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Plants are molecular factories that have spent millions of years evolving the enzymes
needed to synthesize diverse primary and specialized metabolites. Despite the wealth
of metabolites that plants produce, many of the enzymes responsible for generating
these molecules have yet to be identified. For enzymes with known substrates,
the extent of substrate promiscuity and small-molecule regulation remains unexplored.
Many computational methods for identifying metabolic enzymes focus on gene-based
approaches that rely on transcriptomics, metabolomics, and comparative genomics.
With new Al-based tools for accurate protein structure prediction, protein-based
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strategies that screen a library of small molecules against a high-quality protein model
can facilitate the identification of substrates, products, or inhibitors. Virtual screening has
been used for structure-based drug design in the pharmaceutical industry for decades
and easily translates to investigating plant metabolic enzymes. Here, we present a
method for rapid, user-friendly, and open-source virtual screening using the
Arabidopsis thaliana UGT74F2 with a curated library of specialized metabolites and
herbicides and AutoDock Vina as an example. This method may be applied broadly
to metabolic enzymes, and compound libraries can be easily adapted. Compounds
are ranked based on their relative binding affinities and the resulting binding modes
are evaluated using a molecular visualization program, like PyMOL. Because this is a
computational approach, results from the virtual screen will need to be validated using
in vitro or in vivo activity, binding, or inhibition assays. Virtual screening may aid in iden-
tifying substrates for enzymes of unknown function, revisiting substrate selectivity, or
identifying natural or synthetic inhibitors.

1. Introduction

Plants produce as many as a million compounds with diverse roles in
growth and development, defense against pathogens and herbivores, protec-
tion from abiotic stresses, pollinator attraction, and reproduction (Fang,
Fernie, & Luo, 2019). Over millions of years, plants have evolved enzymes
that synthesize these specialized metabolites, many of which are the result of
gene duplication followed by neofunctionalization of genes from primary
metabolism (Maeda & Fernie, 2021). Because many of these compounds
are useful to humans for their roles in medicine, nutrition, or crop improve-
ment, researchers have spent the past few decades searching for enzymes
that produce these specialized metabolites. As the cost of whole-genome
sequencing and transcriptome sequencing has decreased, identification
and functional characterization of plant metabolic enzymes has advanced
rapidly in recent years. Computational identification of candidate genes
coupled to functional assays has led to the identification of entire biosyn-
thetic pathways. While many important specialized metabolic pathways
have been elucidated, including the pathways for pharmaceuticals such as
morphine, etoposide, and vinblastine, the enzymes involved in synthesizing
many pharmaceutically and agriculturally relevant metabolites remain to be
identified (Caputi et al., 2018; Schultz, Kim, Lau, & Sattely, 2019; Singh,
Menéndez-Perdomo, & Facchini, 2019). To build on existing computa-
tional approaches that have been successful in identifying candidate
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genes, a protein-based approach to predict the function of enzymes is now
possible due to recent advances in Al-based structural protein modeling
(Jumper et al., 2021).

1.1 Identifying candidate genes using computational
and systems biology approaches

In the two decades since the Arabidopsis thaliana genome was completed,
over a thousand plant genomes have been sequenced, due in great part to
advances in next-generation sequencing such as short- and long-read
sequencing and the decreasing costs of whole-genome sequencing (Sun,
Shang, Zhu, Fan, & Guo, 2022). Despite the availability of this data, only
a fraction of plant genes have been experimentally characterized and many
enzymes with unknown functions remain (Rhee & Mutwil, 2014). The
establishment of model plants such as A. thaliana has played a substantial
role in the development of comparative genomics, a field which uses
genome sequence homology as a means of identifying gene function in pre-
viously uncharacterized organisms (Smith et al., 2019). Although compar-
ative genomics is a useful tool for identifying gene homologs and
syntenic regions of genomes, it becomes less practical when genes of interest
are part of genus-specific specialized metabolic pathways that lack clear
homologs in other plants. Specialized metabolites have become a key area
of study in pharmacology, agriculture, and cosmetics, and so there exists a
significant need for new techniques that would better allow for the identi-
fication and characterization of these divergently evolved pathways.

Sequencing plant genomes has revealed new information about the
genomic organization of metabolic genes. While it was previously thought
that eukaryotic biosynthetic genes were distributed non-continuously
across distinct chromosomes, recent findings suggest that plant genes asso-
ciated with specialized metabolic pathways may physically aggregate within
the genome in biosynthetic gene clusters similar to a bacterial operon
(Nutzmann, Huang, & Osbourn, 2016). In plants, biosynthetic gene clus-
tering is hypothesized to allow for the coinheritance of entire specialized
pathways, thereby decreasing the likelihood of incomplete pathway inher-
itance that could lead to toxic intermediate build-up (Kim & Buell, 2015).
Mining biosynthetic gene clusters can be useful for identifying specialized
metabolic genes that contribute to the same pathway (Nutzmann et al.,
2016). The online platform plantiSMASH can be used to identify genomic
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loci that resemble biosynthetic gene clusters and can also use transcripto-
mics data to prioritize candidates based on coexpression (Kautsar, Suarez
Duran, & Medema, 2018). In the absence of biosynthetic gene clusters, can-
didate gene identification relies on transcriptomic or metabolic approaches
that require gene expression induction, which can lead to larger pools of
candidate genes. While there have been many recent advances in biosyn-
thetic gene cluster identification, the products of many of these metabolic
clusters have not yet been elucidated (Polturak, Liu, & Osbourn, 2022).

One additional technique for identifying candidate metabolic genes is
by correlating tissue-level expression with metabolite presence and abun-
dance. This method is especially useful in plants, which often synthesize
and compartmentalize defense metabolites to ensure that they reach their
target efficiently without inducing autotoxicity (Delli-Ponti, Shivhare, &
Mutwil, 2021). In order to correlate gene expression with metabolite pres-
ence, it is important to first identify the tissue, cell type, or developmental
stage where the specialized metabolite is synthesized. This can be done
using mass spectrometry, where metabolite(s) of interest are detected using
mass spectrometry and their relative abundance is compared across samples
(Saito & Matsuda, 2010). After generating metabolomics data, trans-
criptomics can be used to identify genes that are differentially expressed
across the same tissues, cell types, or developmental stages that were used
tor collecting metabolomics data. Correlating gene expression with metab-
olite presence and abundance can be very effective in identifying genes in
biosynthetic pathways. This approach is less effective when the specialized
metabolites are not synthesized in the tissue in which they are localized.
For example, the plant defensive compound nicotine is synthesized in the
roots of Nicotiana tabacum (tobacco) and transported to the leaves, where
it serves as an insecticide (Baldwin, 1989). Although this approach has its
limitations, it is a useful technique for identifying candidate primary and
secondary metabolic genes.

In addition to forming biosynthetic gene clusters, specialized metabolic
genes are often coregulated by a common set of transcription factors and
consequently, coexpressed. One method for identifying these expression
patterns is to use global coexpression network analysis, where genes, which
are represented by nodes, are linked together based on overlapping expres-
sion profiles to form modules (Wisecaver et al., 2017). Though this approach
offers a high-throughput method for identifying candidate specialized
metabolic pathways, it is important to recognize that many specialized path-
way genes within a pathway are not necessarily coexpressed. Additionally, it
can be difficult to delineate separate metabolic pathways that may be
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expressed in response to the same elicitors. Despite these limitations, global
coexpression network analysis remains a powerful tool for identifying
candidate secondary metabolic genes in plants.

While the above-mentioned computational techniques have been
instrumental in predicting gene function and for biosynthetic pathway dis-
covery, these approaches may still yield long lists of candidate genes that all
need to be screened using in vivo or in vitro enzyme assays. To narrow down
lists of candidate enzymes further, computational substrate docking using
virtual screens is a protein-based approach that may be used to predict
enzyme function. Additionally, virtual screening may be applied broadly
to studying metabolic enzymes that are targets for herbicides, promiscuous
enzymes, or enzymes of unknown function.

1.2 Docking and virtual screening as a computational tool
for functional prediction of plant metabolic enzyme
activity

Docking is a commonly used computational tool used to model interactions

between a three-dimensional protein structure and a small molecule.

Similarly, virtual screening is a docking approach that iteratively docks a

library of molecules with a target protein. For decades, protein biochemists,

molecular biologists, and pharmaceutical industries have been using protein
structure determination or protein homology modeling coupled with
small-molecule docking to investigate molecular interactions. This line of
research has been made possible by the availability of open-source docking
software that does not require advanced programming knowledge

(Villoutreix et al., 2007). One of the most widely used docking programs,

AutoDock Vina, uses a simple scoring function to efficiently evaluate inter-

molecular interactions within a given protein—ligand complex and outputs a

prediction of protein—ligand binding affinities and binding conformations,

which can be modeled in three-dimensional visualization programs such
as PyMol (Trott & Olson, 2010). Docking is an excellent tool for identifying
candidate substrates, cofactors, and regulators for an enzyme of interest, and
in plant biology research, it has primarily been used to model interactions
between a single protein and one metabolite. Examples of instances where
docking has been used to study plant enzymes include: the Arabidopsis

GH3.15 that conjugates amino acids to the auxinic hormone indole-

3-butyric acid; a noroxomaritidine reductase involved in alkaloid biosynthe-

sis in daffodils (Narcissus spp.); and a rice naringenin O-methyltransferase
involved in phytoalexin synthesis (Kilgore, Holland, Jez, & Kutchan,

2016; Murata et al., 2020; Sherp, Westfall, Alvarez, & Jez, 2018).
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In the past, protein-based methods for narrowing down lists of candidate
enzymes in biosynthetic pathways have been limited by the availability of
reliable protein structures or structural models. Though cryo-electron
microscopy, nuclear magnetic resonance (NMR), and X-ray crystallogra-
phy have been instrumental for solving protein structures, each of these
approaches has their challenges. The development of web-based programs
with simple interfaces for homology-based modeling, such as SWISS-
MODEL and Phyre2, has allowed for the generation of highly accurate
three-dimensional protein structures (Kelley, Mezulis, Yates, Wass, &
Sternberg, 2015; Waterhouse et al., 2018). However, proteins that lack
known homologs, as in the case of many secondary metabolic enzymes,
may be prone to structural inaccuracy. Recent advances in Al-based struc-
ture prediction with the release of AlphaFold has substantially improved our
ability to predict the three-dimensional structure of enzymes from any
species (Jumper et al., 2021). AlphaFold is a machine learning program that
integrates knowledge of biophysical dynamics with protein evolutionary
history analysis to generate highly accurate structural predictions, even if
no structural homolog is known. Being able to generate a structural model
of any protein of interest has the potential to improve our ability to study
specialized metabolism and decipher the molecular underpinnings of plant
metabolism broadly.

In medicinal chemistry and pharmacology, it is common practice
to screen compound—enzyme interactions computationally before pro-
ceeding with empirical experiments, especially when there are hundreds
or thousands of compounds and several target proteins (Rester, 2008).
This same approach can be used for investigating plant metabolism
and aid in identifying candidate enzymes in biosynthetic pathways.
Virtual screens can be implemented for all metabolic enzymes, including
glycosyltransferases, oxygenases (i.e., cytochrome P450s), oxidoreductases,
ligases, hydrolases, or terpene synthases. Aside from identifying enzyme sub-
strates, virtual screening may be used to investigate many open questions in
plant metabolism, including understanding the substrate promiscuity of
enzymes or identifying competitive and allosteric inhibitors of an enzyme.
The structure-based virtual screening methods described here use open
access programs that only require a local PC or Mac computer. Because
AutoDock Vina is open-source, fast, and has a wealth of online tutorials,
user manuals, and discussion forums available to support new users, the
protocol will focus on the use of this program (Eberhardt, Santos-
Martins, Tillack, & Forli, 2021; Trott & Olson, 2010). While having a
working understanding of protein structural visualization programs such
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as PyYMOL or Chimera would be helpful, it is not necessary, and resources
such as PYMOL Wiki are available online.

2. Designing a virtual screen experiment

Before conducting a virtual screen, the enzyme of interest and the
library of compounds that will be screened will need to be prepared.
While there are several programs available that will run a virtual screen,
the information below will focus on preparing compounds and enzymes
for docking using the widely used and freely available program
AutoDock Vina (Trott & Olson, 2010), and the files will be prepared for
docking using AutoDock Tools, a graphical user interface that is part of
the MGLTools software suite. Because these programs are popular for dock-
ing, many online resources and published protocols are readily available
(Forli et al., 2016).

To demonstrate how virtual screens are executed, the protocols below
will use a glycosyltransferase from the model plant A. thaliana, UGT74F2
(AT2G43820), that has been functionally characterized as a UDP-
dependent glycosyltransferase (UGT) that glycosylates the carboxylate of
the plant hormone salicylic acid (SA), forming an SA glucose ester (SGE)
(Lim et al., 2002). This enzyme is known to be promiscuous and can also
glycosylate the hydroxyl of SA (forming SA 2-O-beta-D-glucose; SAG), as
well as other benzoate substrates, including the tryptophan pathway interme-
diate anthranilate (2-aminobenzoate), benzoic acid, and 3-hydroxybenzoic
acid (George Thompson, Iancu, Neet, Dean, & Choe, 2017; Lim et al.,
2002; Quiel & Bender, 2003). UGTs use nucleotide-activated sugars as sugar
donors in the transferase reaction, and UGT74F2, as well as other plant UGTs,
uses UDP-glucose as the sugar donor (Akere et al., 2020). These UGT's have
a variable N-terminal domain and a C-terminal nucleotide-sugar binding
domain that contains a conserved 44 amino acid motif known as a Plant
Secondary Product GT box, and substrates bind UGTs in a cleft between
these two domains.

To prepare ligands and protein input files for virtual screening, you will
need to begin by downloading and installing MGLTools from: http://
mgltools.scripps.edu/downloads. On a Mac, users will also need to down-
load X11 from http://xquartz.org in order to run AutoDock Tools.

2.1 Generating a compound library

The first step in conducting a virtual screen is to decide which compounds to
include in the screen given the enzyme of interest. While several online
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databases of ligand files exist, the compounds in these databases are primarily
targeted for human health and medicine, including ZINC Docking (Irwin
et al., 2020; Sterling & Irwin, 2015), PubChem (Kim et al., 2016), and
ChEMBL (Bento et al., 2014). However, because numerous plant metab-
olites are used as pharmaceuticals or nutraceuticals, ready-to-dock molecules
for many commonly investigated plant-produced compounds are available
for download in a “.mol2” file format from ZINC Docking, including inter-
mediates in primary metabolism, plant hormones, specialized metabolites,
and herbicides (Irwin et al., 2020; Sterling & Irwin, 2015). While by no
means comprehensive, a list of plant metabolites that are available for down-
load from ZINC Docking has been included in Tables 1 and 2. Aside from
the hormones, metabolites, and herbicides listed in Tables 1-3, primary

Table 1 List of plant hormones and hormone-related metabolites included in the
compound library ranked by molecular mass.

Metabolite Formula Molecular mass (g/mol)
Phenylacetic acid CgHgO, 136.15
Salicylic acid C;HeO3 138.12
Indole-3-acetic acid (IAA) Ci0HoNO» 175.18
Indole-3-butyric acid C1,H3NO, 203.24
4-Chloroindole-3-acetic acid C;10HsCINO, 209.63
Jasmonic acid C1o,H 305 210.27
Kinetin Ci1oHoN50 215.21
cis-Zeatin Ci1oH3N50 219.24
6-Benzylaminopurine CioH N5 225.25
Abscisic acid Ci5H,,04 264.32
IAA-glutamine Ci5H17N504 303.31
Sorgolactone CisH»005 316.30
Gibberellic acid C1oH204 346.37
Strigol C19H»,04 346.40
Orobanchol Ci9H»,O4 346.40
Kinetin riboside Ci5H17N505 347.33
Kinetin-9-N-glucoside Ci16H19N504 377.35
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Table 2 List of plant metabolites included in the compound library ranked by general
classification and molecular mass.

Specialized metabolite Description Formula Molecular mass (g/mol)
Nicotine Alkaloid  CyoH;4N, 162.23
Caffeine Alkaloid CgH(N,O, 194.19
Camalexin Alkaloid C11HgN,S 200.26
Morphine Alkaloid Ci7H19INO; 285.34
Galantamine Alkaloid C17H,1NO; 287.35
Capsaicin Alkaloid CisH,7INO; 305.41
Quinine Alkaloid C,0H,4N,O, 324.4
Berberine Alkaloid CooH sNOJ 336.4
Strictosidine Alkaloid Cy7H;3,N,Oq 530.57
Vinblastine Alkaloid C46H55N4 O 811
Benzaldehyde Aromatic C,HO 106.12
Benzoate Aromatic C;H505 121.11
Cinnamaldehyde Aromatic CoHzO 132.16
p-Coumaryl alcohol Aromatic CoH 7O, 150.17
Methyl anthranilate Aromatic CgHoNO, 151.17
Vanillin Aromatic CgHgO3 152.15
Methyl salicylate Aromatic CgHgO3 152.15
Gallic acid Aromatic C;H¢O5 170.12
Ferulic acid Aromatic Ci10H1004 194.18
Anthraquinone Aromatic C14HgO, 208.21
DIMBOA Aromatic CyHoNO5 211.17
Resveratrol Aromatic Ci4H 1,03 228.24
Catechin Aromatic Ci5H 1404 290.26
Quercetin Aromatic Ci5H100~ 302.23
Dhurrin Aromatic Ci14H{7INO, 311.29
Tetrahydrocannabinol ~ Aromatic C51H;5,0, 314.45
Bergamottin Aromatic Cs1H»,04 338.4

Continued
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Table 2 List of plant metabolites included in the compound library ranked by general
classification and molecular mass.—cont'd

Specialized metabolite Description Formula Molecular mass (g/mol)
R osmarinic acid Aromatic CisH1605 360.3
Podophyllotoxin Aromatic C»,H»,0O4 414.41
Allicin Sulfur- CeH 1008, 162.28
containing
Glucobrassicin Sulfur- Ci1cH1oIN,OoS5; 44746
containing
Limonene Terpene CioHig 136.24
Linalool Terpene Ci0H150 154.25
Campesterol Terpene CosHy0 400.68
Betulinic acid Terpene C50H4505 456.7
Lycopene Terpene C4oHs6 536.87
Beta-carotene Terpene C4oHsg 536.87

Aromatics refers to metabolites that contain an aromatic ring (i.e., flavonoids, polyphenols, coumarins,
etc.), and terpenes include mono-, di-, and triterpenes.

Table 3 List of herbicides included in the compound library listed alphabetically.

Herbicide Formula Molecular mass (g/mol)
Aatrex CgH4CINg 215.69
Bentazon C1oH12N>O5S 240.28
Caprylic acid CgH ;605 144.21
Clethodim C17H,4CINO,;S 359.9
Clomazone C,H4CINO, 239.7
Clopyralid CcH3CLNO, 192
Cycloate Cy1H,NOS 215.36
Ethalfluralin Ci3H14F3N;30, 333.26
Ethofumesate Ci3H1505S 286.34
Fluazifop CioH5 FsNO4 327.25
Flumioxazin Ci9H5FIN,O, 354.1
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Table 3 List of herbicides included in the compound library listed alphabetically.—

contd

Herbicide Formula Molecular mass (g/mol)
Fomesafen Cy5H(CIF;N,O4S 460.7
Glyphosate C;3;HgNOsP 169.07
Halosulfuron-methyl C13H15CINgO5S 434.81
Imazethapyr Ci5H19N305 289.33
Linuron CoH(ClLN,0, 249.1
Metam sodium C,H,NNaS, 129.18
Mesotrione Ci14H3NO-S 339.32
Metribuzin CgH14N,OS 214.29
Napropamide C17H,1NO, 271.16
Nicosulfuron Ci5HgNgO¢S 410.4
Norflurazon C1,HyCIF5N;0 303.04
Oxyfluorfen Ci5H,1CIFsNO, 361.7
Paraquat C,H4CLN, 257.16
Pelargonic acid CoH 50, 158.23
Pendimethalin C13H19N304 281.31
Phenmedipham Ci6H1sN,Oy4 300.31
Prometryn C10H19N5S 241.36
Pronamide Ci,H;1ClLNO 256.12
Pyraflufen-ethyl Ci5H13CLE;N,Oy 413.2
Pyroxasulfone C1,H4,F5N30,S 391.06
Rimsulfuron C14H7N505S, 431.4
Saflufenacil C7H7CIF4N,O5S 500.9
Sethoxydim C17H,9NO5S 327.5
Simazine C,H,CINj 201.66
Tembotrione C17HCIF504S 440.8
Terbacil CyH;5CIN,O, 216.67
Trifluralin Ci3H sF3N304 335.28
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metabolites like amino acids, nucleotides, and intermediates in carbohydrate
and lipid metabolism that are conserved across domains of life are also
available from ZINC Docking and may be useful to include in a virtual
screening experiment.

In addition to the compounds included in Tables 1-3, the example
virtual screen involving the Arabidopsis UGT74F2 will also include:
3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid,
2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic
acid, 3,4-dihydroxybenzoic acid, 3-hydroxyanthranilate, chorismate, and
tryptophan. The “.mol2” files for each of these ligands were downloaded
from ZINC Docking.

‘While online databases of metabolites have many of the common plant
metabolites, intermediates in specialized metabolism are not likely to be
included. Ifa compound of interest is not available to download, as a flexible
3D formatted file, structural files can be interconverted into accept-
able file formats, like °
(O’Boyle et al., 2011).

“.mol2”, using the open-source tool Open Babel

2.2 Preparing molecules for a virtual screen

1. The coordinate files for the ligands from Section 2.1 will now need to be
converted to PDBQT (Protein Data Bank, Partial Charge (Q), & Atom
Type (T)) files for downstream applications. The files can be opened as
ligands in AutoDock Tools and converted to the “.pdbqt” file extension
(Forli etal., 2016). To do this, click on “Ligand” in the toolbar and select
“input” to open each of the “.mol2” files. To convert them to “.pdbqt”
files, click on “Ligand” and select “output” and save the file in a directory
where it can be easily located. The name for each ligand file should not
contain spaces

2. Once the ligand files have been generated, save them in a folder named
“bin” inside a “Vina” folder on your computer’s desktop. Alternatively,
the files may be renamed with an abbreviation or a number, and a spread-
sheet could be used to connect the full name of the compound to the
abbreviated file name

3. Using a text editor, create a file named Ligands.txt. Type the name of
each ligand file (i.e., benzoate.pdbqt). Each line in this file should con-
tain only a single ligand file name. This file should be saved in Desktop/
Vina/bin. NOTE: If the spelling of the ligand file name does not exactly
match the spelling in the Ligands.txt file, downstream codes will not run
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4. To prepare the enzyme of interest, you will need to obtain structural

coordinate of the protein. Several options exist for finding or generating

a coordinate file for the enzyme:

a.

If a solved structure of the enzyme of interest is available, the “.pdb”
file can be downloaded from the Protein Data Bank (rcsb.org). If the
protein structure was solved in complex with a ligand that occupies
the binding site (i.e., active site or allosteric site), then the “.pdb” file
can be opened using a text editor, and the three-dimensional
coordinates of the ligand can be manually deleted from the file.
To determine that the ligand has been successfully removed, the
modified “.pdb” file can be opened using a structural visualization
program like PyMOL and visually inspected. Extraneous ions, water
molecules, ligands, and cofactors can also be deleted using a text edi-
tor. Solved structures may also have multiple biological assemblies
(e.g., dimers) within one asymmetric unit. While not necessary,
additional biological assemblies may be deleted manually using a text
editor and inspected using PyMOL

As of this writing, the proteomes for the model plants A. thaliana, Zea
mays, Glycine max, and Oryza sativa are available for download online
from the AlphaFold Protein Structure Database (www.alpha fold.ebi.
ac.uk; Jumper et al., 2021). For example, searching for “Arabidopsis
thaliana UGT74F2” returns an entry for this protein, and a structural
model can be downloaded as a “.pdb” file. Note that these models do
not contain cofactors, metal ions, water molecules, or ligands. It may
be important to add cofactors to the structure using a single docking
run (see the note at the end of this section).

For non-model plants or for proteins that are not available from
the AlphaFold database, protein models can be generated from
online servers, such as SWISS-MODEL (swissmodel.expasy.org)
or Phyre2 (www.sbg.bio.ic.ac.uk/~phyre2), using an amino acid
sequence for the enzyme of interest

5. Once a coordinate file for the enzyme(s) of interest has been obtained,

the file can be prepared using AutoDock Tools. The protein used here,
UGT74F2 from A. thaliana, has been previously crystalized (PDB ID:
5U6M; George Thompson et al., 2017), and the file was first prepared

by removing the salicylic acid ligands from the dimer. The UDP that was

cocrystalized with the enzyme was left in the file because it is the product

of the reaction after the activated nucleotide sugar (i.e., UDP-glucose)

transfers the sugar onto a nucleophilic acceptor substrate. Alternatively,
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the AlphaFold-generated structural coordinates may have been used, but
the protein structure would have been apo, meaning that UDP would
have to be docked into the structure. To open the “.pdb” coordinate
file for the enzyme, use the topmost toolbar and select “File” and then
“Read Molecule.” Protein structures typically do not include hydro-
gens, so these may be added to the enzyme using AutoDock Tools by
clicking “Edit” in the toolbar and then “Hydrogens” (Forli et al.,
2016). Hydrogens should appear on the enzyme in the protein viewing
window. To export the protein as a “.pdbqt” file, click “Grid,” then
“Macromolecule” and “Choose” and select the protein. A window will
pop up so the file can be saved in the Desktop/Vina/bin folder with a .
pdbqt” extension
To define the docking area that encompasses the active site or binding
pocket of interest, click “Grid” and then “Grid Box.” This is the area in
which Vina will search for binding interactions between the enzyme and
each ligand, so it is important that the space is large enough to cover the
entire area of interest and allow the ligands to rotate freely but not so
large that the molecules are predicted to bind the protein superficially.
The size and center of the search space in x, y, and z dimensions of
the grid box, can be altered so the entire search space is encompassed
by the coordinates. It is also important to rotate the protein in the
AutoDock Tools viewer to see that the binding pocket of interest is
covered in all dimensions
Once the grid box dimensions have been determined, these values will
be recorded in a text file saved in the Desktop/Vina/bin subfolder. This
plain text file can be made using a plain text editor, like TextEdit or
Notepad

conf_vs.txt

receptor = UGT74F2.pdbqt

center_x = 46.7
center_y = 76.1
center_z = 81.6

size_x = 40
size_y = 40
size_z = 40

exhaustiveness = 8
num_modes = 10
The name of the enzyme coordinate file is listed as “receptor =" and
the center x, y, and z coordinates were determined from AutoDock



Computational substrate screening 85

Tools, as was the size of the box in x, y, and z dimensions. The exhaus-
tiveness of 8 is default and is the number of Monte-Carlo iterated
searches. The number of modes (num_modes) is the maximum number
of ligand conformations that will be generated per ligand. Increasing this
number may increase the total time that it takes to run Vina.

8. This process was repeated to generate a structural model of UGT74F2
that had the activated nucleotide sugar donor UDP-glucose bound in
the active site. To do this, the coordinates for UDP were removed from
the 5U6M PDB file above using a text editor. The apo enzyme structure
was used for a single docking run using AutoDock Vina, and the coor-
dinates of the UDP-glucose conformation that had the highest binding
affinity and bound in a logical conformation was exported as a PDB file
and pasted into the text file of the apo enzyme model and saved as a new
UDP-glucose bound model. This new combined file was opened using
PyMOL to ensure that the structural model had UDP-glucose in the
active site. This file was then opened in AutoDock Tools for conversion
to a “.pdbqt” file and to determine the grid box dimensions

Note: If an important cofactor for the protein of interest—such as heme in

cytochrome P450 monooxygenases, NADH or NADPH in dehydroge-

nases, or S-adenosyl methionine in SAM-dependent methyltransferases—is
not part of the structural file, a single docking run using AutoDock Vina
could be used to place the cofactor in the active site. The coordinate file
for cofactors may be obtained from the Protein Data Bank, converted to

a “.pdbqt” file, and docked into the active site. Coordinates for the best

docking confirmation of the cofactor could be pasted into the “.pdb” file

of the protein above “END” using a text editor.

3. Virtual screening using AutoDock Vina

The virtual screen presented here uses AutoDock Vina, which uses a
rapid gradient-optimization conformational search (Forli et al., 2016). The
scoring function estimates the force of non-covalent interactions between
compounds and the target protein using mathematical models, and the user
does not need to have working knowledge of these models in order to use
the program. This straightforward approach is easily implemented by molec-
ular biologists, and the length of time needed for the screen to run depends
on the factors such as the number of ligands included in the virtual screen, as
well as the number of modes for each ligand.
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3.1 Software needed

Windows users will need to download Perl to run the virtual screen script
from https://www.perl.org/get.html. Perl is installed on MacOS by default.
AutoDock Vina can be downloaded online at http://vina.scripps.edu. The
following protocol uses version 1.1.2 for its ease of use. Move the two Unix
executable files (titled vina and vina_split) from the Autodock Vina folder
that was downloaded into the Desktop/Vina/bin subfolder. These are
needed to ensure the following steps proceed properly.

3.2 Script for running the virtual screen

A Perl script enables iterative docking runs with AutoDock Vina using a
Mac or Windows system. This file should be added to the Desktop/
Vina/bin folder. The file can be created using a text editor and should con-
tain the following information:

Vina_mac.pl

#!/usr/bin/perl

print"Ligand_file:\t";

$ligfile =<STDIN >;

chomp $ligfile;

open (FH,$ligfile)||die "Cannot open file\n";

@arr_file=<FH >;

for($i=0;%1 < @arr_file;$i++)
{
print" @arr_file[$i]\n";
@name =split(/\./,@arr_file[$i]);
H
for($1=0;$1 < @arr_file;$i++)
{
chomp @arr_file[$i];
print" @arr_file[$i]\n";
system("./vina —config conf_vs.txt —ligand @arr_file[$i] —log
@arr_file[$i]_log.log");
}
Modification to Perl script for Microsoft OS:
system("vina.exe —config conf vs.txt —ligand @arr_file[$i] —log

@arr_file[$i]_log.log");

3.3 Procedure on a Mac OS

1. Before starting the run, check that the following files are in the Desktop/
Vina/bin folder:


https://www.perl.org/get.html
https://www.perl.org/get.html
http://vina.scripps.edu
http://vina.scripps.edu
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a. conf vs.txt
b. Ligands.txt
c. Vina_mac.pl (or Vina_windows.pl)
d. vina
e. vina_split
f. UGT74F2.pdbqt
g. “.pdbqt” files for each ligand
2. Open Terminal (Mac) or Command Prompt (Windows), and type:
cd Desktop/Vina/bin

perl Vina_mac.pl (OR perl Vina_windows.pl)

When you hit “Enter,” you will be prompted to type in the name
of the ligand file. Type: Ligands.txt and hit “Enter.” After this, Vina
will start running. Here is an example of the Terminal log during one
compound docking run:
cinnamaldehyde.pdbqt
WARNING: The search space volume > 27000 Angstrom”3 (See FAQ)
OQutput will be cinnamaldehyde_out.pdbqt
Detected 4 CPUs

Reading input ... done.
Setting up the scoring function ... done.
Analyzing the binding site ... done.

Using random seed: 1584341810
Performing search ...
0% 10 20 30 40 50 60 70 80 90 100%

khkkhkkhkhhkkhkhhkhhkhrkhhhkhhkhhkhkrhkhrkhkrkhkhhkhrkhrkhkhhkhrkhkrkhkrkk

done.
Refining results ... done.
mode | affinity | dist from best mode
| (kcal/mol) | rmsd 1.b.| rmsd u.b.
fffff R D LR R
1 -5.9 0.000 0.000
2 -5.6 9.406 10.829
3 -5.4 2.469 4.623
4 -5.1 8.247 10.127
5 -5.1 12.839 14.177
6 -5.0 9.418 11.085
7 -4.9 9.755 10.414
8 -4.9 12.924 14.300
9 -4.9 3.682 5.598
10 -4.8 14.032 15.374

Writing output ... done.
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The length of the run will vary based on the number of ligand files and the

number of modes. Do not close the Terminal window during this time.

3. When your run is complete, all of the coordinate files for each of the
docked ligands (i.e., ligand_out.pdbqt), as well as the output log files that
include the binding affinities for each conformation, will be in the
Desktop/Vina/bin folder

Note: Before running a new virtual screen, it is important to move the “.log”

and “..._out.pdbqt” files from the previous run to a new folder so they are

not overwritten.

4. Interpreting and visualizing screening results

To interpret the results, the protein can be opened in a protein
visualization program, like PyMOL or UCSF Chimera. PyMOL can be
downloaded from https://pymol.org/2/. In the same window, each of
the ligand files can be opened and visualized in relation to the active site
or a specified cavity on the enzyme of interest. Because the conf_vs.txt file
used a num_modes setting of 10, a maximum of 10 conformations were
generated for each compound. These conformations should be manually
inspected to determine the conformation that is most logical (i.e., oriented
within the active site and not on the surface of the protein) and has the lowest
computational binding affinity (i.e., a large negative number) in kcal/mol.
The conformations are shown in increasing order of binding affinity, and
while the first conformation has the highest binding affinity, it does not
always bind within the active site or in an orientation that would make sense
for catalysis. If many of the molecules are binding on the surface of the pro-
tein, the search space dimensions can be redrawn, and the screen can be
repeated with a more refined search window. If the grid box dimensions
are stringent and the compound does not bind within those constraints,
the results may have fewer than 10 conformations for some compounds.

For metabolic enzymes, one way to assess the accuracy of ligand binding
is to use the measurement feature in PyMOL to determine the distance
between the compound and the cofactor (Fig. 1). In the toolbar of
PyMOL, click on “Wizard” and select “Measurement.” This allows for
the distance between individual atoms to be determined. Click on an atom
on the ligand that is acted upon by the enzyme (e.g., the predicted ligand
hydroxyl that is glycosylated by the enzyme), and then click on a second
atom elsewhere in the enzyme like a catalytic residue (if known) or an atom


https://pymol.org/2/
https://pymol.org/2/
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Fig. 1 Measured distances between functional groups on docked ligands and the
nearest phosphate oxygen on UDP in the AtUGT74F2 active site. In the three panels
on the left, three compounds (anthranilate, salicylic acid, and 3-hydroxybenzoic acid)
that are confirmed substrates for the enzyme are shown, while compounds that have
a high binding affinity but unknown activity (IAA-glutamate, catechin, and capsaicin) are
shown in the three panels on the right.

on the cofactor. The distance will be displayed as a label in Angstroms (A)
above a dashed line that connects the two atoms that were selected. Once
you are finished measuring distances between atoms, click “Done” under
“Measurement” in the right-hand panel.

‘While inspecting each ligand, note the conformation(s) that have a low
binding affinity and accurately bind within the active site. Vina has calcu-
lated the binding affinity for each mode, and the values can be found in
the output “.log” files that were generated for each ligand. Taken together,
the binding affinities for the ligand conformations that were noted by
visual inspection may be added to a spreadsheet (Table 4 and 5). When
the results have been tabulated, the compounds can be ranked by their bind-
ing affinity values from lowest to highest. The results from the virtual
screens of UGT74F2 that had either UDP-glucose or UDP bound in the
active site are included in Tables 4 and 5.



90

Cynthia K. Holland and Hisham Tadfie

Table 4 Ranking of binding affinities from the Arabidopsis thaliana UGT74F2 virtual

screen with UDP-glucose bound in the active site.

Compound Binding mode Binding affinity (kcal/mol)
Capsaicin 1 —7.2
2,4-Dihydroxybenzoic acid" 1 —6.5
2,3-Dihydroxybenzoic acid® 1 —6.5
Gallic acid 3 —6.1
3-Hydroxyanthranilate 3 —6.1
3,4-Dihydroxybenzoic acid” 5 —6.1
Salicylic acid” 3 —6
Nicotine 1 —6
Anthranilate” 2 —5.9
3-Hydroxybenzoic acid” 3 —5.9
4-Hydroxybenzoic acid” 3 —5.9
2,5-Dihydroxybenzoic acid” 5 —5.8
Phenylacetic acid 2 —5.7
p-Coumaryl alcohol 2 —5.6
Indole-3-butyric acid 7 —5.6
Benzoic acid” 3 —5.6
Clopyralid 4 —5.4
2,6-Dihydroxybenzoic acid" 3 =5
Glyphosate 4 —4.4
Metam 2 —-2.8

*No activity detected in an in vitro assay.
P Activity has been confirmed in vitro.

Binding affinities are listed for the binding mode that was closest to the UDP-glucose cosubstrate (mea-
sured in angstroms). The distance represents the approximate distance between the nearest atom that
could participate in the glycosyl transfer reaction (e.g., hydroxyl oxygen) and the hydroxyl on
carbon-6 of glucose. Compounds with a predicted distance of >5 A from the oxygen atoms of the
gamma phosphate were not included in the table. Compounds are ranked from highest binding affinity
to lowest binding affinity as determined by AutoDock Vina, and molecules that bound in the active site
but did not have a functional group that could be glycosylated were not included in the table.
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Table 5 Ranking of binding affinities from the Arabidopsis thaliana UGT74F2 virtual
screen with UDP bound in the active site.

Compound Binding mode Binding affinity (kcal/mol)
IAA-glutamate 1 —8.8
Catechin 1 —8.8
Tryptophan 1 -7.8
Resveratrol 1 —7.4
6-Benzylaminopurine 1 —7.2
DIMBOA 1 —71
Linuron 2 -7.1
Kinetin-riboside 8 -7
Phenmedipham 3 -7
Dhurrin 6 —6.9
cis-Zeatin 3 —6.8
IAA 2 —6.8
Indole-3-butyric acid 2 —6.8
4-Chloroindole-3-acetic acid 1 —6.8
Capsaicin 4 —6.4
Ferulic acid 2 —6.4
Bentazon 5 —6.3
2,3-Dihydroxybenzoic acid" 4 —6.2
2,5-Dihydroxybenzoic acid® 4 —6.2
Caffeine 4 —6.2
2,6-Dihydroxybenzoic acid” 3 —6.1
2,4-Dihydroxybenzoic acid" 1 —6.1
3-Hydroxyanthranilate 6 -5.9
Anthranilate” 2 -5.9
Nicotine 3 —5.8
Terbacil 5 —5.8
Clopyralid 2 —5.8

Continued
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Table 5 Ranking of binding affinities from the Arabidopsis thaliana UGT74F2 virtual

screen with UDP bound in the active site.—cont'd

Compound Binding mode Binding affinity (kcal/mol)
p-Coumaryl alcohol 2 —5.7
Salicylic acid” 5 —5.6
Phenylacetic acid 4 -5.6
3-Hydroxybenzoic acid” 8 —5.5
Paraquat 3 —=55
Simazine 3 —5.4
Methyl anthranilate 8 —53
4-Hydroxybenzoic acid” 8 —5.3
Methyl salicylate 10 -5
Glyphosate 5 -5
Caprylic acid 1 —4.9
Nonoate 2 —4.8
Metam 1 -3.1

*No activity detected in an in vitro assay.

P Activity has been confirmed in vitro.

Binding affinities are listed for the binding mode that was closest to the UDP product (measured in
angstroms). The distance represents the approximate distance between the nearest atom that could
participate in the glycosyl transfer reaction (e.g., hydroxyl oxygen) and the oxygen atoms on the
beta-phosphate of UDP. Compounds with a predicted distance of greater than 6.0 A from the terminal
phosphate oxygen atoms were not included in the table. Compounds are ranked from highest binding
affinity to lowest binding affinity as determined by AutoDock Vina, and molecules that bound in the
active site but did not have a functional group that could be glycosylated were not included in the table.

For UGT enzymes, analyzing the results of a virtual screen with both the
UDP-glucose cosubstrate as well as the UDP product bound 1s informative
since the glucose moiety is large and occupies a portion of the active site
(Figs. 1 and 2). When UDP-glucose is bound, larger molecules may be pre-
cluded from binding the active site pocket, especially if the pocket is small.
However, a virtual screen that has UDP bound in the active site may allow
larger or glycosylated molecules to bind. Taken together, the UDP-glucose
bound structure is useful for identifying putative substrates for this enzyme,
while the UDP-bound structure may inform putative products of the
reactions. In either docking simulation, putative small-molecule regulators
(i.e., competitive inhibitors) may also be identified.
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Fig. 2 Docking results for AtUGT74F2 with UDP-glucose in the active site. A. View of the
active site with salicylic acid docked. Dashed lines are used to show how the distance
between the hydroxyl of salicylic acid and the hydroxyl on carbon-6 of glucose was
measured. Active site residues are displayed as sticks. B. View of the active site with cap-
saicin docked, including hydrophobic residues distal from the site of glycosyl transfer.
Dashed lines are used to show how the distance between the hydroxyl of salicylic acid
and the hydroxyl on carbon-6 of glucose was measured. Active site residues are dis-
played as sticks. C. Surface view of the active site with salicylic acid docked to show
the space of the active site cavity. D. Surface view of the active site with capsaicin
docked to show the full extent of capsaicin binding both close to the site of glycosyl
transfer and in the distal hydrophobic space within the pocket. Note that while the
distances were drawn between the ligand and the hydroxyl on carbon-6 of glucose,
the hydroxyl on carbon-1 that is covalently attached to the beta-phosphate of UDP
is the hydroxyl on which the ligand is transferred.

In the virtual screen of the A. thaliana UGT74F2 with UDP-glucose
bound, we found an overall trend in our inspection of each compound
(Table 4). Notably, small, aromatic compounds, such as 2,4-dihydroxybenzoic
acid and salicylic acid, have a high binding affinity (—6.5 and —6kcal/mol,
respectively) and a hydroxyl or carboxyl oxygen on these molecules is a short
distance from a hydroxyl oxygen on the glucose molecule (approximately
2.8A and 2.7A, respectively). Aromatic amino acids in the active site
(Tyr13, Phe70, Phe113, Tyr180, and Trp364) likely stabilize intramolecular
interactions between substrates and the protein through n-m stacking
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interactions (Fig. 2). His18 is a conserved catalytic residue that hydrogen
bonds with substrates to position them for the glycosyl transfer reaction
(George Thompson et al., 2017). When salicylic acid is the substrate, the
protonation state of the basic active site amino acid His18 determines
whether the carboxyl or hydroxyl are glucosylated by the enzyme. The
carboxylate of SA likely forms hydrogen bonding interactions with the
side-chain hydroxyl of Thr15, while the carboxylate of 2,4-dihydroxybenzoic
acid is on the opposite side of the active site and is predicted to form hydro-
gen bonds with the side-chain hydroxyl of Thr365. These two threonine
residues have been found to contribute to substrate binding conformation.

These results are consistent with previous functional data that found that
UGT74F2 can glycosylate the carboxylate and the hydroxyl of SA
(2-hydroxybenzoic acid), anthranilate, benzoic acid, and 3-hydroxybenzoic
acid (George Thompson et al., 2017; Lim et al., 2002; Quiel & Bender,
2003). However, activity was not seen with 4-hydroxybenzoic acid,
2,4-dihydroxybenzoic acid or any other dihydroxybenzoates that were
tested (Lim et al., 2002). This discrepancy highlights the importance of
validating the results from a virtual screen using functional assays.

Interestingly, the molecule with the highest binding affinity that was
within 5A of UDP-glucose was the alkaloid capsaicin (—7.2kcal/mol).
Capsaicin is an alkaloid produced in the Capsicum genus (Solanaceae) and
is responsible for the pungent and spicy sensation associated with eating
hot peppers.

Capsaicin bound the active site with a hydroxyl on the aromatic ring
positioned 2.8A away from the hydroxyl on carbon-6 of glucose, and
the hydrophobic 8-methyl-6-nonenoyl moiety oriented near hydrophobic
residues in the active site pocket (Phe 43, Val 44, and Phe 70) (Fig. 2).
Capsaicin glucosides have been detected in Capsicum annuum peppers, and
one glucoside, capsaicin-f-p-glucopyranoside, was found to have 1/100th
of the pungency of capsaicin (Higashiguchi, Nakamura, Hayashi, &
Kometani, 2006; Kometani, Tanimoto, Nishimura, Kanbara, & Okada., S.,
1993). While insect UGTs that glycosylate capsaicin as a detoxification mech-
anism have been characterized, a plant enzyme that glycosylated capsaicin
remains to be identified (Ahn et al., 2011).

Other compounds in the table that have not been screened for in vitro
activity but bind in the active site in the virtual screen include the
trihydroxybenzoate gallic acid, the tryptophan catabolism intermediate
3-hydroxyanthranilate, the auxinic hormone phenylacetic acid, and the
phenylpropanoid biosynthetic intermediate p-coumaryl alcohol. Additionally,
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three herbicides were predicted to bind the active site of the enzyme:
clopyralid (3,6-dichloro-2-pyridinecarboxylic acid), glyphosate (N-(pho-
sphonomethyl)glycine), and metam (methylcarbamodithioic acid). The
three herbicides have lower binding affinities than the known substrates,
but because this 1s a computational screen, the binding of these molecules
to UGT74F2 should be confirmed experimentally. It may be that enzyme
activity is unaffected by these herbicides, or the herbicides could serve as
competitive inhibitors by binding and blocking substrates. Assays would
also be needed to determine whether the carboxylate of clopyralid, the
carboxylate of glyphosate, or the thiol of metam can be glycosylated, which
may serve as a mechanism for herbicide resistance if the glycosylated
herbicide has reduced toxicity (Gaines et al., 2020).

The virtual screen that included UDP bound in the active site generated
more compounds that were able to bind in the active site than in the
UDP-glucose structure, which is likely because the glucose moiety occupies
a large space in the active site and excludes larger molecules (Table 5). For
the UDP-bound enzyme, a cutoff of 6.0 A between hydroxyl on carbon-6
of glucose and an atom on the compound that could be glycosylated was
selected (Fig. 1). Known substrates, including anthranilate, salicylic acid,
and 3-hydroxybenzoic acid, had predicted binding affinities of —5.9,
—5.6, and —5.5kcal/mol, respectively (Table 5). Unsurprisingly the results
of docking with UDP and UDP-glucose bound in the active site varied,
which highlights the importance of testing multiple cosubstrates, coprod-
ucts, or cofactors.

5. Limitations of virtual screens

While docking and virtual screens are an excellent way to computa-
tionally predict how a small molecule will interact with an enzyme of
interest, this technique is not without its limitations. One of the limitations
of the virtual screening method provided is that the protein or enzyme of
interest will be screened for ligand binding based on a single, rigid protein
conformation. Regardless of the source of the protein structure (i.e., X-ray
crystal structure, homology model, etc.), flexibility of the ligand will not be
taken into account during the virtual screen. Virtual screen results may not
accurately depict the molecular interactions that would occur between the
protein and ligand in another conformation. If protein flexibility is a key
consideration in generating reliable docking results for the protein of inter-
est, this AutoDock Vina-based virtual screen could be followed with a
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second screen using DOCK 6 with the AMBER scoring function, which
performs molecular dynamics simulations (Allen et al., 2015; Maia, Assis,
de Oliveira, da Silva, & Taranto, 2020). However, there are limitations
to this approach as well, namely, the input preparation and the amount of
time needed to run a more computationally intensive program.

Another limitation inherent to virtual screening is that there are false pos-
itives, and perhaps false negatives, within the data (Maia et al., 2020). For
example, metabolites that are known to not exhibit activity with the
A. thaliana UGT74F2, such as 3,4-dihydroxybenzoic acid, have a higher
predicted binding affinity than known substrates, such as salicylic acid and
anthranilate (Table 4). Like any computational screen, in vitro or in vivo
experiments are needed to complement and confirm the results. For exam-
ple, if the metabolite is a putative substrate, then the enzyme could be
purified and assayed for activity with the metabolite(s) of interest. Gene
knockout or knockdown experiments coupled with metabolomics could
be used to determine the chemical phenotype in the absence of the enzyme.
Depending on the number of ligands included in the screen, one may end up
with a list of tens of metabolites to screen for activity, many of which may
not serve as substrates. On the other hand, without knowing that anthrani-
late and salicylic acid are substrates for UGT74F2, one may have made an
arbitrary cutoft for binding affinities that excluded these compounds from
in vitro analyses, which would have meant that the substrates of the enzyme
may not have been identified.

A key consideration for virtual screening is the space that cofactors and
cosubstrates occupy in the active site. In the case presented here, docking
was performed with both UDP-glucose, which is a cosubstrate, and the
product UDP. While there were similarities between the results (Tables 4
and 5), there are also notable differences. The UGT74F2 active site was able
to accommodate larger molecules when only UDP was bound, whereas
smaller aromatic compounds predominantly bound the active site when
UDP-glucose was present. Because of the speed of conducting a virtual
screen, re-screening enzymes with multiple cofactors or cosubstrates is
feasible.

Many simulation-based softwares are limited in their ability to model
complex systems to perfect accuracy. Furthermore, the ability of protein-
ligand docking programs such as AutoDock to provide accurate results
is highly dependent upon the accuracy of the binding site of the structural
model (Cross et al., 2009). Most protein modeling programs use
homology-based techniques, where an unknown protein of interest is
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modeled using a known protein with a solved crystal structure as a template.
In some previous pharmacological studies, unknown proteins that shared
>50% sequence identity with the template structure were deemed eligible
for docking (Hillisch, Pineda, & Hilgenfeld, 2004). More recent findings
suggest that the 50% homology cutoft is not an eftective method for
assessing docking eligibility, but with recent advances in predictive model-
ing programs like Alpha Fold, highly accurate protein structures have never
been more accessible (Bordogna, Pandini, & Bonati, 2011; Jumper et al.,
2021). As these protein structures continue to increase in accuracy, so do
the capabilities of docking programs to accurately evaluate and model
protein—ligand interactions.

Protein-ligand docking programs often suffer from an inability to predict
the influence of water molecules on protein—ligand interactions (Verdonk
et al., 2005). This is especially problematic for enzymes that contain water
molecules in their active site, as these molecules may play a vital role in
facilitating catalysis. During docking, optimization of water molecule orien-
tation has been found to significantly increase docking accuracy (Roberts &
Mancera, 2008). In addition to increasing docking accuracy, inclusion of
water molecules can also be a useful tool for discovering substrates that
are able to displace water molecules from the active site (Verdonk et al.,
2005). Some docking programs, such as GOLD, can be modified to factor
water mediation and displacement during protein-ligand docking. More
recently, AutoDock Vina version 1.2.0 has been updated to support the
modeling of explicit water molecules via the hydrated docking protocol
(Eberhardt et al., 2021). This method produces a more accurate portrayal
of water—protein—ligand interactions; however, it comes at a high compu-
tational cost compared to the default solvent models.

6. Conclusions

While virtual screening is commonly used in the pharmaceutical
and biotechnology industries for drug and small-molecule inhibitor design,
there is an untapped potential for this computational method for exploring
the function of plant enzymes. Now with advances in protein structure
prediction and the availability of ready-to-dock ligands, conducting a
virtual screen can be free, easy, relatively fast and complementary to
gene-expression-based methods that have been used extensively to identify
candidate enzymes in metabolic pathways.
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Before starting in vitro or in vivo experiments to confirm the function of
a metabolic enzyme, conducting a virtual screen of the putative substrates
and/or products of the enzymes of interest may provide an additional mech-
anism to narrow down lists of candidate genes. Additionally, virtual screens
may be applied to enzymes with known functions to identify alternative
substrates, identify natural inhibitors, or for designing inhibitors, like herbi-
cides. However, like any computational tool, the results of virtual screens
need to be confirmed experimentally.

Specialized metabolites have revolutionized the medical, cosmetic, and
agricultural industries, however, enzyme promiscuity in specialized meta-
bolic pathways also poses significant threats, such as the evolution of herbi-
cide resistance (Abdollahi et al., 2021). While the evolution of enzyme
specificity played a major role in increasing metabolic efficiency, enzyme
promiscuity continues to drive the emergence of secondary metabolic path-
ways, which often provide a selective advantage to the host organism
(Leong & Last, 2017). Understanding the mechanisms that drive enzyme
promiscuity is key to navigating these challenges and may even allow for
improved manipulation of wvaluable specialized metabolic pathways.
Protein-based computational techniques such as virtual screening are excel-
lent tools for probing individual metabolic enzymes for large pools of poten-
tial substrates. High-throughput analysis of structurally similar substrates will
reveal key details about enzyme activity and may enable the development of
novel pathways for natural product biosynthesis.
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