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ABSTRACT

Pipe failures in water distribution infrastructure (WDI) have significant economic, environmental and
public health impacts. To alleviate these impacts, repair and replacement decisions need to be prioritized
to effectively reduce failure rates. In this study, a computational framework is proposed for WDI asset
management that couples spatial clustering analysis with predictive modeling of pipe failures. First,
hotspot/coldspot clusters of statistically significant high/low failure rates are identified using local
indicators of spatial association. Second, the predictive abilities of eight statistical learning techniques
are systematically tested, and the best-performing method is implemented to forecast failure rates,
(breaks/(km.year)) within different sectors of the WDI. Third, the framework is implemented to compare
the impact of adopting proactive instead of reactive pipe replacement strategies. Applying the frame-
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work to a real-life, large-scale WDI revealed that spatial clustering of pipe failures improves the accuracy

of the prediction models.

Introduction

Aging water supply systems across Europe and North America
face increasing pressure to satisfy the demands of the rapidly
growing urban population (Hering et al. 2013). In the United
States, the aging water distribution infrastructure (WDI) incurs
nearly 0.24 million water main breaks every year, wasting over
two trillion gallons of treated drinking water (American Society
of Civil Engineers 2017). Fiscal investments needed to rehabili-
tate and upgrade the WDI are immense (American Water Works
Association 2012). Yet, the gigantic scale of water distribution
systems, together with the fact that most pipes are buried and
inaccessible for routine physical inspection (Kleiner and Rajani
2001), poses significant challenges toward prioritizing pipe
maintenance decisions. To improve the efficacy of asset man-
agement programs, computational tools have been proposed
to guide pipe repair-or-replacement (RoR) decisions in order to
reduce the rates of water main failures (Folkman 2018; Stone
et al. 2002). The support provided by such computational tools
can help alleviate the substantial economic and environmental
impacts of water main failures due to water and energy losses,
as well as the social impacts represented by service interrup-
tions and road closures.

In addition to the economic, environmental and social
impacts, the deteriorated physical condition of WDIs can pose
significant implications for public health due to the potential
for contaminant intrusion. Previous epidemiological studies
observed a strong association between increased cases of gas-
trointestinal illness and concurrent breaches of the physical
and hydraulic integrities of WDIs (Ercumen, Gruber, and
Colford 2014). Such lapses in the hydraulic integrity of the

WD, represented by substantial pressure drops, may occur
either due to routine operational procedures, such as pump
and valve operations, or as a result of extreme events, such as
transmission main bursts and sudden changes in water
demands. In many cases, disinfectant residual concentrations
are not sufficient (or even nonexistent) to rapidly inactivate
extraneous pathogenic contaminants entering the system,
which puts the consumers at risk of infection with waterborne
diseases.

To alleviate the above-mentioned impacts, significant
research efforts have aimed to develop computational tools
for pipe failure prediction (Rifaai, Abokifa, and Sela 2022;
Scheidegger, Leitdo, and Scholten 2015; Shirzad and Safari
2020; St. Clair and Sinha 2012; Wilson, Filion, and Moore
2015). Such predictive models constitute a key component of
multi-criteria decision support frameworks that can be used to
inform pipe rehabilitation decisions (Barton, Hallett, and Jude
2022). The majority of these works focused on forecasting pipe
failures using either physical- or statistical-based models
(Alizadeh et al. 2019; Kleiner and Rajani 2001; Konstantinou
and Stoianov 2020; Rajani and Kleiner 2001). Physical-based
models aim to simulate the physical mechanisms of pipe fail-
ure, and hence require a significant number of parameters that
are specific to the pipe under study. The application of physical-
based models is hence mostly limited to pipe failure prediction
in major transmission mains where the impacts of pipe failure
are most significant.

In addition to physical-based models, various statistical
models have been proposed in the literature (Nishiyama and
Filion 2013; Yamijala, Guikema, and Brumbelow 2009), which
can generally be classified into either deterministic or
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probabilistic models (Kleiner and Rajani 2001), but can also be
classified based on the modeled entity (individual pipes vs. the
entire pipe network) and modeled events (occurrence of fail-
ures vs. end of pipe lifetime) (Scheidegger, Leitdo, and Scholten
2015). Recent works have also developed models for forecast-
ing the occurrence probability of each type of pipe failure (Shin
et al. 2016). Previously developed statistical models extensively
relied on a wide array of survival analysis methods, which
include proportional hazards models (PHMs) such as Cox-PHM
and Weibull-PHM (Jenkins, Gokhale, and McDonald 2015;
Kimutai et al. 2015). These models aim to predict the time-to-
failure by estimating the probability that a break will occur at
some time in the future for individual pipe segments.

While survival PHMs can technically be applied with any
level of data availability (Kleiner and Rajani 2001), extensive
failure records collected over long periods of time are crucial
for properly inferring pipe break probabilities (Yamijala,
Guikema, and Brumbelow 2009). Many utilities have only
recently started collecting and curating pipe break data in
a consistent and extensive manner. Such short-term datasets
can still provide useful information through the application of
data-driven methods that characterize pipe failures and the
contributing factors in an aggregate manner depending on
varying levels of available information. These include multiple
linear and nonlinear regression models (Wang, Zayed, and
Moselhi 2009) that predict annual failure rates as a function of
different covariates (e.g. pipe material, diameter, age and
length). Regression models have also been extended by relax-
ing the normality assumption to produce generalized linear
models (Yamijala, Guikema, and Brumbelow 2009), and by
incorporating the uncertainty in the model parameters using
Bayesian regression (Kabir et al. 2015). In addition, recent works
have implemented non- and semi-parametric statistical learn-
ing methods for pipe failure prediction. For instance, Berardi
et al. (2008) introduced the implementation of evolutionary
polynomial regression (EPR) for pipe failure prediction. EPR
was also implemented by Xu et al. (2011) to develop pipe
break models for the water distribution system of the city of
Beijing, and by Laucelli et al. (2014) in examining the relation-
ship between climate-related predictors and pipe failure.
Kakoudakis, Farmani, and Butler (2018) used EPR and artificial
neural networks (ANNs) to examine the influence of weather
conditions on pipe failure. Tabesh et al. (2009) found that ANN
models gave more accurate pipe failure predictions compared
to neuro-fuzzy and multivariate regression models. Almheiri,
Meguid, and Zayed (2021) developed a deep neural network
framework to predict the risk index of pipe failure considering
the effects of different factors including seasonal variation,
chlorine content and traffic conditions. Fan et al. (2022) exam-
ined the performance of five different machine-learning algo-
rithms in predicting pipe failures, including LightGBM, ANNs,
Logistic Regression, K-Nearest Neighbors (KNNs) and Support
Vector Classification for pipe failure prediction. Other methods
examined in the literature include graph convolutional neural
network-integrated deep reinforcement learning (Fan, Zhang,
and Infrastructure 2022).

In addition to predictive modeling, a few studies focused on
the exploratory analysis of pipe failure data with the aim of
identifying unusual (i.e. non-random) patterns of pipe failure

(Christodoulou et al. 2012; de Oliveira et al. 2011b; de Oliveira,
Garrett, and Soibelman 2011a; Oliveira, Garrett, and Soibelman
2009). These studies focused primarily on spatial clustering
analysis to reveal regions within the WDI characterized by
particularly high/low failure rates. Although such analysis
enables examining the dependence of the failure rates within
these critical regions on the local characteristics of the WDI,
limited attempts have been made in previous literature to
leverage the useful outcomes provided by clustering analysis
in the development of failure prediction models. In a recent
study, Chen and Guikema (2020) explored whether the use of
spatial clusters as an explanatory variable can improve the
accuracy of pipe break machine learning models. In this
study, results of the clustering analysis were added as one of
the explanatory variables in the machine learning models,
which overall lead to improving the accuracy of the models.
A similar approach was adopted by Aslani, Mohebbi, and
Axthelm (2021), where the results of spatial clustering were
added as independent variables to improve the predictions of
machine learning failure models. Additionally, Kakoudakis et al.
(2017) implemented K-means clustering to partition the train-
ing data for EPR pipe failure models.

While these attempts have shown the value of leveraging
the outcomes of spatial clustering analysis in improving the
accuracy of failure prediction models, a few important ques-
tions remain unanswered. First, in most of these studies, the
results of the clustering analysis were included in the set of
explanatory variables used to develop the models. However,
a different way of implementing the results of clustering ana-
lysis is by developing separate models for different clusters. The
rationale for this is that failure patterns within different clusters
are driven by factors that may potentially be different from
those driving the failures in other clusters. Hence, better failure
prediction can be achieved by using different sets of explana-
tory variables to predict failure rates in different clusters.
Second, the characteristics of the WDI that serve as failure
predictors (e.g. pipe material and age) may themselves exhibit
unique spatial patterns. These patterns are inherently attribu-
ted to the way WDIs evolve to accommodate population
growth and cities’ expansion. Such spatial patterns exhibited
by failure predictors have generally been ignored by previous
studies, which can potentially bias the estimation of the pre-
dictive models by over- or understating the importance of the
predictors (Chi and Zhu 2008).

In a recent study, the use of spatial autocorrelation analysis
(SAA) was applied for the identification of pipe failure patterns
by revealing the locations and statistical significance of hot-
and cold-spot clusters of pipe failures (Abokifa and Sela 2019).
Building upon this recent work, this study proposes an inte-
grated approach that couples spatial clustering analysis with
predictive pipe failure modeling. The contributions of this study
are (1) proposing a framework for developing cluster-specific
models that are locally tailored to incorporate different sets of
predictors for different clusters, (2) developing a novel
approach for explicitly accounting for spatial patterns exhibited
by failure rate predictors (e.g. pipe age and material) in the
development of the failure prediction models through the
inclusion of spatially lagged predictors (SLPs) and (3) present-
ing an integrated framework through which pipe-failure



records collected over a short time period (3 years) can be
leveraged in extracting useful information that can aid in
asset management operations of a large metropolitan water
utility.

Methodology
Overview

Given information about the layout and characteristics of the
pipe network, and the locations of historical pipe failures, the
proposed approach involves three main steps. First, local indi-
cators of spatial association (LISA) are employed to identify
hotspot and coldspot clusters of pipe failure and to verify
their statistical significance. Second, predictive models are con-
structed to develop relationships between annual failure rates
(AFRs) and pipe characteristics in each of the identified hot-
spot/coldspot clusters, while explicitly accounting for spatial
patterns exhibited by failure predictors. To this end, the perfor-
mance of eight different statistical learning methods that repre-
sent a wide array of linear and nonlinear multi-parameter
functions of different complexities are compared, and the best-
performing model is selected. Third, cluster-specific prediction
models are used to assess the impact of different pipe RoR
strategies on reducing the AFR.

Given the short time span of the failure dataset, individual
pipe failures are aggregated, and the prediction models are
constructed for small groups of pipes. This is done by first
dividing the domain of the WDI into a number of zones that
can either follow the layout of a regularly spaced grid (e.g.
square/rectangular cells), or have irregularly shaped bound-
aries based on pre-defined pressure/service zones or zip
codes. The AFR for each zone is calculated by dividing the
total number of reported failures within the zone boundaries
by the total length of pipes by the time period of the study (i.e.
breaks/(km.year)). Pipe characteristics, including age, diameter,
length and materials of pipes are extracted from the network
GIS files, and their mean values are computed for each zone to
serve as the set of candidate explanatory variables in the pre-
dictive models. Depending on the size of the failure dataset,
and the time span over which it was collected, the proposed
framework can be flexibly applied at any desired level of spatial
resolution for making pipe RoR decisions.

Spatial clustering analysis

Local Indicators of Spatial Association

Spatial association (autocorrelation) analysis (SAA) examines
the degree to which a specific process of interest is correlated
to itself in space by assessing the relationship between the
observed value of the phenomenon at any location and the
values of the same phenomenon at adjacent locations
(Legendre 1993). Here, local indicators of spatial association
(LISA), based on Local Moran’s | index (Anselin 1995), are
employed to reveal spatial clusters of pipe failures based on
the observed AFR in each zone. For any zone j, the /; index is
calculated as (Anselin 1995)
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where N is the number of zones; y; and y; are the observed
values of the AFR at zone i, and its neighboring zone j,
respectively; y and s are the mean and standard deviation
of the observed AFR across all zones; and w; is the spatial
weight assigned to the connection between zones i and j,
which can take any value in the range [0,1]. Zones i and j are
considered ‘neighbors’ if the Euclidian distance between their
centroids is less than a selected threshold distance (d,). For
neighboring zones, the pairwise weight is positive, while
(w;j = 0) for non-neighboring zones. More discussion on
how the spatial weights are formulated is provided in section
S1 of the supporting information (SI).

The value of /; can range anywhere between [-1, 1]. For
zones where ;>0 (i.e. positive autocorrelation), neighboring
zones have similarly high or low AFR, and hence zone i is
considered part of a cluster. For zones where /; <0 (i.e. negative
autocorrelation), zone i is considered an outlier since neighbor-
ing zones have dissimilar AFRs. Zones belonging to clusters are
further examined to reveal whether the observed AFRs within
the zone itself and within neighboring zones are above or
below the mean AFR across all zones. Accordingly, cluster
zones are classified into either high-high (HH) zones, which
are zones with high AFR in a high AFR neighborhood, or low-
low (LL) zones which are the exact opposite. Finally, hotspots
are defined as clusters of neighboring HH zones, while cold-
spots are clusters of neighboring LL zones.

Statistical significance testing

To test the statistical significance of the identified clusters/out-
liers, a p-value is computed as a test statistic of the null hypoth-
esis that the observed spatial pattern is simply the outcome of
spatial randomness (i.e. the pipe failure occurs randomly across
the study domain). In order to compute the p-value for any
zone (p;), the distribution of /; at the zone under the null
hypothesis needs to be known. To avoid making any assump-
tions about the distribution (e.g. normal distribution), a set of r
random permutations is generated. For each permutation, the
observed AFR values for all zones (except zone i) are randomly
shuffled across the domain, and the /; index is recalculated. This
process generates a distribution of /; values that represent the
null hypothesis of spatial randomness for each zone. The
p-value is calculated as p; = (m+1)/(r+ 1), where m is the
number of instances from the generated distribution that are
greater than the observed /; index. The smaller the value of p;,
the higher the statistical significance of the identified cluster/
outlier for zone i. To prevent the potential inflation of false-
positive rates due to multiple comparisons, the p-values are
corrected by means of the False Discovery Rate (FDR) method
of Benjamini and Hochberg (1995). A significance level is then
imposed by selecting a cutoff p-value above which the identi-
fied clusters/outliers are deemed non-significant. The results
reported in this work consider a significance level of 0.01
using a set of r = 999 random permutations.
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Predictive modeling and analysis

Statistical learning methods

A wide range of supervised statistical learning methods exists
with different degrees of complexity and interpretability
(Obringer and Nateghi 2018). These methods can be broadly
classified into parametric models and non-parametric models
depending on whether or not the relationship between the
response variable and the predictors is assumed to follow
a specific function (James et al. 2013). Here, the capabilities of
eight different models are tested to compare the performance
of a wide variety of parametric and non-parametric methods for
the prediction of the AFR. The tested models include four
parametric-linear and four data-driven non-parametric learning
methods as listed in Table 1.

The first class of models tested herein comprises four para-
metric-linear models, which all define the relationship between
the AFR and the predictors as a multiple linear regression (MLR)
function but use different procedures for estimating the regres-
sion parameters, namely the non-regularized ordinary least
square (OLS) estimation, the | 1-regularized least absolute
shrinkage and selection operator (LASSO) estimation
(Tibshirani 1996), the | 2-regularized ridge (RD) estimation
(Hoerl and Kennard 1970) and the mixed / 1,/12-regularized
elastic-net (EN) estimation (Zou and Hastie 2005). The second
class of models tested in this study comprises four non-
parametric models, namely support vector regression (SVR)
(Smola and Schoélkopf 2004), random forest (RF) regression
(Liaw and Wiener 2002), artificial neural network (ANN) regres-
sion (Specht 1991) and K-nearest neighbor (KNN) regression
(Altman 1992). Details on the mathematical formulations of the
examined models can be found in section S2 in the SI.

For all eight models, the response variable (y;) is the
observed AFR at any zone j, and is considered a function of
a set of M predictors x; = (x;1,...,Xu) that represent the
characteristics of the WDI within the zone (e.g. mean age of
pipes, the fraction of certain pipe materials, etc.). The entire
dataset comprising the AFR and its predictors in all the zones is
lumped as (y, X), where y is the N x 1 vector of the observed
AFR in all zones: y = {y1,...,yn}; and X is the N x M matrix of
predictors for all zones: X = [xi, ..., xy]. The values for the AFR
and each of the predictors are first standardized to have a zero
mean and a standard deviation of 1 before developing the
predictive models.

The rationale for testing parametric-linear models is that
they are generally easy to construct and that they seamlessly
lend themselves to statistical inferencing (Obringer and

Table 1. Statistical learning methods examined for the prediction of the AFR.

Nateghi 2018). Nevertheless, since the dependencies in real
data are rarely of a linear nature, such linear models possess
limited flexibility as they often fail to fully capture the complex-
ity of the true relationships. On the other hand, non-parametric
models offer a great deal of flexibility in representing non-linear
relationships since they directly harness the available data to
approximate the relationships. Yet, data-driven non-parametric
learning methods are particularly data-intensive and are gen-
erally more prone to overfitting than parametric models (James
et al. 2013).

Model performance assessment and tuning
The full dataset (y, X) is randomly split into 70% for training and
30% for validation of all the aforementioned models. A two-
sample Kolmogorov-Smirnov (K-S) test is conducted to verify
whether the training and validation sets follow similar distribu-
tions. Performance assessment of all the models was based on
two metrics, namely the mean absolute error (MAE) and the
root mean squared error (RMSE). These error metrics were
calculated for both the in-sample (training) data and out-of-
sample (validation) data to asses both the explanative ability
and the predictive accuracy of the models, respectively.
Except for the OLS model, each of the predictive models
tested herein comprises one or more hyper-parameter that
requires tuning. For the parametric-linear models LASSO and
RD, the hyper-parameters are either the A; or A, regularization
parameters, while for EN, both regularization parameters are
assumed to be equal (in this study) thus yielding one hyper-
parameter (A; = A; = A). Non-parametric models typically com-
prise more than one hyper-parameter, which makes tuning
them a rather complex task. Herein, only one hyper-parameter
is tuned for each of the non-parametric models, namely the
tolerance margin (g), the number of trees (T), the number of
neurons in the hidden layers (B) and the number of nearest
neighbors (K), for the SVR, RF, ANN and KNN models, respec-
tively. Other hyper-parameters (e.g. number of hidden layers in
ANN, tree depth in RF) are kept constant as explained in section
S2 in the SI. To tune the hyper-parameters and reduce over-
fitting of all the models, a cross-validation process is implemen-
ted (James et al. 2013). First, a range of hyper-parameter
settings is generated for each model by enumeration. Then,
using 10-fold cross-validation, each hyper-parameter setting
was iteratively trained with 90% of the training data and then
tested on the remaining 10%, and the average mean squared
error (MSE) of the testing was calculated for the 10 trials. The
hyper-parameter setting that resulted in the minimum average
MSE was selected.

Class Model Full name Description
Parametric- ~ OLS Ordinary least squares Multivariate linear regression model
linear LASSO Least absolute shrinkage and 1-norm extended OLS model to induce sparsity and avoid overfitting
selection operator
RD Ridge 12-norm extended OLS model to induce sparsity and avoid overfitting
EN Elastic net Joint /1, I2-norm extended OLS model to induce sparsity and avoid overfitting
Non- SVR Support Vector Regression A kernel-based regression method where the cost function ignores the errors within a specific tolerance margin
parametric RF Random forest An ensemble-based model averaging the output of multiple bootstrapped regression trees
KNN K-nearest neighbor A similarity-based regression model that returns the average of the K nearest neighbors from the training space
ANN Artificial neural network A multilayer perceptron regression model where each neuron computes a non-linear function on the weighted average

of neurons in the previous layer




Incorporating spatial influence

The effects of spatial dependence are incorporated into the
predictive models by including spatially lagged predictors
(SLPs) for all zones. The SLPs are computed as the weighted
sum of the corresponding predictors observed at neighboring
zones. For instance, if the predictor of interest is the mean age
of pipes in the zone, the corresponding SLP is calculated as the
weighted sum of the mean ages of pipes within neighboring
zones using the spatial weights (w;) as described in section S1.
The intuition behind including SLPs is that the observed AFR at
any zone is not expected to be exclusively dependent on the
pipe characteristics within the zone, but will also depend to
some degree on the characteristics of pipes within adjacent
zones. Section S3 in the Sl provides additional mathematical
details on the special case of incorporating SLPs in the para-
metric-linear models represented by the MLR function, which
gives the spatial cross-regressive model (Anselin 2002; Florax
and Folmer 1992).

Cluster-specific prediction models

Finally, the outcomes of the clustering analysis are leveraged to
further improve the predictive accuracy of the prediction mod-
els by developing separate cluster-specific models for the hot-
spot and non-hotspot zones of the WDI. The rationale here is
that each model can better predict the AFRs within its specific
regions by accounting for the local characteristics of each
cluster. To develop the cluster-specific prediction models, the
dataset (y, X) is divided into two subsets representing the zones
that belong to the hotspot cluster and those that do not, and
then train two separate models for the hotspot zones using the
corresponding (y"°, X"%) subset, and the non-hotspot zones
using the (yV**, XM5) subset. Using the same breakdown of
data (70% for training and 30% for validation), the explanative
ability and predictive accuracy of the cluster-specific models
are compared to those of a single network-wide model using
the same performance metrics, i.e. MAE, and RMSE.

Asset management decision-making

After fitting the cluster-specific models, the developed frame-
work is implemented to assess the potential advantage of
adopting proactive instead of reactive pipe repair or replace-
ment (RoR) strategies. A reactive strategy is simulated by
a scenario in which the utility maintains the status quo of
targeting pipes with previously reported breaks for RoR.
Alternatively, a proactive strategy that leverages the outcomes
of the framework presented herein to target certain pipes
within the critical hotspot regions for RoR is proposed. The
developed prediction models are then used to assess the out-
comes of each of the proposed strategies by examining the
expected reduction in the AFR across the WDI for each strategy.

Results and Discussion
Model application

The proposed framework is demonstrated on a dataset of pipe
failures retrieved from the routine maintenance records of
a large metropolitan water utility in the U.S. supplying
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approximately 150 MGD of treated drinking water to over
one million consumers. The WDI under study comprises over
8,625 km of pipes and spans 1,400 km?. A detailed description
of the physical pipe characteristics, including the length, dia-
meter, approximate age and material of the pipes, is available
in section S4 in the SI. The failure dataset consists of 5,506
records of pipe failures that were repaired by the utility over
a period of 36 months from September 2016-2019. Each failure
record comprises the time of initial report and repair comple-
tion, and the geographic location of the failure. The spatial
distribution of the pipe failures and the layout of the case
study WDI is depicted in Figure S1.

As mentioned above, the domain of the WDI is first divided
into a set of zones to overcome the short time-period of the
failures dataset. Herein, a regular grid of square-shaped zones
with the size of 500 m x 500 m (0.25 km?) was implemented.
This resulted in breaking down the WDI domain into 2655
zones with at least 1 km of pipes/zone, of which 1,400 zones
had at least one failure event during the 3-year period. The
number of failures per zone ranged from 1 to 30 failures/zone,
and the AFR ranged from 0.04 to 1.98 failures/(km.year). The
distribution of the AFR across the zones of the studied WDI is
featured in Figure 1(a).

Pairwise spatial weights (w;) constitute a key component of
both the clustering analysis and predictive modeling con-
ducted in this study. As explained above, these weights are
a function of the threshold distance (d;,,) that determines the
span of spatial effect for the different zones that is being
accounted for in the analysis. Hence, di,, needs to be carefully
selected in order to properly capture the spatial patterns exhib-
ited by the AFR. Different values for d,, in the range of 2-16 km
were examined, and a dy,, = 10km was found to capture the
spatial pattern in the AFR with the highest statistical signifi-
cance. Section S5 in the SI provides a detailed analysis of the
selection of the threshold distance.

Spatial clustering analysis

The first step of the proposed approach involves identifying
clusters of exceptionally high and low failure rates. Following
the approach described above, local Moran’s | indices are cal-
culated according to Eq. 1 to reveal hotspot/coldspot clusters
of pipe failures. Out of the 2,655 zones, the calculated /; is
positive for 1,726 zones (65%) and negative for 929 zones
(35%), which indicates that on a global level, the failure data
is spatially clustered (i.e. neighboring zones have similarly high
or low AFR) instead of dispersed. Testing for statistical signifi-
cance (with r = 999 random permutations and a significance
level of 0.01 on the FDR corrected p-values), 492 zones were
found to belong to statistically significant hotspot clusters and
449 zones belonged to statistically significant coldspot clusters
(of which, only 62 have a non-zero AFR). Figure 1(b) depicts the
identified hotspot and coldspot clusters. A cluster of hotspot
zones is identified at the central/north-central part of the WDI
and a relatively smaller cluster of coldspot zones is identified at
the southeastern part of the WDI.

On average, hotspot zones have an AFR of 0.58 breaks/(km.
year), which is ~1.53X the average AFR observed across all
zones of the WDI (0.38 breaks/(km.year)), while those of the
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Figure 1. (a) Distribution of the AFR for a zone size of 0.25 km% and (b) Hotspot (red) and coldspot (blue) clusters of pipe failures identified by LISA. Gray zones
represent areas that are neither statistically significant hotspot nor coldspot zones. Blue lines represent the pipes.

coldspot clusters have an average of 0.12 breaks/(km.year)
(zero AFR zones excluded). It is important to note that such
patterns cannot be easily detected by simply visualizing the
AFR in each zone (Figure 1(a)). This shows the necessity for
employing a spatial clustering approach, like the LISA imple-
mented herein, to reveal the locations of the clusters, and more
importantly, to test their statistical significance. Furthermore,
the significant variability in the AFR observed across the zones
of the different clusters suggests that different factors might be
influencing pipe failure in each of the clusters. Hence, to accu-
rately predict failure rates, different models need to be inde-
pendently developed for each cluster in order to account for
the best set of local predictors. This is particularly important for
the zones of the hotspot cluster experiencing the highest fail-
ure rates across the WDI, which makes them natural candidates
for proactive pipe RoR programs.

Predictive modeling of the failure rates

Non-spatial models

First, all eight models listed in Table 1 are trained to predict the
AFR in all 1,400 zones using a set of seven predictors, specifi-
cally mean age (T,,g), mean diameter (Dg), total length (L)
and the fraction of materials by pipe length in each zone,
including cast iron Cl (fg), ductile iron DI (fp)), polyvinyl chloride
PVC (foyc) and asbestos cement AC (f4c). The entire dataset
comprising the AFR and its predictors in all 1,400 zones (zero
AFR zones excluded) is randomly split into 980 zones for train-
ing (70%) and 420 for validation (30%). A two-sample K-S test
statistic of 0.05, with a p-value of 0.44, is obtained for the
distributions of the AFR in the training and validation samples,
which indicates that the distributions of both samples are
similar. This can also be seen in Figure S2 in the SI, which
shows that both samples exhibit similar cumulative distribution
functions.

Using the training data, the hyper-parameters for all eight
models were tuned by means of a 10-fold cross-validation test.
The average MSE across the tested ranges for each of the
hyper-parameters is depicted in Figure S3, where the hyper-
parameter settings that yielded the minimum average MSE are
selected for further analysis. Table 2 lists the two performance
assessment metrics, namely MAE, and RMSE, for all eight

Table 2. Performance assessment of the network-wide non-spatial models.

Training Validation
Model MAE RMSE MAE RMSE
Parametric-linear OLS 0.628 0.892 0.666 0.899
LASSO 0.628 0.892 0.666 0.899
RD 0.628 0.892 0.666 0.899
EN 0.628 0.892 0.666 0.899
Non-parametric RF 0.492 0.678 0.642 0.906
ANN 0.623 0.886 0.659 0.898
SVR 0.568 0.834 0.632 0.894
KNN 0.604 0.860 0.663 0.905

models for both the training and validation runs. With the
exception of the RF model, both the parametric-linear and non-
parametric models gave comparable training results. All mod-
els, with the exception of RF, do not display a strong fit to the
AFR data, with the non-parametric models showing a slightly
better fit than the linear-parametric models as indicated by the
slightly smaller values for the MSE and RMSE. On the other
hand, RF is the best-performing model for the training run.

Despite the slightly better training performance shown by the
non-parametric models, their performance significantly worsens
when they are used to predict the out-of-sample AFRs. The RF
model shows the biggest drop in performance between the
training and validation runs, followed by the SVR model and
the KNN model. On the other hand, linear-parametric models
show a relatively more consistent performance across the train-
ing and validation runs, which indicates that they are less prone
to overfitting compared to non-parametric models. Taken
together, the results listed in Table 2 indicate that, despite their
flexibility in fitting complex functions, complex data-driven mod-
els are not necessarily more accurate when predicting the out-of-
sample AFR. On the other hand, parametric-linear models can
still display a comparable predictive capability for out-of-sample
data despite their intrinsic simplicity.

Spatial models

The distribution of pipe material and age in the studied WDI
exhibits noticeable clustering, which can be seen from Figure 2
that depicts the pipe material of the highest fraction and the
mean age of pipes in each zone. Figure 2 shows that the old Cl
pipes are primarily concentrated in the central part of the
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Figure 2. (a) Distribution of the mean pipe age in each zone; (b) Pipe material with the highest fraction in each zone.

network, while newer PVC pipes are more distributed across
the boundaries of the WDI. Such spatial structure in the pre-
dictors needs to be accounted for in the predictive models to
avoid biasing the estimation of their parameters and thus
compromise their accuracy and predictive ability.

To examine the significance of incorporating the spatial
structure of the data into the development of the prediction
models, seven additional predictors representing the spatial
lags of each of the original predictors were added to the
seven original predictors mentioned in the previous section.
Following the same procedure described in the previous sec-
tion, all eight spatial models were trained using 70% of the
data, tuned by means of a 10-fold cross-validation test, and
then tested using the remaining 30%.

Table 3 lists the two performance assessment metrics for all
eight spatial models. By comparing the results to those of the non-
spatial models (Table 2), it can be seen that the inclusion of the
SLPs slightly enhances the performance of all eight learning
methods for both the training and validation runs. This can be
seen from the consistent, albeit small, decrease in the MAE and
RMSE before and after the inclusion of SLPs. Furthermore, it is
important to note that the addition of the SLPs does not result in
overfitting as evidenced by the consistent decrease in the errors
for the validation runs in Table 3 compared to those in Table 2.
Overall, the results listed in Table 3 indicate that controlling for the
spatial structure in the AFR predictors improves the accuracy of
predictive models. This becomes particularly important when
these models are implemented for making pipe RoR decisions as
displayed in later sections. The results also assert that parametric-
linear models are generally less prone to overfitting than non-
parametric models and that non-parametric show only a slightly

Table 3. Performance assessment of the network-wide spatial models.

better prediction accuracy for the out-of-sample data despite their
superior performance of the non-parametric models with the in-
sample data.

Cluster-specific models

Having included the spatial effects in the formulation of the
predictive models, the outcomes of the clustering analysis we
used to further improve the explanatory and predictive abilities
of the prediction models. To this end, the regression dataset is
divided into two subsets representing the zones that belong to
hotspot and non-hotspot clusters, and then develop two inde-
pendent sets of spatial models for each dataset separately.
Table 4 lists the three performance assessment metrics for all
eight cluster-specific models. By comparing the results to those
of the network-wide spatial models (Table 3), it can be clearly
seen that the incorporation of the clustering analysis outcomes
in the development of prediction models enhances the perfor-
mance of all eight learning methods for both the training and
validation runs. On average, the training MAE and RMSE of the
cluster-specific models are ~20% and ~16% lower than the
network-wide spatial models, respectively. A similar enhance-
ment is also observed for the validation run, where the cluster-
specific models show an ~18% and ~12% reduction in the MAE
and RMSE, respectively, compared to the network-wide spatial
models. Taken together, the results in Table 4 indicate that the
performance of the cluster-specific models is noticeably higher
than that of the network-wide models, which can be attributed
to the fact that cluster-specific models are more capable of
capturing the proper influence of various predictors in the
different sections of the WDI as explained in the following sub-
section.

Table 4. Performance assessment of the cluster-specific spatial models.

Training Validation Training Validation
Model MAE RMSE MAE RMSE Model MAE RMSE MAE RMSE
Parametric-linear OLS 0.625 0.887 0.660 0.897 Parametric-linear OLS 0.528 0.772 0.562 0.797
LASSO 0.624 0.884 0.663 0.897 LASSO 0.528 0.772 0.561 0.797
RD 0.624 0.885 0.662 0.897 RD 0.529 0.774 0.562 0.797
EN 0.620 0.882 0.659 0.895 EN 0.527 0.770 0.560 0.796
Non-parametric RF 0.484 0.658 0.623 0.882 Non-parametric RF 0.374 0.515 0.536 0.796
ANN 0.610 0.869 0.650 0.894 ANN 0.512 0.758 0.545 0.798
SVR 0.566 0.829 0.641 0.894 SVR 0.461 0.716 0.535 0.795
KNN 0.587 0.852 0.643 0.893 KNN 0.516 0.763 0.549 0.808




8 A. A. ABOKIFA AND L. SELA

Model Selection and Predictor Importance

In addition to knowing which model performs the best, it is
crucial to understand the relative importance of the predictors
on the model predictions. Since the data for the predictor
variables is standardized, the magnitudes of the estimated
coefficients by the parametric-linear models provide a direct
means for interpreting the relative significance of each of the
predictors. This is not the case for non-parametric models that
generally require extrinsic tests to examine the relative impor-
tance of the predictors (e.g. by examining the decrease of
accuracy in predictions on the out-of-bag samples when
a given predictor is excluded (James et al. 2013)).
Furthermore, both LASSO and EN models are equipped with
the capability of predictor selection thanks to the /1 regulariza-
tion component that modifies the estimation to achieve spar-
sity. As the value of A, increases, the sparsity objective becomes
more stringent and hence the estimated regression coefficients
shrink until reaching zero at different A; values, at which the
corresponding predictors are deselected from the model. As
previously described, the minimum set of predictors that best
explain the AFR can be obtained by setting the /1 regularization
parameter (A;) using a 10-fold cross-validation test.

To evaluate the overall performance of the examined fore-
casting approaches, prediction accuracy should not be adopted
as the sole evaluation criteria. Instead, careful attention should
also be given to the structural stability and complexity of the
forecasting model (Boland, Baumann, and Dziegielewski 1981).
The consistent drop in the performance of the non-parametric
models for the out-of-sample data compared to the training
data as observed in Tables 2-4, signals a concerning deficiency
in the stability of these models compared to parametric-linear
models. Furthermore, the slightly better in-sample perfor-
mance exhibited by the non-parametric models does not
make up for the loss of comprehensibility and credibility that
accompanies their significant complexity. Hence, given its
interpretability, stability and simplicity, the cluster-specific EN
model is used for the remainder of the analysis in this study
despite its slightly lower in-sample accuracy compared to the
cluster-specific non-parametric models. Figure 3 depicts the
observed versus modeled AFR for the cluster-specific-EN
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Table 5. Regression coefficients estimated by the EN model.
EN coefficient

Predictor All zones Hotspots Non-hotspots
fo +0.09 +0.22 0.00
fove 0.00 0.00 0.00
for 0.00 0.00 0.00
fac +0.33 +0.54 +0.28
Leot -0.17 -0.16 -0.18
Tavg +0.15 +0.12 +0.09
Davg —0.12 —0.17 —0.06

model fitted separately to the hotspot (HS) zones (red triangles)
and non-hotspot (NHS) zones (blue circles) of the WDI.

Table 5 lists the regression coefficients determined by the
network-wide spatial-EN model fitted to all the zones in the
studied WDI together with the coefficients of the cluster-
specific EN models fitted separately to the hotspot and non-
hotspot zones. For the network-wide model, the fraction of AC
pipes appears to have the largest positive coefficient among
the covariates (+0.33), followed by the mean age of pipes
(+0.15) and the fraction of Cl pipes (+0.09). The total length of
pipes has the most negative coefficient (—0.17) followed by the
average diameter (—0.12). The spatial-EN estimation renders
zero coefficients for two out of the seven predictors, namely
the fraction of PVC pipes (fpyc) and fraction of DI pipes (fp). One
possible explanation for such outcome is collinearity among
the predictors, which happens whenever two or more predic-
tors are linearly dependent (Dormann et al. 2013). In the pre-
sence of strong collinearity between predictors, the I
regularization parameter (A;) in the EN model leads to the
selection of only a subset of the collinear predictors, typically
the ones whose absolute coefficients are the largest, and dis-
cards the others. Multiple metrics can be used to check whether
the set of exogenous variables exhibit some form of collinearity
(Dormann et al. 2013). Herein, the pairwise Pearson correlation
coefficient (PCC) and Spearman’s rank correlation coefficient
(SRCC) are calculated for each pair of predictors, and the results
are depicted in Figure S4 of the SI. The value of PCC and SRCC
can range anywhere from +1 for perfect positive correlation to
—1 for perfect negative correlation, while a zero value indicates

Yrit

Figure 3. Observed versus predicted AFR (standardized) for the cluster-specific EN model fitted separately to the hotspot zones (red triangles) and non-hotspot zones

(blue circles) for the (a) training and (b) validation datasets.



no correlation. As can be seen from Figure 54, T,,, exhibits
strong negative correlation with fp,c (PCC = -0.57,
SRCC = —-0.52), and with fp; (PCC = —0.44, SRCC = -0.46).
Furthermore, both fp,c and fp, exhibit negative correlation with
fci. Nonetheless, it is important to note that this result is system-
specific and is the mere outcome of the high degree of cross-
correlation between pipe age and material in the tested WDI,
which leads the spatial-EN algorithm to exclude fp, and fp,
from the model. While this is expected since Cl and AC pipes
have traditionally been used in WDI before the introduction of
DI and PVC pipes, this might not necessarily be the case in other
WDiIs.

The enhanced performance of the cluster-specific models
compared to the network-wide spatial models can be attribu-
ted to the fact that the contribution of various predictors varies
between different zones of the WDI as seen from the estimated
EN coefficients listed in Table 5. For the HS model, the highest
two coefficients correspond to the fractions of AC and Cl pipes,
which implies that these two variables affect pipe failure in HS
zones the most. On the other hand, zero coefficients are ren-
dered for the fraction of Cl pipes in the NHS model, which
implies that replacing Cl pipes in the non-hotspot zones will
not have as a significant effect as would replace the same
amount of Cl pipes in HS zones. The following section further
demonstrates how water utilities can leverage such insights in
designing proactive pipe RoR programs to effectively reduce
pipe failure rates in the WDI.

Impact on Infrastructure Asset Management

The proposed unified framework can help water utilities better
manage their assets by targeting pipe RoR decisions. By identi-
fying HS zones with elevated failure rates, the utility can direct
its limited resources into inspecting the pipes in these zones.
Moreover, the results of the prediction models indicate the
relative importance of the different factors driving pipe failures
in different zones. To further demonstrate this, three hypothe-
tical scenarios for pipe replacement are simulated. In the first
scenario, the utility is assumed to preserve the status-quo of
making replacement decisions in a reactive manner by repla-
cing pipes that experience failure events. In the second sce-
nario, the utility is assumed to have an understanding of the
spatial clustering exhibited by pipe failures and to also possess
a prediction model for the AFR in the different clusters, i.e. HS
and NHS. Based on this knowledge, the utility pursues
a preventive pipe replacement program by proactively repla-
cing the pipes in the areas experiencing high failure rates.
Furthermore, since the fraction of AC and Cl pipes has the
highest variable importance in the cluster-specific EN model
for the HS model (Table 5), the utility uses this knowledge to
replace only AC and Cl pipes within the hotspot zones. To
elucidate that the impact of replacing the pipes within the HS
zones is not merely an outcome of the fact that old AC and Cl
pipes are being replaced but also the location of these pipes,
a third scenario in which the same length of AC and Cl pipes is
replaced in the NHS zones is considered.

In the first scenario (reactive strategy), the utility hypotheti-
cally replaces 610 km of pipes that have incurred at least one
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Figure 4. Reduction in the mean global AFR attained by targeted replacement of
AC and Cl pipes in the hotspot zones (red-dashed) and non-hotspot zones (green-
dotted), and reactive pipe replacement (blue-solid) in the entire WDI; shaded
envelopes represent the min-max range of 100 different realizations.

failure event during the study period of 36 months. In
the second scenario (proactive strategy), the utility replaces
an equivalent 610 km of AC and ClI pipes exclusively from the
HS zones. In the third scenario, the utility replaces an equivalent
pipe length of AC and Cl pipes exclusively from the NHS zones.
In all scenarios, the pipes are replaced with new PVC pipes of
the same length. To assess the impact of all scenarios on
reducing the AFR, the new pipe characteristics are recalculated
for all the zones, and the cluster-specific EN models fitted
previously to the HS and NHS zone models are used to predict
the new AFR for each scenario.

Figure 4 depicts the gradual reduction in the AFR attained
by the three pipe replacement strategies, where line plots and
shaded envelopes represent the mean and the min-max range
of 100 different realizations for replacing the pipes in a different
order, respectively. By replacing only the pipes that have
incurred previous failures (blue line), the mean AFR for the
entire network drops to 0.354 breaks/(km.year) (=7%), while
the proactive pipe replacement approach (red line) would
reduce the mean global AFR to 0.340 breaks/(km.year)
(=10%). The third scenario (green line) shows almost no
improvement for proactively replacing AC and Cl pipes in the
non-hotspot zones, which asserts the fact that the spatial loca-
tion of the replaced pipes plays as significant role as their age
and material, and hence emphasizes the importance of spatial
clustering as an integral component of the presented
approach.

Data Limitations and Recommendations for Future
Development

Although the failure dataset implemented herein is of a short
time-horizon (3 years), the proposed approach was still capable
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of providing useful information that can potentially aid in asset
management operations. Nevertheless, with larger failure data-
sets collected over longer time-periods, the presented
approach can be enhanced as follows:

(1) The spatial resolution can be enhanced by developing
failure prediction models for individual pipes instead of
zones or regions if failure records are available for longer
time-periods. For instance, failure data collected over
multiple decades would typically comprise numerous
pipes that incurred more than one failure event and
can hence be used in developing survival models (e.g.
PHMs) at the pipe-level. Following the approach pre-
sented herein, the outcomes of the clustering analysis
can be leveraged in developing such pipe-level models
by constructing separate models for pipes in HS zones
and NHS zones. Furthermore, spatially lagged predictors
can also be included in these models, which can poten-
tially enhance their performance as demonstrated
herein.

(2) While the out-of-sample performance of the non-
parametric models tested herein was noticeably worse
than their in-sample performance, this can be primarily
attributed to the small size of the failure dataset used to
train these data-driven models. Furthermore, the perfor-
mance of non-parametric models can be potentially
enhanced by including more covariates (e.g. soil condi-
tions, hydraulic parameters, traffic loadings and land
use), and thus their strong capability to model complex
non-linear relationships can be better harnessed.

(3) By using a dataset of failure records collected over
a longer time-period, the temporal dimension can be
introduced to the failure prediction models to account
for the dynamic changes in the failure rates. Such tem-
poral variations in the failure rate may stem from climatic
changes in weather conditions and other time-dependent
covariates. Furthermore, longer periods of data collection
would enable the use of failure rates with higher temporal
resolution. For instance, instead of aggregating failures at
the yearly level as was done in this study, failure rates can
be aggregated at the monthly/quarterly level. This would
enable including important seasonal variables, such as
temperature and precipitation, that are known to influ-
ence pipe failure (Almheiri, Meguid, and Zayed 2020).

Conclusions

Water main failures in dense urban areas pose significant eco-
nomic, social and environmental consequences as well as
severe implications for public health. This study proposes an
integrated computational framework that integrates spatial
clustering analysis with predictive pipe failure modeling. The
proposed approach integrates two main components: First,
spatial autocorrelation analysis, based on the local index of
Moran’s |, is implemented for identifying statistically significant
hotspot and coldspot clusters of pipe failures. Second, statisti-
cal learning methods are developed and tested for the predic-
tion of pipe failure rates within the clusters based on the local
characteristics of the infrastructure, while simultaneously

accounting for the spatial patterns exhibited by these charac-
teristics. Finally, the integrated approach is used for comparing
different pipe replacement strategies in order to improve the
efficacy of asset management decisions.

The framework is demonstrated on a short-term (36 months)
dataset of pipe failures retrieved from the maintenance records
of a real-life, full-scale metropolitan water utility in the United
States. For the studied infrastructure, pipe failures were found
to be significantly clustered, and the locations of pipe failure
hotspot and coldspot clusters were successfully revealed.
A strong degree of clustering was also exhibited by the char-
acteristics of the pipe infrastructure, specifically pipe age and
material. Key insights revealed by this study are (1) failing to
account for the spatial patterns in the failure predictors reduces
the accuracy of the non-spatial predictive models compared to
their spatial counterparts, (2) the explanatory and predictive
abilities of the spatial models further improved when the out-
comes of the clustering analysis were leveraged to tailor these
models to appropriately account for the local predictors in each
cluster and (3) both linear-parametric and data-driven non-
parametric models showed similar prediction accuracy for the
out-of-sample data despite the better training performance
exhibited by the more complex non-parametric models.

Although the proposed approach was demonstrated on
a short-term failure dataset, it was still capable of providing
useful information that can aid in guiding pipe rehabilitation
decisions. As confidence in decision-making highly depends on
the accuracy of failure prediction models, this work emphasizes
the importance of reporting, collection and storage of pipe
failure records for enhancing the efficacy of asset management
operations. Future work should aim to apply the proposed
approach to a larger pipe failure dataset to enhance the spa-
tiotemporal resolution of pipe failure predictions. Furthermore,
the incorporation of additional covariates, particularly time-
dependent and dynamic variables, may enhance the predictive
accuracy of the proposed approach.
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