 17 to processor 1, and processor 1 needs to allocate
additional space for the incoming information. Indexes pointing to
local spaces in memory for the incoming information dependencies are
referred to as send-and-receive buffers and can be accessed through
the PTSNetSimulation.worker.send_buffer and PTSNet-
Simulation.worker.recv_buffer statements. Buffers are used
to build the information dependencies graph (IDG), which is a special
data structure created with the OpenMPI standard that establishes
connections between processors to exchange information. Based on the
IDG, PTSNet builds communicator data structures that define groups
of processors that need to exchange data. Groups of processors locally
exchange data using the neighbor_all_to_all communication
protocol (Grama et al., 2003).

In summary, each processor independently computes DV-MOC, as
presented in Riafo-Bricefio et al. (2021a). First, the program is initial-
ized, and then computations of solution points are distributed among
processors by performing the partitioning of the networked numerical
grid. Once the partitioning is defined, the IDG is built in a distributed
fashion, i.e., each processor receives a portion of the network and
defines its dependency to other processors. Afterwards, all the proces-
sors start running their part of the vectorized step, synchronizing and
exchanging information at the end of the time step. This process is
repeated iteratively until the duration of the simulation is completed.

3.3. File management

Results are not centrally stored in either memory or written to a
file as the simulation is executed. Instead, results on each processor
are stored in memory that only that processor can access. However,
PTSNet uses the HDF5 library to unify simulation results in a single
binary file at the end of the simulation (Collette, 2013). This ap-
proach is more efficient than writing either a unified file or separate
results files during runtime; however, it has the disadvantage that
a model crash will generally produce no written output of results
before the crash. The unified output file is concurrently processed and
written using the functionalities of the HDF5 library (Collette, 2013).
This single, standardized binary file facilitates read operations and
reduces the complexity of parsing data when extracting results for anal-
yses. At the end of a simulation, PTSNet stores the results within the
flowrate.hb, demand_flow.h5, head.h5, and 1leak_flow.hb
files as presented in Fig. 6. Other workspace files include initial con-
ditions, profiler, and simulation properties. Note that within PTSNet
jargon “initial conditions” refers to data extracted from the EPANET
input file, but rearranged in PTSNet’s data structures. “Profiler” files
store information of running times for the initialization, computation of
interior and boundary points, and communication between processors.
Finally, “simulation properties” refers to all the constant values that
are used throughout the simulation in order to compute the DV-MOC
method. The files composing a workspace are locally stored in the
directory from which the user executes the simulation.

Users extract data via PTSNet’s persistent mode, which accesses: (i)
initial conditions computed with EPANET, (ii) simulation times, (iii)
flowrates at the start and end of pipes, (iv) demand and leak flowrates
at nodes, and (iv) the head at every node in the network. Users do not
have to directly manipulate these files; instead the workspace data is
accessed through PTSNet objects whose information is internally loaded
from the files — if the persistent mode is active. Using this approach,
results are extracted invoking the PTSNETSimulation object; ini-
tial conditions are found within the system PTSNETSimulation.ss
dictionary; and running times are stored in the PTSNETSimula-
tion.worker.profiler. Note that information stored in .pkl
files is internally used by PTSNet and stored in the PTSNETSimu-
lation. The workspace folders can occupy a large block of memory
during the simulation, depending on the size of the problem. There-
fore, users should carefully consider how much simulation data to
store in the workspace. PTSNet provides flexible control of storage
through functionalities to read results, list workspace information, and
delete a specific workspace. These functionalities are found within the
results.workspaces module.

To allocate time series results, PTSNet uses the PTSNETTable2D
data structure, which is an extension of a PTSNETTable with time
series as table entries. Results are allocated within the sim.results

G. Riafio-Bricefio et al.

Environmental Modelling and Software 158 (2022) 105554

Workspace
Initial Conditions Results
ic.h5
Pipes
Profiler Start End
raw_init_times:hd flowrate.h5 flowrate.h5
raw_step times.h5
fname.pk Nodes
partitioning.pkl demand flow.h5 head.h5
local_to_global.pkl leak flow.h5
settings.pkl

Fig. 6. PTSNet workspace file structure.

dictionary and then unified and updated at the end of the simu-
lation through the PTSNETSimulation object. Internal manipula-
tions simplify the syntax to extract results. For example, whenever
PTSNetSimulation[‘node’] is invoked, information is either
loaded from RAM or disk, and extracted from the PTSNetSim-
ulation.results[‘node’] data structure. Results can be ex-
tracted for nodes and pipe extremes, i.e., pipe start and end seg-
ments. In the case of nodes, users can extract heads, leak and demand
flowrates, and for pipes users can extract flowrates. Pipe flowrates
will always be given with positive values. If users require the sign
of the flowrate to match the flow convention of the EPANET model
used as input, the flowrate time series can be multiplied by
sim.ss[‘pipe’] .direction.

Note that a PTSNet simulation can run out of memory if the results
for all time steps and all solution points are stored. To minimize the
use of memory resources and ensure scalability, the time-marching
algorithm of PTSNet routinely stores point data for the minimum
number of time steps necessary to advance in time (i.e, two consecutive
time levels). These are referred to as the “memory pool of points”
(mem_pool_points) and their data are stored in PTSNETTable2D.
As the simulation advances PTSNet switches between table rows in
order to compute the next time step, i.e., initial conditions at time 7 = 0
are stored in the first row of the table, then, a step is taken and the
solution of time ¢ = 7 is stored on the second row. When the third
step t = 27 is computed, the solution is stored on the first row, using
the solution of r = 7. Therefore, accessing high-resolution point data
at every time step requires manually extracting the necessary results
from the “memory pool of points”, making use of proper selectors,
such as the ones described in Section S2 of the SI. Even though
point data is only stored for two time steps, data at the extreme of
pipes is available for every time step. Results at pipe extremes can be
accessed either directly from RAM or from the HDF5 disk file via the
PTSNETSimulation, as shown in Fig. 7.

4. Model setup

This section illustrates different use cases through snippets of code
that exercise PTSNet’s functionalities. These snippets can be used to
model specific transient scenarios, extract results, and determine time
step and number of processors. Additional example codes for using
PTSNet are available in Riafio-Bricefio et al. (2022). Setting up a
transient model with PTSNet involves: (i) defining simulation settings
in the form of a Python dictionary, (ii) creating transient model, and
(iii) defining the transient scenario, as described next.

Defining simulation settings: PTSNet provides default settings (see
lines 7 through 20 in Fig. 8). Users can adjust these values to increase
the temporal and spatial resolution of the model, extend the duration
of the simulation, set up wave speed values for each pipe, turn on and
off secondary processes, such as displaying messages on the terminal,
running a compatibility check, measuring simulation times, and saving
results. Secondary processes (see lines 15 through 19 in Fig. 8) can also
be turned off to reduce simulation times. For instance, once PTSNet
determines that a WTN is compatible with the transient flow model,
there is no need to run the compatibility check again if the same
input file is executed multiple times. The temporal settings, such as
the time_step and duration, should be given in seconds. PTSNet
transient analysis initiates from a steady-state condition computed by
EPANET. In the event that the EPANET .inp file includes an extended
period simulation (EPS), i.e., the steady-state simulation spans multiple
hours, users need to select the time of the steady-state condition to
initialize the transient simulation. The period setting is the index
associated with the time period within the EPS that will be used to
calculate the initial condition for the transient simulation.

To define the wave speed values for pipes, users can either (i) set
the same value for all pipes using the default_wave_speed setting,
or (ii) define specific wave speed values using a text file containing
pipe labels on the first column and wave speed values on the second.
The disk path to access the text file with wave speed information must
be defined via the wave_speed_path setting. Note that in any MOC
method wave speed values are adjusted by the MOC algorithm by a
factor ¢, i.e., an adjusted wave speed @; = ¢,w; is applied for each
i pipe. Thus the user input values (or the default values) are merely
starting points for the adjusted wave speeds. Three common wave
speed adjustment methods are included in PTSNet: the ‘user’ (Bent-
ley Systems, 2022a), the ‘critical’ (Wylie et al., 1993), and the
‘optimal’ (Misitinas, 2008) methods. Note that regardless of the
method, at least two segments (n;) are required for each pipe to obtain
a valid numerical grid. The ‘user’ method prioritizes the user’s
choice of simulation time step, 7, and sets the number of segments for
the ith pipe as required by the MOC method for that z; specifically,
n, = round (#;) where i, = ¢;/(@;r) and ¢; is the length of the
pipe. The ‘critical’ method allows the user to identify a critical
pipe, i.e., the user (or default) wave speed values would require the
smallest time step to meet the CFL condition. Then, the simulation
time step is computed based on the critical pipe i as v = ¢;/Qw;)
with two segments, and the number of segments for all the other pipes
in the WTN is computed as in the ‘user’ method. For the ‘user’
and the ‘critical’ methods, the wave speed adjustment is given
by ¢; = ii;/n;. The ‘optimal’ method simultaneously adjusts the

G. Riafio-Bricefio et al. Environmental Modelling and Software 158 (2022) 105554

sim[’pipe.start’]

>flowrate’

012 ... |L Normal RAM

Persistent
? Mode -
—'
—
DISK
sim[’pipe.start’].flowrate[’PIPE-1’] (HDF5)

Fig. 7. The results data structure can be read from RAM or from an HDF5 file.

1 from ptsnet.simulation.sim import PTSNETSimulation

2 from ptsnet.utils.io import get_example_path

3

4 H ommmmm e (1) Model Setup ------------------

5

6 default_settings = {

7 "time_step" : ©.01, # Simulation time step in [s]

8 "duration" : 20, # Simulation duration in [s]

9 "period" : @, # Simulation period for EPS

10 "default_wave_speed" : 1000, # Wave speed value for all pipes in [m/s]
11 "wave_speed_file_path" : None, # Text file with wave speed values
12 "delimiter™ : ',', # Delimiter of text file with wave speed values
13 "wave_speed_method"” : 'optimal', # Wave speed adjustment method

14 "save_results" : True, # Saves numerical results in HDF5 format

15 "skip_compatibility check" : False, # Dismisses compatibility check
16 "show_progress"” : False, # Shows progress (Warnings should be off)
1.7 "profiler_on" : False, # Measures computational times of the simulation
18 "warnings_on" : False, # Warnings are displayed if True

19 }

20

21 # Create a simulation

22 sim = PTSNETSimulation(workspace_name = "TNET3_SIM",

23 inpfile = get_example_path('TNET3"),

24 settings = default_settings

25 # If settings are not defined, default settings are loaded automatically
26)

27

28 # Define transient scenario

29 sim.define_valve_operation('VALVE-179",

30 initial_setting=1, final_setting=0, start_time=@, end_time=1)

31 # sim.define_valve_settings('VALVE-179",

32 # X=[start_time, end_time], Y=[initial_setting, final_setting])

33

34 # ----mmmmm - (2) Execution ------------------

35

36 sim.run()

37 # while not sim.is_over():

38 # sim.run_step()

Fig. 8. Code template with Model Setup and Execution functionalities.

G. Riafio-Bricefio et al.

wave speeds for all the pipes in WIN by solving the least squares
problem. First, the number of pipe segments for each pipe are computed
based on the smallest permissible time step that satisfies the CFL
condition, i.e., 7 = min; #;/(2w;). Second, the wave speed adjustments
and the time step are computed by minimizing the sum of squared
wave speed adjustments, which has an analytical solution based on
the normal equation, i.e., ¢, v = argminy, {|l¢|*> : =7,/ (1)},
where ¢ denotes the vector of wave speed adjustments for every pipe
in the WTN. More details about the ‘optimal’ method can be found
in Misitinas (2008). Users select the wave speed adjustment method
using the wave_speed_method setting.

Creating transient model: Defining a transient model requires creating
a PTSNETSimulation object, whose constructor function is imported
in line 1 and executed in lines 22 through 27 in Fig. 8. When the
PTSNETSimulation is created, PTSNet creates a workspace folder
in the current working directory which is identified by the parameter
workspace_name, as shown in line 22 in Fig. 8. While files associated
with results of a specific simulation are allocated in the workspace
folder, PTSNet internally allocates RAM memory for the simulation and
extracts WTN properties from the input file. The path to the input file
can be declared, as shown in line 24 in Fig. 8, either explicitly or using
the function get_example_path to select one of the 12 examples
included in the library.

Defining transient scenarios: After the PTSNETSimulation is cre-
ated, users can define the transient scenario. Transient scenarios must
be defined after the creation of the PTSNETSimulation object and
before the simulation is executed, i.e., between lines 28 and 36 in Fig. 8.
For example, in lines 30 and 31 in Fig. 8, a valve closure operation
is defined using the define_valve_operation function, which
takes as inputs the valve label, the initial and final settings, and the
maneuver start and end times in seconds. Valve settings are defined
as fractional opening from zero (closed) to one (fully open). Note that
setting changes are linear from start to end times. Users requiring
more control over behaviors can define custom operational maneuvers
using time series, specifying setting values Y for specific times X, as
shown in lines 32 and 33 in Fig. 8. However, time-series operations are
slightly different than standard linear open/close operations in that a
time series is interpreted as a step function, i.e., setting changes occur
instantaneously at a given time rather than linearly between times.

Other transient scenarios that can be modeled with PTSNet include
the operation of pumps, pipe bursts, leaks, variable demands, and
surge protections. The commands to operate pumps (see Fig. 9(a))
are related to pump speed, and are defined similarly to valve set-
tings. Pump setting equal to one represents a pump operating at its
full initial speed, and zero means that the pump is off. Pump set-
tings can be defined as linear functions with start and end times
using the define_pump_operation command, or with time series
with the define_pump_settings function, analogous to the de-
fine_valve_settings functionality. The operation of the pump
will be determined based on the characteristic pump curve defined in
the .inp input file, which is used as a diagnostic equation in the model.
The equations for modeling transient scenarios are based on Riafio-
Bricefio et al. (2021a) and presented in Section S1 in the SI.

Users can also add a burst to the model using the add_burst
command shown in Fig. 9(b). Bursts in PTSNet are modeled using the
orifice equation with outflow O = xV/H — z, where « is the time-
varying discharge coefficient and z is the elevation at the location of
the burst (Wylie et al., 1993). The outflow associated with a burst is
computed by coupling the orifice equation with the general junction
equations introduced in Riafio-Bricefo et al. (2021a) (see Section S1.2
in the SI). The size of the orifice produced by the burst grows linearly
between start and end times until it reaches the discharge coefficient
defined in the add_burst command. Orifices with constant discharge
coefficients, referred to as leaks, can also be modeled with PTSNet,
yet they are not introduced through PTSNet commands. Instead, users
must define leaks in the EPANET .inp input file before executing the

Environmental Modelling and Software 158 (2022) 105554

simulation with PTSNet and adjust the value of the emitter coefficient
in the input file (Rossman, 1994). PTSnet can also model variable
demands, as shown in Fig. 9(c), by changing the discharge coefficient
associated with the demand at a specific node. Variable demands need
to be changed iteratively, thus it is necessary to execute the simulation
using a while loop step by step.

Finally, surge protection devices can also be modeled in PTSNet,
as shown in Fig. 9(d). Surge protection devices include open and
closed surge tanks that absorb the wave shocks by compressing the air
contained in the vessel. In general, open surge tanks are open to the
atmosphere, have infinite storage capacity, and uniform cross-section
area, which needs to be specified. When modeling open surge tanks,
users need to specify the location and the cross-section area of the tank,
as shown in line 2 of Fig. 9(d). Closed surge tanks are covered on top
and have limited storage capacity. When modeling the closed surge
tank, users need to specify the location of the tank, its cross-section
area and height, and the initial water level inside the tank, as shown in
line 4 of Fig. 9(d). The equations for surge tanks are based on Larock
et al. (1999) and presented in Section S1.5 of the SI.

5. Model execution

A PTSNet simulation can be executed with one or multiple pro-
cessors by saving a script similar to the one presented in Fig. 8, and
then using the terminal command mpiexec -n 2 python main_
script.py, where the —n flag is used to specify the number of
processors that will execute the PTSNet simulation (in this case, two).
Within the script the execution is triggered either by invoking the
sim.run() command (as shown in lines 38 and 39 in Fig. 8) or
using a while loop that advances the simulation step-by-step with the
command sim.run_step(), as shown in line 6 in Fig. 9(c). With
respect to the initial conditions, PTSNet always starts the WTN transient
solution from a steady-state condition developed using EPANET with
the users network configuration and initial settings. PTSNet automati-
cally runs the EPANET model prior to the transient simulation without
any prompting from the user. However, users should be aware that
the EPANET steady-state solution has some limitations relative to the
discretization of the DV-MOC network. In particular, since EPANET
only provides heads at the extremes of pipes and a single flowrate
per pipe, heads for the smaller pipe segments of DV-MOC are lin-
early interpolated from the pipe end values and a single flowrate is
enforced along all segments of a single pipe. When running PTSNet
in parallel, a single processor executes the EPANET simulation and
broadcasts steady-state simulation results to the other processors. Once
the processors receive the steady-state results from EPANET, processors
interpolate initial heads and populate initial flowrate values for the
pipe segments assigned to them only. After PTSNet has setup the initial
conditions using EPANET, the DV-MOC transient simulation of heads
and flowrates is computed from the user-specified start to end time.
Note that results are only extracted by setting save_results to
True, in which case results will be extracted at every time step an
will be temporarily allocated in a data structure during the simulation.
The results are converted and saved permanently in HDF5 files at
the end of the simulation, as shown in line 14 in Fig. 8. Recall that
HDFS5 files are stored within a workspace folder whose name is defined
when creating the PTSNETSimulation object, as done in line 22
in Fig. 8. The Jupyter notebook 1_simulate_scenarios available
on GitHub demonstrates how to setup, execute, and extract simulation
results.

For Analytics functionalities that involve multiprocessing, such as
those that allow time step selection and determining the number of
processors, the execution requires a two-step process. First, the func-
tion is invoked using a single processor, then, PTSNet automatically
generates a script that is used in step two for running a suite of
simulations, and prints a line of code that needs to be executed in
the terminal by the user. Finally, the user executes the command in

G. Riafio-Bricefio et al.

Environmental Modelling and Software 158 (2022) 105554

initial_setting=1, final_setting=0, start_time=0, end_time=2)

sim.add_burst('JUNCTION-90', burst_coeff=0.02, start_time=@, end_time=1]

coeff[i]

'open', tank_area=0.1)
'closed’,

1 sim.define_pump_operation('PUMP-172"', # Pump shut-off
2
(a)
|
(b)
1 coeff = np.sin(np.linspace(®, 2*np.pi, 100))
2 ii=o0
3 while not sim.is_over:
4 if ii < 1e00:
5 sim.ic['node'].demand_coefficient['JUNCTION-23"]
6 sim.run_step()
7 ii += 1
(c)
1 # Add surge protection
2 sim.add_surge_protection('JUNCTION-34",
3 sim.add_surge_protection('JUNCTION-34",
4 tank_area=0.1, tank_height=1, water_level=0.2)

(d)

Fig. 9. PTSNet commands to model: (a) pump shut-off scenario, (b) burst, (c) variable demand, and (d) open and closed surge tanks.

the terminal, which triggers the suite of simulations via the OpenMPI
standard. The two-step execution process for Analytics functionalities
is necessary in order to execute customized parallel simulations, given
that simulations with multiple processors can only be executed through
the command line. The Jupyter notebook 3_analytics available on
GitHub demonstrates the analytics functionalities, including analyzing
simulation time step, number of processors, and wave speeds.

5.1. Time step selection

The simulation time step determines the resolution, accuracy, and
computational burden of a PTSNet model. This is because the time
step determines how much the wave speeds need to be adjusted
to fulfill the CFL condition. Therefore, the wave speed adjustment,
i.e., |&;/w; — 1|, can be used as a proxy to estimate the effect of the
time step selection on simulation results. PTSNet incorporates function-
alities within the graphics module that facilitate the users to visu-
alize the network topology and wave speed adjustments. More specifi-
cally, the plot_wave_speed_error functionality in the graph-
ics.static module generates a plot of the network and creates
a colored map with the wave speed adjustment values. In order to
execute this functionality users must previously define a PTSNETSim-
ulation object and specify the name of the file for saving the plot, as
shown in lines 1-27 in Fig. 8 and line 8 in Fig. 10, respectively. This
method is executed prior to the transient simulation and only takes a
few seconds to run even for networks with thousands of pipes. Hence,
it provides the users with a rapid selection of a time step that fits their
modeling needs.

5.2. Determining the number of processors

The Analytics functionalities in PTSNet allow users to determine the
optimal number of processors for their simulations. Considering that
the performance of the library depends on the characteristics of the
transient model (e.g., model resolution, duration, number of boundary
conditions) and hardware specifications (Riafio-Bricefio et al., 2021a),

10

estimating the number of processors that maximize speedup and from
which there is no improvement in computational performance is not
straightforward. As more processors are used in a simulation, less time
is spent on computing simulation steps, but the time spent on com-
munication increases. Also, the sequential part of the program limits
the speedup, as shown in Riafio-Bricefo et al. (2021a). Furthermore,
running a simulation multiple times using a different number of proces-
sors might become cumbersome when using a supercomputer or when a
simulation takes too long to run. To help the user manage these issues,
PTSNet includes functionalities to (i) estimate computational times and
(ii) determine the optimal number of processors for a specific applica-
tion. First, the compute_simulation_times functionality (shown
in line 7 in Fig. 10) allow users to run a set of simulations with different
time step values and a given number of processors, such that only a
fraction of the simulation is executed and profiled. Based on the aver-
age computation time per step, the compute_simulation_times
functionality estimates the total computation time that will be required
to execute the simulation. Second, the compute_num_processors
functionality (shown in line 6 in Fig. 10) allows users to determine
the number of processors that best fits their application by running a
fraction of the simulation with various processor numbers and a fixed
time step defined by the user. Users can specify the number of steps
that they want to compute for the partial simulations, and the average
running times per step are computed for each processor. This allows the
user to determine the number of processors that provides the minimum
running time per step for their application. The resulting computational
times are stored in temporary binary files within the workspace, such
that users can consult them even after the simulation is terminated (see
Section 3.3 for more details).

5.3. Exporting results

At the end of the simulation, users can access simulation results
(including head and discharge at the nodes and, flowrates at the start
and end nodes of the links) for all time steps of the simulation. Results
associated with nodes and pipe extremes can be extracted from the

G. Riafio-Bricefio et al.

Analytics
from ptsnet
from ptsnet
from ptsnet

0 NOV A WN R

plot_wave_speed_error(sim,

Environmental Modelling and Software 158 (2022) 105554

.utils.analytics import compute_num_processors
.utils.analytics import compute_simulation_times
.graphics.static import plot_wave_speed_error

compute_num_processors(sim, steps=1000, max_num_processors=8)
compute_simulation_times(inpfile, time_steps=[0.01, ©.001], max_num_processors=8)
"WSError.pdf")

Fig. 10. PTSNet Analytics functionalities to compute optimal number of processors, estimate simulation times, and plot wave speed errors before running a simulation.

1 # —--mmmmmm e - (3) Extraction ------------------
2
3 import matplotlib.pyplot as plt
4 from ptsnet.simulation.sim import PTSNETSimulation
5
6 with PTSNETSimulation("TNET3_SIM") as sim:
7 plt.plot(sim[‘time'], sim['node’'].head['JUNCTION-23'], label="JUNCTION-23")
8 plt.xlabel('Time [s]'); plt.ylabel('Head [m]'); plt.legend()
9 plt.show()
320 1 —— JUNCTION-23
300 -
280 1
E 260
B 240 §
T
220 1
200
180 1
0'0 2 '5 5'0 7,'5 10'40 12'.5 15'.0 17'. 5 20'.0
Time [5]

Fig. 11. Extraction functionalities in PTSNet to read simulation results after execution; and resulting plot showing the head at JUNCTION-23.

sim[‘node’], sim[‘pipe.start’], and sim[‘pipe.end’]
data structures respectively (see Section 3.3). When operating with
results, users can use PTSNet in normal or persistent modes. Depending
on the mode, results will be retrieved from RAM or disk memory. Under
the normal mode, users can extract results directly from RAM after the
transient simulation is completed, without closing the current Python
session, i.e., calling the results data structures after line 37 in Fig. 8
using lines 7-9 in Fig. 11.

Users operating under persistent mode can read results saved from
previous simulations. To use the persistent mode, a copy of the
workspace and results are saved in HDF5 files via simulation settings
(line 14 in Fig. 8). The persistent mode is activated by opening a
simulation using Python’s with statement, which ensures a safe ma-
nipulation of the workspace files, as shown in line 6 in Fig. 11. In
the code presented in Fig. 11, results are extracted via persistent mode
by invoking the PTSNetSimulation () constructor, which retrieves
data from the workspace saved with the name passed as an argument.
As a result, the head for JUNCTION-23 is plotted, as shown at the
bottom of Fig. 11. Workspaces persist in memory only if the user
specifies so through the simulation settings when simulating for the
first time under the normal mode. After that, users can assign a name
to the workspace to differentiate results from future simulations. The
Jupyter notebook 2_get_results available on GitHub demonstrates
how to load results saved in previous simulations.

11

6. Results

We assess the performance of the PTSNet package by: (i) comparing
the accuracy and computational times with other transient software
using different transient scenarios, (ii) performing scalability tests with
large-scale WTN and analyze the performance on a personal com-
puter (PC) and high performance computer (HPC), and (iii) showcase
the implementation of Analytics functionality to explore wave speed
adjustment and the effect of time step selection.

6.1. Transient software comparison

The following example demonstrates the capability of PTSNet to
model a pump shut-off scenario in a mid-scale network. The simulation
results of the PTSNet library executed on a single processor are com-
pared against the TSNet Python package, an open-source library (Xing
and Sela, 2020), and Bentley Hammer v8i (Bentley Systems, 2019),
a commercial software broadly used in both academia an industry to
analyze transient phenomena in pipes. We validate the physical results
of the model by comparing the transient response of the system to
different scenarios in terms of heads at a set of junctions in different
locations in the network (labeled in Fig. 12). The Jupyter notebook
4_SI_figures available on GitHub demonstrates how to replicate
the results in this section and in the SIL

G. Riafio-Bricefio et al.

JUNCTION-16

JUNCTION-20

Environmental Modelling and Software 158 (2022) 105554

JUNCTION-73

V PUMP

JUNCTION-90

JUNCTION-45

JUNCTION-30

Fig. 12. BWSN-I network.

Example (Mid-scale System). Consider the BWSN-I network presented
in Fig. 12 and adapted from Ostfeld et al. (2008). BWSN-I comprises
126 nodes, one reservoir, 168 pipes, two pumps, and eight valves.
Different transient events are generated, including pump shut-off, burst,
and valve closure, resulting pressure waves that propagate throughout
the entire WTN. For illustration purposes, all pipes are assumed to have
a wave speed value of 1200 m/s, and the transient event is simulated
for 20 s, using a time step of 5 ms.

6.1.1. Numerical results

The pump shut-off scenario illustrates how PTSNet models a tran-
sient event resulting from a controlled pump shut-off at PUMP-172
by decreasing the pump rotational speed to zero starting at 0 and
until 1 s into the simulation. Fig. 13 shows the pressure at five dif-
ferent nodes in the network in response to pump shut-off, where (a),
(b), and (c) correspond to simulation results using PTSNet, Hammer,
and TSNet, respectively. The results from the three solvers closely
resemble attenuation and phase shift throughout the simulation period,
capturing down- and up-surges in pressure. The minor discrepancies
are attributable to the different wave speed adjustment schemes and
boundary condition computation methods adopted by the three pack-
ages, e.g., PTSNet adopts flow-based equations whereas TSNet are
velocity-based, and Hammer’s wave speed adjustment method differs
from that of both PTSNet and TSNet.

Overall, all the methods show pressure waves generated by the
pump propagating through the system. As waves propagate their am-
plitude and shape changes according to the network topology. The
amplitude of waves attenuates or amplifies as a result of wave reflec-
tions and transmissions, and the transient pressure observed at different
locations of a WTN is an aggregated signal of multiple pressure waves.
Hence, locations farther from the origin of the transient do not neces-
sarily exhibit lower amplitudes. For example, in Fig. 13, JUNCTION-30
senses the transient first, while JUNCTION-16 experiences it last. The
node with the largest change in pressure is JUNCTION-90, which expe-
riences a pressure drop of over 50 m after 7 s, indicating that the pump
shut-off, can generate significant transients in the WTN when operated
quickly. Therefore, it is essential to evaluate the impacts of and design
appropriate procedures to guide pumping operations. Additional results
comparing simulation results between the three solvers for burst, valve
closure, and pump shut-off with open and closed surge tanks are shown
in Figs. S1-S4 in the SI.

12

(a) PTSNET

200
400

(b) HAMMER

~ - -
I kb L DAL S g L it ~-

350

Head [m]
W
=)
S

250

200
400

(¢) TSNET

Pt PR iR T D

350

Head [m]
(%)
=)
=)

250

200

15 20

——

16 20 30 === 45 90

Fig. 13. Simulation results for pump shut-off scenario in the BWSN-I network: (a)
PTSNet, (b) Bentley Hammer v8i, and (c) TSNet.

6.1.2. Computational performance results

Table 1 lists the running times for the different test cases executed
by each package, i.e., pump shut-off, valve closure, and burst. It is
evident that PTSNet surpasses in performance both TSNet and Hammer
packages. On average, simulating the mid-scale network takes around
6 s with PTSNet, 700 s with TSNet, and 45 s with Hammer. Overall,
PTSNet ran roughly seven times faster than Hammer in all the test cases
and 116 times faster than TSNet. Notably, for a fair comparison, PTSNet

G. Riafio-Bricefio et al.

Table 1

Comparison of simulation times between transient models.
Case PTSNet [s] TSNet [s] Hammer [s]
Valve closure 6.01 729.50 53.85
Pump shut-off 6.09 709.51 40.89
Burst 6.23 711.80 41.66

simulations were executed using a single processor, hence the speedups
are largely attributed to vectorization of the MOC equations.

6.2. Scalability test

In this section, we show performance tests for a large-scale test
case to illustrate the benefits of PTSNet over other transient modeling
tools. We focus on the computational aspect of the software, showing
simulation times when executing PTSNet in parallel. We introduce a
large-scale test case using BWSN-II water system, which is a well-
known benchmark in the water systems research community (Ostfeld
et al., 2008), and compare running times for three different numerical
grid resolutions. We also compare average running times per time step
for the denser numerical grid using both PC and HPC systems. We
show that the optimal number of processors depends on simulation
properties and on hardware specifications. All the reported running
times are wall-clock times (Grama et al., 2003). PC simulations ran on a
16 GB RAM computer with an AMD Ryzen 7 5700U 4.5 GHz processor.
Simulations performed on a supercomputer ran on the Stampede 2
system (Stanzione et al., 2017) and its Intel Xeon Phi 7250 1.6 GHz
computing nodes, whose hardware specifications can be found in TACC
- Texas Advanced Computing Center (2020). The results presented
in this section are not compared with commercial or open-source
software, since it was not possible to execute the simulations for the
large-scale system. Initializing the BWSN-II network with TSNet takes
several hours and Hammer v8i crashes when executing the simulation
with small time steps.

Example (Large-scale System). The BWSN-II network is adapted from
Ostfeld et al. (2008). BWSN-II comprises 12,526 nodes, two reservoirs,
14,824 pipes, a single pump, and six valves. A transient event was
generated by rapidly closing a valve that controls the flow in one
of the main pipelines in the system within 10 s, thus producing a
pressure wave that propagates throughout the entire piped network.
For illustration purposes, we assume that all pipes have a wave speed
value of 1000 m/s.

6.2.1. Comparing different numerical grid resolutions

We model the large-scale network using three different numerical-
grid resolutions to study the performance of PTSNet when dealing with
highly computationally-expensive simulations. In general, the model
resolution is highly sensitive to the time step value, given that small
changes in time step result in large changes in problem size due to
the CFL condition. Considering that the problem size grows expo-
nentially for high-resolution models, simulating with PTSNet using a
single processor can be computationally restrictive due to memory
and running-time limitations. Since PTSNet adopts the DV-MOC frame-
work, it ensures scalability for high-resolution models by dividing the
transient flow problem among multiple processors. We report detailed
results for three numerical-grid resolutions. Table 2 lists the time steps,
and the corresponding number of solution points in the numerical grid
and the number of time steps in the simulation.

In Fig. 14(a), we present running times from 1, 22, and 64 pro-
cessors, with simulation times categorized by subprocess, i.e., ini-
tialization, computation of interior points, computation of boundary
conditions, and communication among processors. With a single-core
system the simulation takes 879, 2815, and 10,188 s for the numerical-
grid resolutions given by 7, 7,, and 73, respectively. Overall, as the

13

Environmental Modelling and Software 158 (2022) 105554

Table 2

Simulation parameters for large-scale system.

Time step Value [s] Solution points Steps

7, 0.0015 12 x 10° 53 x 10*
7 0.0010 1.8 x 10° 8 x 10*
73 0.0005 37 x 10° 1.6 x 10°

number of processors increases the marginal improvement in running
times decreases until no further improvement is observed.

Analyzing the computational time invested in computing the dif-
ferent subprocesses, we observe that the majority of the time running
simulations with one processor is spent computing interior points for
all the different numerical grid resolutions. However, once the number
of processors increases the time spent in communication dominates
the simulation time. The computational time on interior points de-
creases, since the number of interior points per processor decreases
as the number of processors increases, thus reducing the computa-
tional burden per processor. However, as the number of processors
increases more partitions are generated, thus increasing the number
of information dependencies between processors, which increases the
cost of communication. Regardless of the time step, it is demonstrated
that communication becomes the bottleneck of the simulation for any
sufficiently large set of processors. Simultaneously, the time spend in
the computation of interior and boundary points becomes minimal as
the number of processors increases for a problem of fixed size. Note
that initialization is almost negligible compared to the rest of the
subprocesses across all cases. Furthermore, the time spent computing
boundary conditions accounts for roughly 5% of the total simulation
time and remains virtually constant for 22 cores or more.

A speedup metric can be defined as S = 7,/t,, where 7, is the
time spent simulating with DV-MOC on a single processor, and 7, is
the time spent simulating with k processors. In general, the speedups
are more significant as the number of interior points in the numerical
grid increases. If we compare the running times for 1 and 64 processors
when the time step is equal to 3, the speedup is 3; the speedup with
7, is 1.85, and with 7, the speedup is 1.43. Thus, it is not as efficient
to use multiple processors for r; since the communication overhead
outweighs the reduction in the computation of solution points. Addi-
tionally, higher speedups are achieved with denser numerical grids,
which can be attributed to the fact that cache mechanisms operate
more efficiently as the number of contiguously allocated solution points
increases (Riafno-Bricefio et al., 2021a).

6.2.2. Comparing PC with HPC systems

In Fig. 14(b), we show the performance in terms of average running-
time per time-step for the large-scale system BWSN-II running on
both PC and HPC systems. Simulations running on both systems were
identical with respect to simulation settings, numerical-grid resolution,
and the number of processors. Specifically, we ran 2500 time steps with
a time step of 7; = 0.0005 s. We measured running times using PTSNet’s
profiler module and averaged running times per step, including com-
putation of solution points and communication between processors. As
evidenced by Fig. 14(b), running-times per time-step differ significantly
between the PC and HPC simulations. The PC running times are faster
than the HPC as long as the number of processors is less than 8. Addi-
tionally, for the HPC the computational time decreases as the number
of processors increases. However, for PC an initial decrease in computa-
tional times is observed when increasing the number of processors from
one, but as more processors are added, the overall computational times
increase. The latter can be attributed to the different computational
burdens between PC and HPC systems. It might be surprising that the
PC runs faster than the HPC, yet if we compare the core specifications
of both machines, the PC cores run almost three times faster than the
supercomputer cores due to the differences in frequencies, i.e., 4.5 GHz
vs 1.6 GHz. Nevertheless, the HPC performance surpasses the PC as

G. Riafio-Bricefio et al.

EEl [nitialization

7/ Boundary

Environmental Modelling and Software 158 (2022) 105554

Interior N\ Communication

10,000 T3 0.25

8,000 Y IV —— HPC
_ 6,000 ?0.20 PC
£, 4,000 T T)
g 2000 Ty %72, T2 \\ii\k 2 & .g o
= 77/ T \ \\ T1 \\\ =

0 1 22 64 i35 8 22

Number of processors

(a)

Number of processors

(b)

Fig. 14. Running times for the BWSN-II network: (a) total simulation time on Stampede 2, using 7, = 0.0015 s, 7, = 0.001 s, and 73 = 0.0005 s; (b) Average running times per time

step for Stampede 2 and personal-use PC with = = 0.0005 s.

the number of processors is increased, given that the HPC architecture
has been optimized to minimize the communication burden between
processors. Communication rapidly becomes a bottleneck for the PC
with far fewer cores than for the HPC system. The optimal number of
processors for the PC is three, while the optimal number of processors
for the HPC is estimated to be eight using the elbow of the curve as the
selection criterion (see Fig. 14(b)). The elbow point is a commonly used
heuristic to determine the optimal balance between computational cost
and speedup (Grama et al., 2003).

6.3. Wave speed error

Referring back to Section 5.1, the simulation time step determines
the resolution, accuracy, and computational burden of a transient
model. Selecting a time step that results in a grid resolution that ensures
high accuracy and fast running times is ideal, yet these goals are con-
flicting: finer grid resolutions provide higher accuracy, but also demand
higher computational resources and are likely to lead to communication
bottlenecks and slower execution. PTSNet provides functionalities to
estimate the time step automatically, balancing the trade-off between
accuracy and computational burden (Bentley Systems, 2022b). For
example, for large-scale networks, Hammer v8i assigns more weight to
the computational cost, hence the automatic time step selection results
in high simulation errors. In such cases, users need to manually tune
the time step, testing different grid resolutions by iteratively running
very long simulations.

To overcome this manual process, we propose using the wave speed
adjustment error as a proxy for the simulation error, allowing the
user to visualize the error before running the simulation. Visualizing
the wave speed error produced by the resolution of the numerical
grid facilitates identifying parts of the network where the error will
be higher and determining whether or not a time step selection is
satisfactory for a particular application. For example, a user might find
it acceptable to have a time step that results in acceptable wave speed
error in the study region and localized high wave speed error far from
the area of study. Also, users can define a time step that minimizes the
problem size, such that the majority of the network pipes remain below
a certain wave speed error threshold.

To illustrate, we used PTSNet Analytics functionalities to plot the
wave speed error for two time steps: 7; = 0.0l s and 7, 0.1 s.
The resulting numerical grids have 199,923 and 46,642 solution points
for 7, and r,, respectively. Thus 7, provides a higher resolution and
accuracy compared to 7,. In Fig. 15 we show the relative wave speed
error, defined as in Riafo-Bricefo et al. (2021a), for both time steps,
zooming on a section of the BWSN-II network. The plot shows that error
remains below 10% for almost every pipe in the network when using
the smaller time step for r;, whereas for 7,, the error is greater than
10% for almost every pipe in the system. Even though the number of
solution points became 3.2 times greater for r; compared to z,, which
can result in longer simulation times, users may prefer using the smaller
time step and exploit PTSNet parallel capabilities to run this test case.

14

7. Conclusion

This paper presents PTSNet, an open-source Python package for
parallel transient simulation in WTNs. All the source code, software
documentation, and multiple examples, including input files and codes,
are provided within the package and can be downloaded from the
GitHub repository (Riano-Bricefio et al., 2022). The capability and
user interaction with PTSNet are demonstrated through the detailed
simulation examples of pump shut-off, valve closure, burst, and surge
tank. The PTSNet package is proven to be computationally efficient
compared to other open-source and commercial packages. Unlike other
packages, we demonstrate that PTSNet is scalable and capable of run-
ning large-scale transient simulations, providing significant speedups
to its users, thanks to the adoption of vectorization and distributed
computing. In addition, the package offers essential analytic tools for
users to quickly determine the best time step and number of processors
for their application. PTSNet does not include all the modeling capa-
bilities of the commercial software; instead, it is designed to provide
simulation capabilities for transient modeling in WTNs for the research
community that is currently not available in open-source software,
including PETSc (Abhyankar et al., 2020) and TSNet (Xing and Sela,
2020). PTSNet is under continuous maintenance, improvement, and
development. Future work includes extending the solver to generalize
to other PDE-based models, e.g., open-flow channel modeling, 2D and
3D dynamics (Li and Hodges, 2021; Morales-Hernandez et al., 2020).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

All data and codes are available in a public github repository
that was referenced in the manuscript https://github.com/gandresr/
PTSNET.

Acknowledgments

The authors acknowledge the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for providing HPC re-
sources that have contributed to the research results reported within
this publication. This work was supported in part by the National Sci-
ence Foundation, US under award 2015658 and Cooperative Agreement
No. 83595001 awarded by the U.S. Environmental Protection Agency
to The University of Texas at Austin. It has not been formally reviewed
by EPA. The views expressed in this presentation are solely those of
the authors, and do not necessarily reflect those of the Agency. EPA
does not endorse any products or commercial services mentioned in
this publication.

https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET
https://github.com/gandresr/PTSNET

G. Riafio-Bricefio et al.

Environmental Modelling and Software 158 (2022) 105554

Relative Error
0.0% - 10.0% === 10.0% - 100.0%

L =

Fig. 15. Relative error for wave speed after adjustment for the BWSN-II test case using time steps 7, =0.01 s and 7, = 0.1 s.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.envsoft.2022.105554.

References

Abhyankar, S., Betrie, G., Maldonado, D.A., Mcinnes, L.C., Smith, B., Zhang, H.,
2020. PETSc DNNetwork: A library for scalable network PDE-based multiphysics
simulations. ACM Trans. Math. Softw. 46 (1), 1-24.

Anguita, M., Acosta, M., Ferndndez-Baldomero, F.J., Rueda, F.J., 2015. Scalable parallel
implementation for 3D semi-implicit hydrodynamic models of shallow waters.
Environ. Model. Softw. 73, 201-217.

Bentley Systems, 2019. Water hammer and transient analysis software. URL
https://www.bentley.com/en/products/product-line/hydraulics-and-hydrology-
software/hammer.

Bentley Systems, 2022a. Time Step and Computational Reach Length. https:
//docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-
40CBDEA4-E74C-4A6D-9846-8E9522278B2B.html. (Accessed 29 Oct 2022).

Bentley Systems, 2022b. Selection of the Time Step. https://docs.
bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-
AO04E4B2C49E94CB9BADAAC7AB81DAGEF.html. (Accessed 29 Oct 2022).

Blanco, P.J., Mansilla Alvarez, L.A., Feij6o, R.A., 2015. Hybrid element-based approx-
imation for the Navier-Stokes equations in pipe-like domains. Comput. Methods
Appl. Mech. Engrg. 283, 971-993.

Boulos, P.F., Karney, B.W., Wood, D.J., Lingireddy, S., 2005. Hydraulic transient
guidelines for protecting water distribution systems. Journal of American Water
Works Association 97 (5), 111-124.

Burger, G., Sitzenfrei, R., Kleidorfer, M., Rauch, W., 2014. Parallel flow routing in
SWMM 5. Environ. Model. Softw. 53, 27-34.

Burger, G., Sitzenfrei, R., Kleidorfer, M., Rauch, W., 2016. Quest for a new solver for
EPANET 2. J. Water Resour. Plan. Manag. 142 (3), 04015065.

Cao, H., Mohareb, M., Nistor, I., 2020. Finite element for the dynamic analysis of pipes
subjected to water hammer. Journal of Fluids and Structures 93, 102845.

Carlotto, T., Chaffe, P.L.B., dos Santos, C.I., Lee, S., 2021. SW2D-GPU: A two-
dimensional shallow water model accelerated by GPGPU. Environ. Model. Softw.
145, 105205.

Castro, M.J., Garcia-Rodriguez, J.A., Gonzélez-Vida, J.M., Parés, C., 2006. A parallel
2d finite volume scheme for solving systems of balance laws with nonconservative
products: Application to shallow flows. Comput. Methods Appl. Mech. Engrg. 195
(19-22), 2788-2815.

Chaudhry, M.H., Hussaini, M.Y., 1985. Second-order accurate explicit finite-difference
schemes for water hammer analysis. J. Fluids Eng. 107 (4), 523-529.

Collette, A., 2013. Python and HDF5: Unlocking Scientific Data. O’Reilly Media, Inc..

15

Courant, R., Friedrichs, K., Lewy, H., 1967. On the partial difference equations of
mathematical physics. IBM J. Res. Dev. 11 (2), 215-234.

Fernandez-Pato, J., Garcia-Navarro, P., 2014. Finite volume simulation of unsteady
water pipe flow. Drinking Water Engineering and Science 7 (2), 83-92.

Fox, S., Shepherd, W., Collins, R., Boxall, J., 2014. Experimental proof of contaminant
ingress into a leaking pipe during a transient event. Procedia Eng. 70, 668-677.

Fritzson, P., 2011. Introduction to Modeling and Simulation of Technical and Physical
Systems with Modelica. John Wiley & Sons.

Graham, R.L., Woodall, T.S., Squyres, J.M., 2005. Open MPI: A flexible high per-
formance MPI. In: International Conference on Parallel Processing and Applied
Mathematics. Springer, pp. 228-239.

Grama, A., Kumar, V., Gupta, A., Karypis, G., 2003. Introduction to Parallel Computing.
Pearson Education.

Holton, J.R., 1973. An introduction to dynamic meteorology. Amer. J. Phys. 41 (5),
752-754.

Innovyze, 2019. Infosurge users guide.
products/infowater/infosurge.

Jasak, H., Jemcov, A., Tukovic, Z., et al., 2007. OpenFOAM: A C++ library for complex
physics simulations. In: International Workshop on Coupled Methods in Numerical
Dynamics, Vol. 1000. IUC Dubrovnik Croatia, pp. 1-20.

Kiuchi, T., 1994. An implicit method for transient gas flows in pipe networks. Int. J.
Heat Fluid Flow 15 (5), 378-383.

Kjerrumgaard Jensen, R., Ker Larsen, J., Lindgren Lassen, K., Mandg, M., Andreasen, A.,
2018. Implementation and validation of a free open source 1D water hammer code.
Fluids 3 (3), 64.

Klise, K.A., Murray, R., Haxton, T., 2018. An overview of the water network tool for
resilience (WNTR).

KYPipe, 2019. Kypipe 2018 users guide. URL http://kypipe.com/.

Larock, B.E., Jeppson, R.W., Watters, G.Z., 1999. Hydraulics of Pipeline Systems. CRC
Press.

LeChevallier, M.W., Gullick, R.W., Karim, M.R., Friedman, M., Funk, J.E., 2003. The
potential for health risks from intrusion of contaminants into the distribution system
from pressure transients. Journal of Water and Health 1 (1), 3-14.

Li, Z., Hodges, B.R., 2021. Revisiting surface-subsurface exchange at intertidal zone
with a coupled 2D hydrodynamic and 3D variably-saturated groundwater model.
Water 13 (7), 902.

Lin, Q., Zhang, D., 2021. A scalable distributed parallel simulation tool for the SWAT
model. Environ. Model. Softw. 144, 105133.

McCalpin, J.D., 2022. A peculiar throughput limitation on Intel’s Xeon Phi x200
(Knights Landing). https://sites.utexas.edu/jdm4372/tag/xeon-phi/. (Accessed 19
May 2022).

Mclnnis, D., Karney, D., 1998. TransAM reference manual. URL http://hydratek.com/
expertise/transient-analysis-model.

Mesgari Sohani, S., Ghidaoui, M.S., 2019. Formulation of consistent finite volume
schemes for hydraulic transients. Journal of Hydraulic Resesearch 57 (3), 353-373.

URL https://www.innovyze.com/en-us/

https://doi.org/10.1016/j.envsoft.2022.105554
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb1
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb1
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb1
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb1
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb1
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb2
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb2
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb2
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb2
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb2
https://www.bentley.com/en/products/product-line/hydraulics-and-hydrology-software/hammer
https://www.bentley.com/en/products/product-line/hydraulics-and-hydrology-software/hammer
https://www.bentley.com/en/products/product-line/hydraulics-and-hydrology-software/hammer
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-40CBDEA4-E74C-4A6D-9846-8E9522278B2B.html
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-40CBDEA4-E74C-4A6D-9846-8E9522278B2B.html
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-40CBDEA4-E74C-4A6D-9846-8E9522278B2B.html
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-40CBDEA4-E74C-4A6D-9846-8E9522278B2B.html
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-40CBDEA4-E74C-4A6D-9846-8E9522278B2B.html
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-A04E4B2C49E94CB9BADAAC7AB81DA6EF.html
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-A04E4B2C49E94CB9BADAAC7AB81DA6EF.html
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-A04E4B2C49E94CB9BADAAC7AB81DA6EF.html
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-A04E4B2C49E94CB9BADAAC7AB81DA6EF.html
https://docs.bentley.com/LiveContent/web/Bentley%20HAMMER%20SS6-v1/en/GUID-A04E4B2C49E94CB9BADAAC7AB81DA6EF.html
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb6
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb6
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb6
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb6
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb6
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb7
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb7
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb7
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb7
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb7
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb8
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb8
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb8
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb9
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb9
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb9
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb10
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb10
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb10
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb11
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb11
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb11
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb11
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb11
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb12
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb12
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb12
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb12
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb12
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb12
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb12
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb13
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb13
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb13
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb14
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb15
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb15
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb15
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb16
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb16
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb16
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb17
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb17
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb17
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb18
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb18
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb18
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb19
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb19
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb19
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb19
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb19
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb20
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb20
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb20
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb21
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb21
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb21
https://www.innovyze.com/en-us/products/infowater/infosurge
https://www.innovyze.com/en-us/products/infowater/infosurge
https://www.innovyze.com/en-us/products/infowater/infosurge
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb23
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb23
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb23
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb23
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb23
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb24
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb24
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb24
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb25
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb25
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb25
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb25
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb25
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb26
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb26
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb26
http://kypipe.com/
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb28
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb28
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb28
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb29
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb29
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb29
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb29
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb29
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb30
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb30
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb30
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb30
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb30
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb31
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb31
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb31
https://sites.utexas.edu/jdm4372/tag/xeon-phi/
http://hydratek.com/expertise/transient-analysis-model
http://hydratek.com/expertise/transient-analysis-model
http://hydratek.com/expertise/transient-analysis-model
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb34
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb34
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb34

G. Riafio-Bricefio et al.

Misitinas, D., 2008. Failure Monitoring and Asset Condition Asssessment in Water
Supply Systems. Vilniaus Gedimino technikos universitetas.

Morales-Hernandez, M., Sharif, M.B., Gangrade, S., Dullo, T.T., Kao, S.-C.,
Kalyanapu, A., Ghafoor, S., Evans, K., Madadi-Kandjani, E., Hodges, B.R., 2020.
High-performance computing in water resources hydrodynamics. J. Hydroinform.
22 (5), 1217-1235.

Nault, J.D., Karney, B.W., Jung, B.-S., 2018. Generalized flexible method for simulating
transient pipe network hydraulics. Journal of Hydraulic Engineering 144 (7),
04018031.

Ostfeld, A., Uber, J.G., Salomons, E., Berry, J.W., Hart, W.E., Phillips, C.A., Watson, J.,
Dorini, G., Jonkergouw, P., Kapelan, Z., 2008. The battle of the water sensor
networks (BWSN): A design challenge for engineers and algorithms. J. Water
Resour. Plan. Manag. 134 (6), 556-568.

Riafo-Bricefio, G., Hodges, B.R., Sela, L., 2022. PTSNet. http://dx.doi.org/10.18738/
T8/CKIOSF, URL https://github.com/gandresr/ptsnet.

Riafio-Bricefio, G., Sela, L., Hodges, B.R., 2021a. Distributed and vectorized method
of characteristics for fast transient simulations in water distribution systems.
Comput.-Aided Civ. Infrastruct. Eng. 37 (2), 163-1846.

Riaflo-Bricefio, G., Sela, L., Hodges, B.R., 2021b. Supporting Information - Distributed
and Vectorized Method of Characteristics for Fast Transient Simulations in Water
Distribution Systems. http://dx.doi.org/10.18738/T8/0TC000.

Rossman, L.A., 1994. EPANET users manual.

Scroggs, M.W., Dokken, J.S., Richardson, C.N., Wells, G.N., 2021. Construction of
arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral
cell meshes. arXiv preprint arXiv:2102.11901.

Sela, L., Housh, M., 2019. Increasing usability of water distribution analysis tools
through plug-in development in EPANET. J. Hydraul. Eng. 145 (5), 02519001.

16

Environmental Modelling and Software 158 (2022) 105554

Sela, L., Salomons, E., Housh, M., 2019. Plugin prototyping for the EPANET software.
Environ. Model. Softw. 119, 49-56.

Stanzione, D., Barth, B., Gaffney, N., Gaither, K., Hempel, C., Minyard, T., Mehringer, S.,
Wernert, E., Tufo, H., Panda, D., 2017. Stampede 2: The evolution of an XSEDE
supercomputer. In: Proceedings of the Practice and Experience in Advanced
Research Computing 2017 on Sustainability, Success and Impact. pp. 1-8.

TACC - Texas Advanced Computing Center, 2020. Stampede 2 User Guide. URL
https://portal.tacc.utexas.edu/user-guides/stampede2.

Tiernan, E.D., Hodges, B.R., 2022. A topological approach to partitioning flow networks
for parallel simulation. Journal of Computing in Civil Engineering 36 (4), 1-13.
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0001020.

Verdugo, F., Martin, A.F., Badia, S., 2019. Distributed-memory parallelization of the
aggregated unfitted finite element method. Comput. Methods Appl. Mech. Engrg.
357, 112583.

Wylie, E.B., Streeter, V.L., Suo, L., 1993. Fluid Transients in Systems, Vol. 1. Prentice
Hall Englewood Cliffs, NJ.

Xing, L., Sela, L., 2020. Transient simulations in water distribution networks: Tsnet
python package. Adv. Eng. Softw. 149, 102884.

Xu, Z., Tang, G., Jiang, T., Chen, X., Chen, T., Niu, X., 2021. An automatic partition-
based parallel algorithm for grid-based distributed hydrological models. Environ.
Model. Softw. 144, 105142.

Zhao, M., Ghidaoui, M.S., 2004. Godunov-type solutions for water hammer flows. J.
Hydraul. Eng. 130 (4), 341-348.

Zhu, L.-J., Liu, J., Qin, C.-Z., Zhu, A.-X., 2019. A modular and parallelized watershed
modeling framework. Environ. Model. Softw. 122, 104526.

http://refhub.elsevier.com/S1364-8152(22)00254-7/sb35
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb35
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb35
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb36
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb36
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb36
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb36
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb36
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb36
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb36
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb37
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb37
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb37
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb37
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb37
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb38
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb38
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb38
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb38
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb38
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb38
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb38
http://dx.doi.org/10.18738/T8/CKIOSF
http://dx.doi.org/10.18738/T8/CKIOSF
http://dx.doi.org/10.18738/T8/CKIOSF
https://github.com/gandresr/ptsnet
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb40
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb40
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb40
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb40
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb40
http://dx.doi.org/10.18738/T8/OTC0OO
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb42
http://arxiv.org/abs/2102.11901
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb44
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb44
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb44
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb45
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb45
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb45
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb46
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb46
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb46
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb46
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb46
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb46
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb46
https://portal.tacc.utexas.edu/user-guides/stampede2
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0001020
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb49
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb49
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb49
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb49
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb49
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb50
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb50
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb50
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb51
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb51
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb51
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb52
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb52
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb52
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb52
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb52
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb53
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb53
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb53
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb54
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb54
http://refhub.elsevier.com/S1364-8152(22)00254-7/sb54

	PTSNet: A Parallel Transient Simulator for Water Transport Networks based on vectorization and distributed computing
	Software Availability
	Introduction
	Software Description
	Transient Flow Model
	Functionalities

	Software Architecture
	Vectorization
	Distributed Parallel Computing
	File Management

	Model Setup
	Model Execution
	Time Step Selection
	Determining the Number of Processors
	Exporting Results

	Results
	Transient Software Comparison
	Numerical Results
	Computational Performance Results

	Scalability Test
	Comparing Different Numerical Grid Resolutions
	Comparing PC with HPC Systems

	Wave Speed Error

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References

