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Aggregation of Water Networks

Technical Note
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Abstract: Hydraulic models of large water distribution networks can have thousands of components, and real-time simulation of these sys-
tems can be slowed down by their complexity. Several methods have been developed for which the size of the water network models can be
reduced while the hydraulic performance of the reduced systems remains very similar to the original model. Model reduction allows users to
model only components of interest, thus saving expensive computation time. However, while model reduction has been widely adopted for
control and optimization purposes, few tools are available to reduce models on command. This paper introduces MAGNets, an open-source
Python package capable of reducing and aggregating EPANET-compatible water models using the variable elimination reduction method. The
package allows the user to specify the operating point around which the model will be reduced, the nodes that must remain in the network, and
the maximum nodal degree of nodes removed. The reduced model preserves pressure heads of the original model with high accuracy and
results in faster running times. The reduction algorithm iteratively removes nodes from the full model and updates the adjacent nodal demands
and pipe properties until the final reduced model is achieved. To test the effect of the order of node removal on the size of the reduced model
and computational complexity, we tested three different strategies for reduction order. Results suggest that dynamically updating reduction
order greatly improves model performance compared to static and random orders. To increase usability, the Python package includes twelve
benchmark networks for testing and validation. MAGNets allows for the quick and efficient reduction of hydraulic models as a way to facilitate
time-sensitive tasks, such as real-time state estimation and control. DOI: 10.1061/ JWRMD5.WRENG-5486. This work is made available

under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

Water distribution systems convey water from sources to consum-
ers through a collection of pipes, pumps, and valves, spanning huge
geographical distances. Hydraulic models for large-scale urban sys-
tems can reach substantial size and contain thousands of nodes,
representing sources, storage tanks, junctions, and demand nodes,
and links that represent pipes, pumps, and valves. The distribution
of flow and head in a network are governed by mass balance and
energy conservation equations, as well as varied boundary condi-
tions and operating rules that complicate time-varying hydraulic
simulations of the network model. Being able to quickly and ac-
curately ascertain system flows and pressures of complex water net-
works in real-time can, therefore, prove to be difficult (Shamir and
Salomons 2008). Model reduction refers to the method of reducing
the size of a network model to an equivalent model with fewer com-
ponents and similar accuracy (Wang et al. 2022). Reduction of a
water network model can be achieved either through the aggrega-
tion and removal of components or by replacing the model with an
abstract (or black box) model that is calibrated to data derived from
the network itself (Maschler and Savic 1999; Krieg et al. 2018).
Here, we rely on the topological model reduction originally devel-
oped by Ulanicki et al. (1996), in which the reduced model contains
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fewer nodes and pipes, but retains the hydraulic behavior of the
original full model.

The operation and management of water distribution systems
heavily relies on hydraulic modeling, and several applications can
benefit from using reduced hydraulic models to decrease the com-
putational complexity of the underlying problem. For example, op-
timizing the system operation plan for a water distribution system
requires running multiple hydraulic simulations of the network
model, but often only a small portion of the simulation results are
required in the analysis (Maschler and Savic 1999). Hamberg and
Shamir (1988) recommend using reduced network models of vary-
ing sizes to test several alternatives in the preliminary planning
stages when designing water systems. Kumar et al. (2008) devel-
oped a graph-theoretic method to reduce the size of water network
models and, subsequently, the associated optimization problems to
assist real-time monitoring of benchmark networks. Shamir and
Salomons (2008) developed a method to optimize real-time oper-
ation of an urban water distribution system by employing reduced
models to simulate the system performance every hour.

Different model reduction methods have been developed to ob-
tain a reduced model that contains fewer governing equations while
maintaining the basic properties of the system (Ulanicki et al. 1996;
Broad et al. 2010; Deuerlein 2008; Saldarriaga et al. 2009; Anderson
and Al-Jamal 1995). The model reduction approach suggested by
Ulanicki et al. (1996) has been widely applied previously and relies
on the variable elimination method, in which the non-linear equa-
tions depicting the hydraulic dynamics of the water network are
linearized and then reduced through Gaussian elimination. The
properties of the reduced network can then be derived by converting
the remaining linearized equations back into non-linear form. The
variable elimination method allows the user to reduce the model to a
size of their choosing, while preserving the hydraulic behavior of
the original model within a range of operating conditions, i.e., that
the head and flow profiles of the reduced model are very similar to
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those of the original model. Preis et al. (2011) efficiently reduced a
large network in order to conduct real-time hydraulic state estima-
tion. Results from the study demonstrate that integrating network
data with hydraulic simulations of a reduced model allows for real-
time water demand forecasting with short computation times. Moser
et al. (2015) tested the variable reduction algorithm with different
reduction criteria in conjunction with a model falsification method-
ology to formulate a leak detection strategy for water distribution
networks. The study concluded that removing nodes from the model
based on the nodal degree provided both a good diagnostic perfor-
mance as well as reduced running time. Perelman et al. (2008) dis-
covered that reducing the size of a large system by half using the
variable elimination reduction method proved successful in preserv-
ing the hydraulics of the system and water quality characteristics, an
observation that could assist epidemiological assessments.

The objective of this work is to develop an open-source tool
for model reduction using the variable elimination reduction ap-
proach that can be further used in other applications that can benefit
from model reduction. This paper describes the Model reduction
and AGgregation of water Networks (MAGNets) Python package
(Thomas and Sela 2022), which aims to equip users with the capabil-
ity to quickly reduce a water network model to a hydraulically-
equivalent model with fewer components. MAGNets employs water
network tool for resilience (WNTR) (Klise et al. 2017) with the
EPANET (Rossman et al. 2020) engine to carry out water network
hydraulic simulation. In addition, we analyze the sensitivity of the
model reduction scheme in terms of solution quality and running
times as a function of the order of variable elimination to provide
guidelines for the user for reduced model customization. The pack-
age includes twelve benchmark networks for testing and validation
and selected results are shown in the “Results” section.

Methodology

MAGNets employs the variable elimination reduction method to
remove nodes and links from a water network model while retain-
ing control elements and elements that are of interest to the user
(Ulanicki et al. 1996). Users are able to run simulations of a water
network that can be significantly smaller in size than the original
network, thus considerably reducing run time. MAGNets function-
ality is briefly described below, and Fig. 1 summarizes the main
modeling framework.

Package Overview

MAGNets offers the function reduce_model that allows the user to
submit a water network model and customize the model by choos-
ing: (1) a specific operating point (around which the model will be
linearized); (2) a list of nodes that should remain in the reduced
model; and (3) a maximum nodal degree value for the nodes re-
moved from the model. Fig. 2 demonstrates the reduce_model
function with the following inputs: (1) the inp_file is a .INP file
containing the water network model object; (2) the op_pt is the op-
erating point, which represents a multiple of the reporting time step.
If the user does not provide an operating point, it will be set by
default to 0, i.e., the start time of the simulation. Users are encour-
aged to check if the reporting time step of the .INP file aligns with
the simulation period they are interested in investigating and then
adjusting accordingly; (3) nodes_to_keep is a list of nodes to keep
in the model. If the user does not provide a list of nodes to be re-
tained in the model, every node that is not a special element or that
is not connected to a special element will be removed from the
model (as will be described below); and (4) max_nodal_degree,
which dictates the maximum nodal degree of nodes being removed
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Fig. 1. MAGNets package overview.

from magnets import reduction as mr

# Define inputs

inp_file = 'NET1.inp'

op_pt =0

nodes_to_keep = ['11"', '12"]
max_nodal_degree = 1

# Run reduction function
wn2 = mr.reduce_model(inp_file, op_pt, nodes_to_keep, max_nodal_degree)

Fig. 2. Code snippet for model reduction.

from the model. The nodal degree of a node is equal to the number
of pipes incident to the node. For example, if max_nodal_degree =
1, all nodes that are not in nodes_to_keep and that are connected
to only one other node by one pipe will be iteratively removed
from the model. The reduce_model function returns two outputs:
(1) a .INP of the reduced network model that will be created in the
destination folder of the original model, and (2) a water network
model object representing the reduced network model (shown as
wn2 in Fig. 2) that the user can access using the USEPA WNTR
Python package (Klise et al. 2017) without having to import the
new .INP file.

Preprocessing

Prior to executing the main model reduction algorithm, MAGNets
performs several preprocessing steps. First, the .INP file provided
by the user is converted into a water network model object that is
compatible with WNTR. Basic characteristics of the network are
extracted and stored and are used as the basis to determine which
nodes will be removed from the model. Nodes are classified as
special, non-removable, or removable, and including a node in
subsequent calculations is dependent of this initial categorization.
Special nodes include reservoirs, tanks, source nodes, and junc-
tions that have been assigned control rules. Special links include
pumps, valves, and links that have been assigned control rules.

J. Water Resour. Plann. Manage.

J. Water Resour. Plann. Manage., 2023, 149(2): 06022006



Downloaded from ascelibrary.org by 72.177.0.95 on 12/16/22. Copyright ASCE. For personal use only; all rights reserved.

Non-removable nodes include nodes that are directly connected to
special nodes or special links. If the user provides a list of nodes to
keep in the model, all nodes in that list are assigned non-removable
status. All nodes in the model that are not assigned special or
non-removable status are categorized as removable and will be re-
moved during the model reduction process. Second, before the ag-
gregation and reduction process is executed, the model is trimmed
by removing branches and parallel pipes in order to enhance the
efficiency of the reduction process. Every dead-end node con-
nected by a single pipe is removed from the model and the demand
attributed to that node is allocated to the upstream node. Several
iterations are performed until all dead-end nodes and branched pipes
are removed from the model. After branched pipes are removed
from the model, all parallel pipes are identified and replaced by a
single equivalent pipe (Boulos et al. 2006).

Model Reduction

The main steps of the model reduction procedure are: (1) non-linear
equations describing the hydraulics of the system are constructed
and linearized around the operating point; (2) the linearized system
of equations is reduced through the method of Gaussian elimina-
tion, resulting in the redistribution of nodal demands, the creation
of new fictitious links, and the deletion of unnecessary nodes from
the model; and (3) the updated linearized equations are converted
back into non-linear form to derive the characteristics of the re-
duced water network model, which is subsequently returned to the
user. The reduction process is briefly described below and the full
details of the process can be found in Ulanicki et al. (1996) and
Alzamora et al. (2014).

Step 1: Compute linear conductances

After the model has been trimmed, all non-special pipes are
assigned conductance values that retain the diameter, length, and
roughness of the pipes. The head loss equation for a single pipe
with diameter D, length L, and roughness coefficient C can be
formulated as

Ah; = Kiij_} (1)

where Q;; is the flow rate in the pipe connecting nodes i and j,
Kij = aL;;j/C;iD;;, e; = 1.852, and ¢, = 4.87, and a is the
Hazen-Williams unit constant (Boulos et al. 2006). To reduce round-
ing errors, the value of « is calculated as the mean value of the
unit coefficients for each pipe in the network based on the values

extracted from simulation results using the equation «;; =
AR)CID /L; Q5 , where Ah); = h) — k) is the head loss at
the operating point. Rearranging Eq. (1), we get

Qij = g;jAh} (2)

where g;; = K and e3 = 1/e;.
Linearizing Eq. (2) around an operating point, we get

Qij = gijAhij (3)

3

j
ally, for each node %, the total linearized conductance is computed
as the sum of all linear conductances of the incident pipes as

gk = Z?Jki (4)

where pipe i belongs to the set of all pipes incident to node k.
Step 2: Reduce the linear model
After all conductance values are linearized, the list of nodes to
be removed is sorted in ascending order based on the node degree.

where g;; = g,«»Ah?fl is linearized pipe conductance. Addition-
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The node with the lowest node degree is deemed the “removal
node” k and all nodes connected to the removal node are labeled
“adjacent nodes”. For each node k that is being removed, two ac-
tions occur: (1) Nodal demand of node & is allocated to its adjacent
nodes proportional to the linear conductance, and the new demand
of each adjacent node i is updated as

dl = d? + 2% 49 (5)
9k

where d? and d(lz are the base demands at nodes i and k, respec-
tively, and d/ is the new adjusted base demand at node i. (2) The
linear conductances of pipes connecting all the adjacent nodes will
be updated as follows:

-, ik

9ij = Gij +— 6
=y + 2 ©)

If two adjacent nodes were not previously connected, then
gij = 0 and a new fictitious pipe is created. The code optimizes the
order in which the nodes are removed from the model to minimize
the number of fictitious pipes that are added to the model. After all
adjacent nodes and connected links are updated, node k and all the
incident pipes are removed from the model, and the list of nodes
and pipes remaining in the model is updated and again sorted in
ascending order based on node degree, with the “removal node” for
the next iteration being the new node with the lowest node degree.
The process repeats in an iterative manner until all nodes in the list
of nodes to be removed are removed from the model.

Step 3: Retrieve properties of the reduced non-linear model

At the final stage, the non-linear properties of the reduced model,
i.e., aggregated demands and pipe properties, are retrieved from the
linearized conductance as follows:

~ 0'-¢3 —e3 aLij e
gij = GijAhj; C = K7 = (ﬁ) (7)
R e

We assume that all new fictitious pipes have roughness coeffi-
cient C = 100 and length L equals to the average length of all pipes
in the original model, which can be substituted into Eq. (7) to cal-
culate the new diameter of each link. Notably, the new pipe diam-
eters, which are calculated according to the pipe conductances, are
not expected to be reasonable values on par with the original model.
The final outcome is a new hydraulic model with a compatible .INP
file that can be used to simulate network hydraulics in EPANET
or WNTR.

Summary of Modeling Assumptions

The following assumptions were made when developing the pack-
age: (1) Reservoirs, tanks, and junctions with control rules as well
as pumps, valves, and links with control rules are classified as spe-
cial elements and will not be removed from the model; (2) Any
junction with a negative base demand value will not be removed
from the model; and (3) MAGNets is best suited to reduce models
of systems in which demand nodes follow the same demand pat-
tern. Hence, if junctions have varying demand patterns attributed to
them, we recommended homogenizing the demand pattern of all
non-special nodes before performing model reduction in order
to optimize the results and minimize deviations of the reduced
model from the original model. However, model reduction can still
be partially applied when demand nodes follow different demand
patterns. Preis et al. (2011) suggested grouping nodes based on a
spatial analysis and assigning each group a unique demand pattern,
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assuming that consumers within the same area of the system will
exhibit similar characteristics. Alzamora et al. (2014) provided ad-
ditional recommendations for handling nodes with different de-
mand patterns. We provide an example application for the network
with multiple demand patterns in the “Results” section.

Results

Next, we evaluated the performance of MAGNets by examining:
(1) accuracy and running times using 12 networks of varying com-
plexity, (2) selection of the operating point, (3) comparison of
different orders of node removal, (4) comparison with WNTR
skeletonization, and (5) application to a network with mulitple
demand patterns.

Table 1. Summary of test network results

Number of Number of

junctions in junctions in Reduction ~ Maximum
Network  original model  reduced model time (s) error (%)
NET1 9 2 0.03 0.12
NET2 35 3 0.05 0.55
NET3 92 7 0.08 3.49
KY1 791 19 1.03 0.48
KY2 811 5 3.29 0.56
KY3 269 14 0.28 0.06
KY4 959 9 1.32 1.20
KY5 420 21 0.44 2.60
KY6 543 9 0.60 0.08
KY7 481 6 0.57 0.09
KY8 1,325 14 3.10 0.25
BWSN2 12,523 20 232.82 5.50

Package Performance

The performance of the package was tested using 12 networks of
varying complexity obtained from Rossman et al. (2020), Hernandez
et al. (2016), and Ostfeld and Salomons (2008). Table 1 summarizes
the tested networks, number of nodes in the original and reduced
models, running times, and the maximum error. The MAGNets re-
pository (Thomas and Sela 2022) contains all the tested networks
and several example codes that demonstrate the functionality of the
package. The networks were modified prior to reduction to ensure
that all nodes to be removed had the same demand pattern. The error
was computed as the maximum relative error (%) during the entire
duration of the simulation among all remaining nodes in the reduced
model, where the relative error was computed as the difference in
nodal heads in the reduced and original models divided by the nodal
head in the original model. Results demonstrate that the reduction
process running times for all networks were under 3.3 s with the
exception of BWSN2, which took approximately 4 min. Addition-
ally, the maximum observed errors in all networks were under 5.5%.
As an example, Fig. 3 shows the full and reduced network topology
for KY2, and Fig. 4 shows the flow rate and head at a selected pump
and tank. The codes to reproduce Table 1 and Figs. 3 and 4 are
available on GitHub Repository https://github.com/meghnathomas
/MAGNets/tree/master/publications.

Selection of Operating Point

For most networks, the deviation of heads in the reduced model
from those of the original model can be attributed to slight temporal
misalignment in control rules activation causing changes in tank
filling times. An example of this can be demonstrated by running
the MAGNets reduce_model function on network KY2 and com-
paring the heads of tank T-2 in the original and reduced models.

(b)

Fig. 3. KY2 layout: (a) full model; and (b) reduced model.
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Fig. 4. Simulation results for the original (solid line) and reduced (dashed line) KY2 models: water level in tank T-2 at operating point (a) 0; and

(b) 13; flow rate in Pump-1 at operating point: (c) 0; and (d) 13.

The control rules operating on the tanks in the network dictate that
each tank will be opened and closed at specific pressure values. As
the network has been linearized around a specific operating point,
slight changes in heads at other times along the simulation duration
are to be expected. However, these slight changes then affect the
time step in which the tank achieves the head that will result in it
opening or closing. Fig. 4 demonstrates how the choice of operat-
ing point can affect the reduced model accuracy: if operating point
0 is chosen for network KY2 [as is shown in Figs. 4(a and c)], the
hydraulic performance of the reduced model begins to deviate from
the original model as the tank head begins to drop earlier than in the
original model, thus causing a temporal shift in the head values at
tank T-2. This difference in tank head is mirrored in the flow rate of
Pump-1. Errors in pressure heads along the rest of the time duration
remain within reasonable limits. Upon testing and calculating the
error for all possible operating points, it could be determined that
operating point 13 produced very similar simulation results for the
original and reduced models, as can be seen in Figs. 4(b and d).

Errors in heads and flows between original and reduced network
models can be minimized by testing a wide range of operating points
and using different reduced models for specific operating conditions.
It is also possible to reduce errors by leaving more nodes in the
reduced model; however, this requires careful consideration. Users
may also employ the max_nodal_degree input to control the level of
reduction, e.g., trim only branches and merge pipes connected in
series. Another strategy to only partially reduce the model is to halt
the reduction process after a desired fraction of nodes in the original
model have been removed. Figs. S1 and S2 show the median error,
reduction time, and number of pipes in the reduced models for KY2
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when controlling the maximum degree of the nodes removed (i.e., 1,
2, 3, and no restriction) and controlling the number of removed
nodes (25%, 50%, and 75%), respectively.

Comparison of Different Node Removal Orders

We investigated the impact of the order in which the nodes are re-
moved on the accuracy and running times of model reduction. Upon
determining the list of nodes that can be removed from the model,
the list was reordered in three ways: randomly, statically, and dy-
namically, each time removing 25%, 50%, 75%, and 100% of re-
movable nodes. The results of the random ordering are the mean
results of ten different randomized ordered lists. The statically
ordered list was determined by arranging the list of nodes to be
removed in ascending order of node degree at the beginning of
the reduction process. In the dynamically ordered list, the nodes are
removed in ascending order by the node degree, which is constantly
updated each time a node is removed from the network.

We defined three performance criteria: (1) the accuracy of the
reduced model, which was computed as the median relative error
between the pressure heads of nodes remaining in the reduced net-
work and the equivalent nodes in the original network; (2) model
reduction time; and (3) number of links remaining in the reduced
model. We show results for three networks of increasing size,
NET3 (92 nodes), KY1 (791 nodes), and BWSN2 (12,523 nodes).
Fig. 5 shows the three performance criteria under different removal
sequences and node list partitions (25%, 50%, and 75%) for the test
networks. Each row represents a performance criterion and each
column represents a network. For example, the figure on the top
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Fig. 5. Results comparing different node removal order for (a) NET3; (b) KY1; and (c) BWSN2. The black, gray, and white bars represent the
removal of 25%, 50%, and 75% of all nodes, respectively. Note that the y-axis of the middle and bottom rows is in logarithmic scale.

left shows the median percentage error between the original NET3
model and reduced models of NET3 when 25%, 50%, and 75% of
the nodes are removed in static, random, and dynamic order. The
figure in the middle left demonstrates the reduction time in seconds,
and the bottom left figure shows the number of pipes left in the
reduced model for NET3 under the same criteria. Overall, the dy-
namically ordered lists outperformed the other orders in all three met-
rics of interest, resulting in lower median error, significantly fewer
pipes retained in the reduced model, and a lower reduction time, with
the exception of greater reduction time for the small network NET3.
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Results for NET3 differ from those of KY1 and BWSN2 most likely
because the network was considerably smaller in size and the time
required for reordering the nodes in each iteration exceeded that of
removing the elements; however, the reduction times for all ordering
methods and list sections were very similar. Surprisingly, the stati-
cally ordered list performed the worst in all three performance cri-
teria. Statically ordered reduction created more pipes in the model for
all three networks, thus significantly affecting running times because
the number of elements in the model increased with each iteration.
Statically ordered removal also generated high median errors, on par
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with or surpassing that of the random ordered removal. Additionally,
the results revealed that error does not necessarily correlate with the
size of the network or with the number of nodes left in the model.
The statically ordered removal of 75% of nodes for BWSN2 had a
running time of more than 72 hours, so those results were not in-
cluded in the analysis.

We can conclude that dynamically ordering the nodes to be re-
moved best serves the purpose of maximizing model accuracy and
minimizing reduction time and model complexity. Randomly or-
dered lists would be the next best alternative with lower reduction
times and model complexities compared to statically ordered lists
while maintaining a comparable level of accuracy. Following these
results, dynamic ordering of nodes was implemented in MAGNets.

Comparison with WNTR Skeletonization

In this section, we compare the proposed approach with the WNTR
skeletonization function. WNTR is an open-source Python package
that offers a skeletonization functionality, which allows the user to
remove branches and merge pipes in series and in parallel (Klise
et al. 2017). WNTR skeletonization function requires the user to
provide a network .INP file and a threshold for maximum pipe
diameter for pipe removal, where pipes with diameters less than
the threshold will be removed from the model. When pipes are
removed/merged, the demands of the incident nodes that are re-
moved are assigned to the closest neighboring node by appending
the base demand value and demand pattern of the removed node as
a new demand category for the receiving neighbor node. Then, the
properties of the new equivalent pipe are updated based on the
characteristics (length, diameter, roughness) of the removed pipes.
However, WNTR does not allow the user to control which nodes
to keep in the model or remove nodes with nodal degree greater
than 2. In contrast, MAGNets reallocates the base demands of no-
des that are removed from the model to its adjacent nodes propor-
tionally to the conductances of the incident pipes, enables the user
to specify which nodes should remain in the model, and allows for
the removal of nodes with a nodal degree greater than 2.

We demonstrate the comparison of the performance of WNTR
and MAGNets using network KY2 by removing nodes with de-
grees 1 and 2. For WNTR, the largest pipe diameter in the network
was supplied as the diameter threshold. For MAGNets, an operat-
ing point of 13 hours was provided as an input. The original KY?2
model contained 811 nodes (see Table 1 and Fig. 3). Removing
only branches from the KY2 model resulted in a model with 593
nodes (a 27% reduction) and yielded identical reduced models with
WNTR and MAGNets, in which the absolute relative error between
nodal heads in the reduced and original models was lower than
107*% for all nodes. Removing additional nodes with degree 2 re-
sulted in a reduced model with 459 nodes (a 43% reduction) for
both WNTR and MAGNets. Although the size of the reduced mod-
els is the same, model properties are different since different meth-
ods are applied in the reduction process. Fig. S3 shows the absolute
relative error for the reduced models resulting in removing nodes
with degrees 1 and 2 using MAGNets (top left) and WNTR (top
right). The shaded areas represent the 75%, 95%, and 100% per-
centiles, and the red line represents the mean absolute error. We
observe that both reduced models exhibit a very good match with
the original models in terms of the errors, where MAGNets slightly
outperforms WNTR with a maximum error of 0.07% compared to
0.14%. However, as demonstrated earlier, MAGNets is capable of
reducing the model even further. Using the reduce_model function
without limiting the node degree of the removed nodes, the model
size is reduced to only five nodes (a 99% reduction) (Fig. 3) and the
largest absolute relative error for the heads of the remaining nodes
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is 0.56% (Table 1). Fig. S3 (bottom) shows the distribution of error
for all nodes throughout the simulation duration, where shaded areas
represent the 75%, 95%, and 100% percentiles, and the red line rep-
resents the mean absolute error.

Models with Multiple Demand Patterns

A set of scenarios for the C-Town network was evaluated to test the
capabilities of MAGNets’ reduce_model function when it is con-
fronted with different demand patterns and when the user wishes
to reduce specific sections of the network. The C-Town network
model contains five different District Metered Areas (DMAs), each
with a unique demand pattern (Ostfeld et al. 2012). In order to adapt
the reduction strategy to C-Town, a list of boundary nodes that lay
on the borders of DMAs was provided as the nodes_to_keep input
for each call of the reduce_model function. A stage-wise reduction
of the C-Town model was performed by first removing all nodes
with nodal degree 1 from the model and then removing nodes with
nodal degree 2 from DMA1, DMA3, and DMAS. The number of
nodes in the final reduced model decreased from 388 to 176 (a 55%
reduction). Fig. S4 shows the network layout of the full and re-
duced models. The time series of the relative error of the heads at
each node reveals that even at this high level of reduction the re-
duced model performs very similarly to the original model (see
Fig. S5). The relative errors are negligible for the majority of the
extended period simulation with the exception of a few large spikes
which can be attributed to time step delays in control rules activa-
tion. For example, Fig. S6 shows that spike 1 and spike 2 in Fig. S5
can be explained by delays in the operational status of pump PU2
based on the water level of tank T1. The maximum difference be-
tween heads of nodes in the original and reduced models ranges
from —3m to 12m, while the mean difference ranges from —0.02m
to 0.08m. Fig. S7 shows the distribution of errors and demonstrates
that the mean absolute relative percentage error is 0.06% or lower
for all nodes remaining in the reduced model. Finally, Fig. S8
shows the spatial distribution of the errors, demonstrating that no-
des with similar error are located close together in the reduced
C-Town model, and the nodes with the largest errors after reduction
lie in DMAL or are adjacent to pumps. These examples show that,
if applied carefully, MAGNets can also be used to significantly re-
duce models with varying demand patterns. Users are advised to
attempt a range of reduction strategies in order to maximize the
usefulness and accuracy of the reduced models.

Conclusions

This paper introduces MAGNets, an open-source Python package
for model reduction of water networks based on variable elimina-
tion method. Users may employ the package to reduce a network
around a specific operating point and are able to customize which
nodes to retain in the reduced model or control the maximum nodal
degree of the removed nodes. MAGNets is a tool that may be uti-
lized by researchers and practitioners to reduce the size of networks
for problems such as state estimation, optimal operation, and de-
signing control rules. MAGNets has the potential of further devel-
opment through the addition of error analysis functions that will
allow the user to tailor the allowable deviation of the reduced model
from the original model to their requirements by choosing better
operating points or by leaving more nodes in the reduced model.
Further extension should also include aggregation of nodes with
multiple demand patterns. To promote research reproducibility and
usability, all source codes, software documentation, and exam-
ples are provided with the package. The most up-to-date version of
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MAGNets can be accessed at the GitHub Repository: https://github
.com/meghnathomas/MAGNets.
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This supporting information provides instructions for users to reproduce the results of this paper

as well as additional figures complementing the paper. Contents of this file:

- Package usage instructions
- Reproducing results

- Figures S1 - S8

PACKAGE USAGE INSTRUCTIONS

Users can follow installation instructions available on the MAGNets Github landing page
(https://github.com/meghnathomas/MAGNets) to install MAGNets on their machine. After
installation, a user can run example codes available in the Github examples folder (in conjunction

with benchmark networks present in examples/networks) to explore MAGNets’ capabilities.

1. Example 1 demonstrates how MAGNets can be used to reduce a water distribution network
model around a given operating point, with the user providing a list of nodes they would

like to retain in the model.


https://github.com/meghnathomas/MAGNets

2. Example 2 demonstrates how MAGNets can be used to reduce a water distribution network

model around a given operating point, with the user providing a list of nodes they would
like to retain in the model. Additionally, this example shows how the user can plot the
percentage deviation of the pressure heads at each node in the reduced model compared
to the original model to test the accuracy of MAGNets. This characterization of error can
inform the user of the degree to which they should reduce the model as well as which
operating point they should select.

Example 3 demonstrates how to find the "best" operating point around which to reduce
a model. Here, we define the "best" operating point as the one that results in the lowest
maximum percentage deviation of pressure heads in the reduced model compared to the
original model.

Example 4 demonstrates the mean and median percentage error, number of edges in the
reduced model, and reduction time if 25%, 50%, 75%, and 100% of a randomly ordered
list of nodes are removed from the model.

Example 5 demonstrates the mean and median percentage error, number of edges in the
reduced model, and reduction time if 25%, 50%, 75%, and 100% of a statically ordered list
of nodes are removed from the model. Before any nodes are removed from the model, all
nodes are arranged in ascending order of their nodal degree and this list ordering remains
unchanged after each node is removed (unlike in MAGNets, where the list is dynamically

updated after each node is removed from the model).

REPRODUCING RESULTS

Users can also reproduce the results reported in the paper by running codes located in https:

//github.com/meghnathomas/MAGNets/tree/master/publications.

1.

Table 1 — the user should run code reproduce_table_1.py. Note that running times will

depend on the machine used to execute the codes.

2. Figure 3 — the user should run code reproduce_figure_3.py


https://github.com/meghnathomas/MAGNets/tree/master/publications
https://github.com/meghnathomas/MAGNets/tree/master/publications
https://github.com/meghnathomas/MAGNets/tree/master/publications

. Figure 4 — the user should run code reproduce_figure_4.py
. Figure 5 — the user should run example 2 (for dynamic order), example 4 (for random order),
and example 5 (for static order) for networks NET3, KY2, and BWSN?2 located in https:

//github.com/meghnathomas/MAGNets/tree/master/examples/networks.


https://github.com/meghnathomas/MAGNets/tree/master/examples/networks
https://github.com/meghnathomas/MAGNets/tree/master/examples/networks
https://github.com/meghnathomas/MAGNets/tree/master/examples/networks
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