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1 Abstract

2 Cyanobacteria are responsible for up to 80% of aquatic carbon dioxide fixation and
3 have evolved specialized carbon concentrating mechanism to increase photosynthetic
4 yield. As such, cyanobacteria are attractive targets for synethic biology and engineer-
5 ing approaches to address the demands of global energy security, food production,
6 and climate change for an increasing world’s population. The bicarbonate transporter
7 BicA is a sodium-dependent, low-affinity, high-flux bicarbonate symporter expressed
8 in the plasma membrane of cyanobacteria. Despite extensive biochemical character-
9 ization of BicA, including the resolution of the BicA crystal structure, the dynamic
10 understanding of the bicarbonate mechanism remains elusive. To this end, we have
11 collected over 1 ms of all-atom molecular dynamics simulation data of the BicA dimer
12 to elucidate the structural rearrangements involved in the substrate transport process.
13 We further characterized the energetics of the cooperativity between BicA promoters
14 and investigated potential mutations that are shown to decrease the free energy bar-
15 rier of conformational transitions. In all, our study illuminates a detailed mechanistic
16 understanding of the conformational dynamics of bicarbonate transporters and pro-
17 vide atomistic insights to engineering these transporters for enhanced photosynthetic
18 production.

19 Keywords: Bicarbonate transporter, BicA, Markov state model, SLC26, Molecular dynamics

2 simulation, COy-capturing mechanisms

» Introduction

22 Marine cyanobacteria, also known as green-blue algae, is estimated to contribute at least
x» 30-80% of the Earth’s total primary production.'? In aqueous solutions, carbon dioxide
21 (COy) readily interconverts between carbonic acid (HoCOj3) and bicarbonate ions (HCOj3 ).
s Unlike COq, HCO3™ cannot freely diffuse through the plasma membrane and thus requires

% specialized integral membrane transporters to accumulate inorganic carbon for photosynthe-
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a7 sis and carbohydrate production. Three bicarbonate transporters have been identified to be
s ubiquitously expressed in the cyanobacteria plasma membrane: BicA, a sodium-dependent,
20 high-flux, low-affinity bicarbonate symporter; SbtA, a sodium-dependent, high-affinity sym-
s porter, and BCT1, a four-subunit bicarbonate transporter belonging to the ATP-binding
n cassette family®* (Figure 1A). To date, the solved structure of BicA® (Figure 1B) and most
2 recently of SbtA® have illuminated the molecular architecture of the overall topology and

;3 substrate binding site among these critical transporters.
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Figure 1: Cyanobacteria bicarbonate uptake transporters. (A) Schematic of select bicar-
bonate transporters expressed in the cyanobacteria plasma membrane. Transporters are depicted
as follows, BicA, a sodium-dependent dimer, blue; StbA, a sodium-dependent trimer, green; BCT1,
a four-subunit ATP-binding cassette transporter. Bicarbonate anions that are transported into the
cytosol are then concentrated in the carboxysome, converted to carbon dioxide via carbonic anhy-
drase, and finally undergo photorespiration to form phosphoglyceric acid (PGA) via RuBisCo. (B)
MD equilibrated structure of the BicA based on the crystal structure PDB: 6KI1. The cytoplasmic
STAS domain is not shown for clarity. The transport domain and scaffold domain are colored as
blue and yellow, respectively. The bound substrates are represented as spheres. Residues that
coordinate the binding of the substrates are shown as sticks.

34 In C3 crops, which include rice, barley, and wheat, carbon fixation via RuBisCo (ribulose-
% 1,5-bisphosphate carboxylase/oxygenase) is notoriously known to be inefficient.” As such,
s a possible approach to increases crop yield is to incorporate the efficent COs-capturing
» mechanisms utilized by cyanobacteria® into crops. Inorganic carbon transporters are one
s of two components that make up an effective COs-capturing mechanism, the other being

3 the carboxysomes, which are specialized protein micro-compartments that houses RuBisCo
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o and carbonic anhydrase to concentrate CO, for efficient carbon fixation.? Kinetic modeling
s has proposed that introducing cyanobacteria bicarbonate transporters to the chloroplast of
»2 (C3 crops may enhance photosynthetic yield by ~10%, while adding the carboxysome system
s may further increase yield as much as ~60%. '° Incorporating either bicarbonate transporters
w and the carboxysome involved the synthetic addition of foreign genes to the chloroplast of
s plastid genome. However, whereas bicarbonate transporters are simply encoded as single
s genes, the in wvivo assembly of the carboxysome requires multiple proteins and presents
s inherent difficulties to simultaneously introduce all the required genes. As such, bicarbonate
s transporters are attractive candidates for engineering terrestrial crops to enhance inorganic
© carbon accumulation.t1? Additionally, increased carbon availability promotes cyanobacteria
so growth which may be used for the production of biofuels and other bioproducts. 3

51 The cyanobacteria bicarbonate transporter BicA is a member of the solute carrier 26
2 (SLC26/SulP) family of anion transporters. Members of this family contain an N-terminal
53 transmembrane (TM) domain comprised of 14 helices arranged in a 7+7 inverted repeat
s« topology and a cytoplasmic C-terminal domain known as the sulfate transporter and anti-
s sigma factor antagonist, or STAS, domain.? Despite low sequence conservation, transporters
ss in the SLC4 and SLC23 families share the similar 747 transmembrane architecture, but
sz most notably lack the STAS domain.!* Furthermore, SLC26 transporters have been shown
ss to adopt a unique dimer interface that involves TM helices 13 and 14, whereas TM helix 6
so forms the dimer interface for SLC4 transporters, and TM helices 5 and 12 for SLC23.1717
o Biophysical, structural, and computational studies'®?° have illuminated the SLC26 fam-
&1 ily and similar related families to adopt a canonical alternating-access model in which the
&2 transporter undergoes a series of structural rearrangements to enable access of an orthosteric
s substrate binding site from either the extracellular or intracellular side.?! More specifically,
s« the mode of transport of SLC26 transporters has been proposed to be an elevator-like mech-
s anism, in which helices 1-4 and 8-11 form a mobile transport domain that translates across

s the membrane, thereby transporting substrates in and out of the cell (Figure 1B). TM he-
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o7 lices 5-7 and 12-14 form the scaffold domain that remains rigid and is primarily involved
¢ in oligomeric assembly. Analogous SLC26 transporters in humans are involved in the ex-
s change of anions throughout the body and mutations in these transporters are associated
70 with various disorders such as cystic fibrous, chloride diarrhea, and chondrodysplasia. 22

7 It is estimated that by 2050, the global food production must be doubled in order to
72 sustain a growing population.?*24 In order to address the concern of global food security
7z and sustainable energy, understanding the molecular mechanism of bicarbonate transport in
72 cyanobacteria may serve as the basis for enhancing the efficiency of crop yield and biofuel
7 production. While the resolved structure of BicA provides invaluable structural informa-
7 tion, the conformational dynamics and energetics involved in the substrate translocation
77 process may not be elucidated from a single structure and therefore remain elusive. With
7 the recent surge in the computational efficiency of graphical processing units and numerical
79 algorithms, molecular dynamics (MD) simulations combined with Markov state modeling
s present a robust approach to characterize complex protein dynamics at atomistic resolu-
s tion.?>26 Recent efforts in Markov state modeling have characterized the conformational
&2 heterogeneity of proteins of key interest to the plant biology community including phytohor-

2729 and circadian clock photoreceptors. 3032 Several membrane transporters

83 Ione receptors,
s+ have also been investigated using these methodologies including sugar transporters (SWEETs
s and SemiSWEETS),?33% bacterial nitrate transporters,®® human neurotransmitter?%37 and
ss peptide transporters.®® However, these transporters follow either the rocker-switch or rock-
&7 ing bundle mechanisms of alternate-access to facilitate the substrate transport.3%4° BicA is

4146 where

ss distinct from these transporters because it follows the elevator-type mechanism,
g0 the transport domain undergoes a translation relative to the scaffold domain to achieve
o alternate-access required for substrate transport.?®

o1 In this current study, we employed long-timescale all-atom MD simulations to provide a

o fully atomistic and dynamic perspective into the bicarbonate transport mechanism of BicA.

s We further analyzed the simulation dataset using Markov state modeling?® to quantify the
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o thermodynamics of the elevator-like mechanism and its associated structural rearrangements.
s Finally, we investigated the effects of BicA mutations on the transporter structure and
o dynamics and present a mechanistic basis for mutations that may be introduced to BicA
oz to enhance bicarbonate transport activity. Overall, our computational study provides an
¢ atomistic level perspective into the molecular mechanisms of BicA bicarbonate transport

oo which may be used for further engineering of cyanobacteria and plants.

« Results and discussion

e Structural characterization of a full-length BicA dimer in a cyanobac-

1w teria plasma membrane

103 We sought to simulate a full-length model of BicA in a lipid membrane that best resembles
s the physiological plasma membrane of cyanobacteria. In addition to portraying a realistic
s molecular environment, the increased membrane complexity may also affect thermodynamics
106 barriers across the conformational landscape.®® To this end, we constructed a lipid mem-
107 brane based on previously characterized compositions determined for cyanobacteria (Figure
s 2A).4748 Notably, the cyanobacteria plasma membrane is comprised of mainly glycolipids.
w0 The constructed membrane consisted of the four unique and most abundant identified lipids:
1o monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), sulfoquinovo-
w syl diacylglycerol (SQDG), and phosphatidylglycerol (PG). The saturation of fatty acid tails
12 were also modeled in accordance to Murata et al.” Further details of the composition of the
us  simulated membrane are listed in Table 1.

114 To assess the dynamics of the cyanobacterial plasma membrane, all-atom MD simulations
s were performed using the AMBERI1S engine® employing CHARMMS36 force fields.?® Three
us independent replicates with unique initial lipid placement were constructed and simulated
7 for 250 ns each. The simulated membrane readily approach equilibrium after ~50 ns, with

ne  an average membrane thickness of 37.2 4+ 0.3 A and area-per-lipid of 58.8 &+ 0.5 A (average
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Figure 2: Molecular dynamics simulations of the cyanobacteria plasma membrane.
(A) MD snapshot of the simulated cyanobacteria plasma membrane. Lipid molecules are shown
as sticks and colored by individual lipid species. Sodium ions are represented as purple spheres.
(B, C) Time-resolved measurements (B, area-per-lipid (APL) and C, membrane thickness) of the
cyanobacteria lipid membrane. The three MD replicates are colored accordingly. Error bars repre-
sented accumulated standard deviation after the initial 50 ns.

Table 1: Composition for pure cyanobacteria plasma membrane simulations

Lipid Saturation (snl/sn2) Number of lipids per leaflet Percentage

MGDG 18:3/16:0 76 58%
DGDG 18:3/16:0 21 16%
SQDG 18:2/16:0 21 16%
PG 18:2/16:0 6 5%
PG 18:3c¢/16:0 6 5%
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o =+ standard deviation, over last 50 ns) (Figure 2B, C). We find that the physical properties
120 of our simulated membrane is in agreement with the compositionally-similar cyanobacteria
121 thylakoid membrane, previous characterized by simulation.?!

122 With the cyanobacteria plasma membrane established, we set to construct a full-length
123 dimeric BicA system, using the resolved crystal structures of the transmembrane domain
e (PDB: 6KI1) and the STAS domain (PDB: 6KI2).° Based on pulsed electron-electron dou-
125 ble resonance spectroscopy!” and the cryo-EM structure of the dimeric SLC26a9 murine
s transporter, ! the initial orientation of the two BicA promoters was placed where helices 13
127 and 14 formed the interface. We alternatively modeled a full-length BicA dimer structure
s using AlphaFold? and observed a similar orientation of the transmembrane domains and
1o its interface (Figure S1). However, the structure predicted by AlphaFold did not model the
130 STAS domain in accordance to the crystal structure or cryo-EM density (Figure S1). As such,
1 we proceeded with the BicA dimer structure based on the two available crystal structures
12 and superposition of other SLC26 transporters. The full-length BicA dimer was embedded
133 in the cyanobacteria plasma membrane and a total of seven MD replicates of 700 ns were
13 performed (Figure 3A). During the pre-production stages of the simulations, we observed
135 the one sodium ion to bind to one BicA monomer and remained bound throughout the 700
136 ns simulation across the seven replicates. The binding of a sodium ion to the remaining
137 BicA monomer was observed within 200-500 ns of simulation (Figure S2). In both cases, the
s sodium ion is coordinated by the side chains of Asp258, Thr262, and Thr302, consistent with
13 the resolved crystal structure and previous mutagenesis characterization.® The bicarbonate
1o anion was not observed to bind in the substrate cavity within the equilibration timescales.
141 The simulations reveal that the transmembrane domains of BicA remain relatively stable
w2 (Ca RMSD < 3.5 A), whereas the cytoplasmic STAS domain deviated from its initial struc-
s ture (Ca RMSD > 3.5 A) (Figure 3B). Moreover, upon equilibrating the full-length BicA
s system, we observed particularly the a2 helices to unwind and propagate the collapse of the

us domain. Indeed, the structural elements that form the STAS domain architecture are not
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Figure 3: Stability of the full-length BicA dimer model. (A) MD snapshot of the full-
length BicA dimer embedded in the cyanobacteria plasma membrane. Lipid molecules are shown
as sticks and colored by lipid species as shown in Figure 2A. The BicA dimer is shown in cartoon
representation and colored as follows: yellow: blue domain; blue: transport domain; green: STAS
domain. Individual BicA protomers are labeled as A and B. Sodium ions are shown as purple
spheres. Bicarbonate ions are shown as red and green spheres. (B) Time-resolved root mean
squared deviations (RMSD) of individual BicA transmembrane (TM) and STAS domains across the
7 MD simulations. RMSD was calculated based on the starting structure of the 700 ns simulation.
Individual MD replicates are colored accordingly.

s maintained throughout the 700 ns long simulations (Figure S3). The inherent differences be-
17 tween the simulated and experimentally determined structure may be attributed to artificial
ug crystal contacts formed during crystallography or the lack of the transmembrane domains
us  being coexpressed to mediate the folding of the STAS domain. Functionally, the STAS do-
5o main of the sulfate transporter Sultrl;2 in Arabidopsis thaliana has been characterized to
151 interact with cysteine synthase (O-acetylserine (thiol)lyase) to regulate the transporter func-
152 tion and mediate the cellular sulfur concentration.®® The association of the STAS domain
153 with other regulatory proteins is further exhibited in SLC26A3 transporter in humans with
15+ implications to cystic fibrosis.?* As such, it is likely the STAS domain may adopt various
155 conformations in solution and be stabilized upon association. We further simulated a BicA
155 dimer with the STAS domains removed and did not observe difference in dimer stability

157 of the transmembrane domain (Figure S4). In all, the simulations suggest that the STAS
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1583 domain does not provide additional structural stability in the membrane and is concluded

159 to be more involved in regulatory mechanisms.

1w Structural requirements and energetics of BicA conformational tran-

161 SitiOﬂS

12 As the timescales of large structural rearrangements and substrate transport may occur on

95,56 observing these long timescale processes through

13 the orders of microseconds or greater,
s conventional MD approaches may present inherent challenges in achieving adequate con-
s formational sampling. As such, to simulate the bicarbonate transport process of BicA, we
16 implemented a Markov state model (MSM) based adaptive sampling scheme to maximize
167 the exploration of the conformational landscape.?® In brief, the adaptive sampling protocol
168 1S an iterative approach in which multiple simulations are conducted in parallel and then
160 clustered using a K-means algorithm based on geometric criteria. To sampling the BicA
o substrate translocation process, the distances between substrates and binding site and the
i z-component of the transport domain were chosen as the adaptive sampling metrics. To
12 maximize the likelihood of exploring new conformations, structures from the least popu-
3 lated states are seeded for the subsequent round of simulation. Furthermore, to expedite
s the sampling, we seeded simulations from a targeted MD trajectory in which captured the
s transition from inward-facing to outward-facing (Figure S5). A total of 1.003 millisecond
17 of aggregate simulation data were collected and used to construct a MSM.?” We note that
177 the conformational sampling performed for this study simulates the export of bicarbonate
s to the extracellular side. Though BicA is responsible for concentrating inorganic carbon
w9 in the cell, the benefit of the Markov state modeling is representing the transport process
10 as a reversible process and calculating the reversible transition probabilities between states,
11 thereby capturing the bicarbonate import process.

182 By projecting the MSM-weighted simulation data on the reaction coordinates defined

183 by the z-component of the Asp258 Ca atom (the residue that coordinates binding of the

10
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Figure 4: Energetics of BicA conformational transitions. (A) MSM-weighted conforma-
tional free energy landscape of BicA. The simulation data are projected on the axis defined by the
z-component of the Ca atom of Asp258 for the respective BicA protomers. The displacement of
Asp258 is measured with respected to the initial structure used for adaptive sampling simulations
and indicated by the black square. Standard error measurement of the free energy landscape is
presented in Figure S6. (B) Representative MD snapshots of BicA showing the solvent accessibility
of the substrate binding site in the inward-facing (IF') and outward-facing (OF) conformation. The
transport domain is shown as blue cartoon, while the scaffold domain is colored in yellow. Water
molecules are shown as red and white spheres.

bicarbonate anion, Figure 1B), the conformational free energy landscape illustrates the co-
operativity of the two BicA protomers (Figure 4A). Inward-facing conformations, in which
the substrate binding site is accessible from the intracellular solvent (Figure 4B), are ener-
getically stable with a relative free energy of 0-1 kcal/mol. Furthermore, the simulations
reveal that the BicA protomer may independently undergo structural rearrangements to
form outward-facing states in which the transport domain has shifted ~6A and the sub-
strate binding site is now accessible to the extracellular space (Figure 4B). The free energy
barrier associated with transitions from the inward-facing to outward-facing for a single
BicA protomer is estimated to be ~2.5-3 kcal/mol (Figure 4A, S7). Based on the sampling
seeded from the targeted MD trajectory, structures in which both BicA protomers form the
outward-facing conformation are stable with a relative free energy minima of ~2 kcal/mol.
However, the transition free energy barriers for the remaining BicA protomer to adopt the

outward-facing state, given that the other protomer is already outward-facing, is ~3-4 kcal /-

11
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17 mol. Likewise, for both protomers to simultaneously transition to the outward-facing state
s is energetically less favored with free energy barriers of ~4-5 kecal/mol (Figure S7). Overall,
199 the conformational free energy landscape suggest one protomer of BicA actively undergoes
200 structural transitions in the dimeric state, consistent with previous studies of the SLC26Dg
201 fumarate transporter.®

202 We note the presence of two proline residues, Pro122 and Pro341, that flank the transport
203 domain (Figure 5A). Sequence analysis reveals that in 300 homologs, Pro341 is absolutely
200 conserved whereas Prol22 is substituted for Ser in a few homologs (Figure 5B). As the
205 proline residue adopts a cyclic side chain that uniquely constrains the protein backbone,
206 we hypothesized if the steric effects provide the structural requirements for the conforma-
207 tional transitions of BicA. To investigate the effects of the proline residues on the transport
28 dynamics, we implemented umbrella sampling simulations and calculated the potentials of
200 mean force (PMF) profiles of BicA to transition from inward-facing to outward-facing. The
210 conformational free energy landscape suggest that a single BicA protomer is more favored
o to transition rather than both simultaneously. As such, umbrella sampling simulations were
212 initiated from MD snapshots of the BicA monomer A obtained from the adaptive sampling
23 simulations. Umbrella sampling simulations were conducted with the NAMD2.14 package. >
214 In the wild-type BicA system, the highest free energy barrier is associated with the
25 transition to the outward-facing state, with a barrier of 3.97 £ 0.24 kcal/mol. When the
26 Prol22 and Pro341 are mutated to glycine residues (Prol122Gly;Pro341Gly), we observed
27 the stability of the outward-facing state to be similar to that of the wild-type (wild-type:
28 3.39 + 0.25 keal/mol, Prol122Gly;Pro341Gly: 3.66 + 0.24 kcal/mol), but the free energy
210 barrier has now increased to 4.81 £ 0.21 kcal/mol (Figure 5C). Contrary to prolines, glycine
20 residues provide innate flexibility of the peptide backbone given the lack of a heavy atom
21 side chain. However, such flexibility did not provide necessary structural requirements to
22 promote the formation of the outward-facing state. We further simulated and calculated

23 the PMF profile for the respective alanine mutant (Prol12Ala;Pro341Ala) and observed

12
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Figure 5: Conserved prolines residues flank the BicA transport domain. (A) Structure
of the transmembrane domain of BicA, colored by transport and scaffold domain in blue and yel-
low respectively. Proline residues, P122 and P341, investigated are indicated and shown as sticks.
(B) Sequence logo representation®® of the proline and adjacent residues depicting the amino acid
frequency of 300 homologs. Size of the amino acid font represents its respective frequency in the
multiple sequence alignment. (C) Potentials of mean force (PMF) profiles for inward-facing to
outward-facing transitions of wild-type (WT) and mutant BicA. BicA systems are colored as fol-
lows, wild-type: blue, P122G;P341G: green, P122A;P341A: red. z-axis represents the z-coordinate
displacement of the center of mass (COM) of the transport domain with respect to the center of
mass of the scaffold domain. Inward- and outward-facing conformations are highlight as vertical
yellow bars.

that the free energy barrier are reduced to 2.14 £ 0.16 kcal/mol (Figure 5C). Moreover,
the Prol12Ala;Pro341Ala mutant stabilizes an intermediate outward-facing state, but the
complete outward-facing state remains of similar stability (wild-type: 3.39 £ 0.25 kcal/mol,

Pro122Ala;Pro341Ala: 3.15 £+ 0.21 kcal/mol). As alanine residues enable more structural
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28 constraints on the backbone compared to the glycine residues, the PMF profiles suggest that
20 unique dihedral constraints provided by proline residues facilitates the necessary structural
20 rearrangements of the transport domain of BicA, although we cannot comment on how these

2 mutants may affect transporter expression, biogenesis, folding, or stability.

»» Hydrophobic interactions mediate closure of the transport domain

23 Membrane transporters adopt a canonical series of structural rearrangements that facilitates
24 proper substrate transport across the membrane, otherwise known as the alternating access
2 mechanism.® As such, the substrate binding site is accessible to either the intracellular or
26 extracellular space at a given time. Simulations of BicA reveals that the closure of the
237 transporter from either side is facilitated by hydrophobic residues that line the substrate
28 translocation pathway (Figure 6). Specifically, in the inward-facing conformation, closure
29 from the extracellular side is primarily mediated by transmembrane helices 1 and 3 of the
210 transport domain and helices 5, 7, 12, and 14 of the scaffold domain (Figure 6A). Upon
2 substrate transport, as the transport domain shifts across the membrane, intracellular gate
22 is formed by residues on helices 8 and 10 with the scaffold domain (Figure 6B). As per
23 the elevator-like mechanism, the scaffold domain serves as a shared gate between intracel-
24 lular and extracellular residues. Furthermore, residues that comprise the hydrophobic gate
us are generally conserved among other transporters that adopt the 7+7 transmembrane helix
25 topology (Figure S8, S9). We expect that the hydrophobic residues in the respective posi-
27 tions of SLC4 and SLC23 transporters to adopt a similar role in regulating the opening and
28 closure of the transporter.

249 Given that the molecular gates of BicA are primarily facilitated by the hydrophobic
0 interactions of aliphatic side chains, we sought to determine if mutations may be introduced
1 to increase the substrate transport rate. Specifically, we hypothesized if substitutions to
2 alanine residues may decrease the contacting surface area, while still retaining the nonpolar

3 local environment to maintain proper transport function. To this end, we targeted residues
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A Inward-facing

Scaffold domain

Transport domain

Figure 6: Hydrophobic gating residues of BicA. Chord diagram depicting the probability of
interactions formed between gating residues in the (A) inward-facing conformation and (B) outward-
facing conformation. Probability of interactions were calculated on 50,000 MD structures drawn
from the respective free energy basin. Thickness and color intensity of connections between nodes
represent the relative probability between two residues interacting. Accompanying MD snapshot
showing selected residues mediating the closure of the transporter. Transmembrane (TM) helices
are colored as follows, TM1, TM3: blue; TM5, TM7, TM12, TM14: yellow; TM8, TM10: green.

e with large aliphatic side chains (Met, Leu, Ile, etc) located on various gating helices of BicA
s and residues of high contact probability based on the MD simulations. Three BicA triple
6 mutants were simulated via the umbrella sampling protocol to delineate its effects on the
7 energetics of the transporter conformational dynamics.

258 We first characterized mutations of residues on the hydrophobic gate that re-
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Figure 7: Simulated BicA triple mutants. (A) MD snapshots of the inward-facing and
outward-facing conformations of BicA. Mutated residues are shown as sticks and colored red. The
bicarbonate and sodium ion are shown as spheres and colored green and purple, respectively. Trans-
membrane (TM) helices are colored as follows, TM1, TM3: blue; TM5, TM7, TM12, TM14: yellow;
TMS8, TM10: green. The mutants investigated in this study are Met29Ala;Phe33Ala;lle35Ala
(top), Leu345Ala;Ile348Ala;Val352Ala (middle), and Met29Ala;Leul37Ala,Val352Ala (bottom).
(B) Potential of mean force (PMF) profiles of the three studied BicA triple mutants. The wild-
type BicA is shown in blue and duplicated for comparison. BicA systems are colored as fol-
lows, wild-type: blue, Met29Ala;Phe33Ala;lle35Ala: red, Leu345Ala;lle348Ala;Val352Ala: orange,
Met29Ala;Leul37Ala,Val352Ala: green. z-axis represents the z-coordinate displacement of the
center of mass (COM) of the transport domain with respect to the center of mass of the scaffold
domain. Inward- and outward-facing conformations are highlight as vertical yellow bars.
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0 side on the transport domain. The BicA triple mutant containing the substitutions
w0 Met29Ala;Phe33Ala;lle35Ala are located on the extracellular half of transmembrane helix
21 1 (Figure 7, top). These residues were primarily found to interact with residues on TM12
x2  to restrict access from the extracellular space and stabilize the inward-facing conformation
23 (Figure 6A). The PMF profile of the Met29Ala;Phe33Ala;lle35Ala BicA mutant reveals the
¢ free energy barrier to form the outward-facing state has decreased to 2.78 4+ 0.20 kcal/mol,
25 as compared to the 3.97 + 0.24 kcal /mol in wild-type BicA (Figure 7, top). Furthermore, the
x6 relative free energy barrier of outward-facing to inward-facing transitions remains similar to
7 the wild-type (Met29Ala;Phe33Ala;Ile35Ala: 0.56 keal /mol, wildtype: 0.58 kcal /mol) consis-
xs tent that these residues are primarily responsible for extracellular closure and not predicted
x0  to directly affect the stability of the outward-facing conformation.

270 The residues of the second BicA triple mutant, Leu345Ala;lle348Ala;Val352Ala, are lo-
on cated on transmembrane helix 12 of the scaffold domain (Figure 7, middle). The PMF pro-
o2 files for Leu345Ala;Ile348Ala;Val352Ala predicts a modest decrease in the free energy barrier
xs (Leu345Ala;lle348Ala;Valdb2Ala: 3.72 £ 0.24 kcal/mol, wild-type: 3.97 £+ 0.24 kcal/mol),
o however the outward-facing state is further destabilized. We suspect as transmembrane he-
a5 lix 12 serves as a shared gating helix that facilitate both inward-facing and outward-facing
s conformations, contributes to a slight favorable reduction in the free energy barrier, but also
o7 compromises on the destabilized interactions that close the intracellular pathway.

218 Lastly, the BicA mutant Met29Ala;Leul37Ala,Val352Ala targets residues on both the
2o transport and scaffold domain (Figure 7, bottom). This mutant was specifically simu-
0 lated to remove the hydrophobic interactions involving Met29. In the inward-facing state,
21 Met29 interacts with Val352, whereas in the outward-facing state Met29 switches its in-
22 teraction partner to Leul37 (Figure 6). Similar to the first described BicA triple mutant
23 (Met29Ala;Phe33Ala;lle35Ala), the PMF profile delineates a decrease in the free energy bar-
20 rier (Met29Ala;Leul37Ala,Val352Ala: 3.05 + 0.19 kecal/mol, wild-type: 3.97 £ 0.24 kcal/-

25 mol) and similar stability of the outward-facing state. Overall, our simulations predict
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286 alanine substitutions to residues on the transmembrane domain, specifically transmembrane
27 helix 1, decrease the free energy barriers for structural rearragements to increase bicarbonate

23 uptake.

x» Conclusions

20 Bicarbonate transporters are key membrane transporters that regulate photosynthesis pro-
201 duction. In this study, we utilized adaptive sampling and Markov state modeling to char-
22 acterize the structural dynamics and thermodynamics of the BicA transport mechanism.
23 Our simulations reveal that BicA protomers are more favored to undergo conformational
20 transitions independently rather than simultaneously, consistent with previous cross-linking
205 studies of the SLC26Dg transporter. '™ In our simulations, we observed the cytoplasmic STAS
26 domain does not remain stable in solution and undergo various structural rearrangements.
27 We hypothesized, the stability of the STAS domain may be facilitated with other associa-
208 tion proteins in vivo. Previous experimental characterization of the related FE. coli YchM
209 transporter has suggested the STAS domain to interact with a number of regulatory proteins
s0 with implications on transport activity.% Further studies may focus on in vivo regulatory
so mechanisms of BicA.

302 We further investigated various BicA mutants that are predicted to affect the conforma-
303 tional energetics of the transport process. We predict that the unique steric constraints on
s the protein backbone provided by prolines residues located at junction of the scaffold and
305 transport domain facilitate the proper conformational dynamics for transport. Furthermore,
s6  substitutions to bulky aliphatic residues that form the hydrophobic gate decrease the free
so7  energy barriers for inward-facing to outward-facing transitions. Specifically, alanine muta-
s tions located on transmembrane helix 1 are predicted to enhance transport with minimal
300 consequences on the stability of conformations. Such mutations to the hydrophobic gat-

50 ing residues introduced to the sodium/proton antiporter PaNhaP were also identified to in-
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a1 crease transport activity. %2 However, how these mutations may affect transporter expression,
sz folding, trafficking, or biogenesis cannot be delineated from simulations. In all, the exten-
a3 sive simulations conducted in this study provide a comprehensive mechanistic view of BicA
s transport dynamics and elucidate potential engineered mutations to enhance cyanobacteria

a5 photosynthetic yield.

. Methods

27 MD simulations of pure cyanobacteria plasma membrane

sis To characterize the structural dynamics of BicA, we first sought to model a physiological
s membrane environment. Based on previous experimental characterization of cyanobacte-
»0 ria membranes, we constructed a symmetric lipid membrane containing the monogalactosyl
= diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG), sulfoquinovosyl diacylglycerol
2 (SQDG), and phosphatidylglycerol (PG). The total number of each lipid species and lipid
323 tail saturation are detailed in Table 1. A total of 130 lipid molecules per leaflet were assem-
24 bled using PACKMOL.% Water molecules and sodium ions to neutrailze the system were
»s further added. In all, the final MD membrane system contained 152 MGDG molecules, 42
16 DGDG molecules, 42 SQDG molecules, 24 PG molecules, 152 sodium ions, and 19,998 water
2 molecules totaling 140,834 atoms in a rectilinear box of 140 x 101 x 105 A3. A total of three
s membrane systems, randomizing the initial lipid placement, were constructed.

329 The MD systems were parameterized using the CHARMMS36m force field. The param-
s eters for the saturated lipids tails (18:3v/16:0, 18:2/16:0, 18:3c/16:0), which are not orig-
s inally parameterized in CHARMMS36, were derived analogous from parameters of related
s lipid molecules in the CHARMMS36 molecule set. The psf topology and coordinating file
sz were created using the VMD psfgen plugin and converted to AMBER prmtop topology and
s 1st7 coordinate files using the chamber module of the ParmEd package.

335 Simulations were performed on the AMBERI1S8 package using the pmemd GPU acceler-
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136 ated module. The MD system was first minimized 7,000 steps using the steepest descent
;37 method followed by 93,000 steps using the conjugate gradient method. Prior to produc-
;s tion simulations, the system was heated to 300K in 100K increments for 1 ns each while
130 restraining the lipid head group atoms with a force constant of 1 kcal/ mol-A2. Production
s simulations were performed in an NPT ensemble using Langevin dynamics with a damp-
s ing coefficient of 1 ps! at 300K, 1 bar, and positional restraints removed. A Monte Carlo
w2 barostat with an update interval of 100 steps was used to maintain pressure. A 12 distance
a3 cutoff was applied to calculate nonbonded interactions. Long-range electrostatic interactions
ss were treated with the Particle mesh Ewald method. Hydrogen bonds were constrained using
us  the SHAKE algorithm. An integration timestep of 2 fs was used for membrane simulations.

us  Fach MD replicate was simulated for 250 ns with a trajectory frame saving rate of 100 ps.

w» Modeling of the full-length BicA dimer system

1 The three-dimensional coordinates of the resolved BicA crystal structure (PDB:6KI1, 6K12)°
uo  were used as the starting structure for simulations. First, transmembrane helix 14 was mod-
350 elled based on the SLC26Dg structure (PDB: 5DA0) To model the full-length BicA dimer,
351 two transmembrane domains were aligned to the SLC26a9 murine transporter,!® in which
32 transmembrane helices 13 and 14 formed the dimeric interface.!” The STAS domain was
53 placed under the transmembrane domain and residues that linked the two domains were
15 modelled with MODELLER. % We found that the resulting full-length BicA dimer to mod-
s estly fit in the cryo-EM map,® which may be attributed to its low-resolution or reconstruction
36 in detergent which may impact the packing of membrane proteins. The modelled dimer, con-
57 taining residues 2-547, was embedded in the cyanobacteria plasma membrane and solvated
s with TIP3P water molecules. 10 bicarbonate anions were randomly placed in the solvent
30 and sodium ions were added to neutralize the system. The final BicA dimer system consisted
w0 of 2 BicA protomers, 152 MGDG molecules, 42 DGDG molecules, 42 SQDG molecules, 24

1 PG molecules, 10 bicarbonate anions, 80 sodium ions, and 30,200 water molecules totaling
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%2 in 141,886 atoms in a rectilinear box of 140.0 x 101.0 x 126.0 A®.

363 The alternative structure prediction of the BicA dimer was generated using Al-
s« phaFold v2.2.0 in tandem with the multimer mode.??% The AlphaFold prediction
s was performed using the following parameters: --max_template_date=2022-05-01,
366 model_preset=multimer, --norun_relax, —-db_preset=reduced_dbs. The output

37 structure from AlphaFold was not used for simulations in this study.

xw IMID simulations of full-length BicA dimer

0 'The BicA dimer system was parameterized using the CHARMM36m force field and con-
s ducted on the AMBERI18 package. Prior to production simulation, the system was mini-
sn mized for 5,000 steps using the steepest descent method, followed by 45,000 steps using the
s conjugate gradient method. The BicA dimer was then subjected to 10 pre-production sim-
w3 ulations with varying atoms restrained, totaling in 150 ns. A detailed list of temperatures,
s restrained atoms, and simulation length for each pre-production step is presented in Table
ws Sl

376 Production simulations were performed under the same conditions and parameters as the
sr7 - previous described pure membrane system, with the exception of the use of a 4 fs integration
s timestep and hydrogen mass repartition.% To determine the stability of the full-length BicA
;o dimer, a total of 7 simulations were initiated from the last pre-production step and simulated
;0 for 700 ns. The resulting trajectories from these simulations yielded BicA to remain in the
;1 inward-facing state. As such, to explore the conformational space of BicA, we adaptively
;2 sampled the conformational landscape based on the distances of the substrate to the binding
s sites and the displacement of the transport domain.?% After 14 rounds of adaptive sampling,
;¢ we did not observe either BicA protomer to transition from the inward-facing state (Fig-
35 ure S510). As such, we seeded subsequent rounds from a targeted MD trajectory in which
3 simulated the transition from inward-facing to outward-facing (Figure S5). The targeted

%MD simulation was performed using NAMD?2.14% using a 200 kcal /mol-A? force constant
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;s and an outward-facing/outward-facing BicA homology model based on the NBCel cryo-EM
s structure (PDB: 6CAA)ST as the target structure. A total of 29 adaptive rounds, in which
s0 individual trajectories were 60 ns long, were conducted and totaled in 1.003 ms of aggregate

;1 simulation data (Table S2).

x» 'Trajectory analysis

3 Trajectories were processed with in-house scripts utilizing the CPPTRAJ, pytraj,®® and
;0 MDTraj%® packages. Simulation trajectories were visualized using Visual Molecular Dy-
s namics (VMD) 1.9.3.7° Residue contact probabilities were calculated using the GetContacts

w6 (https://getcontacts.github.io/) python package.

w» Markov state modeling

38 All 1.003 ms of aggregate simulation data from adaptive sampling simulations were used
10 to construct a Markov state model (MSM). The simulation data were featurized based on
wo the distances of residue pairs that were identified to uniquely formed in the inward- and
w1 outward-facing states and determined using a residue-residue contact score (RRCS).™ In all,
w2 192 distances were identified between the two BicA protomers (Table S3). Additionally, the
w3 z-components of Asp258 and the transported bicarbonate anion were included as features for
ws  the MSM, totaling in 196 cartesian features. The number of time-independent components
ws (tICs) and number of clusters was optimized using a grid search to maximize the VAMP1
ws score (Figure S11A). The best-scoring model was achieved with 10 tICs and 400 clusters.
wr A lagtime of 10 ns was determined based on convergence of the implied timescales (Figure

ws S11B).
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« Umbrella sampling simulations

a0 To investigate the energetics of conformational transitions of BicA mutants, we employed
a1 umbrella sampling The displacement between the z-component of the transport domain
a2 center of mass and the z-component of the scaffold domain center of mass was used as the
a3 reaction coordinate to describe the conformational transitions from inward-facing to outward-
as  facing. Based on the conformational free energy landscape, one protomer of BicA is predicted
a5 to undergo transitions at once, and as such, we employed the umbrella sampling protocol
a6 on only BicA monomer A. Structures were drawn from the conformational landscape. A
a7 total of 26 windows from z-coordinates -8.0 to +4.5, in 0.5A intervals were used to seed
sis umbrella sampling simulations. Each window was simulated for 9 ns. Umbrella sampling
as  simulations were performed using NAMD?2.145 using a 2 fs integration timestep, 12A cutoff
20 with a 10A switching distance, and a harmonic force constant of 15 kcal /mol-A2. Simulation
= frames were saved every 10 ps. Potentials of mean force (PMFs) were calculated using the

s multistate Bennett acceptance ratio as implimented by the pyMBAR python package. ™

» Generation of multiple sequence alignments

«2¢  Multiple sequence alignments were generated using the ConSurf web server. ™ The sequences
ns of BicA, UraA (PDB:5XLS),'® and NCBel (PBD:6CAA)S" were used as input to represent
we  SLC26, SLC23, and SLC4 families. A 95% maximal identity between sequences and a 35%
»7 minimal identity between homologs was used to created the alignment. 300 represented
w8 sequences were sampled from the list of accepted homologs. Sequence logo figures were

w0 generated using the WebLogo server. %

«» Data availability

a1 Molecular dynamics trajectories generated in this study are not publicly deposited as it is

.2 over 4 TB in size. Datasets are available upon request and may require several business days
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a3 to share. Once provided, we do not enforce any limitation for how the data may be used

a2 once requested and shared.
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