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Abstract

Molecular cloning, gene manipulation, gene expression, protein function, and gene regula-
tion all depend on the introduction of nucleic acids into target cells. Multiple methods have
been developed to facilitate such delivery including instrument based microinjection and
electroporation, biological methods such as transduction, and chemical methods such as
calcium phosphate precipitation, cationic polymers, and lipid based transfection, also known
as lipofection. Here we report attempts to lipofect sea urchin coelomocytes using DOTAP
lipofection reagent packaged with a range of molecules including fluorochromes, in addition
to expression constructs, amplicons, and RNA encoding GFP. DOTAP has low cytotoxicity
for coelomocytes, however, lipofection of a variety of molecules fails to produce any signa-
ture of success based on results from fluorescence microscopy and flow cytometry. While
these results are negative, it is important to report failed attempts so that others conducting
similar research do not repeat these approaches. Failure may be the outcome of elevated
ionic strength of the coelomocyte culture medium, uptake and degradation of lipoplexes in
the endosomal-lysosomal system, failure of the nucleic acids to escape the endosomal vesi-
cles and enter the cytoplasm, and difficulties in lipofecting primary cultures of phagocytic
cells. We encourage others to build on this report by using our information to optimize lipo-
fection with a range of other approaches to work towards establishing a successful method
of transfecting adult cells from marine invertebrates.

Introduction

Nucleic acid insertion into a variety of cell types has been important since the 1980s [1] and
the outcomes are often beneficial for advancing basic scientific research, the pharmaceutical
industry, and medical uses. Applications can include the production of mRNAs, proteins, and
biopharmaceutical products for analysis or medical use including vaccines, as well as under-
standing or improving approaches for molecular cloning, gene manipulation, gene expression,
gene regulation, and protein function [1-11]. For example, Escherichia coli and Saccharomyces
cerevisiae are key organisms used in the production of insulin for treatment of diabetes
(reviewed in [1]) through the introduction of the human insulin gene into these microbes [12,
13]. The process of transfecting DNA into bacterial cells was first reported by Griffith [14]
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when nonvirulent Prneumococci became virulent when injected into mice with heat killed viru-
lent Pneumococci. This was later verified in vitro by Dawson and Sia [15, 16]. The principle of
bacterial transformation was further characterized and methods were described by Avery et al.
[17] followed by the development of chemical transformation for E. coli [18-22]. The transfor-
mation of DNA into S. cerevisiae was established in 1978 with the incorporation of foreign
DNA into the yeast genome [23, 24]. While the transformation of foreign DNA into bacteria
or yeast was groundbreaking, there were limits to its use in protein research because of post-
transcriptional modifications to proteins that would normally occur in eukaryotic cells that
was absent or different in bacterial or fungal cells [25, 26]. This difficulty led to establishing a
number of alternative approaches to transform vertebrate and invertebrate cells.

One method for introducing exogenous nucleic acids into cells is through the use of viral-
vector based methods. Viruses used in this method are manipulated by removing some viral
genes encoding pathogenicity proteins while maintaining the structural genes, the regulatory
regions, the genes necessary for viral replication including packing the nucleic acids into viral
particles [8]. This method has excellent transfection efficiency but requires knowledge of
viruses that infect the target cells or can be manipulated to do so. Common vectors used are
murine leukemia virus, human immunodeficiency virus, human T lymphotrophic virus, ade-
novirus, adeno-associated virus, and herpes simplex virus [8].

The use of instruments is another common method to accomplish transfection into cells.
All approaches have the goal of driving exogenous nucleic acids into the cell cytoplasm using
physical methods that disrupt or penetrate the plasma membrane. The commonality among
these methods is that there is no chemical or biological component with which the nucleic
acids are associated for delivery into the cell. Instead, holes in the cell membrane facilitate the
introduction of the nucleic acids into the cells, whether through a puncture using a needle as in
microinjection [6, 27], or by creating pores in the membrane by electroporation through which
molecules enter cells from the extracellular media [28]. Microinjection of DNA into eukaryotic
cells is a popular method for introducing genes of interest into eggs and embryos to evaluate
gene expression and regulation, to generate transgenic animals, or to identify intracellular sig-
naling pathways that are active through development [27]. Most of these methods are done in
mouse embryos [9], Xenopus embryos [10], and sea urchin embryos [29-31]. Electroporation
exposes cells to a pulse of high-intensity electric field to permeabilize the membrane and intro-
duce nucleic acids into the cells through these holes (reviewed in [28]). This method is highly
efficient and can be done on a large number of cells simultaneously, unlike microinjections, to
transfect large and/or small molecules such as bacterial artificial chromosomes or antibodies
that do not otherwise transfect by chemical methods [28]. A solution of optimal osmolarity is
necessary for electroporation and cells that require high saline solutions cannot generally be
electroporated [32]. Laserfection or opto-injection are methods that function similarly to elec-
troporation but use a laser light to permeabilize the cell membranes and create pores that allow
the nucleic acid and other molecules to enter the cells from the media (reviewed in [33]). Bom-
bardment is another means to permeabilize a cell membrane by shooting micro-particles, such
as tungsten or gold, at cells at high velocity that puncture holes through which nucleic acids
and other molecules can enter. This is a method that has become popular in plant transfection
because it solves the problem of the plant cell wall (reviewed in [11]).

Reagent or chemical based transfection methods are all dependent on the formation of com-
plexes between the DNA and the transfection reagent that are up taken into the target cells
through endocytosis, fusion with the plasma membrane, or by osmotic shock. Some of the first
experiments of chemical based transfection into eukaryotic cells involved calcium phosphate pre-
cipitation, a method that results in DNA/calcium phosphate complexes that precipitate spontane-
ously and are subsequently taken into target cells [4, 5, 34]. Cationic polymers or polycations
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(polymeric nanoparticles; PNPs) also result in complexes of anionic nucleic acids and cationic
polymers to produce polyplexes. Uptake of these complexes is dependent on endocytosis or in
other cases, such as diethylaminoethyl (DEAE)-dextran, can enter cells upon osmotic shock [35-
39]. Activated dendrimers are similar to linear polymers but are highly branched and often spher-
ical. They interact with DNA via charge, bind to cell membranes, and are transported into cells
by non-specific endocytosis [40-42]. Magnetic beads are also used for transfection in a process
known as magnetofection. Iron oxide particles complexed with nucleic acids are forced into the
cells with a strong magnetic field resulting in close contact and subsequent endocytosis [43, 44].

Lipid based transfection, also known as lipofection, is another form of chemical based trans-
fection. The potential for lipid based transfection was first deduced when lipids injected into
mice not only ended up in the liver, but were found phagocytosed by Kupffer cells followed by
fusion with primary lysosomes or inclusion in secondary liposomes [45]. Felgner et al. [46] went
on to show that lipids, specifically N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium
chloride (DOTMA), interact spontaneously with DNA to form complexes called lipoplexes that
fuse with or are endocytosed by cells or tissues in culture and thereby deliver DNA into cells.
Lipoplexes are multilamellar structures that self assemble with nucleic acids and transform from
liposomes into cationic lipid bilayer membranes alternating with layers of DNA [47, 48]. How-
ever, variations in lipoplex structure have been reported for different types of lipids and how
they interact with DNA that can vary with the level of charge neutralization between the DNA
and the cationic lipid in which the counter ions associated with both the DNA and the lipid are
released into the solution during lipoplex formation [49-51]. There are a number of liposome
reagents that are commercially available, which fall into three categories: cationic lipids such as
DOTMA, N-(1-[2,3-dioleoyloxy]propyl)-N,N,N-trimethylammonium methyl-sulfate (DOTAP),
and dioctadecylamidoglycylspermine (DOGS), neutral lipids such as 1,2-dioleoyl-sn-glycero-
3-phosphatidylethanolamine (DOPE), 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC),
and anionic lipids such as phosphatidic acid and phosphatidylglycerol (reviewed in [51]). Lipo-
fection requires the formation of lipoplexes followed by incubation with target cells when the
lipoplexes may fuse with the plasma membrane [46, 51] or are endocytosed by the target cells
(reviewed in [47]). Lipofection reagents have been used in a number of ways to transfect nucleic
acids into eukaryotic cells, however, these methods have been limited to mammalian and insect
cell lines, of which both have extensive protocols for maintaining long term cell cultures in the
lab [52-54]. A number of lipofection reagents are known to be cytotoxic during incubation with
cells over an extended period of time, which limits their use to three hours [51]. DOTAP is not
cytotoxic to mammalian cells when used below a concentration of 150 pg/mL (Roche Diagnos-
tics). Whether this holds true for other cell types is currently unknown.

The overall goal of this work is to establish a usable lipofection protocol to incorporate
nucleic acids into adult sea urchin coelomocytes for the purposes of analyzing gene expression
and gene regulatory networks with the ultimate goal of understanding coelomocyte functions.
To date most investigations of gene regulatory networks have focused on development of
embryonic and larval sea urchins and are based on the success of microinjecting sea urchin
eggs and embryos with nucleic acids (reviewed in [2]). Hence, gene regulation in adult sea
urchin cells is generally unexplored. We report here on our attempts to use the DOTAP lipo-
fection reagent to incorporate a range of molecules into sea urchin coelomocytes. Results show
that DOTAP liposomes have low cytotoxicity on coelomocytes, however no signatures of suc-
cessful lipofection are identified for fluorescent molecules, expression constructs containing
either known or suspected cis regulatory regions to drive GFP expression, amplicons of the
functional regions of the expression constructs, or mRNAs encoding GFP. Although our
attempts to establish a protocol for lipofection into sea urchin coelomocytes fail, we report
these methods and provide several possible points at which the approach may have failed so
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that others might use the results to avoid repeating these approaches and perhaps to advance
the research with a different and viable transfection method.

Methods
GFP expression constructs for lipofection

The pONY_HE_GFP-X construct was provided by Drs. Jonathan Rast and Katherine Buckley
(University of Toronto), which was a modified pBluescript KS(+) plasmid (GenBank accession
number X52327.1) with two Sfil cloning sites flanking the insert region. pPONY_HE_GFP-X
was digested with Sfil (NEB) to release the SpHE insert that was separated from the
PONY_X_GFP-X construct by gel electrophoresis. pPONY_X_GFP-X was cut from the gel,
cleaned using the QIAEX Gel Extraction Kit (Qiagen), and re-ligated with T4 DNA ligase
(NEB) to generate the empty vector.

Regions of known or suspected cis regulatory elements for genes of interest were identified
using GenePalette (http://www.genepalette.org/), a universal software tool for genome
sequence visualization and analysis [55], and amplified with primers that included 5’ terminal
Sfil restriction sites (S1 Table). Bacterial artificial chromosome (BAC) clone R3-3033E12
(GenBank accession number BK007096) contains a tightly linked family of SpTransformer
(SpTrf) genes [56-58], and a region of 3 kb located 5’ of the SpTrf-E2 gene was amplified from
BAC R3-3033E12 by PCR (S1 Table). The PCR mix included 0.5 U PrimeSTAR GXL high
fidelity DNA polymerase (Takara), 1X PrimeSTAR GXL buffer, 200 uM of each dNTP, 0.2 uM
of each primer (S1 Table), 10 ng BAC R3-3033E12 DNA in a final volume of 20 pL. Two other
regions located 5’ of the sea urchin actin (SpCyI) gene with known regulatory elements [7, 59]
were amplified using the same PCR protocol described above using sea urchin genomic DNA
that was isolated using the CTAB method according to [60, 61]. The two SpCyI regulatory
amplicons overlapped and included a larger amplicon of 950 nucleotides (nt) (SpCyI-950) and
a smaller amplicon of 300 nt (SpCyI-300) (S1 Table). The Sfil sites on the SpCyI and SpTrf-E2
regulatory amplicons were opened with Sfil followed by extraction with phenol/chloroform
(Fisher Scientific) and passage through a G50 Sephadex spin column (Sigma). Amplicons were
ligated into the Sfil site of linearized pONY_X_GFP-X using T4 DNA ligase (NEB) at a 3:1
molar ratio of insert to construct/vector. The ligation mixture was used to transform TOP10
cells (Invitrogen) via heat shock and grown over night at 37°C on Luria Bertani (LB) agar
plates with 100 pg/mL ampicillin (Sigma). Inserts were verified initially by size after linearizing
the constructs with Not1 (NEB) and by sequencing the ligation sites (GeneWiz).

Preparation of amplicons for lipofection

Amplicons used for lipofection were generated from the pPONY_CyI-300_GFP-X and pONY_-
Cyl-950_GFP-X constructs using M13 primers (S1 Table) and the PrimeSTAR GLX DNA
polymerase. The amplicons contained both of the SpCyI regulatory region and the GFP coding
region. The amplicons were isolated by gel electrophoresis followed by gel cleanup with
QIAEX Gel Extraction Kit (Qiagen).

Run-off mRNA preparation

Constructs of the pBluescript IT KS+ vector containing the coding regions for either GFP or
mCherry were linearized with Sall (NEB) at the 3’ end or Spel (NEB) at the 5 end of the cod-
ing regions. T7 RNA polymerase (ThermoScientific) was used to generate sense strand run-off
mRNA from the construct linearized at the 3’ end based on the manufacture’s protocol. T3
RNA polymerase (ThermoScientific) was used to generate run-off anti-sense mRNA from the
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construct linearized at the 5' end. The mRNAs were capped with the ribo m’G cap mix (Invi-
trogen). mRNA size was verified by gel electrophoresis.

DOTAP lipoplex formation

A variety of different molecules were packaged into the DOTAP liposomal transfection reagent
(ver. 14) according to the manufacturer’s protocols (Roche Diagnostics). Nucleic acids
(expression constructs, amplicons, or mRNAs) were complexed at a ratio of 6 ug DOTAP

(6 uL DOTAP stock reagent) per pg of nucleic acid in 30 ul of N-2-hydroxyethylpiperazine-N-
ethanesulfonic acid buffered saline (HBS; 20 mM HEPES pH 7.4, 150 mM NaCl) and incu-
bated at room temperature for 15 minutes.

Liposome formation with fluorescent dyes

Fluorescein isothiocyanate (FITC; Invitrogen) or rhodamine B isothiocyanate (RITC; Sigma-
Aldrich) were incubated with DOTAP according to the manufacturer’s protocol using three
concentrations of each fluorochrome (0.3 mg/mL, 0.03 mg/mL, or 0.003 mg/mL) to form lipo-
somes containing each fluorochrome.

Sea urchin care

Sea urchins, Strongylocentrotus purpuratus, were collected from the near-shore Pacific Ocean
of Southern California, and purchased from Marinus Scientific (Long Beach, CA) or the
Southern California Sea Urchin Company (Corona del Mar, CA). Sea urchins were housed for
at least two years in 125 gallon marine aquaria and fed once weekly on re-hydrated kelp (Wel-
Pac Dashi Kombu) and maintained as described [62].

Sea urchins do not fall under the institutional rules for ethical animal care at George Wash-
ington University because they are not vertebrates or cephalopods. No animals were sacrificed
or died during the course of this study.

Coelomocyte collection

Whole coelomic fluid (WCF; ~200-300 pL) was withdrawn from sea urchins using a 25 gauge
needle attached to a chilled 1 mL syringe pre-loaded with an equal volume of ice-cold calcium-
and magnesium-free seawater with 70 mM ethylenediaminetetraacetic acid (EDTA) and 20
mM HEPES (pH 7.4) (CMFSW-EH; 460mM NaCl, 10.73 mM KCl, 7.04 mM Na,SO,, 2.38
mM NaHCO3) [63, 64]. The wCF was adjusted to a final volume of 1 mL with additional ice-
cold CMFSW-EH and expelled into a 2 mL tube on ice. Coelomocytes were counted with a
TC20 automatic cell counter (BioRad) according to Chou et al. [69] and the cell concentration
was adjusted depending on the experimental set.

Lipofection of coelomocytes for microscopy

Shandon superfrost plus positively charged microscope slides (ThermoScientific) were assem-
bled into three-chimney centrifugation holders (Eppendorf) and chilled to 4°C. Once chilled,
each chimney was loaded with 200 uL of cold CMFSW-EH, into which 3 X 10* cells were
added, which was the optimal for an even distribution of cells without overlaps. The slide
holder assemblies were centrifuged in a swinging bucket rotor (Eppendorf A-4-62) at 620 x g
for 7 minutes at 4°C to spin the cells onto the slides and left at 4°C for an additional 5 minutes
to allow cells to spread [65]. The slide holder assemblies were moved to a water-chilled cold
plate that was covered with a damp paper towel to improve temperature transfer and warmed
to 14°C for 5 minutes. The temperature of the cold plate was maintained by a connection to a
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NESLAB RTE-211 circulating chiller (Cole-Parmer). The fluid in each chimney was carefully
aspirated with a glass pipette and replaced with 200 uL of coelomocyte culture medium (CCM;
0.5 M NaCl, 5 mM MgCl,, 1 mM EGTA, 20 mM HEPES pH 7.4) [64-66] and incubated for 5
minutes at 14°C. The CCM was replaced with 200 pL of fresh cold CCM and incubated for an
additional 30 minutes at 14°C. The CCM was replaced with 200 pL of ice-chilled CCM with
DOTAP liposomes or lipoplexes containing either FITC, RITC, DNA, or mRNA and incu-
bated for 30 minutes to 6 hours at 14°C. After incubation, the CCM-liposome/lipoplex media
was replaced with 200 pL of fresh chilled CCM followed by three washes of chilled CCM. The
CCM was carefully aspirated after the final wash, and the slides were removed from the assem-
blies. Wet preparations of live coelomocytes were imaged using Zeiss Axioskop fluorescence
photo-microscope (Zeiss, Oberkochen, Germany) with an attached Infinity 3 color digital
camera and digital color imaging system (Lumenera).

Lipofection of coelomocytes for flow cytometry

Eppendorf tubes (2 mL) containing 1.5 X 10° coelomocytes in 1 mL of CMESW-EH (the opti-
mal number of cells for this analysis) were maintained at 14°C in a chiller water bath (NESLAB
RTE-211, Cole-Parmer) for the duration of the experiments. DOTAP lipoplexes [5-30 uL)
with the GFP expression constructs and control liposomes without DNA were chilled on ice
for 5 minutes before adding to the coelomocytes. Cells and DOTAP liposomes or lipoplexes
were mixed immediately by inverting the tubes slowly twice, and returning to 14°C. The cells
plus DOTAP liposomes/lipoplexes were inverted every 30 minutes over the span of 3 hours to
ensure that the lipoplexes and the cells remained in suspension. Sub-samples were taken every
hour to evaluate cell viability. After the initial 3 hours, some samples were incubated for 12-36
hours. For some analyses, the buffer was adjusted to 460 mM NaCl to compensate for adding
the DOTAP liposomes/lipoplexes in lower ionic strength to the cells.

Coelomocytes incubated with liposomes/lipoplexes were evaluated by flow cytometry as
described [63, 67] using an Accuri C6 Flow Cytometer (BD Biosciences). Coelomocytes were
incubated with propidium iodide (PI; 1 ug/mL) on ice for 5 minutes followed by flow cytome-
try with initial gate parameters set to complexity vs. size (side scatter—area [SSC-A] vs. for-
ward scatter—area [FSC-A]). Additional parameters were established to gate out cells positive
for PI, cell doublets (SSC-A vs. side scatter—height [SSC-H]), and debris prior to further anal-
ysis. All remaining events were deemed to be live coelomocytes and were analyzed and gated
for green fluorescence using FlowJo software (https://www.flowjo.com).

Statistical analysis

Two-tailed, unequal variance, unpaired t-tests, and one-way ANOVA were carried out in
Excel (Microsoft) and used to determine significant differences among challenged and control
groups, which were standardized based on coelomocytes per sample. Quartile and t tests were
used to identify outliers that would indicate a significant change in viability upon treatment
with DOTAP compared to untreated controls. Binomial test of significance was used to deter-
mine the significance of the averaged proportions among challenged and control groups. The
null and alternative hypothesis were Hy: p1 = p2 and H;: p1 # p2. Significance was set at

p <0.05 for all ANOVA, t-tests, and binomial test of significance.

Results

DOTAP is not toxic to coelomocytes

Little is known about the effects of lipofection reagents on sea urchin coelomocytes or cells
from other marine animals. Therefore, we first evaluated whether DOTAP was cytotoxic to
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Fig 1. The percentage of viable coelomocytes over 36 hours does not change when incubated with DOTAP. Cell
viability was gauged using propidium iodide exclusion after incubation with DOTAP. Coelomocyte suspensions (1.5 X
10°) were treated with 0 to 30 uL of DOTAP and tested for viability at 1, 2, 3 and 36 hours (hr). The salinity of the
medium was adjusted for some samples by adding NaCl to compensate for the addition of DOTAP in HBS.

https://doi.org/10.1371/journal.pone.0267911.9001

coelomocytes from the purple sea urchin, Strongylocentrotus purpuratus. DOTAP was selected
for this study because of its reported low levels of cytotoxicity. Cell samples were exposed to
varying amounts of DOTAP liposomes over a three-hour period plus a final analysis at 36
hours and evaluated by PI staining and flow cytometry to determine the level of toxicity for
coelomocytes. Cells that received 5 uL, 10 pL, 15 pL or 30 uL of DOTAP liposomes (which ran-
ged from half to twice the volume recommended by the manufacture relative to the number of
cells) showed a decrease in cell viability after 1 to 36 hours of incubation (Fig 1, Table 1). Coe-
lomocytes incubated with 5 to 30 uL of DOTAP for 1 to 36 hours showed viability within the
range of that for control cells that were incubated in the absence of DOTAP (Fig 1; all green
bars). The lowest cell viability was observed with 10 uL of added DOTAP, which was the only
sample that showed a continuous decrease in cell viability over 3 hours (Fig 1; bright green
bars). Coelomocytes that were incubated with 15 uL of DOTAP (the manufacturer recom-
mended volume) were extended to 36 hours to test their viability over this longer time period.
Control cells without DOTAP showed 88% viability over 36 hours, whereas coelomocytes with
DOTAP showed 91.5% viability indicating that DOTAP did not impact the viability of these
cells in short term culture. Outlier tests were used to demonstrate that none of the experimen-
tal samples were statistical outliers and all were within the range of viability for the controls in
the absence of DOTAP. Although incubation with DOTAP resulted in an initial decrease in
cell viability after an hour, the decrease was similar to non-treated coelomocytes. Based on
these results, the toxicity of DOTAP on coelomocytes was deemed to be minimal and could be
used for further evaluation of lipofection.

Salinity adjustments to the DOTAP buffer are not required

Coelomocytes are maintained in short term cultures in high salinity CCM because coelomic
fluid salinity is equivalent to seawater (0.46 M NaCl) [64, 65, 68-71], whereas the DOTAP lipo-
some mixture is used at mammalian salinity (0.15 M NaCl). Although the volume of liposomes
added to the coelomocytes was low (25 pL to 150 uL of DOTAP added to 1 ml of cells), the
salinity of the solution may have impacted the cells. Therefore, we tested whether the decrease
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Table 1. Percent cell viability after treatment with DOTAP.

DOTAP added per treatment Gated cells counted” Viable (%)
OpuL
3hr 5000 96.6
36 hr 5000 88.1
Unstained 5000 99.8°
5uL
1 hr 5000 90.5
2 hr 5000 91.2
3hr 1970 93.0
1 hr + NaCl 5000 94.0
2 hr + NaCl 5000 93.0
3 hr + NaCl 2213 92.9
10 uL
1hr 5000 94.0
2 hr 5000 90.4
3hr 2240 88.2
15 pL
1hr 5000 94.0
2 hr 5000 90.5
3hr 2006 91.4
36 hr* 5000 91.5
1 hr + NaCl 5000 93.9
2 hr + NaCl 5000 91.2
3 hr + NaCl No data’ No data’
30 uL
1hr 5000 95.8
2 hr 5000 94.3
3hr 5262 93.4

"The numbers of coelomocytes within the gate for viable cells that exclude PI were counted and are indicated for
each sample.

*The control sample was not incubated with PI.

*The percentage of cells in the gate established for cells that exclude PI is used to evaluate mostly live cells when PI
staining and exclusion is not used.

*This sample was evaluated at 36 hours based on the manufacturer’s recommendation of liposome volume and ratio
of liposomes per cell.

*Not enough coelomocytes were recorded for these samples to reach 5000 events.

https://doi.org/10.1371/journal.pone.0267911.t001

in salinity by adding the DOTAP liposomes to the cells might induce cellular clotting reactions
or be a source of reduced viability. The salinity of the DOTAP liposomes was adjusted to 0.46
M NaCl before adding to the coelomocytes. Two sets of samples with equal numbers of coelo-
mocytes in 1 mL of CMFSW were used, one receiving 25 uL (Fig 1, light blue bars) and another
75 pL of the liposome mixture (Fig 1, dark blue bars). These samples were selected based on
the manufacture’s recommended minimum amount (5 pg) and standard amount (15 pg) of
liposome added to cells per mL. There was no distinguishable difference in cell viability in
samples that were adjusted for salinity (Fig 1; all blue bars) compared to the non-adjusted sam-
ples (Fig 1; all green bars). Therefore, the decreased salinity of the DOTAP liposomes did not
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have deleterious effects on coelomocyte viability and adjusting the salinity of the DOTAP lipo-
somes prior to adding to the cells was not necessary.

FITC and RITC are incorporated into liposomes but may not be
transferred into coelomocytes by lipofection

FITC and RITC were used initially to test DOTAP lipofection into coelomocytes either
through fusion with the plasma membrane or, more likely, through endocytosis of the lipo-
somes. FITC and RITC were selected to visualize their incorporation into liposomes and
whether lipofected coelomocytes became fluorescent. Fluorescence was observed in the
DOTAP liposomes indicating that the FITC and RITC had been incorporated into the lipo-
some lumens. Coelomocytes on slides were incubated with liposomes for 30 minutes prior to
evaluation by fluorescence microscopy. Liposomes containing either FITC or RITC appeared
to be associated with the plasma membrane of coelomocytes, however, it could not be deter-
mined definitively whether liposomes were in contact with cell surfaces or whether the fluores-
cent dyes were incorporated into the coelomocyte cytoplasm. Varying the concentration (0.3
mg/mL, 0.03 mg/mL, or 0.003 mg/mL) of the fluorescent dyes in the liposomes did not change
the outcome or make it possible to visualize the fluorescent dyes in the cytoplasm of the coelo-
mocytes. While, and liposomes appeared to be associated with the coelomocytes, direct contact
and uptake by the coelomocytes and release of fluorescence into the cytoplasm could not be
verified. Therefore, this approach for using fluorochromes could not be used to confirm the
success or failure of lipofection.

Transfection with expression constructs does not result in expression of
fluorescent proteins

The analysis of lipofection of FITC and RITC with DOTAP failed to provide conclusive evi-
dence that the liposomes were associated directly with the coelomocyte surfaces or that fluoro-
chromes were incorporated into the cytoplasm. Consequently, lipofection of expression
constructs was used as the next approach because GFP expression could be evaluated by flow
cytometry. cis regulatory elements that could drive expression of fluorescent proteins were
employed. The pPONY_HE_GFP-X expression construct included a ubiquitously expressing cis
regulatory element that controls expression of the sea urchin hatching enzyme (SpHE), which
is a protease expressed early in sea urchin development that digests the egg fertilization enve-
lope [72-74]. This cis SpHE regulatory element is often used as a positive control in larval sea
urchin gene regulatory experiments because it drives constitutive expression in all cell types
[73, 75]. The pONY_CyI-300_GFP-X and pONY_CyI-950_GFP-X expression constructs
included two overlapping cis regulatory elements of the sea urchin actin (SpCyI) gene [7, 59],
which is expressed in coelomocytes [76]. Lastly, a region of predicted cis regulatory elements
for an SpTrf gene (encoding an SpTrf protein with an E2 type sequence) from the SpTrf gene
family was selected and inserted into pONY_SpTrf-E2_GFP-X to drive GFP expression. The
SpTrf family of immune genes is upregulated in coelomocytes and larval blastocoelar
(immune) cells upon immune challenge [65, 76, 77] and the SpTrf-E2 genes show the highest
expression in adult sea urchin coelomocytes compared to other SpTrf genes [60, 78]. These
constructs were incorporated into DOTAP lipoplexes, incubated with coelomocytes, and the
cells were screened for GFP expression by flow cytometry. To enable the evaluation by flow
cytometry, coelomocytes were incubated with DOTAP lipoplexes while in suspension rather
than on glass slides as used for microscopy (see Methods). After incubation with 15 pL of lipo-
plexes or liposomes without DNA for 12-16 hours, results flow cytometry showed that all
expression constructs, pPONY_HE_GFP-X, pONY_SpTrf-E2_GFP-X, and pONY_Cyl-
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Fig 2. Green fluorescence in coelomocytes is increased in samples lipofected with expression constructs to drive
GFP expression. Flow cytometry histograms for green fluorescence are shown for replicate samples of coelomocytes
incubated with DOTAP lipoplexes with one of the GFP expression constructs (A-I; green), or with DOTAP liposomes
without DNA (J-L; red), or were not treated (blue). Histograms of lipofected coelomocytes are overlaid on histograms
of untreated control cells.

https://doi.org/10.1371/journal.pone.0267911.9002
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950_GFP-X, had similar levels of detectible green fluorescence (Fig 2, Table 2) with no statisti-
cal variation in intensity among the groups (Table 3; first three columns). Coelomocytes that
received expression constructs in lipoplexes had a significantly greater percentage of cells with
higher fluorescence intensity compared to untreated control cells and cells that only received
DOTAP liposomes suggesting that GFP was expressed (Fig 2A-2I, Tables 2 and 3). However,
green fluorescence was also observed in 47% to 65% of the coelomocytes incubated with
DOTAP liposomes without DNA, which was significantly different from untreated control
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Table 2. The percentage of GFP* coelomocytes lipofected with GFP expression constructs is variable among samples’.

Sea urchin Treatment Total coelomocytes GFP" coelomocytes GFP" cells (%)

1 pONY_SpTrf-E2_GFP-X 28665 21504 75

1 pONY_HE_GFP-X 34749 25338 73

1 DOTAP alone 47538 27787 58

1 Control 30453 3392 11

2 pONY_SpTrf-E2_GFP-X 23311 16961 73

2 pONY_HE_GFP-X 26346 17309 66

2 DOTAP alone 41051 19407 47

2 Control 14863 994 7

3 pONY_SpTrf-E2_GFP-X 22977 18376 80

3 pONY_HE_GFP-X 47876 38416 80

3 DOTAP alone 63458 40989 65

3 Control 19967 8384 42

4 pONY_SpTrf-E2_GFP-X 28691 20804 73

4 pONY_CyI-900_GFP-X 22683 15235 67

4 pONY_HE_GFP-X 51194 36932 72

4 DOTAP alone 63547 33488 53

4 Control 12208 922 8

5 pONY_SpTrf-E2_GFP-X 33256 24192 73

5 pONY_CyI-900_GFP-X 29687 21649 73

5 pONY_HE_GFP-X 33665 24721 73

5 DOTAP alone 48505 29811 61

5 Control 28189 1544 5

6 Control 37828 10785 29

6 pONY_CyI-900_GFP-X 40213 26719 66
!These data were acquired by flow cytometry.
https://doi.org/10.1371/journal.pone.0267911.t002
Table 3. There are significant differences in GFP expression among cells that received lipoplexes, DOTAP liposomes, or were untreated’.
Sample 1> Sample 2 t-test’® Anova® Binomial
pONY_SpTrf-E2_GFP-X pONY_CyI-900_GFP-X 0.083 0.044 Fail to Reject
pONY_SpTrf-E2_GFP-X pONY_HE_GFP-X 0.469 0.465 Fail to Reject
pONY_CyI-900_GFP-X pONY_HE_GFP-X 0.238 0.265 Fail to Reject
pONY_SpTrf-E2_GFP-X DOTAP alone 0.003 0.0008 Reject
pONY_CyI-900_GFP-X DOTAP alone 0.021 0.037 Reject
pONY_HE_GFP-X DOTAP alone 0.004 0.003 Reject
pONY_SpTrf-E2_GFP-X Untreated Control 0.0002 1.5 E-05 Reject
pONY_CyI-900_GFP-X Untreated Control 0.0002 0.0008 Reject
pONY_HE_GFP-X Untreated Control 0.0001 2.5 E-05 Reject
DOTAP alone Untreated Control 0.0006 0.0004 Reject

"These data were acquired by flow cytometry.

2GFP expression (Table 2) for pairs of samples are compared to determine significant difference.

*p values; p < 0.05 is considered significant.

https://doi.org/10.1371/journal.pone.0267911.t003
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Bright field

Fig 3. Coelomocytes lipofected with the pPONY_HE_GFP-X expression construct or the amplicon show low levels
of GFP expression. (A-F) A few selected cells show green fluorescence after lipofection with the pPONY_HE_GFP-X
expression construct. (G-I) Similarly, only a few cells show green fluorescence after lipofection with the HE_ GFP-X
amplicon. The white arrows in (A), (D), and (G) indicate GFP expressing cells in (B), (E), and (H). Scale bars in the
merge images apply to the other panels in the same row.

https://doi.org/10.1371/journal.pone.0267911.g003

cells that also showed 5% to 42% fluorescent cells (Fig 2]-2L, Tables 2 and 3). This suggested
that an unknown interaction between the coelomocytes and the DOTAP liposomes and lipo-
plexes resulted in significant background fluorescence, and that control cells in the absence of
DOTAP also showed signs of auto-fluorescence. DOTAP in the absence of cells is not fluores-
cent by microscopy in accordance with descriptions of the product by the manufacturer. The
combination of the elevated level of background fluorescence from the liposomes plus coelo-
mocyte auto-fluorescence resulted in inconclusive lipofection results. However, the significant
differences in fluorescence for the coelomocytes that received expression constructs in lipo-
plexes versus those that received DOTAP liposomes (Fig 2A-21 vs. Fig 2]-2L) suggested that
lipofection of GFP expression constructs may have been successful and that GFP was
expressed and produced by some of the coelomocytes.

To verify the flow cytometry results, coelomocytes were prepared as described in the meth-
ods for microscopy and incubated for 6 hours with lipoplexes containing either the pONY_-
HE_GFP-X expression construct or the corresponding amplicon of the functional regions of
this construct. Control cells were treated similarly with DOTAP liposomes without DNA.
Cells were evaluated for GFP expression by fluorescence microscopy. Few to no cells were
observed with GFP fluorescence (Fig 3, Table 4), which contradicted results from flow cytome-
try showing a large portion of coelomocytes expressing GFP after receiving lipoplexes with the
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Table 4. Coelomocytes do not express GFP after transfection with expression constructs or with mRNA encoding fluorescent proteins.

Lipofected nucleic acids
DOTAP alone
pONY_SpTrf-E2_GFP-X
pONY_CyI-900_GFP-X
pONY_HE_GFP-X
Amplicon HE_GFP-X
Linear pPONY_HE_GFP-X
pONY_X_GFP-X
Amplicon X_GFP-X
Linear pPONY_X_GFP-X
GFP anti-sense mRNA
GFP sense mRNA
mCherry anti-sense mRNA
mCherry sense mRNA

Number of fluorescent cells Number of cells evaluated Fluorescent cells (%)
0 3x10* (x3)? 0
4 3x10* (x2) 0
0 3x10* (x2) 0
2 2.3x10° 0.001
3 2.3x10° 0.001
2 2.3x10° 0.001
0 2.3x10° 0
0 2.3x10° 0
0 2.3x10° 0
0 3x10* 0
1 3x10* 0.003
0 3x10* 0
4 3x10* 0.01

"These data were collected by fluorescence microscopy.

“Number of replicates.

https://doi.org/10.1371/journal.pone.0267911.t004

HE expression construct. However, flow cytometry also showed that some coelomocytes were
also fluorescent after incubation with DOTAP liposomes, or the cells were auto-fluorescent.
The results from microscopy indicated that there was no true GFP fluorescence by the lipo-
fected coelomocytes. It was not determined, however, whether this outcome was due to a fail-
ure of lipofection, a failure of gene expression, or a failure to translate the mRNA into GFP. To
test the function of the expression constructs to drive GFP expression, they were injected into
sea urchin eggs, which were allowed to develop to the pluteus larval stage. Larval expression of
GFP from pONY_SpTrf-E2_GFP-X was restricted to the larval blastocoelar cells (SIA-S1C
Fig) in agreement with previous reports [77]. Larval expression of GFP from pONY_-
HE_GFP-X was random and consistent with non-specific expression control and the mosaic
incorporation of the expression construct into the genomic DNA of a subset of embryonic
cells (SID-S1F Fig) [75, 79]. Larvae injected with the empty vector, pPONY_X_GFP-X (S1G-
S1I Fig), or were not injected (S1J-S1L Fig) showed background fluorescence mostly in the
gut. These results indicated that the regulatory regions inserted into the expression vectors
functioned as expected in larval sea urchin cells to drive GFP expression above background.
Therefore, the basis for the green fluorescence of the coelomocytes detected by flow cytometry
was not due to the DOTAP lipoplexes, and its origin is unknown. These results indicated that
coelomocytes lipofected with the expression constructs did not express GFP.

Linearized constructs do not increase the number of coelomocytes with
detectible GFP fluorescence

Because of the failure to observe GFP fluorescence in coelomocytes after lipofection of expres-
sion constructs, we considered whether transcription of supercoiled DNA might have been a
basis for this failure. This notion was based on the use of linearized constructs for injection
into sea urchin eggs, even though linear DNA is used to promote concatenation and insertion
of the DNA into the genome of embryos [80]. We hypothesized that linear DNA might be
more accessible for the assembly of the transcription complex compared to a supercoiled plas-
mid. Therefore, all GFP expression constructs were linearized, in addition to amplicons of the
GFP coding region with and without the associated promotor region, were incorporated into
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Fig 4. Coelomocytes lipofected with mRNA encoding GFP or mCherry result in very few examples of fluorescent
cells. (A-C) Coelomocytes lipofected with GFP sense strand mRNA. (D-F) Coelomocytes lipofected with mCherry
sense strand mRNA. (B) Selected coelomocytes show GFP green fluorescence. (E) Selected coelomocytes show
mCherry fluorescence. The scale bar in (B) applies to panels (A) and (C). The scale bar in (E) applies to panels (D) and
(F). Results for all fluorescent cell instances and controls are shown in Table 4.

https://doi.org/10.1371/journal.pone.0267911.g004

DOTAP lipoplexes. Cells were evaluated by fluorescence microscopy for the expression of
GFP; flow cytometry was not used for this analysis based on the background levels described
above. Although low fluorescence was detected in a few cells that received either the linear
pONY_HE_GFP-X expression construct or the corresponding amplicon (Fig 3A-3F, Table 4),
which was similar to cells receiving the supercoiled constructs (Fig 3G-31, Table 4). These
results showed that lipofection of linearized constructs or amplicons failed to induce signifi-
cant GFP expression in the coelomocytes.

Lipofection of mRNA does not produce fluorescence in coelomocytes

To determine whether the failure to detect GFP mRNA in coelomocytes was due to a failure of
lipofection or a failure to transcribe the lipofected DNA, run-off transcripts of sense and anti-
sense mRNA for GFP and mCherry were generated and assembled into DOTAP lipoplexes.
Coelomocytes were incubated for 6 hours with DOTAP lipoplexes containing the transcripts
followed by evaluation by fluorescence microscopy. Results showed that very few coelomocytes
expressed either GFP or mCherry proteins (Fig 4) and that there were few differences between
cells lipofected with sense vs. anti-sense strand mRNAs for GFP (0.003% vs. 0%) or mCherry
(0.01% vs. 0%; Table 4). Overall, these results indicated that by circumventing transcription,
lipofection of mRNA encoding GFP or mCherry did not result in a detectible level of fluores-
cence in coelomocytes. Taken together these results suggested that nucleic acids were not
incorporated into coelomocytes using DOTAP lipoplexes.

Discussion

The ability to introduce nucleic acids into coelomocytes would open avenues for investigations
of gene expression in adult sea urchin cells, perhaps leading eventually to a characterization of
their gene regulatory networks. Gene expression in adult cells could then be compared to the
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regulatory networks in larval sea urchins [2] including cells that function in the larval immune
system [75, 77, 81]. Understanding gene expression in adult coelomocytes could also be used
to predict their functions in the echinoid immune system. This information could be applied
to defining functional differences among cells of the same or different morphotypes, and could
elaborate on how immune genes are regulated in coelomocytes based on the triggers that acti-
vate various immune responses. Modifications to lipofection methods for marine animals that
live in elevated salinity could be applied to other invertebrates to improve the understanding
of their biology. While our approaches failed to lipofect macromolecules into coelomocytes, it
is important to describe our results so that others avoid repeating this approach and perhaps
will use our failures to focus on finding alternative solutions for successful transfection of adult
sea urchin cells.

DOTAP does not transfect sea urchin coelomocytes

While DOTAP shows low toxicity for coelomocytes and has no requirement for minor adjust-
ments to the salinity of the CCM after auto-assembly of the liposomes or lipoplexes in 150 mM
NaCl, the results presented here indicate that DOTAP does not transfer nucleic acids or fluo-
rochromes into the cytoplasm of coelomocytes at a level at which GFP can be observed and
verified by fluorescence microscopy. It is noteworthy that a difference in sensitivity of a fluo-
rescence microscope compared to detection by flow cytometry, which is currently considered
to be more sensitive [82] as has been reported for studies of sperm, shows a disconnect
between these two methods to evaluate cell fluorescence [83]. This may explain some of the
differences observed between the results from microscopy and flow cytometry emphasizing
that each detection method must be evaluated carefully and verified using alternative
approaches.

The chemistry of the interactions and stability between cationic lipids such as DOTAP and
DNA, which results in a neutralization of the charges associated with the cationic lipid and the
DNA phosphate backbone in low salt solutions, has rarely been investigated in high salt media
such as CCM that is required to maintain coelomocytes. Although the effect of 0.5 M NaCl on
the chemistry of lipoplexes has not been evaluated directly, 1.5 M NaCl results in a partial dis-
sociation of DOTAP and the DNA [84]. Furthermore, it is not known whether the 0.5 M NaCl
in CCM and the associated ionic strength of the media disrupts, interferes, or weakens the
electrostatic interactions between the lipids and the nucleic acids that i) drive the release of the
counterions and water molecules associated with the lipid and the DNA and maintain the lipo-
plex structure, ii) whether the lipoplexes remain intact or release some or all of the DNA, and
iii) whether they interact with the negatively charged cell membrane that is based on the posi-
tive charge of the DOTAP head group [85-87].

It is generally accepted that lipoplexes are endocytosed and the failure to release the expres-
sion constructs from endocytic vesicles into the cytoplasm may be related to the coelomocyte
functions as immune cells. Lipofection of primary cultures of immune cells such as mamma-
lian macrophages, dendritic cells, and other leukocytes have generally failed when commercial
lipofection reagents are used [88-92]. Lipofection success for this general cell type has required
significant effort for optimization using a variety of lipid mixtures or other approaches. The
coelomocytes evaluated here are a highly phagocytic subtype [63, 76] and they would be
expected to take up foreign materials readily, including lipoplexes and liposomes, and degrade
them through the endosomal-lysosomal pathway, as has been suggested for many other cell
types [47]. The high NaCl concentration in the CCM may change the electrostatic interactions
in the lipoplexes and alter their sizes, which will determine whether they may be taken up by
clathrin-mediated endocytosis or micropinocytosis, or whether they may enter the cell by
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caveolae-mediated endocytosis [93]. If the high salt concentration causes the lipoplexes to
aggregate into larger particles, they may be phagocytosed by the coelomocytes that also lead to
degradation in phagolysosomes. The mechanism by which lipoplexes enter a cell defines the
trafficking pathway and whether they will be degraded in a lysosome, or whether the nucleic
acids will be released into the cytoplasm. Regulating the size of the liposome in addition to the
lipid composition may be key to lipofection success for cells from marine invertebrates (see
[93] and references therein).

An essential and rate-limiting step in lipofection is the escape of the lipoplexes and from
the endosomal vesicles and the release of the nucleic acids into the cytoplasm prior to degrada-
tion in the lysosome [94-97]. The escape success of DNA from the endosomal system has been
estimated to be 0.01% to 1% of the amount that is endocytosed by a cell [96]. The possible lack
of endosomal escape for nucleic acids in highly phagocytic immune cells, in addition to the
multiple effects of the high salt media on lipoplex structure, size, and interactions with the cell
surface may all be involved in why lipofection fails to produce observable GFP or mCherry
fluorescence in the coelomocytes. Although other types of adult echinoid cells that are not
phagocytic immune cells might be used for lipofection testing to improve survival of the lipo-
plexes upon uptake, coelomocytes are by far the easiest cell type to collect and maintain [63]
and does not require sacrificing the sea urchin. Primary cells will be required for further efforts
to solve the lipofection method because there are no echinoderm cell lines. Furthermore, if
there are multiple barriers to lipofection, then the use of other transfection lipids such as differ-
ent lipid mixtures that may regulate the size of the lipoplexes, or the addition of helper lipids
such as DOPE or cholesterol, and vesicle lytic or escape agents should be investigated for
improved results compared to those reported here [98-100].

Conclusion

DOTAP does not result in successful lipofection of nucleic acids or fluorochromes into coe-
lomocytes using the methods and approaches described here. Testing and optimizing lipo-
fection for marine phagocytes in a high salt medium was beyond the scope of this study, yet
these results are reported as a starting place for others to find alternative approaches to
transfect adult marine invertebrate cells. We show that DOTAP is non-toxic to coelomo-
cytes, and therefore it has potential for use in conjunction with alternative mixtures of lipids
and other reagents to transfect sea urchin coelomocytes as has been reported in other model
systems [51].

Careful reading of the relevant literature to understand how lipoplexes assemble [50] and
are employed for transfecting cells (reviewed in [101]), indicate a number of points to consider
prior to employing modifications to the method that we report. i) Differences in ionic strength
of the media or buffer can dictate the shape and size of the lipoplexes, which are defined by
ionic interactions between the lipids and the nucleic acids, in addition to whether the lipo-
plexes dissociate and release the nucleic acids [84-86]. Furthermore, the ratios of lipid to
nucleic acid should result in neutralization of charges to avoid aggregation of lipoplexes [102].
Direct observations of the lipoplexes should be carried out to characterize the structure, shape,
and size prior to use with cells using cryo- or standard transmission electron microscopy, light
microscopy, plus indirect analyses by dynamic light scattering, among other methods as
described by [87, 101, 102]. If possible, altering the ionic strength of the buffer or medium to
reduce the lipoplex sizes to small enough for uptake preferentially by the caveolae system
should improve transfection success [100, 101]. Targeting this pathway would avoid degrada-
tion in lysosomes that follows phagocytosis and endocytosis. ii) Because the initial interaction
between lipoplexes and cells occurs at the cell surface, an understanding of the glycocalyx
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structure will be important [50, 101]. Different cell types from a species, cells from different
organisms, and primary cultures vs. immortal cell lines are speculated to be quite different
both structurally and biochemically with direct impacts on lipofection success [87]. These dif-
ferences may include variations in the lipids that are present in the outer leaflet of the plasma
membrane, and the oligosaccharides that are linked to glycoproteins, glycolipids, and proteo-
glycans that make up the glycocalyx. These examples of cell-specific variations may require the
use of different mixtures of lipids including ‘helper’ or co-lipids to optimize lipofection [87]
for a particular cell type. iii) The addition of reagents that enable liposomes or lipoplexes to
escape from the endosomal vesicle of phagosome, or the use of endosomal escape domains can
be employed with any type of macromolecule to improve lipofection success [98, 99, 103].
These agents may be particularly useful if the size of the lipoplexes cannot be manipulated by
altered ionic strength so that the lipoplexes are more likely to be taken up into the endosomal
or caveolae systems. In general, lipoplex sizes are sensitive to the mixture of lipids that are
used, the charge ratio of the nucleic acids and the lipids, the order in which the nucleic acids
and lipids are mixed, and the ionic strength of the medium [87, 104].

In light of the difficulties in using lipofection, it is worth noting that it is not the only avail-
able method of transfection; laserfection, particle bombardment, or other chemical based
transfection methods such as calcium phosphate, cationic polymers, or magnetofection may
be considered and evaluated as alternative approaches. Sea urchin coelomocytes are, in limited
ways, optimal for this type of analysis because they are easy to obtain and established protocols
are available to maintain them for days to weeks in culture [63, 64, 105]. Although the
approaches and results presented here demonstrate that DOTAP lipofection fails, we provide
an initial roadmap for others to work toward establishing a successful method to lipofect adult
sea urchin cells and adult cells of other marine invertebrates.

Supporting information

S1 Table. Primers used to amplify the regulatory regions for the GFP expression con-
structs.
(PDF)

S1 Fig. Pluteus sea urchin larvae injected with GFP expression constructs show GFP
expression. Eggs were injected with expression constructs according to [80] and evaluated at
six days post fertilization as pluteus larvae. A-C. A larva injected with pONY_SpTrf-
E2_GFP-X shows GFP expression in blastocoelar cells, in agreement with Ho et al. [77]. D-F.
A larva injected with pPONY_HE_GFP-X shows constitutive but mosaic GFP expression, in
agreement with Solek et al. [75]. G-I. A larva injected with the empty vector, pPONY_X_GFP-X,
shows regions of auto-fluorescence, mostly in the gut. J-L. A non-injected larva shows regions
of auto-fluorescence, mostly in the gut. Scale bars indicate 100 um.

(PDF)
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