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RESEARCH ARTICLE

Integrating spatial clustering with predictive modeling of pipe failures in water 
distribution systems
Ahmed A. Abokifaa and Lina Selab

aDepartment of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, Illinois, USA; bDepartment of Civil, 
Architectural and Environmental Engineering, University of Texas, Austin, Texas, USA

ABSTRACT
Pipe failures in water distribution infrastructure (WDI) have significant economic, environmental and 
public health impacts. To alleviate these impacts, repair and replacement decisions need to be prioritized 
to effectively reduce failure rates. In this study, a computational framework is proposed for WDI asset 
management that couples spatial clustering analysis with predictive modeling of pipe failures. First, 
hotspot/coldspot clusters of statistically significant high/low failure rates are identified using local 
indicators of spatial association. Second, the predictive abilities of eight statistical learning techniques 
are systematically tested, and the best-performing method is implemented to forecast failure rates, 
(breaks/(km.year)) within different sectors of the WDI. Third, the framework is implemented to compare 
the impact of adopting proactive instead of reactive pipe replacement strategies. Applying the frame
work to a real-life, large-scale WDI revealed that spatial clustering of pipe failures improves the accuracy 
of the prediction models.
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Introduction

Aging water supply systems across Europe and North America 
face increasing pressure to satisfy the demands of the rapidly 
growing urban population (Hering et al. 2013). In the United 
States, the aging water distribution infrastructure (WDI) incurs 
nearly 0.24 million water main breaks every year, wasting over 
two trillion gallons of treated drinking water (American Society 
of Civil Engineers 2017). Fiscal investments needed to rehabili
tate and upgrade the WDI are immense (American Water Works 
Association 2012). Yet, the gigantic scale of water distribution 
systems, together with the fact that most pipes are buried and 
inaccessible for routine physical inspection (Kleiner and Rajani  
2001), poses significant challenges toward prioritizing pipe 
maintenance decisions. To improve the efficacy of asset man
agement programs, computational tools have been proposed 
to guide pipe repair-or-replacement (RoR) decisions in order to 
reduce the rates of water main failures (Folkman 2018; Stone 
et al. 2002). The support provided by such computational tools 
can help alleviate the substantial economic and environmental 
impacts of water main failures due to water and energy losses, 
as well as the social impacts represented by service interrup
tions and road closures.

In addition to the economic, environmental and social 
impacts, the deteriorated physical condition of WDIs can pose 
significant implications for public health due to the potential 
for contaminant intrusion. Previous epidemiological studies 
observed a strong association between increased cases of gas
trointestinal illness and concurrent breaches of the physical 
and hydraulic integrities of WDIs (Ercumen, Gruber, and 
Colford 2014). Such lapses in the hydraulic integrity of the 

WDI, represented by substantial pressure drops, may occur 
either due to routine operational procedures, such as pump 
and valve operations, or as a result of extreme events, such as 
transmission main bursts and sudden changes in water 
demands. In many cases, disinfectant residual concentrations 
are not sufficient (or even nonexistent) to rapidly inactivate 
extraneous pathogenic contaminants entering the system, 
which puts the consumers at risk of infection with waterborne 
diseases.

To alleviate the above-mentioned impacts, significant 
research efforts have aimed to develop computational tools 
for pipe failure prediction (Rifaai, Abokifa, and Sela 2022; 
Scheidegger, Leitão, and Scholten 2015; Shirzad and Safari  
2020; St. Clair and Sinha 2012; Wilson, Filion, and Moore  
2015). Such predictive models constitute a key component of 
multi-criteria decision support frameworks that can be used to 
inform pipe rehabilitation decisions (Barton, Hallett, and Jude  
2022). The majority of these works focused on forecasting pipe 
failures using either physical- or statistical-based models 
(Alizadeh et al. 2019; Kleiner and Rajani 2001; Konstantinou 
and Stoianov 2020; Rajani and Kleiner 2001). Physical-based 
models aim to simulate the physical mechanisms of pipe fail
ure, and hence require a significant number of parameters that 
are specific to the pipe under study. The application of physical- 
based models is hence mostly limited to pipe failure prediction 
in major transmission mains where the impacts of pipe failure 
are most significant.

In addition to physical-based models, various statistical 
models have been proposed in the literature (Nishiyama and 
Filion 2013; Yamijala, Guikema, and Brumbelow 2009), which 
can generally be classified into either deterministic or 
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probabilistic models (Kleiner and Rajani 2001), but can also be 
classified based on the modeled entity (individual pipes vs. the 
entire pipe network) and modeled events (occurrence of fail
ures vs. end of pipe lifetime) (Scheidegger, Leitão, and Scholten  
2015). Recent works have also developed models for forecast
ing the occurrence probability of each type of pipe failure (Shin 
et al. 2016). Previously developed statistical models extensively 
relied on a wide array of survival analysis methods, which 
include proportional hazards models (PHMs) such as Cox-PHM 
and Weibull-PHM (Jenkins, Gokhale, and McDonald 2015; 
Kimutai et al. 2015). These models aim to predict the time-to- 
failure by estimating the probability that a break will occur at 
some time in the future for individual pipe segments.

While survival PHMs can technically be applied with any 
level of data availability (Kleiner and Rajani 2001), extensive 
failure records collected over long periods of time are crucial 
for properly inferring pipe break probabilities (Yamijala, 
Guikema, and Brumbelow 2009). Many utilities have only 
recently started collecting and curating pipe break data in 
a consistent and extensive manner. Such short-term datasets 
can still provide useful information through the application of 
data-driven methods that characterize pipe failures and the 
contributing factors in an aggregate manner depending on 
varying levels of available information. These include multiple 
linear and nonlinear regression models (Wang, Zayed, and 
Moselhi 2009) that predict annual failure rates as a function of 
different covariates (e.g. pipe material, diameter, age and 
length). Regression models have also been extended by relax
ing the normality assumption to produce generalized linear 
models (Yamijala, Guikema, and Brumbelow 2009), and by 
incorporating the uncertainty in the model parameters using 
Bayesian regression (Kabir et al. 2015). In addition, recent works 
have implemented non- and semi-parametric statistical learn
ing methods for pipe failure prediction. For instance, Berardi 
et al. (2008) introduced the implementation of evolutionary 
polynomial regression (EPR) for pipe failure prediction. EPR 
was also implemented by Xu et al. (2011) to develop pipe 
break models for the water distribution system of the city of 
Beijing, and by Laucelli et al. (2014) in examining the relation
ship between climate-related predictors and pipe failure. 
Kakoudakis, Farmani, and Butler (2018) used EPR and artificial 
neural networks (ANNs) to examine the influence of weather 
conditions on pipe failure. Tabesh et al. (2009) found that ANN 
models gave more accurate pipe failure predictions compared 
to neuro-fuzzy and multivariate regression models. Almheiri, 
Meguid, and Zayed (2021) developed a deep neural network 
framework to predict the risk index of pipe failure considering 
the effects of different factors including seasonal variation, 
chlorine content and traffic conditions. Fan et al. (2022) exam
ined the performance of five different machine-learning algo
rithms in predicting pipe failures, including LightGBM, ANNs, 
Logistic Regression, K-Nearest Neighbors (KNNs) and Support 
Vector Classification for pipe failure prediction. Other methods 
examined in the literature include graph convolutional neural 
network-integrated deep reinforcement learning (Fan, Zhang, 
and Infrastructure 2022).

In addition to predictive modeling, a few studies focused on 
the exploratory analysis of pipe failure data with the aim of 
identifying unusual (i.e. non-random) patterns of pipe failure 

(Christodoulou et al. 2012; de Oliveira et al. 2011b; de Oliveira, 
Garrett, and Soibelman 2011a; Oliveira, Garrett, and Soibelman  
2009). These studies focused primarily on spatial clustering 
analysis to reveal regions within the WDI characterized by 
particularly high/low failure rates. Although such analysis 
enables examining the dependence of the failure rates within 
these critical regions on the local characteristics of the WDI, 
limited attempts have been made in previous literature to 
leverage the useful outcomes provided by clustering analysis 
in the development of failure prediction models. In a recent 
study, Chen and Guikema (2020) explored whether the use of 
spatial clusters as an explanatory variable can improve the 
accuracy of pipe break machine learning models. In this 
study, results of the clustering analysis were added as one of 
the explanatory variables in the machine learning models, 
which overall lead to improving the accuracy of the models. 
A similar approach was adopted by Aslani, Mohebbi, and 
Axthelm (2021), where the results of spatial clustering were 
added as independent variables to improve the predictions of 
machine learning failure models. Additionally, Kakoudakis et al. 
(2017) implemented K-means clustering to partition the train
ing data for EPR pipe failure models.

While these attempts have shown the value of leveraging 
the outcomes of spatial clustering analysis in improving the 
accuracy of failure prediction models, a few important ques
tions remain unanswered. First, in most of these studies, the 
results of the clustering analysis were included in the set of 
explanatory variables used to develop the models. However, 
a different way of implementing the results of clustering ana
lysis is by developing separate models for different clusters. The 
rationale for this is that failure patterns within different clusters 
are driven by factors that may potentially be different from 
those driving the failures in other clusters. Hence, better failure 
prediction can be achieved by using different sets of explana
tory variables to predict failure rates in different clusters. 
Second, the characteristics of the WDI that serve as failure 
predictors (e.g. pipe material and age) may themselves exhibit 
unique spatial patterns. These patterns are inherently attribu
ted to the way WDIs evolve to accommodate population 
growth and cities’ expansion. Such spatial patterns exhibited 
by failure predictors have generally been ignored by previous 
studies, which can potentially bias the estimation of the pre
dictive models by over- or understating the importance of the 
predictors (Chi and Zhu 2008).

In a recent study, the use of spatial autocorrelation analysis 
(SAA) was applied for the identification of pipe failure patterns 
by revealing the locations and statistical significance of hot- 
and cold-spot clusters of pipe failures (Abokifa and Sela 2019). 
Building upon this recent work, this study proposes an inte
grated approach that couples spatial clustering analysis with 
predictive pipe failure modeling. The contributions of this study 
are (1) proposing a framework for developing cluster-specific 
models that are locally tailored to incorporate different sets of 
predictors for different clusters, (2) developing a novel 
approach for explicitly accounting for spatial patterns exhibited 
by failure rate predictors (e.g. pipe age and material) in the 
development of the failure prediction models through the 
inclusion of spatially lagged predictors (SLPs) and (3) present
ing an integrated framework through which pipe-failure 
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records collected over a short time period (3 years) can be 
leveraged in extracting useful information that can aid in 
asset management operations of a large metropolitan water 
utility.

Methodology

Overview

Given information about the layout and characteristics of the 
pipe network, and the locations of historical pipe failures, the 
proposed approach involves three main steps. First, local indi
cators of spatial association (LISA) are employed to identify 
hotspot and coldspot clusters of pipe failure and to verify 
their statistical significance. Second, predictive models are con
structed to develop relationships between annual failure rates 
(AFRs) and pipe characteristics in each of the identified hot
spot/coldspot clusters, while explicitly accounting for spatial 
patterns exhibited by failure predictors. To this end, the perfor
mance of eight different statistical learning methods that repre
sent a wide array of linear and nonlinear multi-parameter 
functions of different complexities are compared, and the best- 
performing model is selected. Third, cluster-specific prediction 
models are used to assess the impact of different pipe RoR 
strategies on reducing the AFR.

Given the short time span of the failure dataset, individual 
pipe failures are aggregated, and the prediction models are 
constructed for small groups of pipes. This is done by first 
dividing the domain of the WDI into a number of zones that 
can either follow the layout of a regularly spaced grid (e.g. 
square/rectangular cells), or have irregularly shaped bound
aries based on pre-defined pressure/service zones or zip 
codes. The AFR for each zone is calculated by dividing the 
total number of reported failures within the zone boundaries 
by the total length of pipes by the time period of the study (i.e. 
breaks/(km.year)). Pipe characteristics, including age, diameter, 
length and materials of pipes are extracted from the network 
GIS files, and their mean values are computed for each zone to 
serve as the set of candidate explanatory variables in the pre
dictive models. Depending on the size of the failure dataset, 
and the time span over which it was collected, the proposed 
framework can be flexibly applied at any desired level of spatial 
resolution for making pipe RoR decisions.

Spatial clustering analysis

Local Indicators of Spatial Association
Spatial association (autocorrelation) analysis (SAA) examines 
the degree to which a specific process of interest is correlated 
to itself in space by assessing the relationship between the 
observed value of the phenomenon at any location and the 
values of the same phenomenon at adjacent locations 
(Legendre 1993). Here, local indicators of spatial association 
(LISA), based on Local Moran’s I index (Anselin 1995), are 
employed to reveal spatial clusters of pipe failures based on 
the observed AFR in each zone. For any zone i, the Ii index is 
calculated as (Anselin 1995) 

Ii ¼
yi � �y

s2

XN

j¼1;j�i

wij yj � �y
� �

(1) 

where N is the number of zones; yi and yj are the observed 
values of the AFR at zone i, and its neighboring zone j, 
respectively; �y and s are the mean and standard deviation 
of the observed AFR across all zones; and wij is the spatial 
weight assigned to the connection between zones i and j, 
which can take any value in the range [0,1]. Zones i and j are 
considered ‘neighbors’ if the Euclidian distance between their 
centroids is less than a selected threshold distance (dthr). For 
neighboring zones, the pairwise weight is positive, while 
(wij ¼ 0) for non-neighboring zones. More discussion on 
how the spatial weights are formulated is provided in section 
S1 of the supporting information (SI).

The value of Ii can range anywhere between [−1, 1]. For 
zones where Ii > 0 (i.e. positive autocorrelation), neighboring 
zones have similarly high or low AFR, and hence zone i is 
considered part of a cluster. For zones where Ii < 0 (i.e. negative 
autocorrelation), zone i is considered an outlier since neighbor
ing zones have dissimilar AFRs. Zones belonging to clusters are 
further examined to reveal whether the observed AFRs within 
the zone itself and within neighboring zones are above or 
below the mean AFR across all zones. Accordingly, cluster 
zones are classified into either high-high (HH) zones, which 
are zones with high AFR in a high AFR neighborhood, or low- 
low (LL) zones which are the exact opposite. Finally, hotspots 
are defined as clusters of neighboring HH zones, while cold
spots are clusters of neighboring LL zones.

Statistical significance testing
To test the statistical significance of the identified clusters/out
liers, a p-value is computed as a test statistic of the null hypoth
esis that the observed spatial pattern is simply the outcome of 
spatial randomness (i.e. the pipe failure occurs randomly across 
the study domain). In order to compute the p-value for any 
zone (pi), the distribution of Ii at the zone under the null 
hypothesis needs to be known. To avoid making any assump
tions about the distribution (e.g. normal distribution), a set of r 
random permutations is generated. For each permutation, the 
observed AFR values for all zones (except zone i) are randomly 
shuffled across the domain, and the Ii index is recalculated. This 
process generates a distribution of Ii values that represent the 
null hypothesis of spatial randomness for each zone. The 
p-value is calculated as pi ¼ m þ 1ð Þ= r þ 1ð Þ, where m is the 
number of instances from the generated distribution that are 
greater than the observed Ii index. The smaller the value of pi, 
the higher the statistical significance of the identified cluster/ 
outlier for zone i. To prevent the potential inflation of false- 
positive rates due to multiple comparisons, the p-values are 
corrected by means of the False Discovery Rate (FDR) method 
of Benjamini and Hochberg (1995). A significance level is then 
imposed by selecting a cutoff p-value above which the identi
fied clusters/outliers are deemed non-significant. The results 
reported in this work consider a significance level of 0.01 
using a set of r ¼ 999 random permutations.
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Predictive modeling and analysis

Statistical learning methods
A wide range of supervised statistical learning methods exists 
with different degrees of complexity and interpretability 
(Obringer and Nateghi 2018). These methods can be broadly 
classified into parametric models and non-parametric models 
depending on whether or not the relationship between the 
response variable and the predictors is assumed to follow 
a specific function (James et al. 2013). Here, the capabilities of 
eight different models are tested to compare the performance 
of a wide variety of parametric and non-parametric methods for 
the prediction of the AFR. The tested models include four 
parametric-linear and four data-driven non-parametric learning 
methods as listed in Table 1.

The first class of models tested herein comprises four para
metric-linear models, which all define the relationship between 
the AFR and the predictors as a multiple linear regression (MLR) 
function but use different procedures for estimating the regres
sion parameters, namely the non-regularized ordinary least 
square (OLS) estimation, the l 1-regularized least absolute 
shrinkage and selection operator (LASSO) estimation 
(Tibshirani 1996), the l 2-regularized ridge (RD) estimation 
(Hoerl and Kennard 1970) and the mixed l 1,l2-regularized 
elastic-net (EN) estimation (Zou and Hastie 2005). The second 
class of models tested in this study comprises four non- 
parametric models, namely support vector regression (SVR) 
(Smola and Schölkopf 2004), random forest (RF) regression 
(Liaw and Wiener 2002), artificial neural network (ANN) regres
sion (Specht 1991) and K-nearest neighbor (KNN) regression 
(Altman 1992). Details on the mathematical formulations of the 
examined models can be found in section S2 in the SI.

For all eight models, the response variable (yi) is the 
observed AFR at any zone i, and is considered a function of 
a set of M predictors xi ¼ xi;1; . . . ; xi;M

� �
that represent the 

characteristics of the WDI within the zone (e.g. mean age of 
pipes, the fraction of certain pipe materials, etc.). The entire 
dataset comprising the AFR and its predictors in all the zones is 
lumped as (y; X), where y is the N � 1 vector of the observed 
AFR in all zones: y ¼ y1; . . . ; yNf g; and X is the N � M matrix of 
predictors for all zones: X ¼ x1; . . . ; xN½ �. The values for the AFR 
and each of the predictors are first standardized to have a zero 
mean and a standard deviation of 1 before developing the 
predictive models.

The rationale for testing parametric-linear models is that 
they are generally easy to construct and that they seamlessly 
lend themselves to statistical inferencing (Obringer and 

Nateghi 2018). Nevertheless, since the dependencies in real 
data are rarely of a linear nature, such linear models possess 
limited flexibility as they often fail to fully capture the complex
ity of the true relationships. On the other hand, non-parametric 
models offer a great deal of flexibility in representing non-linear 
relationships since they directly harness the available data to 
approximate the relationships. Yet, data-driven non-parametric 
learning methods are particularly data-intensive and are gen
erally more prone to overfitting than parametric models (James 
et al. 2013).

Model performance assessment and tuning
The full dataset (y; X) is randomly split into 70% for training and 
30% for validation of all the aforementioned models. A two- 
sample Kolmogorov–Smirnov (K–S) test is conducted to verify 
whether the training and validation sets follow similar distribu
tions. Performance assessment of all the models was based on 
two metrics, namely the mean absolute error (MAE) and the 
root mean squared error (RMSE). These error metrics were 
calculated for both the in-sample (training) data and out-of- 
sample (validation) data to asses both the explanative ability 
and the predictive accuracy of the models, respectively.

Except for the OLS model, each of the predictive models 
tested herein comprises one or more hyper-parameter that 
requires tuning. For the parametric-linear models LASSO and 
RD, the hyper-parameters are either the λ1 or λ2 regularization 
parameters, while for EN, both regularization parameters are 
assumed to be equal (in this study) thus yielding one hyper- 
parameter (λ1 ¼ λ2 ¼ λ). Non-parametric models typically com
prise more than one hyper-parameter, which makes tuning 
them a rather complex task. Herein, only one hyper-parameter 
is tuned for each of the non-parametric models, namely the 
tolerance margin (ε), the number of trees (T), the number of 
neurons in the hidden layers (B) and the number of nearest 
neighbors (K), for the SVR, RF, ANN and KNN models, respec
tively. Other hyper-parameters (e.g. number of hidden layers in 
ANN, tree depth in RF) are kept constant as explained in section 
S2 in the SI. To tune the hyper-parameters and reduce over
fitting of all the models, a cross-validation process is implemen
ted (James et al. 2013). First, a range of hyper-parameter 
settings is generated for each model by enumeration. Then, 
using 10-fold cross-validation, each hyper-parameter setting 
was iteratively trained with 90% of the training data and then 
tested on the remaining 10%, and the average mean squared 
error (MSE) of the testing was calculated for the 10 trials. The 
hyper-parameter setting that resulted in the minimum average 
MSE was selected.

Table 1. Statistical learning methods examined for the prediction of the AFR.

Class Model Full name Description

Parametric- 

linear

OLS Ordinary least squares Multivariate linear regression model
LASSO Least absolute shrinkage and 

selection operator

l1-norm extended OLS model to induce sparsity and avoid overfitting

RD Ridge l2-norm extended OLS model to induce sparsity and avoid overfitting
EN Elastic net Joint l1, l2-norm extended OLS model to induce sparsity and avoid overfitting

Non- 

parametric

SVR Support Vector Regression A kernel-based regression method where the cost function ignores the errors within a specific tolerance margin
RF Random forest An ensemble-based model averaging the output of multiple bootstrapped regression trees
KNN K-nearest neighbor A similarity-based regression model that returns the average of the K nearest neighbors from the training space
ANN Artificial neural network A multilayer perceptron regression model where each neuron computes a non-linear function on the weighted average 

of neurons in the previous layer
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Incorporating spatial influence
The effects of spatial dependence are incorporated into the 
predictive models by including spatially lagged predictors 
(SLPs) for all zones. The SLPs are computed as the weighted 
sum of the corresponding predictors observed at neighboring 
zones. For instance, if the predictor of interest is the mean age 
of pipes in the zone, the corresponding SLP is calculated as the 
weighted sum of the mean ages of pipes within neighboring 
zones using the spatial weights (wij) as described in section S1. 
The intuition behind including SLPs is that the observed AFR at 
any zone is not expected to be exclusively dependent on the 
pipe characteristics within the zone, but will also depend to 
some degree on the characteristics of pipes within adjacent 
zones. Section S3 in the SI provides additional mathematical 
details on the special case of incorporating SLPs in the para
metric-linear models represented by the MLR function, which 
gives the spatial cross-regressive model (Anselin 2002; Florax 
and Folmer 1992).

Cluster-specific prediction models
Finally, the outcomes of the clustering analysis are leveraged to 
further improve the predictive accuracy of the prediction mod
els by developing separate cluster-specific models for the hot
spot and non-hotspot zones of the WDI. The rationale here is 
that each model can better predict the AFRs within its specific 
regions by accounting for the local characteristics of each 
cluster. To develop the cluster-specific prediction models, the 
dataset (y; X) is divided into two subsets representing the zones 
that belong to the hotspot cluster and those that do not, and 
then train two separate models for the hotspot zones using the 
corresponding (yHS; XHS) subset, and the non-hotspot zones 
using the (yNHS; XNHS) subset. Using the same breakdown of 
data (70% for training and 30% for validation), the explanative 
ability and predictive accuracy of the cluster-specific models 
are compared to those of a single network-wide model using 
the same performance metrics, i.e. MAE, and RMSE.

Asset management decision-making

After fitting the cluster-specific models, the developed frame
work is implemented to assess the potential advantage of 
adopting proactive instead of reactive pipe repair or replace
ment (RoR) strategies. A reactive strategy is simulated by 
a scenario in which the utility maintains the status quo of 
targeting pipes with previously reported breaks for RoR. 
Alternatively, a proactive strategy that leverages the outcomes 
of the framework presented herein to target certain pipes 
within the critical hotspot regions for RoR is proposed. The 
developed prediction models are then used to assess the out
comes of each of the proposed strategies by examining the 
expected reduction in the AFR across the WDI for each strategy.

Results and Discussion

Model application

The proposed framework is demonstrated on a dataset of pipe 
failures retrieved from the routine maintenance records of 
a large metropolitan water utility in the U.S. supplying 

approximately 150 MGD of treated drinking water to over 
one million consumers. The WDI under study comprises over 
8,625 km of pipes and spans 1,400 km2. A detailed description 
of the physical pipe characteristics, including the length, dia
meter, approximate age and material of the pipes, is available 
in section S4 in the SI. The failure dataset consists of 5,506 
records of pipe failures that were repaired by the utility over 
a period of 36 months from September 2016–2019. Each failure 
record comprises the time of initial report and repair comple
tion, and the geographic location of the failure. The spatial 
distribution of the pipe failures and the layout of the case 
study WDI is depicted in Figure S1.

As mentioned above, the domain of the WDI is first divided 
into a set of zones to overcome the short time-period of the 
failures dataset. Herein, a regular grid of square-shaped zones 
with the size of 500 m × 500 m (0.25 km2) was implemented. 
This resulted in breaking down the WDI domain into 2655 
zones with at least 1 km of pipes/zone, of which 1,400 zones 
had at least one failure event during the 3-year period. The 
number of failures per zone ranged from 1 to 30 failures/zone, 
and the AFR ranged from 0.04 to 1.98 failures/(km.year). The 
distribution of the AFR across the zones of the studied WDI is 
featured in Figure 1(a).

Pairwise spatial weights (wij) constitute a key component of 
both the clustering analysis and predictive modeling con
ducted in this study. As explained above, these weights are 
a function of the threshold distance (dthr) that determines the 
span of spatial effect for the different zones that is being 
accounted for in the analysis. Hence, dthr needs to be carefully 
selected in order to properly capture the spatial patterns exhib
ited by the AFR. Different values for dthr in the range of 2–16 km 
were examined, and a dthr ¼ 10km was found to capture the 
spatial pattern in the AFR with the highest statistical signifi
cance. Section S5 in the SI provides a detailed analysis of the 
selection of the threshold distance.

Spatial clustering analysis

The first step of the proposed approach involves identifying 
clusters of exceptionally high and low failure rates. Following 
the approach described above, local Moran’s I indices are cal
culated according to Eq. 1 to reveal hotspot/coldspot clusters 
of pipe failures. Out of the 2,655 zones, the calculated Ii is 
positive for 1,726 zones (65%) and negative for 929 zones 
(35%), which indicates that on a global level, the failure data 
is spatially clustered (i.e. neighboring zones have similarly high 
or low AFR) instead of dispersed. Testing for statistical signifi
cance (with r ¼ 999 random permutations and a significance 
level of 0.01 on the FDR corrected p-values), 492 zones were 
found to belong to statistically significant hotspot clusters and 
449 zones belonged to statistically significant coldspot clusters 
(of which, only 62 have a non-zero AFR). Figure 1(b) depicts the 
identified hotspot and coldspot clusters. A cluster of hotspot 
zones is identified at the central/north-central part of the WDI 
and a relatively smaller cluster of coldspot zones is identified at 
the southeastern part of the WDI.

On average, hotspot zones have an AFR of 0.58 breaks/(km. 
year), which is ~1.53X the average AFR observed across all 
zones of the WDI (0.38 breaks/(km.year)), while those of the 
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coldspot clusters have an average of 0.12 breaks/(km.year) 
(zero AFR zones excluded). It is important to note that such 
patterns cannot be easily detected by simply visualizing the 
AFR in each zone (Figure 1(a)). This shows the necessity for 
employing a spatial clustering approach, like the LISA imple
mented herein, to reveal the locations of the clusters, and more 
importantly, to test their statistical significance. Furthermore, 
the significant variability in the AFR observed across the zones 
of the different clusters suggests that different factors might be 
influencing pipe failure in each of the clusters. Hence, to accu
rately predict failure rates, different models need to be inde
pendently developed for each cluster in order to account for 
the best set of local predictors. This is particularly important for 
the zones of the hotspot cluster experiencing the highest fail
ure rates across the WDI, which makes them natural candidates 
for proactive pipe RoR programs.

Predictive modeling of the failure rates

Non-spatial models
First, all eight models listed in Table 1 are trained to predict the 
AFR in all 1,400 zones using a set of seven predictors, specifi
cally mean age (Tavg), mean diameter (Davg), total length (Ltot) 
and the fraction of materials by pipe length in each zone, 
including cast iron CI (fCI), ductile iron DI (fDI), polyvinyl chloride 
PVC (fPVC) and asbestos cement AC (fAC). The entire dataset 
comprising the AFR and its predictors in all 1,400 zones (zero 
AFR zones excluded) is randomly split into 980 zones for train
ing (70%) and 420 for validation (30%). A two-sample K-S test 
statistic of 0.05, with a p-value of 0.44, is obtained for the 
distributions of the AFR in the training and validation samples, 
which indicates that the distributions of both samples are 
similar. This can also be seen in Figure S2 in the SI, which 
shows that both samples exhibit similar cumulative distribution 
functions.

Using the training data, the hyper-parameters for all eight 
models were tuned by means of a 10-fold cross-validation test. 
The average MSE across the tested ranges for each of the 
hyper-parameters is depicted in Figure S3, where the hyper- 
parameter settings that yielded the minimum average MSE are 
selected for further analysis. Table 2 lists the two performance 
assessment metrics, namely MAE, and RMSE, for all eight 

models for both the training and validation runs. With the 
exception of the RF model, both the parametric-linear and non- 
parametric models gave comparable training results. All mod
els, with the exception of RF, do not display a strong fit to the 
AFR data, with the non-parametric models showing a slightly 
better fit than the linear-parametric models as indicated by the 
slightly smaller values for the MSE and RMSE. On the other 
hand, RF is the best-performing model for the training run.

Despite the slightly better training performance shown by the 
non-parametric models, their performance significantly worsens 
when they are used to predict the out-of-sample AFRs. The RF 
model shows the biggest drop in performance between the 
training and validation runs, followed by the SVR model and 
the KNN model. On the other hand, linear-parametric models 
show a relatively more consistent performance across the train
ing and validation runs, which indicates that they are less prone 
to overfitting compared to non-parametric models. Taken 
together, the results listed in Table 2 indicate that, despite their 
flexibility in fitting complex functions, complex data-driven mod
els are not necessarily more accurate when predicting the out-of- 
sample AFR. On the other hand, parametric-linear models can 
still display a comparable predictive capability for out-of-sample 
data despite their intrinsic simplicity.

Spatial models
The distribution of pipe material and age in the studied WDI 
exhibits noticeable clustering, which can be seen from Figure 2 
that depicts the pipe material of the highest fraction and the 
mean age of pipes in each zone. Figure 2 shows that the old CI 
pipes are primarily concentrated in the central part of the 

Figure 1. (a) Distribution of the AFR for a zone size of 0.25 km2; and (b) Hotspot (red) and coldspot (blue) clusters of pipe failures identified by LISA. Gray zones 
represent areas that are neither statistically significant hotspot nor coldspot zones. Blue lines represent the pipes.

Table 2. Performance assessment of the network-wide non-spatial models.

Model

Training Validation

MAE RMSE MAE RMSE

Parametric-linear OLS 0.628 0.892 0.666 0.899
LASSO 0.628 0.892 0.666 0.899
RD 0.628 0.892 0.666 0.899
EN 0.628 0.892 0.666 0.899

Non-parametric RF 0.492 0.678 0.642 0.906
ANN 0.623 0.886 0.659 0.898
SVR 0.568 0.834 0.632 0.894
KNN 0.604 0.860 0.663 0.905
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network, while newer PVC pipes are more distributed across 
the boundaries of the WDI. Such spatial structure in the pre
dictors needs to be accounted for in the predictive models to 
avoid biasing the estimation of their parameters and thus 
compromise their accuracy and predictive ability.

To examine the significance of incorporating the spatial 
structure of the data into the development of the prediction 
models, seven additional predictors representing the spatial 
lags of each of the original predictors were added to the 
seven original predictors mentioned in the previous section. 
Following the same procedure described in the previous sec
tion, all eight spatial models were trained using 70% of the 
data, tuned by means of a 10-fold cross-validation test, and 
then tested using the remaining 30%.

Table 3 lists the two performance assessment metrics for all 
eight spatial models. By comparing the results to those of the non- 
spatial models (Table 2), it can be seen that the inclusion of the 
SLPs slightly enhances the performance of all eight learning 
methods for both the training and validation runs. This can be 
seen from the consistent, albeit small, decrease in the MAE and 
RMSE before and after the inclusion of SLPs. Furthermore, it is 
important to note that the addition of the SLPs does not result in 
overfitting as evidenced by the consistent decrease in the errors 
for the validation runs in Table 3 compared to those in Table 2. 
Overall, the results listed in Table 3 indicate that controlling for the 
spatial structure in the AFR predictors improves the accuracy of 
predictive models. This becomes particularly important when 
these models are implemented for making pipe RoR decisions as 
displayed in later sections. The results also assert that parametric- 
linear models are generally less prone to overfitting than non- 
parametric models and that non-parametric show only a slightly 

better prediction accuracy for the out-of-sample data despite their 
superior performance of the non-parametric models with the in- 
sample data.

Cluster-specific models
Having included the spatial effects in the formulation of the 
predictive models, the outcomes of the clustering analysis we 
used to further improve the explanatory and predictive abilities 
of the prediction models. To this end, the regression dataset is 
divided into two subsets representing the zones that belong to 
hotspot and non-hotspot clusters, and then develop two inde
pendent sets of spatial models for each dataset separately. 
Table 4 lists the three performance assessment metrics for all 
eight cluster-specific models. By comparing the results to those 
of the network-wide spatial models (Table 3), it can be clearly 
seen that the incorporation of the clustering analysis outcomes 
in the development of prediction models enhances the perfor
mance of all eight learning methods for both the training and 
validation runs. On average, the training MAE and RMSE of the 
cluster-specific models are ~20% and ~16% lower than the 
network-wide spatial models, respectively. A similar enhance
ment is also observed for the validation run, where the cluster- 
specific models show an ~18% and ~12% reduction in the MAE 
and RMSE, respectively, compared to the network-wide spatial 
models. Taken together, the results in Table 4 indicate that the 
performance of the cluster-specific models is noticeably higher 
than that of the network-wide models, which can be attributed 
to the fact that cluster-specific models are more capable of 
capturing the proper influence of various predictors in the 
different sections of the WDI as explained in the following sub- 
section.

Figure 2. (a) Distribution of the mean pipe age in each zone; (b) Pipe material with the highest fraction in each zone.

Table 3. Performance assessment of the network-wide spatial models.

Model

Training Validation

MAE RMSE MAE RMSE

Parametric-linear OLS 0.625 0.887 0.660 0.897
LASSO 0.624 0.884 0.663 0.897
RD 0.624 0.885 0.662 0.897
EN 0.620 0.882 0.659 0.895

Non-parametric RF 0.484 0.658 0.623 0.882
ANN 0.610 0.869 0.650 0.894
SVR 0.566 0.829 0.641 0.894
KNN 0.587 0.852 0.643 0.893

Table 4. Performance assessment of the cluster-specific spatial models.

Model

Training Validation

MAE RMSE MAE RMSE

Parametric-linear OLS 0.528 0.772 0.562 0.797
LASSO 0.528 0.772 0.561 0.797
RD 0.529 0.774 0.562 0.797
EN 0.527 0.770 0.560 0.796

Non-parametric RF 0.374 0.515 0.536 0.796
ANN 0.512 0.758 0.545 0.798
SVR 0.461 0.716 0.535 0.795
KNN 0.516 0.763 0.549 0.808
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Model Selection and Predictor Importance
In addition to knowing which model performs the best, it is 
crucial to understand the relative importance of the predictors 
on the model predictions. Since the data for the predictor 
variables is standardized, the magnitudes of the estimated 
coefficients by the parametric-linear models provide a direct 
means for interpreting the relative significance of each of the 
predictors. This is not the case for non-parametric models that 
generally require extrinsic tests to examine the relative impor
tance of the predictors (e.g. by examining the decrease of 
accuracy in predictions on the out-of-bag samples when 
a given predictor is excluded (James et al. 2013)). 
Furthermore, both LASSO and EN models are equipped with 
the capability of predictor selection thanks to the l1 regulariza
tion component that modifies the estimation to achieve spar
sity. As the value of λ1 increases, the sparsity objective becomes 
more stringent and hence the estimated regression coefficients 
shrink until reaching zero at different λ1 values, at which the 
corresponding predictors are deselected from the model. As 
previously described, the minimum set of predictors that best 
explain the AFR can be obtained by setting the l1 regularization 
parameter ðλ1) using a 10-fold cross-validation test.

To evaluate the overall performance of the examined fore
casting approaches, prediction accuracy should not be adopted 
as the sole evaluation criteria. Instead, careful attention should 
also be given to the structural stability and complexity of the 
forecasting model (Boland, Baumann, and Dziegielewski 1981). 
The consistent drop in the performance of the non-parametric 
models for the out-of-sample data compared to the training 
data as observed in Tables 2–4, signals a concerning deficiency 
in the stability of these models compared to parametric-linear 
models. Furthermore, the slightly better in-sample perfor
mance exhibited by the non-parametric models does not 
make up for the loss of comprehensibility and credibility that 
accompanies their significant complexity. Hence, given its 
interpretability, stability and simplicity, the cluster-specific EN 
model is used for the remainder of the analysis in this study 
despite its slightly lower in-sample accuracy compared to the 
cluster-specific non-parametric models. Figure 3 depicts the 
observed versus modeled AFR for the cluster-specific-EN 

model fitted separately to the hotspot (HS) zones (red triangles) 
and non-hotspot (NHS) zones (blue circles) of the WDI.

Table 5 lists the regression coefficients determined by the 
network-wide spatial-EN model fitted to all the zones in the 
studied WDI together with the coefficients of the cluster- 
specific EN models fitted separately to the hotspot and non- 
hotspot zones. For the network-wide model, the fraction of AC 
pipes appears to have the largest positive coefficient among 
the covariates (+0.33), followed by the mean age of pipes 
(+0.15) and the fraction of CI pipes (+0.09). The total length of 
pipes has the most negative coefficient (−0.17) followed by the 
average diameter (−0.12). The spatial-EN estimation renders 
zero coefficients for two out of the seven predictors, namely 
the fraction of PVC pipes (fPVC) and fraction of DI pipes (fDI). One 
possible explanation for such outcome is collinearity among 
the predictors, which happens whenever two or more predic
tors are linearly dependent (Dormann et al. 2013). In the pre
sence of strong collinearity between predictors, the l1 
regularization parameter ðλ1) in the EN model leads to the 
selection of only a subset of the collinear predictors, typically 
the ones whose absolute coefficients are the largest, and dis
cards the others. Multiple metrics can be used to check whether 
the set of exogenous variables exhibit some form of collinearity 
(Dormann et al. 2013). Herein, the pairwise Pearson correlation 
coefficient (PCC) and Spearman’s rank correlation coefficient 
(SRCC) are calculated for each pair of predictors, and the results 
are depicted in Figure S4 of the SI. The value of PCC and SRCC 
can range anywhere from +1 for perfect positive correlation to 
−1 for perfect negative correlation, while a zero value indicates 

Figure 3. Observed versus predicted AFR (standardized) for the cluster-specific EN model fitted separately to the hotspot zones (red triangles) and non-hotspot zones 
(blue circles) for the (a) training and (b) validation datasets.

Table 5. Regression coefficients estimated by the EN model.

Predictor

EN coefficient

All zones Hotspots Non-hotspots

fCI +0.09 +0.22 0.00
fPVC 0.00 0.00 0.00
fDI 0.00 0.00 0.00
fAC +0.33 +0.54 +0.28
Ltot −0.17 −0.16 −0.18
Tavg +0.15 +0.12 +0.09
Davg −0.12 −0.17 −0.06
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no correlation. As can be seen from Figure S4, Tavg exhibits 
strong negative correlation with fPVC (PCC = −0.57, 
SRCC = −0.52), and with fDI (PCC = −0.44, SRCC = −0.46). 
Furthermore, both fPVC and fDI exhibit negative correlation with 
fCI. Nonetheless, it is important to note that this result is system- 
specific and is the mere outcome of the high degree of cross- 
correlation between pipe age and material in the tested WDI, 
which leads the spatial-EN algorithm to exclude fPVC and fDI 

from the model. While this is expected since CI and AC pipes 
have traditionally been used in WDI before the introduction of 
DI and PVC pipes, this might not necessarily be the case in other 
WDIs.

The enhanced performance of the cluster-specific models 
compared to the network-wide spatial models can be attribu
ted to the fact that the contribution of various predictors varies 
between different zones of the WDI as seen from the estimated 
EN coefficients listed in Table 5. For the HS model, the highest 
two coefficients correspond to the fractions of AC and CI pipes, 
which implies that these two variables affect pipe failure in HS 
zones the most. On the other hand, zero coefficients are ren
dered for the fraction of CI pipes in the NHS model, which 
implies that replacing CI pipes in the non-hotspot zones will 
not have as a significant effect as would replace the same 
amount of CI pipes in HS zones. The following section further 
demonstrates how water utilities can leverage such insights in 
designing proactive pipe RoR programs to effectively reduce 
pipe failure rates in the WDI.

Impact on Infrastructure Asset Management

The proposed unified framework can help water utilities better 
manage their assets by targeting pipe RoR decisions. By identi
fying HS zones with elevated failure rates, the utility can direct 
its limited resources into inspecting the pipes in these zones. 
Moreover, the results of the prediction models indicate the 
relative importance of the different factors driving pipe failures 
in different zones. To further demonstrate this, three hypothe
tical scenarios for pipe replacement are simulated. In the first 
scenario, the utility is assumed to preserve the status-quo of 
making replacement decisions in a reactive manner by repla
cing pipes that experience failure events. In the second sce
nario, the utility is assumed to have an understanding of the 
spatial clustering exhibited by pipe failures and to also possess 
a prediction model for the AFR in the different clusters, i.e. HS 
and NHS. Based on this knowledge, the utility pursues 
a preventive pipe replacement program by proactively repla
cing the pipes in the areas experiencing high failure rates. 
Furthermore, since the fraction of AC and CI pipes has the 
highest variable importance in the cluster-specific EN model 
for the HS model (Table 5), the utility uses this knowledge to 
replace only AC and CI pipes within the hotspot zones. To 
elucidate that the impact of replacing the pipes within the HS 
zones is not merely an outcome of the fact that old AC and CI 
pipes are being replaced but also the location of these pipes, 
a third scenario in which the same length of AC and CI pipes is 
replaced in the NHS zones is considered.

In the first scenario (reactive strategy), the utility hypotheti
cally replaces 610 km of pipes that have incurred at least one 

failure event during the study period of 36 months. In 
the second scenario (proactive strategy), the utility replaces 
an equivalent 610 km of AC and CI pipes exclusively from the 
HS zones. In the third scenario, the utility replaces an equivalent 
pipe length of AC and CI pipes exclusively from the NHS zones. 
In all scenarios, the pipes are replaced with new PVC pipes of 
the same length. To assess the impact of all scenarios on 
reducing the AFR, the new pipe characteristics are recalculated 
for all the zones, and the cluster-specific EN models fitted 
previously to the HS and NHS zone models are used to predict 
the new AFR for each scenario.

Figure 4 depicts the gradual reduction in the AFR attained 
by the three pipe replacement strategies, where line plots and 
shaded envelopes represent the mean and the min-max range 
of 100 different realizations for replacing the pipes in a different 
order, respectively. By replacing only the pipes that have 
incurred previous failures (blue line), the mean AFR for the 
entire network drops to 0.354 breaks/(km.year) (−7%), while 
the proactive pipe replacement approach (red line) would 
reduce the mean global AFR to 0.340 breaks/(km.year) 
(−10%). The third scenario (green line) shows almost no 
improvement for proactively replacing AC and CI pipes in the 
non-hotspot zones, which asserts the fact that the spatial loca
tion of the replaced pipes plays as significant role as their age 
and material, and hence emphasizes the importance of spatial 
clustering as an integral component of the presented 
approach.

Data Limitations and Recommendations for Future 
Development

Although the failure dataset implemented herein is of a short 
time-horizon (3 years), the proposed approach was still capable 

Figure 4. Reduction in the mean global AFR attained by targeted replacement of 
AC and CI pipes in the hotspot zones (red-dashed) and non-hotspot zones (green- 
dotted), and reactive pipe replacement (blue-solid) in the entire WDI; shaded 
envelopes represent the min-max range of 100 different realizations.
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of providing useful information that can potentially aid in asset 
management operations. Nevertheless, with larger failure data
sets collected over longer time-periods, the presented 
approach can be enhanced as follows:

(1) The spatial resolution can be enhanced by developing 
failure prediction models for individual pipes instead of 
zones or regions if failure records are available for longer 
time-periods. For instance, failure data collected over 
multiple decades would typically comprise numerous 
pipes that incurred more than one failure event and 
can hence be used in developing survival models (e.g. 
PHMs) at the pipe-level. Following the approach pre
sented herein, the outcomes of the clustering analysis 
can be leveraged in developing such pipe-level models 
by constructing separate models for pipes in HS zones 
and NHS zones. Furthermore, spatially lagged predictors 
can also be included in these models, which can poten
tially enhance their performance as demonstrated 
herein.

(2) While the out-of-sample performance of the non- 
parametric models tested herein was noticeably worse 
than their in-sample performance, this can be primarily 
attributed to the small size of the failure dataset used to 
train these data-driven models. Furthermore, the perfor
mance of non-parametric models can be potentially 
enhanced by including more covariates (e.g. soil condi
tions, hydraulic parameters, traffic loadings and land 
use), and thus their strong capability to model complex 
non-linear relationships can be better harnessed.

(3) By using a dataset of failure records collected over 
a longer time-period, the temporal dimension can be 
introduced to the failure prediction models to account 
for the dynamic changes in the failure rates. Such tem
poral variations in the failure rate may stem from climatic 
changes in weather conditions and other time-dependent 
covariates. Furthermore, longer periods of data collection 
would enable the use of failure rates with higher temporal 
resolution. For instance, instead of aggregating failures at 
the yearly level as was done in this study, failure rates can 
be aggregated at the monthly/quarterly level. This would 
enable including important seasonal variables, such as 
temperature and precipitation, that are known to influ
ence pipe failure (Almheiri, Meguid, and Zayed 2020).

Conclusions

Water main failures in dense urban areas pose significant eco
nomic, social and environmental consequences as well as 
severe implications for public health. This study proposes an 
integrated computational framework that integrates spatial 
clustering analysis with predictive pipe failure modeling. The 
proposed approach integrates two main components: First, 
spatial autocorrelation analysis, based on the local index of 
Moran’s I, is implemented for identifying statistically significant 
hotspot and coldspot clusters of pipe failures. Second, statisti
cal learning methods are developed and tested for the predic
tion of pipe failure rates within the clusters based on the local 
characteristics of the infrastructure, while simultaneously 

accounting for the spatial patterns exhibited by these charac
teristics. Finally, the integrated approach is used for comparing 
different pipe replacement strategies in order to improve the 
efficacy of asset management decisions.

The framework is demonstrated on a short-term (36 months) 
dataset of pipe failures retrieved from the maintenance records 
of a real-life, full-scale metropolitan water utility in the United 
States. For the studied infrastructure, pipe failures were found 
to be significantly clustered, and the locations of pipe failure 
hotspot and coldspot clusters were successfully revealed. 
A strong degree of clustering was also exhibited by the char
acteristics of the pipe infrastructure, specifically pipe age and 
material. Key insights revealed by this study are (1) failing to 
account for the spatial patterns in the failure predictors reduces 
the accuracy of the non-spatial predictive models compared to 
their spatial counterparts, (2) the explanatory and predictive 
abilities of the spatial models further improved when the out
comes of the clustering analysis were leveraged to tailor these 
models to appropriately account for the local predictors in each 
cluster and (3) both linear-parametric and data-driven non- 
parametric models showed similar prediction accuracy for the 
out-of-sample data despite the better training performance 
exhibited by the more complex non-parametric models.

Although the proposed approach was demonstrated on 
a short-term failure dataset, it was still capable of providing 
useful information that can aid in guiding pipe rehabilitation 
decisions. As confidence in decision-making highly depends on 
the accuracy of failure prediction models, this work emphasizes 
the importance of reporting, collection and storage of pipe 
failure records for enhancing the efficacy of asset management 
operations. Future work should aim to apply the proposed 
approach to a larger pipe failure dataset to enhance the spa
tiotemporal resolution of pipe failure predictions. Furthermore, 
the incorporation of additional covariates, particularly time- 
dependent and dynamic variables, may enhance the predictive 
accuracy of the proposed approach.
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