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Abstract

Plants are molecular factories that have spent millions of years evolving the enzymes
needed to synthesize diverse primary and specialized metabolites. Despite the wealth
of metabolites that plants produce, many of the enzymes responsible for generating
these molecules have yet to be identified. For enzymes with known substrates,
the extent of substrate promiscuity and small-molecule regulation remains unexplored.
Many computational methods for identifying metabolic enzymes focus on gene-based
approaches that rely on transcriptomics, metabolomics, and comparative genomics.
With new AI-based tools for accurate protein structure prediction, protein-based
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strategies that screen a library of small molecules against a high-quality protein model
can facilitate the identification of substrates, products, or inhibitors. Virtual screening has
been used for structure-based drug design in the pharmaceutical industry for decades
and easily translates to investigating plant metabolic enzymes. Here, we present a
method for rapid, user-friendly, and open-source virtual screening using the
Arabidopsis thaliana UGT74F2 with a curated library of specialized metabolites and
herbicides and AutoDock Vina as an example. This method may be applied broadly
to metabolic enzymes, and compound libraries can be easily adapted. Compounds
are ranked based on their relative binding affinities and the resulting binding modes
are evaluated using a molecular visualization program, like PyMOL. Because this is a
computational approach, results from the virtual screen will need to be validated using
in vitro or in vivo activity, binding, or inhibition assays. Virtual screening may aid in iden-
tifying substrates for enzymes of unknown function, revisiting substrate selectivity, or
identifying natural or synthetic inhibitors.

1. Introduction

Plants produce as many as a million compounds with diverse roles in

growth and development, defense against pathogens and herbivores, protec-

tion from abiotic stresses, pollinator attraction, and reproduction (Fang,

Fernie, & Luo, 2019). Over millions of years, plants have evolved enzymes

that synthesize these specialized metabolites, many of which are the result of

gene duplication followed by neofunctionalization of genes from primary

metabolism (Maeda & Fernie, 2021). Because many of these compounds

are useful to humans for their roles in medicine, nutrition, or crop improve-

ment, researchers have spent the past few decades searching for enzymes

that produce these specialized metabolites. As the cost of whole-genome

sequencing and transcriptome sequencing has decreased, identification

and functional characterization of plant metabolic enzymes has advanced

rapidly in recent years. Computational identification of candidate genes

coupled to functional assays has led to the identification of entire biosyn-

thetic pathways. While many important specialized metabolic pathways

have been elucidated, including the pathways for pharmaceuticals such as

morphine, etoposide, and vinblastine, the enzymes involved in synthesizing

many pharmaceutically and agriculturally relevant metabolites remain to be

identified (Caputi et al., 2018; Schultz, Kim, Lau, & Sattely, 2019; Singh,

Men�endez-Perdomo, & Facchini, 2019). To build on existing computa-

tional approaches that have been successful in identifying candidate
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genes, a protein-based approach to predict the function of enzymes is now

possible due to recent advances in AI-based structural protein modeling

( Jumper et al., 2021).

1.1 Identifying candidate genes using computational
and systems biology approaches

In the two decades since the Arabidopsis thaliana genome was completed,

over a thousand plant genomes have been sequenced, due in great part to

advances in next-generation sequencing such as short- and long-read

sequencing and the decreasing costs of whole-genome sequencing (Sun,

Shang, Zhu, Fan, & Guo, 2022). Despite the availability of this data, only

a fraction of plant genes have been experimentally characterized and many

enzymes with unknown functions remain (Rhee & Mutwil, 2014). The

establishment of model plants such as A. thaliana has played a substantial

role in the development of comparative genomics, a field which uses

genome sequence homology as a means of identifying gene function in pre-

viously uncharacterized organisms (Smith et al., 2019). Although compar-

ative genomics is a useful tool for identifying gene homologs and

syntenic regions of genomes, it becomes less practical when genes of interest

are part of genus-specific specialized metabolic pathways that lack clear

homologs in other plants. Specialized metabolites have become a key area

of study in pharmacology, agriculture, and cosmetics, and so there exists a

significant need for new techniques that would better allow for the identi-

fication and characterization of these divergently evolved pathways.

Sequencing plant genomes has revealed new information about the

genomic organization of metabolic genes. While it was previously thought

that eukaryotic biosynthetic genes were distributed non-continuously

across distinct chromosomes, recent findings suggest that plant genes asso-

ciated with specialized metabolic pathways may physically aggregate within

the genome in biosynthetic gene clusters similar to a bacterial operon

(N€utzmann, Huang, & Osbourn, 2016). In plants, biosynthetic gene clus-

tering is hypothesized to allow for the coinheritance of entire specialized

pathways, thereby decreasing the likelihood of incomplete pathway inher-

itance that could lead to toxic intermediate build-up (Kim & Buell, 2015).

Mining biosynthetic gene clusters can be useful for identifying specialized

metabolic genes that contribute to the same pathway (N€utzmann et al.,

2016). The online platform plantiSMASH can be used to identify genomic
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loci that resemble biosynthetic gene clusters and can also use transcripto-

mics data to prioritize candidates based on coexpression (Kautsar, Suarez

Duran, &Medema, 2018). In the absence of biosynthetic gene clusters, can-

didate gene identification relies on transcriptomic or metabolic approaches

that require gene expression induction, which can lead to larger pools of

candidate genes. While there have been many recent advances in biosyn-

thetic gene cluster identification, the products of many of these metabolic

clusters have not yet been elucidated (Polturak, Liu, & Osbourn, 2022).

One additional technique for identifying candidate metabolic genes is

by correlating tissue-level expression with metabolite presence and abun-

dance. This method is especially useful in plants, which often synthesize

and compartmentalize defense metabolites to ensure that they reach their

target efficiently without inducing autotoxicity (Delli-Ponti, Shivhare, &

Mutwil, 2021). In order to correlate gene expression with metabolite pres-

ence, it is important to first identify the tissue, cell type, or developmental

stage where the specialized metabolite is synthesized. This can be done

using mass spectrometry, where metabolite(s) of interest are detected using

mass spectrometry and their relative abundance is compared across samples

(Saito & Matsuda, 2010). After generating metabolomics data, trans-

criptomics can be used to identify genes that are differentially expressed

across the same tissues, cell types, or developmental stages that were used

for collecting metabolomics data. Correlating gene expression with metab-

olite presence and abundance can be very effective in identifying genes in

biosynthetic pathways. This approach is less effective when the specialized

metabolites are not synthesized in the tissue in which they are localized.

For example, the plant defensive compound nicotine is synthesized in the

roots of Nicotiana tabacum (tobacco) and transported to the leaves, where

it serves as an insecticide (Baldwin, 1989). Although this approach has its

limitations, it is a useful technique for identifying candidate primary and

secondary metabolic genes.

In addition to forming biosynthetic gene clusters, specialized metabolic

genes are often coregulated by a common set of transcription factors and

consequently, coexpressed. One method for identifying these expression

patterns is to use global coexpression network analysis, where genes, which

are represented by nodes, are linked together based on overlapping expres-

sion profiles to formmodules (Wisecaver et al., 2017). Though this approach

offers a high-throughput method for identifying candidate specialized

metabolic pathways, it is important to recognize that many specialized path-

way genes within a pathway are not necessarily coexpressed. Additionally, it

can be difficult to delineate separate metabolic pathways that may be
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expressed in response to the same elicitors. Despite these limitations, global

coexpression network analysis remains a powerful tool for identifying

candidate secondary metabolic genes in plants.

While the above-mentioned computational techniques have been

instrumental in predicting gene function and for biosynthetic pathway dis-

covery, these approaches may still yield long lists of candidate genes that all

need to be screened using in vivo or in vitro enzyme assays. To narrow down

lists of candidate enzymes further, computational substrate docking using

virtual screens is a protein-based approach that may be used to predict

enzyme function. Additionally, virtual screening may be applied broadly

to studying metabolic enzymes that are targets for herbicides, promiscuous

enzymes, or enzymes of unknown function.

1.2 Docking and virtual screening as a computational tool
for functional prediction of plant metabolic enzyme
activity

Docking is a commonly used computational tool used to model interactions

between a three-dimensional protein structure and a small molecule.

Similarly, virtual screening is a docking approach that iteratively docks a

library of molecules with a target protein. For decades, protein biochemists,

molecular biologists, and pharmaceutical industries have been using protein

structure determination or protein homology modeling coupled with

small-molecule docking to investigate molecular interactions. This line of

research has been made possible by the availability of open-source docking

software that does not require advanced programming knowledge

(Villoutreix et al., 2007). One of the most widely used docking programs,

AutoDock Vina, uses a simple scoring function to efficiently evaluate inter-

molecular interactions within a given protein–ligand complex and outputs a

prediction of protein–ligand binding affinities and binding conformations,

which can be modeled in three-dimensional visualization programs such

as PyMol (Trott &Olson, 2010). Docking is an excellent tool for identifying

candidate substrates, cofactors, and regulators for an enzyme of interest, and

in plant biology research, it has primarily been used to model interactions

between a single protein and one metabolite. Examples of instances where

docking has been used to study plant enzymes include: the Arabidopsis

GH3.15 that conjugates amino acids to the auxinic hormone indole-

3-butyric acid; a noroxomaritidine reductase involved in alkaloid biosynthe-

sis in daffodils (Narcissus spp.); and a rice naringenin O-methyltransferase

involved in phytoalexin synthesis (Kilgore, Holland, Jez, & Kutchan,

2016; Murata et al., 2020; Sherp, Westfall, Alvarez, & Jez, 2018).
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In the past, protein-based methods for narrowing down lists of candidate

enzymes in biosynthetic pathways have been limited by the availability of

reliable protein structures or structural models. Though cryo-electron

microscopy, nuclear magnetic resonance (NMR), and X-ray crystallogra-

phy have been instrumental for solving protein structures, each of these

approaches has their challenges. The development of web-based programs

with simple interfaces for homology-based modeling, such as SWISS-

MODEL and Phyre2, has allowed for the generation of highly accurate

three-dimensional protein structures (Kelley, Mezulis, Yates, Wass, &

Sternberg, 2015; Waterhouse et al., 2018). However, proteins that lack

known homologs, as in the case of many secondary metabolic enzymes,

may be prone to structural inaccuracy. Recent advances in AI-based struc-

ture prediction with the release of AlphaFold has substantially improved our

ability to predict the three-dimensional structure of enzymes from any

species ( Jumper et al., 2021). AlphaFold is a machine learning program that

integrates knowledge of biophysical dynamics with protein evolutionary

history analysis to generate highly accurate structural predictions, even if

no structural homolog is known. Being able to generate a structural model

of any protein of interest has the potential to improve our ability to study

specialized metabolism and decipher the molecular underpinnings of plant

metabolism broadly.

In medicinal chemistry and pharmacology, it is common practice

to screen compound–enzyme interactions computationally before pro-

ceeding with empirical experiments, especially when there are hundreds

or thousands of compounds and several target proteins (Rester, 2008).

This same approach can be used for investigating plant metabolism

and aid in identifying candidate enzymes in biosynthetic pathways.

Virtual screens can be implemented for all metabolic enzymes, including

glycosyltransferases, oxygenases (i.e., cytochrome P450s), oxidoreductases,

ligases, hydrolases, or terpene synthases. Aside from identifying enzyme sub-

strates, virtual screening may be used to investigate many open questions in

plant metabolism, including understanding the substrate promiscuity of

enzymes or identifying competitive and allosteric inhibitors of an enzyme.

The structure-based virtual screening methods described here use open

access programs that only require a local PC or Mac computer. Because

AutoDock Vina is open-source, fast, and has a wealth of online tutorials,

user manuals, and discussion forums available to support new users, the

protocol will focus on the use of this program (Eberhardt, Santos-

Martins, Tillack, & Forli, 2021; Trott & Olson, 2010). While having a

working understanding of protein structural visualization programs such
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as PyMOL or Chimera would be helpful, it is not necessary, and resources

such as PyMOL Wiki are available online.

2. Designing a virtual screen experiment

Before conducting a virtual screen, the enzyme of interest and the

library of compounds that will be screened will need to be prepared.

While there are several programs available that will run a virtual screen,

the information below will focus on preparing compounds and enzymes

for docking using the widely used and freely available program

AutoDock Vina (Trott & Olson, 2010), and the files will be prepared for

docking using AutoDock Tools, a graphical user interface that is part of

theMGLTools software suite. Because these programs are popular for dock-

ing, many online resources and published protocols are readily available

(Forli et al., 2016).

To demonstrate how virtual screens are executed, the protocols below

will use a glycosyltransferase from the model plant A. thaliana, UGT74F2

(AT2G43820), that has been functionally characterized as a UDP-

dependent glycosyltransferase (UGT) that glycosylates the carboxylate of

the plant hormone salicylic acid (SA), forming an SA glucose ester (SGE)

(Lim et al., 2002). This enzyme is known to be promiscuous and can also

glycosylate the hydroxyl of SA (forming SA 2-O-beta-D-glucose; SAG), as

well as other benzoate substrates, including the tryptophan pathway interme-

diate anthranilate (2-aminobenzoate), benzoic acid, and 3-hydroxybenzoic

acid (George Thompson, Iancu, Neet, Dean, & Choe, 2017; Lim et al.,

2002; Quiel & Bender, 2003). UGTs use nucleotide-activated sugars as sugar

donors in the transferase reaction, andUGT74F2, as well as other plant UGTs,

uses UDP-glucose as the sugar donor (Akere et al., 2020). These UGTs have

a variable N-terminal domain and a C-terminal nucleotide-sugar binding

domain that contains a conserved 44 amino acid motif known as a Plant

Secondary Product GT box, and substrates bind UGTs in a cleft between

these two domains.

To prepare ligands and protein input files for virtual screening, you will

need to begin by downloading and installing MGLTools from: http://

mgltools.scripps.edu/downloads. On a Mac, users will also need to down-

load X11 from http://xquartz.org in order to run AutoDock Tools.

2.1 Generating a compound library
The first step in conducting a virtual screen is to decide which compounds to

include in the screen given the enzyme of interest. While several online
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databases of ligand files exist, the compounds in these databases are primarily

targeted for human health and medicine, including ZINC Docking (Irwin

et al., 2020; Sterling & Irwin, 2015), PubChem (Kim et al., 2016), and

ChEMBL (Bento et al., 2014). However, because numerous plant metab-

olites are used as pharmaceuticals or nutraceuticals, ready-to-dockmolecules

for many commonly investigated plant-produced compounds are available

for download in a “.mol2” file format fromZINCDocking, including inter-

mediates in primary metabolism, plant hormones, specialized metabolites,

and herbicides (Irwin et al., 2020; Sterling & Irwin, 2015). While by no

means comprehensive, a list of plant metabolites that are available for down-

load from ZINC Docking has been included in Tables 1 and 2. Aside from

the hormones, metabolites, and herbicides listed in Tables 1–3, primary

Table 1 List of plant hormones and hormone-related metabolites included in the
compound library ranked by molecular mass.
Metabolite Formula Molecular mass (g/mol)

Phenylacetic acid C8H8O2 136.15

Salicylic acid C7H6O3 138.12

Indole-3-acetic acid (IAA) C10H9NO2 175.18

Indole-3-butyric acid C12H13NO2 203.24

4-Chloroindole-3-acetic acid C10H8ClNO2 209.63

Jasmonic acid C12H18O3 210.27

Kinetin C10H9N5O 215.21

cis-Zeatin C10H13N5O 219.24

6-Benzylaminopurine C12H11N5 225.25

Abscisic acid C15H20O4 264.32

IAA-glutamine C15H17N3O4 303.31

Sorgolactone C18H20O5 316.30

Gibberellic acid C19H22O6 346.37

Strigol C19H22O6 346.40

Orobanchol C19H22O6 346.40

Kinetin riboside C15H17N5O5 347.33

Kinetin-9-N-glucoside C16H19N5O6 377.35
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Table 2 List of plant metabolites included in the compound library ranked by general
classification and molecular mass.
Specialized metabolite Description Formula Molecular mass (g/mol)

Nicotine Alkaloid C10H14N2 162.23

Caffeine Alkaloid C8H10N4O2 194.19

Camalexin Alkaloid C11H8N2S 200.26

Morphine Alkaloid C17H19NO3 285.34

Galantamine Alkaloid C17H21NO3 287.35

Capsaicin Alkaloid C18H27NO3 305.41

Quinine Alkaloid C20H24N2O2 324.4

Berberine Alkaloid C20H18NO4
+ 336.4

Strictosidine Alkaloid C27H34N2O9 530.57

Vinblastine Alkaloid C46H58N4O9 811

Benzaldehyde Aromatic C7H6O 106.12

Benzoate Aromatic C7H5O2
- 121.11

Cinnamaldehyde Aromatic C9H8O 132.16

p-Coumaryl alcohol Aromatic C9H10O2 150.17

Methyl anthranilate Aromatic C8H9NO2 151.17

Vanillin Aromatic C8H8O3 152.15

Methyl salicylate Aromatic C8H8O3 152.15

Gallic acid Aromatic C7H6O5 170.12

Ferulic acid Aromatic C10H10O4 194.18

Anthraquinone Aromatic C14H8O2 208.21

DIMBOA Aromatic C9H9NO5 211.17

Resveratrol Aromatic C14H12O3 228.24

Catechin Aromatic C15H14O6 290.26

Quercetin Aromatic C15H10O7 302.23

Dhurrin Aromatic C14H17NO7 311.29

Tetrahydrocannabinol Aromatic C21H30O2 314.45

Bergamottin Aromatic C21H22O4 338.4

Continued
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Table 2 List of plant metabolites included in the compound library ranked by general
classification and molecular mass.—cont’d
Specialized metabolite Description Formula Molecular mass (g/mol)

Rosmarinic acid Aromatic C18H16O8 360.3

Podophyllotoxin Aromatic C22H22O8 414.41

Allicin Sulfur-

containing

C6H10OS2 162.28

Glucobrassicin Sulfur-

containing

C16H19N2O9S2
- 447.46

Limonene Terpene C10H16 136.24

Linalool Terpene C10H18O 154.25

Campesterol Terpene C28H48O 400.68

Betulinic acid Terpene C30H48O3 456.7

Lycopene Terpene C40H56 536.87

Beta-carotene Terpene C40H56 536.87

Aromatics refers to metabolites that contain an aromatic ring (i.e., flavonoids, polyphenols, coumarins,
etc.), and terpenes include mono-, di-, and triterpenes.

Table 3 List of herbicides included in the compound library listed alphabetically.
Herbicide Formula Molecular mass (g/mol)

Aatrex C8H14ClN5 215.69

Bentazon C10H12N2O3S 240.28

Caprylic acid C8H16O2 144.21

Clethodim C17H26ClNO3S 359.9

Clomazone C12H14ClNO2 239.7

Clopyralid C6H3Cl2NO2 192

Cycloate C11H21NOS 215.36

Ethalfluralin C13H14F3N3O4 333.26

Ethofumesate C13H18O5S 286.34

Fluazifop C19H20F3NO4 327.25

Flumioxazin C19H15FN2O4 354.1
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Table 3 List of herbicides included in the compound library listed alphabetically.—
cont’d
Herbicide Formula Molecular mass (g/mol)

Fomesafen C15H10ClF3N2O6S 460.7

Glyphosate C3H8NO5P 169.07

Halosulfuron-methyl C13H15ClN6O7S 434.81

Imazethapyr C15H19N3O3 289.33

Linuron C9H10Cl2N2O2 249.1

Metam sodium C2H4NNaS2 129.18

Mesotrione C14H13NO7S 339.32

Metribuzin C8H14N4OS 214.29

Napropamide C17H21NO2 271.16

Nicosulfuron C15H18N6O6S 410.4

Norflurazon C12H9ClF3N3O 303.04

Oxyfluorfen C15H11ClF3NO4 361.7

Paraquat C12H14Cl2N2 257.16

Pelargonic acid C9H18O2 158.23

Pendimethalin C13H19N3O4 281.31

Phenmedipham C16H16N2O4 300.31

Prometryn C10H19N5S 241.36

Pronamide C12H11Cl2NO 256.12

Pyraflufen-ethyl C15H13Cl2F3N2O4 413.2

Pyroxasulfone C12H14F5N3O4S 391.06

Rimsulfuron C14H17N5O7S2 431.4

Saflufenacil C17H17ClF4N4O5S 500.9

Sethoxydim C17H29NO3S 327.5

Simazine C7H12ClN5 201.66

Tembotrione C17H16ClF3O6S 440.8

Terbacil C9H13ClN2O2 216.67

Trifluralin C13H16F3N3O4 335.28
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metabolites like amino acids, nucleotides, and intermediates in carbohydrate

and lipid metabolism that are conserved across domains of life are also

available from ZINC Docking and may be useful to include in a virtual

screening experiment.

In addition to the compounds included in Tables 1–3, the example

virtual screen involving the Arabidopsis UGT74F2 will also include:

3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid,

2,4-dihydroxybenzoic acid, 2,5-dihydroxybenzoic acid, 2,6-dihydroxybenzoic

acid, 3,4-dihydroxybenzoic acid, 3-hydroxyanthranilate, chorismate, and

tryptophan. The “.mol2” files for each of these ligands were downloaded

from ZINC Docking.

While online databases of metabolites have many of the common plant

metabolites, intermediates in specialized metabolism are not likely to be

included. If a compound of interest is not available to download, as a flexible

3D formatted file, structural files can be interconverted into accept-

able file formats, like “.mol2”, using the open-source tool Open Babel

(O’Boyle et al., 2011).

2.2 Preparing molecules for a virtual screen
1. The coordinate files for the ligands from Section 2.1 will now need to be

converted to PDBQT (Protein Data Bank, Partial Charge (Q), & Atom

Type (T)) files for downstream applications. The files can be opened as

ligands in AutoDock Tools and converted to the “.pdbqt” file extension

(Forli et al., 2016). To do this, click on “Ligand” in the toolbar and select

“input” to open each of the “.mol2” files. To convert them to “.pdbqt”

files, click on “Ligand” and select “output” and save the file in a directory

where it can be easily located. The name for each ligand file should not

contain spaces

2. Once the ligand files have been generated, save them in a folder named

“bin” inside a “Vina” folder on your computer’s desktop. Alternatively,

the files may be renamedwith an abbreviation or a number, and a spread-

sheet could be used to connect the full name of the compound to the

abbreviated file name

3. Using a text editor, create a file named Ligands.txt. Type the name of

each ligand file (i.e., benzoate.pdbqt). Each line in this file should con-

tain only a single ligand file name. This file should be saved in Desktop/

Vina/bin. NOTE: If the spelling of the ligand file name does not exactly

match the spelling in the Ligands.txt file, downstream codes will not run
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4. To prepare the enzyme of interest, you will need to obtain structural

coordinate of the protein. Several options exist for finding or generating

a coordinate file for the enzyme:

a. If a solved structure of the enzyme of interest is available, the “.pdb”

file can be downloaded from the Protein Data Bank (rcsb.org). If the

protein structure was solved in complex with a ligand that occupies

the binding site (i.e., active site or allosteric site), then the “.pdb” file

can be opened using a text editor, and the three-dimensional

coordinates of the ligand can be manually deleted from the file.

To determine that the ligand has been successfully removed, the

modified “.pdb” file can be opened using a structural visualization

program like PyMOL and visually inspected. Extraneous ions, water

molecules, ligands, and cofactors can also be deleted using a text edi-

tor. Solved structures may also have multiple biological assemblies

(e.g., dimers) within one asymmetric unit. While not necessary,

additional biological assemblies may be deleted manually using a text

editor and inspected using PyMOL

b. As of this writing, the proteomes for themodel plantsA. thaliana, Zea

mays, Glycinemax, andOryza sativa are available for download online

from the AlphaFold Protein Structure Database (www.alpha fold.ebi.

ac.uk; Jumper et al., 2021). For example, searching for “Arabidopsis

thaliana UGT74F2” returns an entry for this protein, and a structural

model can be downloaded as a “.pdb” file. Note that these models do

not contain cofactors, metal ions, water molecules, or ligands. It may

be important to add cofactors to the structure using a single docking

run (see the note at the end of this section).

c. For non-model plants or for proteins that are not available from

the AlphaFold database, protein models can be generated from

online servers, such as SWISS-MODEL (swissmodel.expasy.org)

or Phyre2 (www.sbg.bio.ic.ac.uk/�phyre2), using an amino acid

sequence for the enzyme of interest

5. Once a coordinate file for the enzyme(s) of interest has been obtained,

the file can be prepared using AutoDock Tools. The protein used here,

UGT74F2 from A. thaliana, has been previously crystalized (PDB ID:

5U6M; George Thompson et al., 2017), and the file was first prepared

by removing the salicylic acid ligands from the dimer. The UDP that was

cocrystalized with the enzyme was left in the file because it is the product

of the reaction after the activated nucleotide sugar (i.e., UDP-glucose)

transfers the sugar onto a nucleophilic acceptor substrate. Alternatively,
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the AlphaFold-generated structural coordinates may have been used, but

the protein structure would have been apo, meaning that UDP would

have to be docked into the structure. To open the “.pdb” coordinate

file for the enzyme, use the topmost toolbar and select “File” and then

“Read Molecule.” Protein structures typically do not include hydro-

gens, so these may be added to the enzyme using AutoDock Tools by

clicking “Edit” in the toolbar and then “Hydrogens” (Forli et al.,

2016). Hydrogens should appear on the enzyme in the protein viewing

window. To export the protein as a “.pdbqt” file, click “Grid,” then

“Macromolecule” and “Choose” and select the protein. A window will

pop up so the file can be saved in the Desktop/Vina/bin folder with a “.

pdbqt” extension

6. To define the docking area that encompasses the active site or binding

pocket of interest, click “Grid” and then “Grid Box.” This is the area in

which Vina will search for binding interactions between the enzyme and

each ligand, so it is important that the space is large enough to cover the

entire area of interest and allow the ligands to rotate freely but not so

large that the molecules are predicted to bind the protein superficially.

The size and center of the search space in x, y, and z dimensions of

the grid box, can be altered so the entire search space is encompassed

by the coordinates. It is also important to rotate the protein in the

AutoDock Tools viewer to see that the binding pocket of interest is

covered in all dimensions

7. Once the grid box dimensions have been determined, these values will

be recorded in a text file saved in the Desktop/Vina/bin subfolder. This

plain text file can be made using a plain text editor, like TextEdit or

Notepad

conf_vs.txt

receptor = UGT74F2.pdbqt

center_x = 46.7

center_y = 76.1

center_z = 81.6

size_x = 40

size_y = 40

size_z = 40

exhaustiveness = 8

num_modes = 10

The name of the enzyme coordinate file is listed as “receptor¼” and

the center x, y, and z coordinates were determined from AutoDock
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Tools, as was the size of the box in x, y, and z dimensions. The exhaus-

tiveness of 8 is default and is the number of Monte-Carlo iterated

searches. The number of modes (num_modes) is the maximum number

of ligand conformations that will be generated per ligand. Increasing this

number may increase the total time that it takes to run Vina.

8. This process was repeated to generate a structural model of UGT74F2

that had the activated nucleotide sugar donor UDP-glucose bound in

the active site. To do this, the coordinates for UDP were removed from

the 5U6M PDB file above using a text editor. The apo enzyme structure

was used for a single docking run using AutoDock Vina, and the coor-

dinates of the UDP-glucose conformation that had the highest binding

affinity and bound in a logical conformation was exported as a PDB file

and pasted into the text file of the apo enzyme model and saved as a new

UDP-glucose bound model. This new combined file was opened using

PyMOL to ensure that the structural model had UDP-glucose in the

active site. This file was then opened in AutoDock Tools for conversion

to a “.pdbqt” file and to determine the grid box dimensions

Note: If an important cofactor for the protein of interest—such as heme in

cytochrome P450 monooxygenases, NADH or NADPH in dehydroge-

nases, or S-adenosyl methionine in SAM-dependent methyltransferases—is

not part of the structural file, a single docking run using AutoDock Vina

could be used to place the cofactor in the active site. The coordinate file

for cofactors may be obtained from the Protein Data Bank, converted to

a “.pdbqt” file, and docked into the active site. Coordinates for the best

docking confirmation of the cofactor could be pasted into the “.pdb” file

of the protein above “END” using a text editor.

3. Virtual screening using AutoDock Vina

The virtual screen presented here uses AutoDock Vina, which uses a

rapid gradient-optimization conformational search (Forli et al., 2016). The

scoring function estimates the force of non-covalent interactions between

compounds and the target protein using mathematical models, and the user

does not need to have working knowledge of these models in order to use

the program. This straightforward approach is easily implemented bymolec-

ular biologists, and the length of time needed for the screen to run depends

on the factors such as the number of ligands included in the virtual screen, as

well as the number of modes for each ligand.
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3.1 Software needed
Windows users will need to download Perl to run the virtual screen script

from https://www.perl.org/get.html. Perl is installed on MacOS by default.

AutoDock Vina can be downloaded online at http://vina.scripps.edu. The

following protocol uses version 1.1.2 for its ease of use. Move the two Unix

executable files (titled vina and vina_split) from the Autodock Vina folder

that was downloaded into the Desktop/Vina/bin subfolder. These are

needed to ensure the following steps proceed properly.

3.2 Script for running the virtual screen
A Perl script enables iterative docking runs with AutoDock Vina using a

Mac or Windows system. This file should be added to the Desktop/

Vina/bin folder. The file can be created using a text editor and should con-

tain the following information:

Vina_mac.pl

#!/usr/bin/perl

print"Ligand_file:\t";

$ligfile¼<STDIN>;

chomp $ligfile;
open (FH,$ligfile)jjdie "Cannot open file\n";

@arr_file¼<FH>;

for($i¼0;$i<@arr_file;$i++)
{

print"@arr_file[$i]\n";
@name¼ split(/\./,@arr_file[$i]);
}

for($i¼0;$i<@arr_file;$i++)
{

chomp @arr_file[$i];
print"@arr_file[$i]\n";
system("./vina –config conf_vs.txt –ligand @arr_file[$i] –log

@arr_file[$i]_log.log");
}

Modification to Perl script for Microsoft OS:

system("vina.exe –config conf_vs.txt –ligand @arr_file[$i] –log

@arr_file[$i]_log.log");

3.3 Procedure on a Mac OS
1. Before starting the run, check that the following files are in the Desktop/

Vina/bin folder:
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a. conf_vs.txt

b. Ligands.txt

c. Vina_mac.pl (or Vina_windows.pl)

d. vina

e. vina_split

f. UGT74F2.pdbqt

g. “.pdbqt” files for each ligand

2. Open Terminal (Mac) or Command Prompt (Windows), and type:

cd Desktop/Vina/bin

perl Vina_mac.pl (OR perl Vina_windows.pl)

When you hit “Enter,” you will be prompted to type in the name

of the ligand file. Type: Ligands.txt and hit “Enter.” After this, Vina

will start running. Here is an example of the Terminal log during one

compound docking run:

cinnamaldehyde.pdbqt

WARNING: The search space volume > 27000 Angstrom^3 (See FAQ)

Output will be cinnamaldehyde_out.pdbqt

Detected 4 CPUs

Reading input ... done.

Setting up the scoring function ... done.

Analyzing the binding site ... done.

Using random seed: 1584341810

Performing search ...

0% 10 20 30 40 50 60 70 80 90 100%

j----j----j----j----j----j----j----j----j----j----j
**********************************************

done.

Refining results ... done.

mode j affinity j dist from best mode

j (kcal/mol) j rmsd l.b. j rmsd u.b.

-----+------------+----------+----------

1 -5.9 0.000 0.000

2 -5.6 9.406 10.829

3 -5.4 2.469 4.623

4 -5.1 8.247 10.127

5 -5.1 12.839 14.177

6 -5.0 9.418 11.085

7 -4.9 9.755 10.414

8 -4.9 12.924 14.300

9 -4.9 3.682 5.598

10 -4.8 14.032 15.374

Writing output ... done.
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The length of the run will vary based on the number of ligand files and the

number of modes. Do not close the Terminal window during this time.

3. When your run is complete, all of the coordinate files for each of the

docked ligands (i.e., ligand_out.pdbqt), as well as the output log files that

include the binding affinities for each conformation, will be in the

Desktop/Vina/bin folder

Note: Before running a new virtual screen, it is important to move the “.log”

and “..._out.pdbqt” files from the previous run to a new folder so they are

not overwritten.

4. Interpreting and visualizing screening results

To interpret the results, the protein can be opened in a protein

visualization program, like PyMOL or UCSF Chimera. PyMOL can be

downloaded from https://pymol.org/2/. In the same window, each of

the ligand files can be opened and visualized in relation to the active site

or a specified cavity on the enzyme of interest. Because the conf_vs.txt file

used a num_modes setting of 10, a maximum of 10 conformations were

generated for each compound. These conformations should be manually

inspected to determine the conformation that is most logical (i.e., oriented

within the active site and not on the surface of the protein) and has the lowest

computational binding affinity (i.e., a large negative number) in kcal/mol.

The conformations are shown in increasing order of binding affinity, and

while the first conformation has the highest binding affinity, it does not

always bind within the active site or in an orientation that would make sense

for catalysis. If many of the molecules are binding on the surface of the pro-

tein, the search space dimensions can be redrawn, and the screen can be

repeated with a more refined search window. If the grid box dimensions

are stringent and the compound does not bind within those constraints,

the results may have fewer than 10 conformations for some compounds.

For metabolic enzymes, one way to assess the accuracy of ligand binding

is to use the measurement feature in PyMOL to determine the distance

between the compound and the cofactor (Fig. 1). In the toolbar of

PyMOL, click on “Wizard” and select “Measurement.” This allows for

the distance between individual atoms to be determined. Click on an atom

on the ligand that is acted upon by the enzyme (e.g., the predicted ligand

hydroxyl that is glycosylated by the enzyme), and then click on a second

atom elsewhere in the enzyme like a catalytic residue (if known) or an atom
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on the cofactor. The distance will be displayed as a label in Angstroms (Å)

above a dashed line that connects the two atoms that were selected. Once

you are finished measuring distances between atoms, click “Done” under

“Measurement” in the right-hand panel.

While inspecting each ligand, note the conformation(s) that have a low

binding affinity and accurately bind within the active site. Vina has calcu-

lated the binding affinity for each mode, and the values can be found in

the output “.log” files that were generated for each ligand. Taken together,

the binding affinities for the ligand conformations that were noted by

visual inspection may be added to a spreadsheet (Table 4 and 5). When

the results have been tabulated, the compounds can be ranked by their bind-

ing affinity values from lowest to highest. The results from the virtual

screens of UGT74F2 that had either UDP-glucose or UDP bound in the

active site are included in Tables 4 and 5.

Fig. 1 Measured distances between functional groups on docked ligands and the
nearest phosphate oxygen on UDP in the AtUGT74F2 active site. In the three panels
on the left, three compounds (anthranilate, salicylic acid, and 3-hydroxybenzoic acid)
that are confirmed substrates for the enzyme are shown, while compounds that have
a high binding affinity but unknown activity (IAA-glutamate, catechin, and capsaicin) are
shown in the three panels on the right.

89Computational substrate screening



Table 4 Ranking of binding affinities from the Arabidopsis thaliana UGT74F2 virtual
screen with UDP-glucose bound in the active site.
Compound Binding mode Binding affinity (kcal/mol)

Capsaicin 1 �7.2

2,4-Dihydroxybenzoic acida 1 �6.5

2,3-Dihydroxybenzoic acida 1 �6.5

Gallic acid 3 �6.1

3-Hydroxyanthranilate 3 �6.1

3,4-Dihydroxybenzoic acida 5 �6.1

Salicylic acidb 3 �6

Nicotine 1 �6

Anthranilateb 2 �5.9

3-Hydroxybenzoic acidb 3 �5.9

4-Hydroxybenzoic acida 3 �5.9

2,5-Dihydroxybenzoic acida 5 �5.8

Phenylacetic acid 2 �5.7

p-Coumaryl alcohol 2 �5.6

Indole-3-butyric acid 7 �5.6

Benzoic acidb 3 �5.6

Clopyralid 4 �5.4

2,6-Dihydroxybenzoic acida 3 �5

Glyphosate 4 �4.4

Metam 2 �2.8

aNo activity detected in an in vitro assay.
bActivity has been confirmed in vitro.
Binding affinities are listed for the binding mode that was closest to the UDP-glucose cosubstrate (mea-
sured in angstroms). The distance represents the approximate distance between the nearest atom that
could participate in the glycosyl transfer reaction (e.g., hydroxyl oxygen) and the hydroxyl on
carbon-6 of glucose. Compounds with a predicted distance of >5 Å from the oxygen atoms of the
gamma phosphate were not included in the table. Compounds are ranked from highest binding affinity
to lowest binding affinity as determined by AutoDock Vina, and molecules that bound in the active site
but did not have a functional group that could be glycosylated were not included in the table.
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Table 5 Ranking of binding affinities from the Arabidopsis thaliana UGT74F2 virtual
screen with UDP bound in the active site.
Compound Binding mode Binding affinity (kcal/mol)

IAA-glutamate 1 �8.8

Catechin 1 �8.8

Tryptophan 1 �7.8

Resveratrol 1 �7.4

6-Benzylaminopurine 1 �7.2

DIMBOA 1 �7.1

Linuron 2 �7.1

Kinetin-riboside 8 �7

Phenmedipham 3 �7

Dhurrin 6 �6.9

cis-Zeatin 3 �6.8

IAA 2 �6.8

Indole-3-butyric acid 2 �6.8

4-Chloroindole-3-acetic acid 1 �6.8

Capsaicin 4 �6.4

Ferulic acid 2 �6.4

Bentazon 5 �6.3

2,3-Dihydroxybenzoic acida 4 �6.2

2,5-Dihydroxybenzoic acida 4 �6.2

Caffeine 4 �6.2

2,6-Dihydroxybenzoic acida 3 �6.1

2,4-Dihydroxybenzoic acida 1 �6.1

3-Hydroxyanthranilate 6 �5.9

Anthranilateb 2 �5.9

Nicotine 3 �5.8

Terbacil 5 �5.8

Clopyralid 2 �5.8

Continued
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For UGT enzymes, analyzing the results of a virtual screen with both the

UDP-glucose cosubstrate as well as the UDP product bound is informative

since the glucose moiety is large and occupies a portion of the active site

(Figs. 1 and 2). When UDP-glucose is bound, larger molecules may be pre-

cluded from binding the active site pocket, especially if the pocket is small.

However, a virtual screen that has UDP bound in the active site may allow

larger or glycosylated molecules to bind. Taken together, the UDP-glucose

bound structure is useful for identifying putative substrates for this enzyme,

while the UDP-bound structure may inform putative products of the

reactions. In either docking simulation, putative small-molecule regulators

(i.e., competitive inhibitors) may also be identified.

Table 5 Ranking of binding affinities from the Arabidopsis thaliana UGT74F2 virtual
screen with UDP bound in the active site.—cont’d
Compound Binding mode Binding affinity (kcal/mol)

p-Coumaryl alcohol 2 �5.7

Salicylic acidb 5 �5.6

Phenylacetic acid 4 �5.6

3-Hydroxybenzoic acidb 8 �5.5

Paraquat 3 �5.5

Simazine 3 �5.4

Methyl anthranilate 8 �5.3

4-Hydroxybenzoic acida 8 �5.3

Methyl salicylate 10 �5

Glyphosate 5 �5

Caprylic acid 1 �4.9

Nonoate 2 �4.8

Metam 1 �3.1

aNo activity detected in an in vitro assay.
bActivity has been confirmed in vitro.
Binding affinities are listed for the binding mode that was closest to the UDP product (measured in
angstroms). The distance represents the approximate distance between the nearest atom that could
participate in the glycosyl transfer reaction (e.g., hydroxyl oxygen) and the oxygen atoms on the
beta-phosphate of UDP. Compounds with a predicted distance of greater than 6.0 Å from the terminal
phosphate oxygen atoms were not included in the table. Compounds are ranked from highest binding
affinity to lowest binding affinity as determined by AutoDock Vina, and molecules that bound in the
active site but did not have a functional group that could be glycosylated were not included in the table.
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In the virtual screen of the A. thaliana UGT74F2 with UDP-glucose

bound, we found an overall trend in our inspection of each compound

(Table 4). Notably, small, aromatic compounds, such as 2,4-dihydroxybenzoic

acid and salicylic acid, have a high binding affinity (�6.5 and �6kcal/mol,

respectively) and a hydroxyl or carboxyl oxygen on these molecules is a short

distance from a hydroxyl oxygen on the glucose molecule (approximately

2.8 Å and 2.7 Å, respectively). Aromatic amino acids in the active site

(Tyr13, Phe70, Phe113, Tyr180, and Trp364) likely stabilize intramolecular

interactions between substrates and the protein through π-π stacking

Fig. 2 Docking results for AtUGT74F2 with UDP-glucose in the active site. A. View of the
active site with salicylic acid docked. Dashed lines are used to show how the distance
between the hydroxyl of salicylic acid and the hydroxyl on carbon-6 of glucose was
measured. Active site residues are displayed as sticks. B. View of the active site with cap-
saicin docked, including hydrophobic residues distal from the site of glycosyl transfer.
Dashed lines are used to show how the distance between the hydroxyl of salicylic acid
and the hydroxyl on carbon-6 of glucose was measured. Active site residues are dis-
played as sticks. C. Surface view of the active site with salicylic acid docked to show
the space of the active site cavity. D. Surface view of the active site with capsaicin
docked to show the full extent of capsaicin binding both close to the site of glycosyl
transfer and in the distal hydrophobic space within the pocket. Note that while the
distances were drawn between the ligand and the hydroxyl on carbon-6 of glucose,
the hydroxyl on carbon-1 that is covalently attached to the beta-phosphate of UDP
is the hydroxyl on which the ligand is transferred.
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interactions (Fig. 2). His18 is a conserved catalytic residue that hydrogen

bonds with substrates to position them for the glycosyl transfer reaction

(George Thompson et al., 2017). When salicylic acid is the substrate, the

protonation state of the basic active site amino acid His18 determines

whether the carboxyl or hydroxyl are glucosylated by the enzyme. The

carboxylate of SA likely forms hydrogen bonding interactions with the

side-chain hydroxyl of Thr15, while the carboxylate of 2,4-dihydroxybenzoic

acid is on the opposite side of the active site and is predicted to form hydro-

gen bonds with the side-chain hydroxyl of Thr365. These two threonine

residues have been found to contribute to substrate binding conformation.

These results are consistent with previous functional data that found that

UGT74F2 can glycosylate the carboxylate and the hydroxyl of SA

(2-hydroxybenzoic acid), anthranilate, benzoic acid, and 3-hydroxybenzoic

acid (George Thompson et al., 2017; Lim et al., 2002; Quiel & Bender,

2003). However, activity was not seen with 4-hydroxybenzoic acid,

2,4-dihydroxybenzoic acid or any other dihydroxybenzoates that were

tested (Lim et al., 2002). This discrepancy highlights the importance of

validating the results from a virtual screen using functional assays.

Interestingly, the molecule with the highest binding affinity that was

within 5Å of UDP-glucose was the alkaloid capsaicin (�7.2kcal/mol).

Capsaicin is an alkaloid produced in the Capsicum genus (Solanaceae) and

is responsible for the pungent and spicy sensation associated with eating

hot peppers.

Capsaicin bound the active site with a hydroxyl on the aromatic ring

positioned 2.8 Å away from the hydroxyl on carbon-6 of glucose, and

the hydrophobic 8-methyl-6-nonenoyl moiety oriented near hydrophobic

residues in the active site pocket (Phe 43, Val 44, and Phe 70) (Fig. 2).

Capsaicin glucosides have been detected in Capsicum annuum peppers, and

one glucoside, capsaicin-β-D-glucopyranoside, was found to have 1/100th

of the pungency of capsaicin (Higashiguchi, Nakamura, Hayashi, &

Kometani, 2006; Kometani, Tanimoto, Nishimura, Kanbara, & Okada., S.,

1993).While insect UGTs that glycosylate capsaicin as a detoxification mech-

anism have been characterized, a plant enzyme that glycosylated capsaicin

remains to be identified (Ahn et al., 2011).

Other compounds in the table that have not been screened for in vitro

activity but bind in the active site in the virtual screen include the

trihydroxybenzoate gallic acid, the tryptophan catabolism intermediate

3-hydroxyanthranilate, the auxinic hormone phenylacetic acid, and the

phenylpropanoid biosynthetic intermediate p-coumaryl alcohol. Additionally,
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three herbicides were predicted to bind the active site of the enzyme:

clopyralid (3,6-dichloro-2-pyridinecarboxylic acid), glyphosate (N-(pho-

sphonomethyl)glycine), and metam (methylcarbamodithioic acid). The

three herbicides have lower binding affinities than the known substrates,

but because this is a computational screen, the binding of these molecules

to UGT74F2 should be confirmed experimentally. It may be that enzyme

activity is unaffected by these herbicides, or the herbicides could serve as

competitive inhibitors by binding and blocking substrates. Assays would

also be needed to determine whether the carboxylate of clopyralid, the

carboxylate of glyphosate, or the thiol of metam can be glycosylated, which

may serve as a mechanism for herbicide resistance if the glycosylated

herbicide has reduced toxicity (Gaines et al., 2020).

The virtual screen that included UDP bound in the active site generated

more compounds that were able to bind in the active site than in the

UDP-glucose structure, which is likely because the glucose moiety occupies

a large space in the active site and excludes larger molecules (Table 5). For

the UDP-bound enzyme, a cutoff of 6.0 Å between hydroxyl on carbon-6

of glucose and an atom on the compound that could be glycosylated was

selected (Fig. 1). Known substrates, including anthranilate, salicylic acid,

and 3-hydroxybenzoic acid, had predicted binding affinities of �5.9,

�5.6, and �5.5kcal/mol, respectively (Table 5). Unsurprisingly the results

of docking with UDP and UDP-glucose bound in the active site varied,

which highlights the importance of testing multiple cosubstrates, coprod-

ucts, or cofactors.

5. Limitations of virtual screens

While docking and virtual screens are an excellent way to computa-

tionally predict how a small molecule will interact with an enzyme of

interest, this technique is not without its limitations. One of the limitations

of the virtual screening method provided is that the protein or enzyme of

interest will be screened for ligand binding based on a single, rigid protein

conformation. Regardless of the source of the protein structure (i.e., X-ray

crystal structure, homology model, etc.), flexibility of the ligand will not be

taken into account during the virtual screen. Virtual screen results may not

accurately depict the molecular interactions that would occur between the

protein and ligand in another conformation. If protein flexibility is a key

consideration in generating reliable docking results for the protein of inter-

est, this AutoDock Vina-based virtual screen could be followed with a
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second screen using DOCK 6 with the AMBER scoring function, which

performs molecular dynamics simulations (Allen et al., 2015; Maia, Assis,

de Oliveira, da Silva, & Taranto, 2020). However, there are limitations

to this approach as well, namely, the input preparation and the amount of

time needed to run a more computationally intensive program.

Another limitation inherent to virtual screening is that there are false pos-

itives, and perhaps false negatives, within the data (Maia et al., 2020). For

example, metabolites that are known to not exhibit activity with the

A. thaliana UGT74F2, such as 3,4-dihydroxybenzoic acid, have a higher

predicted binding affinity than known substrates, such as salicylic acid and

anthranilate (Table 4). Like any computational screen, in vitro or in vivo

experiments are needed to complement and confirm the results. For exam-

ple, if the metabolite is a putative substrate, then the enzyme could be

purified and assayed for activity with the metabolite(s) of interest. Gene

knockout or knockdown experiments coupled with metabolomics could

be used to determine the chemical phenotype in the absence of the enzyme.

Depending on the number of ligands included in the screen, one may end up

with a list of tens of metabolites to screen for activity, many of which may

not serve as substrates. On the other hand, without knowing that anthrani-

late and salicylic acid are substrates for UGT74F2, one may have made an

arbitrary cutoff for binding affinities that excluded these compounds from

in vitro analyses, which would have meant that the substrates of the enzyme

may not have been identified.

A key consideration for virtual screening is the space that cofactors and

cosubstrates occupy in the active site. In the case presented here, docking

was performed with both UDP-glucose, which is a cosubstrate, and the

product UDP. While there were similarities between the results (Tables 4

and 5), there are also notable differences. The UGT74F2 active site was able

to accommodate larger molecules when only UDP was bound, whereas

smaller aromatic compounds predominantly bound the active site when

UDP-glucose was present. Because of the speed of conducting a virtual

screen, re-screening enzymes with multiple cofactors or cosubstrates is

feasible.

Many simulation-based softwares are limited in their ability to model

complex systems to perfect accuracy. Furthermore, the ability of protein-

ligand docking programs such as AutoDock to provide accurate results

is highly dependent upon the accuracy of the binding site of the structural

model (Cross et al., 2009). Most protein modeling programs use

homology-based techniques, where an unknown protein of interest is
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modeled using a known protein with a solved crystal structure as a template.

In some previous pharmacological studies, unknown proteins that shared

>50% sequence identity with the template structure were deemed eligible

for docking (Hillisch, Pineda, & Hilgenfeld, 2004). More recent findings

suggest that the 50% homology cutoff is not an effective method for

assessing docking eligibility, but with recent advances in predictive model-

ing programs like Alpha Fold, highly accurate protein structures have never

been more accessible (Bordogna, Pandini, & Bonati, 2011; Jumper et al.,

2021). As these protein structures continue to increase in accuracy, so do

the capabilities of docking programs to accurately evaluate and model

protein–ligand interactions.

Protein-ligand docking programs often suffer from an inability to predict

the influence of water molecules on protein–ligand interactions (Verdonk

et al., 2005). This is especially problematic for enzymes that contain water

molecules in their active site, as these molecules may play a vital role in

facilitating catalysis. During docking, optimization of water molecule orien-

tation has been found to significantly increase docking accuracy (Roberts &

Mancera, 2008). In addition to increasing docking accuracy, inclusion of

water molecules can also be a useful tool for discovering substrates that

are able to displace water molecules from the active site (Verdonk et al.,

2005). Some docking programs, such as GOLD, can be modified to factor

water mediation and displacement during protein-ligand docking. More

recently, AutoDock Vina version 1.2.0 has been updated to support the

modeling of explicit water molecules via the hydrated docking protocol

(Eberhardt et al., 2021). This method produces a more accurate portrayal

of water–protein–ligand interactions; however, it comes at a high compu-

tational cost compared to the default solvent models.

6. Conclusions

While virtual screening is commonly used in the pharmaceutical

and biotechnology industries for drug and small-molecule inhibitor design,

there is an untapped potential for this computational method for exploring

the function of plant enzymes. Now with advances in protein structure

prediction and the availability of ready-to-dock ligands, conducting a

virtual screen can be free, easy, relatively fast and complementary to

gene-expression-based methods that have been used extensively to identify

candidate enzymes in metabolic pathways.
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Before starting in vitro or in vivo experiments to confirm the function of

a metabolic enzyme, conducting a virtual screen of the putative substrates

and/or products of the enzymes of interest may provide an additional mech-

anism to narrow down lists of candidate genes. Additionally, virtual screens

may be applied to enzymes with known functions to identify alternative

substrates, identify natural inhibitors, or for designing inhibitors, like herbi-

cides. However, like any computational tool, the results of virtual screens

need to be confirmed experimentally.

Specialized metabolites have revolutionized the medical, cosmetic, and

agricultural industries, however, enzyme promiscuity in specialized meta-

bolic pathways also poses significant threats, such as the evolution of herbi-

cide resistance (Abdollahi et al., 2021). While the evolution of enzyme

specificity played a major role in increasing metabolic efficiency, enzyme

promiscuity continues to drive the emergence of secondary metabolic path-

ways, which often provide a selective advantage to the host organism

(Leong & Last, 2017). Understanding the mechanisms that drive enzyme

promiscuity is key to navigating these challenges and may even allow for

improved manipulation of valuable specialized metabolic pathways.

Protein-based computational techniques such as virtual screening are excel-

lent tools for probing individual metabolic enzymes for large pools of poten-

tial substrates. High-throughput analysis of structurally similar substrates will

reveal key details about enzyme activity and may enable the development of

novel pathways for natural product biosynthesis.
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