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Abstract—To reap the benefit of big data generated by the mas-
sive number of Internet of Things (IoT) devices while preserving
data privacy, federated learning (FL) has been proposed to enable
IoT devices to train machine learning models locally. That is,
instead of sharing the local data sets, different clients in terms of
IoT devices only need to upload their local models to a centralized
FL server. Client selection in FL is critical to maximize the num-
ber of qualified clients, who can successfully upload their local
models to the FL server before the predefined deadline. Normally,
client selection is coupled with wireless resource management
owing to the fact that different clients need to share the same
spectrum to upload their local models. The existing solutions of
joint optimizing client selection and resource management are
designed based on frequency division multiple access (FDMA)
or time division multiple access (TDMA), which do not consider
the dynamics of the clients and lead to low bandwidth utilization.
In this paper, we propose the Non-Orthogonal Multiple Access
(NOMA) based resource allocation for client selection in FL to
dynamically and jointly optimize client selection for each global
iteration as well as the transmission power of each selected
client in each time slot within a global iteration. We design
the Deep Reinforcement lEarning based client selection in non-
orthogonAl Multiple access based Federated Learning (DREAM-
FL) algorithm to solve the problem. Extensive simulations are
conducted to demonstrate that DREAM-FL can select more
qualified clients and has higher model accuracy than FDMA
and TDMA-based solutions.

Index Terms—Federated Learning, client selection, deep rein-
forcement learning, NOMA

I. INTRODUCTION

Analyzing the high volume of data generated by the Internet
of Things (IoT) devices are valuable [1]. However, due to some
personal and sensitive information hiding behind IoT data,
users are reluctant to upload their IoT data to a centralized fa-
cility for analysis. Hence, it is necessary to design a distributed
data analysis framework to locally analyze IoT data to preserve
data privacy and reduce network traffic. Federated learning
(FL) is this type of framework to train machine learning
models over local data sets that are distributed among IoT
devices [2]–[5]. In an IoT-based FL system, a machine learning
model is trained via many global iterations. In each global
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iteration, a centralized FL server selects a number of clients in
terms of IoT devices and broadcasts an initialized global model
to the selected clients via the existing wireless infrastructure,
such as base stations (BSs), as shown in Fig. 1. After receiving
the global model, each client trains the model using its local
data set to generate its local model and uploads the local model
to the FL server via the BS. Once the FL receives the local
models from all the selected clients, it aggregates the local
models to update the global model. The global model keeps
training in each global iteration until it is converged [6].

Fig. 1: NOMA-based wireless federated learning.

The client selected in heterogeneous FL is critical to deter-
mine the global model training latency. That is, in heteroge-
neous FL, clients have different computing and communica-
tions capabilities to train and upload their local models.Hence,
the FL server has to wait for those straggler clients, who
need a long time to train and upload their models, in each
global iteration. The straggler clients can significantly prolong
the overall training time in FL [7]. One of the most popular
client selection methods to avoid the straggler problem is to
set up a deadline for each global iteration. The FL server
only selects the clients, who can upload their local models
before the deadline, thus avoiding the straggler issue [8].
On the other hand, client selection is always coupled with
wireless resource allocation since the selected clients would
share the same wireless spectrum to upload their models
[9], [10]. For example, assigning more bandwidth resources
to a client may enable this client to be a qualified client
to successfully upload their local models to the FL server
before the predefined deadline. The existing joint resource
allocation and client selection in FL is based on frequency
division multiple access (FDMA) or time division multiple
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access (TDMA) spectrum sharing techniques. In FDMA-based
FL, the amount of bandwidth will be reserved for each selected
client in each global iteration to meet the deadline requirement.
In TDMA-based FL, a number of time slots are reserved for
each selected client, who would utilize the whole spectrum
to upload its local model during the allocated time slots. The
existing joint resource allocation and client selection solutions
in FL are mainly to reserve wireless resources in terms of
bandwidth and time slots for the selected clients. Wireless
resource reservation would lead to low bandwidth utilization
due to client dynamics 1. Taking an FDMA-based FL system
as an example, assume that Client-A is selected to participate
in training the global model during the current global iteration
and the system reserves, for example, one wireless channel
(e.g., 1 MHz bandwidth) to Client-A based on its current
channel condition to ensure it can upload its local model before
the deadline of the current global iteration. As shown in Fig. 2,
reserving this wireless channel for Client-A means that other
clients cannot reuse the wireless channel to upload their local
models even if Client-A has already uploaded its local model
or has not started to upload its local model, thus leading to low
bandwidth utilization and potentially reducing the number of
selected clients. Fig. 2 also provides an example in TDMA-
based FL, where two time slots are reserved for Client-A.
However, Client-A only needs one time slot to finish its
local model uploading because of, for example, better channel
condition between Client-A and the BS. Hence, bandwidth
utilization and the number of selected clients are reduced.

Fig. 2: Illustration of drawbacks for FDMA and TDMA-based
FL.

To fully utilize bandwidth resources, we propose the Non-
Orthogonal Multiple Access (NOMA) based resource alloca-
tion for client selection in FL. In NOMA-based FL, all the
selected clients can upload their local models over the same

1Here, client dynamics comprises two aspects, i.e., 1) dynamic channel
conditions, where the clients may move around, thus leading to varying
channel conditions and uploading data rates to the BS, and 2) dynamic traffic
loads, where different clients may start and finish their local model uploading
processes in different time slots.

time slot and frequency band, but with different transmission
power, which has to be optimized to meet the deadline. The
BS receives the superimposed signals from the clients and
applies successive interference cancellation (SIC) to decode
the local models from the superimposed signals. Note that the
major reason to apply NOMA rather than TDMA/FDMA is
that NOMA has been demonstrated to have higher bandwidth
utilization, higher network capacity, and more simultaneous
connections than TDMA/FDMA [9]–[11]. Also, to adapt to
client dynamics in NOMA-based FL, we propose to dynami-
cally optimize the transmission power of the selected clients in
each time slot based on their channel conditions and residual
traffic loads (i.e., the number of residual bits for uploading
a client’s local model). Here, dynamically optimizing the
transmission power of the clients basically means that wireless
resources will not be reserved for the clients at all the time
slots in a global iteration. Dynamically determining the trans-
mission power of the selected clients can potentially increase
the bandwidth utilization and the number of selected clients,
but may lead to new challenges. 1) It is difficult to estimate
the communications latency of a client in uploading its local
model, which is critical to client selection. This is because
only the clients, which are able to upload their local models
before the deadline, can be selected. 2) The resource allocation
and client selection problems are coupled together but are
optimized at different levels of time granularity. That is, client
selection should be determined at the beginning of each global
iteration, but the resource allocation is optimized for each time
slot (e.g., every 100 ms) in a global iteration.

To resolve the challenges, we propose the Deep
Reinforcement lEarning based client selection in non-
orthogonAl Multiple access based Federated Learning
(DREAM-FL). In DREAM-FL, the policies that are used to
determine client selection and dynamic power allocation will
be trained via simulation experiences. In addition, to handle
different levels of time granularity for client selection and
resource allocation, we design two Advantage Actor Critic
(A2C) models [12], [13] to solve the resource allocation and
client selection problems, respectively. The reward of client
selection depends on the policy of resource allocation. The
major contributions of the paper are summarized as follows.

1) We propose to jointly optimize client selection and re-
source management in the context of NOMA-based FL.

2) We formulate the problem to optimize client selection and
transmission power allocation such that the number of
selected clients is maximized, while ensuring all selected
clients upload their local models before the deadline.

3) We design the DREAM-FL algorithm, which is based
on the advantage actor-critic (A2C) deep reinforcement
learning method, to dynamically and efficiently select
clients and allocate transmission power.

4) The performance of DREAM-FL is evaluated via exten-
sive simulations.

The rest of the paper is organized as follows. Section
II summarizes the related works. Section III introduces the
system models to estimate the latency of a client in computing
its local model and uploading the local model to the FL server.
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Also, the problem of optimizing client selection and resource
management in NOMA-based FL is formulated. Section IV
describes the detail of DREAM-FL, and simulation results are
discussed in Section V. Section VI concludes the paper.

II. RELATED WORK

Due to the heterogeneous and dynamic features of clients,
client selection is critical to maximize the number of qualified
clients in each global iteration, which can substantially reduce
the overall training time and improve the model accuracy [8],
[14]. In wireless FL, since clients share the same spectrum to
upload their local models, client selection is always coupled
with wireless resource allocation. Different spectrum sharing
solutions have different resource allocation strategies, thus
leading to various client selection solutions.

In the FDMA-based FL system, the amount of bandwidth
reserved for each selected client would be calculated to ensure
a selected client can upload its local model before the deadline
while guaranteeing the sum of the bandwidth assigned to all
the selected clients to be less than or equal to the bandwidth
available at the BS. Shi et al. [15] estimated the total number
of global iterations required to obtain the converged global
model, which is a function of the number of selected clients.
That is, selecting more clients in each global iteration leads
to fewer global iterations to have the converged global model,
and vice versa. Based on that, they designed a joint bandwidth
allocation and client selection method to minimize the overall
training time, which equals the sum of the delay for all the
global iterations. Xu et al. [16] proved that selecting fewer
clients in early global iterations but more clients in later global
iterations can potentially improve the global model accuracy.
Based on this finding, they selected more clients as the number
of global iterations increases. Chen et al. [17] considered the
transmission errors in uploading clients’ local models. They
designed a jointly optimizing client selection, resource block
allocation, and transmission power management to minimize
the training loss in each global iteration.

In the TDMA-based FL system, different numbers of
time slots would be allocated to the selected clients in a
global iteration to ensure they successfully upload their local
models before the deadline. Each of these selected clients can
utilize the whole spectrum to upload its local model during
the allocated time slots. Hence, a selected client has extra
waiting time if the client tries to upload its local model, but
another selected client is occupying the spectrum to upload
its local model. Albelaihi et al. [18] applied a queuing model
to estimate the waiting time of a selected client, which is a
function of the number of selected clients and their channel
gain values. Based on that, they designed an algorithm to solve
an optimization problem, which maximizes the number of
qualified clients. Yu et al. [19] formulated the waiting time of a
selected client as a recursive function, and designed a heuristic
algorithm to optimize the trade-off between minimizing the
energy consumption of the selected clients and maximizing the
number of selected clients. Albelaihi et al. [20] considered the
green FL scenario, where the clients are powered by portable
batteries that can harvest green energy from the environment to

prolong the battery life [21]. They designed a client selection
method to optimize the trade-off between maximizing the
number of qualified clients and minimizing the energy pulled
from the batteries for the selected clients.

Although many solutions have been proposed to jointly
optimize client selection and transmission power allocation
in both FDMA and TDMA-based FL systems, none of them
considers client dynamics defined in Footnote 1. As a result,
they reserve the amount of wireless resources (i.e., bandwidth
in FDMA and time slots in TDMA) to these selected clients
at the beginning of a global iteration to ensure all the se-
lected clients can finish their local model uploading before
the deadline. However, wireless resource reservation leads to
low resource utilization since other clients cannot utilize the
resources, which have been reserved for a selected client, even
if the selected client has not started to upload its local model
or has already uploaded its local model.

NOMA is a promising wireless access technology that
achieves higher bandwidth utilization than TDMA and FDMA
[22], [23]. In a NOMA-based FL system, many selected
clients could utilize the same spectrum to simultaneously
upload their local models to the BS. The transmission power
of the selected clients should be optimized to ensure the
local models can be uploaded before the deadline. Without
optimizing client selection and transmission power, Sun et
al. [24] conducted extensive simulations, where 10 clients are
randomly selected in each iteration and the transmission power
of these clients are the same. The results demonstrated that as
compared to the TDMA-based FL system, the NOMA-based
FL system can significantly reduce communication latency. Ma
et al. [25] proposed a transmission power allocation solution
in NOMA-based FL systems to maximize the weighted sum
data rate of all the selected clients. Assuming all the clients
in the system will participate in the model training in each
global iteration, Bouzinis et al. [26] designed a transmission
power allocation method to minimize the latency of a global
iteration, while ensuring that the total energy consumption
of a client for both computation and communications cannot
exceed the maximum available energy of the client in each
global iteration. Both works do not consider the deadline
for each global iteration and client dynamics, which may
lead to the long latency of a global iteration and inefficient
resource allocation. In addition, the existing NOMA-based
FL solutions only optimize the transmission power allocation
by assuming the selected clients are given. To the best of
our knowledge, we are the first to jointly optimize client
selection and transmission power allocation in NOMA-based
FL systems by considering the client dynamics.

III. SYSTEM MODELS AND PROBLEM FORMULATION

As shown in Fig. 1, IoT devices in terms of clients commu-
nicate with the BS via NOMA-based wireless networks. Let
I be the set of clients in a BS’s coverage area. Denote xi

as the binary variable to indicate whether client i is selected
to participate in the FL training process (i.e., xi = 1) or not
(i.e., xi = 0). Other key notations that are used in the system
models and problem formulation are listed in Table I.
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TABLE I: Summary of key notations

Notation Definition

I Set of all the clients
J Set of the selected clients
i Index of clients in I
j Index of selected clients in J
Di Set of samples for client i to train its local model
tcomp
i Computational latency of client i
tuploadj Uploading latency of selected client j
τ Deadline of each global iteration
Ci Number of CPU cycles for an SGD epoch
fi Computational capacity
ht
j Channel coefficient of selected client j at time slot t

ptj Transmission power of selected client j at time slot t
rtj Uploading data rate of selected client j at time slot t
N0 Noise power
B Available bandwidth
s Size of a local model
∆t Length of a time slot

A. Foundation of Federated Learning

The goal of the FL is to derive the vector of parameters,
denoted as ω, for a global model in order to minimize the
global loss function F (ω), i.e.,

argmin
ω

F (ω) = argmin
ω

∑
i∈I

|Di|
|D|

fi (ω)xi, (1)

where |D| is the size of the overall training data set, |Di| is
the size of the training data set at client i (where D =

⋃
i∈I

(Di ·

xi)), and fi (ω) is the local loss function of client i over Di,
i.e., fi (ω) = 1

|Di|
∑

n∈Di

f (ω,ai,n, bi,n). Here, (ai,n, bi,n) is

the input-output pair for the nth data sample in client i’s data
set, and f (ω,ai,n, bi,n) captures the error of the local model
over (ai,n, bi,n). FL is to solve Problem (1) in a distributed
manner. Each global iteration k comprises four steps.

1) The BS broadcasts the current global model, denoted as
ω(k), to all the selected clients.

2) Each selected client i (i.e., xi = 1) performs local compu-
tation on the received model to train its local model over
local data set Di based on the gradient descent method,
i.e., ω(k+1)

i = ω
(k)
i −δ∇fi

(
ω

(k)
i

)
, where δ indicates the

step size or learning rate.
3) After obtaining the local model ω(k+1)

i , client i uploads
its local model to the BS.

4) The BS aggregates the local models from the selected
clients to update the global model based on, for example,

FedAvg [3], i.e., ω(k+1) =

∑
i∈I

ω
(k+1)
i xi∑

i∈I
xi

.

The FL keeps updating the global model in each iteration until
the global model is converged.

B. Computational latency

Assume that stochastic gradient descent (SGD) is used
by each client to train its local model, where one SGD
epoch comprises one forward propagation and one backward
propagation by feeding one local sample into the local model.
The latency of client i in training its local model during a

global iteration is mainly determined by its computational
capacity fi in terms of CPU cycles per second and the number
of SGD epochs/local samples |Di| [27]. That is,

tcomp
i =

Ci|Di|
fi

, (2)

where tcomp
i is the computation latency of client i, Ci is the

average number of CPU cycles for one epoch of SGD, and Ci

fi
indicates the latency of one epoch of SGD.

C. Communication latency in NOMA-based FL

The latency of a selected client in uploading its local model
depends on the uploading date rate of the selected client. Since
NOMA is applied, the uploading date rate of a selected client
is determined by the interference from other selected clients,
who are currently uploading their local models. Specifically,
let J be the set of selected clients under the BS’s coverage
area, i.e., J = {i ∈ I | xi = 1}. Denote j as the index of
these selected clients. Note that the indices i and j represent
different physical meanings, where i is the index of the clients
in the BS’s coverage area, and j is the index of the clients that
are selected to participate in the FL model training during the
current global iteration. Even though i and j may point to
the same client, they could have different values because the
selected clients are re-ordered based on their received power
at the BS. The reason for re-ordering is because, in NOMA, a
client with higher received power will be decoded by the BS
before a client with lower received power. For each selected
client j (where j ∈ J ), it would start to upload its local model
once it finishes local model training at tcomp

j , where tcomp
j is

estimated based on Eq. (2). Denote ytj as a binary variable
to indicate if selected client j has already finished its model
uploading or not at the beginning of time slot t, i.e.,

ytj=

 1, if
t−1∑

t′=tcomp
j

lt
′

j < s,

0, otherwise,

(3)

where s is the size of the local model and lt
′

j indicates the
amount of data in its local model that has been transmitted
from selected client j to the BS in time slot t′, i.e.,

lt
′

j = ∆t× rt
′

j . (4)

Here, ∆t is the duration of a time slot, rt
′

j is the uploading
data rate of selected client j in time slot t′. Plugging Eq. (4)
into Eq. (3), we have

ytj=

 1, if
t−1∑

t′=tcomp
j

rt
′

j < s
∆t .

0, otherwise.

(5)

As we mentioned before, to calculate rt
′

j in NOMA-based FL,
we sort the selected clients based on their received power at
the BS in time slot t′. That is, if a client has a lower received
power at the BS, the client has a lower index, i.e.,

(j − j′)

(∣∣∣ht′

j

∣∣∣2pt′j −
∣∣∣ht′

j′

∣∣∣2pt′j′) ≥ 0, (6)
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where pt
′

j′ and ht′

j′ are the transmission power and channel
response of clients j′ in time slot t′, respectively, and j and
j′ are both the indices of the clients in J . Then, rt

′

j can be
calculated by

rt
′

j = Blog2

1 +
pt

′

j

∣∣∣ht′

j

∣∣∣2
N0 +

j−1∑
j′=1

yt
′
j′p

t′
j′

∣∣∣ht′
j′

∣∣∣2
 , (7)

where B is the total amount of bandwidth at the BS, pt
′

j

is the transmission power of selected client j,
∣∣∣ht′

j

∣∣∣2 is the
channel gain from selected client j to the BS, N0 is the noisy

power level, and
j−1∑
j′=1

yt
′

j′p
t′

j′

∣∣∣ht′

j′

∣∣∣2 is the interference from other

selected clients, who have the lower indices than client j.
Accordingly, the communication latency of selected client

j in uploading its local model is

tuploadj = ∆t

τ∑
t=tcomp

j

ytj , (8)

where τ is the deadline of each global iteration.

D. Problem formulation

Based on the defined latency models, we formulate the
problem of jointly optimizing client selection and transmission
power of the selected clients in NOMA-based FL as follows.

P0 : max
x,pt

∑
i∈I

xi, (9)

s.t. xi ∈ {0, 1} , ∀i ∈ I, (10)
J = {i ∈ I | xi = 1}, (11)
0 ≤ ptj ≤ pmax

j , ∀j ∈ J ,∀t, (12)

(j − j′)
(∣∣ht

j

∣∣2ptj − ∣∣ht
j′

∣∣2ptj′) ≥ 0, ∀j, j′ ∈ J ,∀t (13)

ytj=

 1, if
t−1∑

t′=tcomp
j

rt
′

j < s
∆t ,

0, otherwise,

∀j ∈ J , (14)

∆t

τ∑
t=tcomp

j

rtjy
t
j ≥ s, ∀j∈J. (15)

The objective, i.e., Eq. (9), is to maximize the number of
selected clients in a global iteration. Constraint (10) indicates
xi to be a binary variable. Constraint (11) defines the set of
selected clients. Constraint (12) implies that the transmission
power of a client is no larger than its maximum transmission
power. Constraint (13) indicates the index order of the selected
clients in J . Constraint (14) defines ytj to be a binary variable,
which is used to indicate if selected client j has already
finished its model uploading or not at the beginning of time
slot t. Constraint (15) indicates that selected client j has to
upload its local model before the deadline. Note that P0 is
non-trivial to be solved because 1) the system has to predict
channel conditions ht

j of all the clients before the deadline in
order to verify if Constraint (15) can be satisfied. However,

accurately predicting the channel conditions of the clients is
difficult even if it is possible; 2) P0 is an NP-hard problem2

with a high-dimensional variable space.

IV. DEEP REINFORCEMENT LEARNING BASED CLIENT
SELECTION IN NON-ORTHOGONAL MULTIPLE ACCESS

BASED FEDERATED LEARNING

We apply Markov Decision Process (MDP) to refor-
mulate the P0. As we mentioned before, client selec-
tion and power allocation are optimized in different levels
of time granularity, and so we will build two MDPs for
client selection (Scs,Acs,Fcs,Rcs) and power allocation
(Spa,Apa,Fpa,Rpa), respectively. In the client selection
MDP, the FL server iteratively evaluates if a client should
be selected or not in each round. The transmission power
allocation MDP then optimizes the transmission power of the
clients, which have been selected by client selection during
this round, in each time slot.

A. MDP for client selection

1) State: In round k, the FL server evaluates if client k
should be selected (i.e., xk = 1) or not (i.e., xk = 0), where
k ∈ I . Thus, the states of round k for client selection is
defined as skcs =

[
Hcs,T,xk

]
, where skcs ∈ Scs. Here,

• Hcs =
{
|h1|2, |h2|2, ...,

∣∣h|I|
∣∣2} is the set of the channel

gain of all the clients in I .
• T =

{
tcomp
1 , tcomp

2 , ..., tcomp
|I|

}
is the set of the computa-

tional latency of all the clients in I .
• xk =

{
xk
1 , x

k
2 , ..., x

k
|I|

}
is the set of the selection status

for all the clients in round k.
2) Action: The action of the FL system for client selection

in round k, denoted as akcs (where akcs ∈ Acs), is akcs = xk.
3) Reward: The reward function of client selection in round

k, denoted as ρkcs (where ρkcs ∈ Rcs), is the sum of the rewards

for all the clients, i.e., ρkcs =
|I|∑
i=1

ρkcs (i), where ρkcs (i) is the

reward of client i in round k, which is defined as

ρkcs(i)=

 1, if xk
i =1&Constraint (15) is met,

0, else if xk
i = 0,

−10, otherwise.
(16)

Basically, Eq. (16) implies if client i is selected and can finally
upload its local model before the deadline (i.e., Eq. (15) is
met), the reward ρkcs (i) = 1; if client i is not selected, then its
reward is 0; if client i is selected but cannot upload its local
model before the deadline, then it is a bad client selection, and
so the reward ρkcs (i) = −10. Note that the reward of client
selection is also affected by transmission power allocation.

2Any mixed-integer nonlinear programming (MINLP) problem, in general,
is NP-hard [28] because it can be reducible into component redundancy
allocation problem, which has been proved to be NP-hard [29]. Based on
this conclusion, we can derive P0 is NP-hard if it is MINLP. Apparently,
P0 is MINLP since 1) x is the set of binary variables and pt is the set
of continuous variables, and 2) Constraints (14) and (15) are nonlinear with
respect to x and pt.
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B. MDP for transmission power allocation

1) State: Each global iteration is further divided into a
number of time slots with equal length, and NOMA is ap-
plied to enable the selected clients to share the frequency
spectrum in uploading their local models. In time slot t,
the FL server would iteratively pick a client and assign
the corresponding transmission power. Thus, the state of the
FL system for transmission power allocation is defined as

stpa (j) =

[(
|hj |2

)t

,mt
j

]
, where

(
|hj |2

)t

is the channel gain

of selected client j at time slot t and mt
j is the remaining bits

for selected client j’s local model at time slot t, i.e.,

mt
j=


s, if t− 1 < tcomp

j ,⌈
s−

t−1∑
t′=tcomp

j

∆t× rt
′

j

⌉+

, otherwise.
(17)

Here, if selected client j is still training and not starting to
upload its local model (i.e., if t− 1 < tcomp

j ), the number of
remaining bits for selected client j always equal to the size
of the model s. If selected client j starts uploading its local
model, the number of remaining bits equals the size of the
model s minus the number of bits that have been transmitted.

2) Action: The action set of the FL system for transmis-
sion power allocation at time slot t, denoted as at

pa (where
at
pa ∈ Apa), is defined as the set of transmission power for all

the selected clients, i.e., at
pa = pt =

{
pt1, p

t
2, ..., p

t
|J |

}
. Note

that, as we mentioned before, the transmission power of each
selected client ptj is iteratively selected. Also, by considering
the real implementation, we divide the transmission power into
100 levels starting from 0 to pmax, and a selected client can
only pick its transmission power ptj from the predefined levels.

3) Reward: The reward function of transmission power
allocation at time slot t, denoted as ρtpa (where ρtpa ∈ Rpa),
is the sum of the rewards for all the selected clients, i.e.,

ρtpa =
|J |∑
j=1

ρtpa (j), where ρtpa (j) is the reward of selected

client j at time slot t, which is defined as follows.

ρtpa (j)=


1, if ∆t

t∑
t′=tcomp

j

rt
′

j y
t′

j ≥s & t≤τ,

∆trtj
s , else if ∆t

t∑
t′=tcomp

j

rt
′

j y
t′

j <s & t<τ,

−1, otherwise.

(18)

Here, Eq. (18) means that if selected client j has already
uploaded its local model before the deadline, then its reward
at time slot t is 1. If selected client j has not uploaded its
local model and the current time slot is not the deadline, then
its reward at time slot t is the currently transmitted bits, i.e.,
∆t × rtj/s. If selected client j cannot upload its local model
before the deadline, then its reward is -1.

C. Deep Reinforcement lEarning based client selection in
non-orthogonAl Multiple access based Federated Learning
(DREAM-FL)

We design the DREAM-FL algorithm, which comprises two
Advantage Actor Critic (A2C) [30] to solve the client selection

and transmission power allocation problems, respectively. A2C
is a DRL method that combines policy-based and value-based
reinforcement learning. In A2C, there are actor and critic
neural networks. The actor network provides the stochastic
policy to choose the corresponding action(s) such that the
expected cumulative reward is maximized. Denote Jcs (θcs)
and Jpa (θpa) as the cumulative reward for client selection
and transmission power allocation, respectively. We have

Jactor
cs (θcs) = E

[
|I|∑
k=1

(γcs)
kρkcs

]
,

Jactor
pa (θpa) = E

[
τ∑

t=1
(γpa)

tρtpa

]
,

(19)

where θcs and θpa are the parameters of the actor networks
for client selection and transmission power allocation, respec-
tively, and γcs and γap are the related discount factors, where
γcs, γap ∈ [0, 1]. Hence, the gradients of θcs and θpa are{

∇θcsJ
actor
cs (θcs) = E[∇θcs log πθcs(a

k
cs|skcs)A(skcs, a

k
cs)],

∇θpaJ
actor
pa (θpa) = E[∇θpa log πθpa(a

t
pa|stpa)A(stpa,a

t
pa)],
(20)

where πθcs(a
k
cs|skcs) and πθpa(a

t
pa|stpa) are the stochastic poli-

cies of client selection and transmission power allocation, re-
spectively, and A(skcs, a

k
cs) and A(stpa,a

t
pa) are the Advantage

functions of client selection and transmission power allocation,
respectively. We apply the one-step temporal difference (TD)
error to estimate the Advantage functions, i.e.,{

A(skcs, a
k
cs) = ρkcs + γcsVζcs(s

k+1
cs )− Vζcs(s

k
cs).

A(stpa,a
t
pa) = ρtpa + γpaVζpa(s

t+1
pa )− Vζpa(s

t
pa).

(21)

Here, Vζcs(s
k
cs) and Vζcs(s

k+1
cs ) are the state-values in rounds

k and k + 1, respectively, which are estimated by the critic
network for client selection, and ζcs is the parameter of the
critic network. Similarly, Vζpa(s

t
pa) and Vζpa(s

t+1
pa ) are the

state-values in time slots t and t + 1, respectively, which
are estimated by the critic network for transmission power
allocation, and ζpa is the parameter of the critic network.
Here, the two critic networks are used to evaluate the actions
(i.e., akcs and at

pa) taken by the actor networks based on the
Advantage values, thus improving the policies. The objectives
of the critic networks are to minimize the one-step TD error
for client selection and power allocation, respectively i.e.,{

Jcritic
cs (ζcs)=

(
ρkcs+γcsVζcs(s

k+1
cs )−Vζcs(s

k
cs)

)2
.

Jcritic
pa (ζpa)=

(
ρtpa+γpaVζpa(s

t+1
pa )−Vζpa(s

t
pa)

)2
.

(22)

Note that in each round k, the parameters of actor and critic
networks for client selection, i.e., θcs and ζcs, would be
updated via gradient descend, i.e.,{

θcs := θcs − ςactorcs ∇θcsJ
actor
cs (θcs),

ζcs := ζcs − ςcriticcs ∇ζcsJ
critic
cs (ζcs) ,

(23)

where ςactorcs and ςcriticcs are the learning rates of the actor and
critic networks for client selection, respectively. Similarly, in
each time slot t, the parameters of actor and critic networks
for transmission power allocation, i.e., θpa and ζpa, would be
updated via gradient descend, i.e.,{

θpa := θpa − ςactorpa ∇θpaJ
actor
pa (θpa),

ζpa := ζpa − ςcriticpa ∇ζpaJ
critic
pa (ζpa) ,

(24)
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where ςactorpa and ςcriticpa are the learning rates of the actor and
critic networks for transmission power allocation, respectively.

Fig. 3 illustrates our designed A2C networks for client
selection and transmission power allocation. Specifically, we
incorporate the actor and critic networks into one deep neural
network (DNN), i.e., θcs = ζcs and θpa = ζpa. The client
selection A2C network comprises an input layer taking the
input states skcs =

[
Hcs,T,xk

]
, three hidden layers with 20,

80, and 120 neurons, respectively (and with sigmoid activation
functions in each layer), and an output layer that generates the
action of client selection in the current round (i.e., xk) as well
as the state value Vζcs(s

k
cs). Similarly, the transmission power

allocation A2C network comprises an input layer taking the

input states stpa (j) =

[(
|hj |2

)t

,mt
j

]
(which are generated

based on the action derived by the client selection A2C
network), three hidden layers with 20, 80, and 120 neurons,
respectively (and with sigmoid activation functions in each
layer), and an output layer that generates the actions in terms
of ptj and the state value Vζpa(s

t
pa) (j).

Fig. 3: The A2C networks for client selection and transmission
power allocation.

Algorithm 1 summarizes the DREAM-FL algorithm, which
is the process of training the A2C networks for client selection
and transmission power allocation. Specifically, in each global
iteration, we first initialize the actions x = 0 and pt = 0
in Step 2. Steps 7-11 indicate that, in each round k, the
client selection A2C network would apply the current policy to
generate the action based on the current state skcs. The action
implies client k should be selected (i.e., xk = 1) or not (i.e.,
xk = 0). Note that there is at most one client would be selected
in each round. The state-action pair

〈
skcs,a

k
cs

〉
in replay buffer

Bcs. In Steps 14-18, based on the selected clients from the
transmission power allocation A2C network, the transmission
power allocation A2C network applies the current policy to
iteratively generate the action of each selected client at

pa (j),
i.e., the transmission power of selected client j, at time slot
t. The state-action pair

〈
stpa (j) ,a

t
pa (j)

〉
is stored in Bpa.

Algorithm 1: DREAM-FL algorithm

1 Initialize the discount factors γcs and γpa as well as
the learning rates ςactorcs , ςcriticcs , ςactorpa , and ςactorcs .

2 Initialize x = 0 and pt = 0.
3 for each global iteration do
4 Uniformly distribute the clients in the BS’s

coverage area;
5 Initialize replay buffer Bcs;
6 for each round k (where 1 ≤ k ≤ |I|) do
7 for each user i do
8 Obtain the current state

skcs =
[
Hcs,T,xk

]
;

9 Input skcs to the client selection A2C
network to derive the action akcs = xk;

10 Store the state-action pair
〈
skcs,a

k
cs

〉
in Bcs;

11 end
12 for each time slot t (where 1 ≤ t ≤ τ ) do
13 Initialize replay buffer Bpa;
14 for each selected client j do
15 Obtain the current state

stpa (j) =

[(
|hj |2

)t

,mt
j

]
;

16 Input stpa (j) to the transmission power
allocation A2C network to derive the
actions atpa = ptj ;

17 Store the state-action pair〈
stpa (j) ,a

t
pa (j)

〉
in Bpa;

18 end
19 Calculate reward ρtpa based on Eq. (18) and

save the reward in Bpa;
20 end
21 Calculate reward ρkcs based on Eq. (16) and

save the reward in Bcs;
22 Update the transmission power allocation A2C

network based on Bpa and Eq. (24);
23 end
24 Update the client selection A2C network based on

Bcs and Eq. (23);
25 end

Once the transmission powers of all the selected clients are
derived by the transmission power allocation A2C network,
the corresponding reward ρtpa can be calculated based on Eq.
(18) in Step 19. In Steps 21-22, we calculate the reward ρkcs of
client selection in round k based on Eq. (16) and update the
parameters in the transmission power allocation A2C network
based on Eq. (24) at time slot t. The same process in Steps
7-22 would repeat for each round until k = |I|, meaning that
all the clients have to be evaluated by the client selection A2C
network. Then, in Step 24, we can update the parameters of the
client selection A2C network based on Eq. (23) by utilizing
the transitions in Bcs during this global iteration.

V. SIMULATIONS

We apply Tensorflow [31] to build and train the A2C net-
works in the DREAM-FL method. The simulation environment
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is written in C++ and interacts with the A2C networks in Ten-
sorflow based on ZMQ [32], which achieves an asynchronous
messaging library to achieve communications between two
applications (i.e., the simulated environment and the A2C
networks). In the simulated environment, we assume that there
are 50 clients in the BS’s coverage area. The locations of these
clients are uniformly distributed in the BS’s coverage area,
and we use the 3GPP macro cell propagation model [33],
i.e., 128.1 + 37.6 log10 d, to estimate the path loss between
a client and the BS, where d is the distance between a client
and the BS in kilometers. Also, the computational capacity fi
of each client is generated based on a uniform distribution,
i.e., fi ∼ U(1.5, 3) GHz. Other simulation parameters and
hyperparameters are listed in Table II.

TABLE II: Simulation parameters and hyperparamters

Parameter Value

Number of CPU cycles (Ci) 3× 104 cycles/sample
Computation capacity (fi) U(1.5, 3) GHz
Maximum transmission power (pmax) 1 Watt [34], [35]
Noise power (N0) −114 dBm
Size of local model (s) 100 Kbits
Length of a time slot (∆t) 0.1 second
Discount factor (γcs/γpa) 0.99 [36]
Learning rate (ςactorcs /ςcriticcs /ςactorpa /ςcriticpa ) 0.001 [37]

A. Convergence analysis

Assume that the number of training data samples for each
client is 40 (i.e., |Di| = 40) and the deadline is 2 seconds
(i.e., τ = 2). Figs. 5a and 5b show the learning curves of
the A2C networks for client selection and transmission power
allocation, respectively, under different bandwidth settings. In
Fig. 5, we can see that both A2C networks quickly converge
around 100 global iterations if the bandwidth is sufficient
(i.e., B =3 and 1 MHz) to support almost all 50 clients
to upload their local models before the deadline. However,
once the bandwidth is not sufficient (i.e., B =0.1 MHz), the
A2C networks require more global iterations (> 350 global
iterations) to converge. In Fig 5a, we can find that the reward
of the A2C network for client selection is finally converged
close to -200 when B = 0.1 MHz. This can be explained by
Fig. 4, where Fig. 4a indicates the number of clients selected
by the A2C network for client selection during the training
process, and Fig. 4b shows the number of qualified clients,
i.e., the selected clients who can successfully upload their local
models before the deadline. In Fig. 4, we can find that when
the training curves are converged, the client selection network
selects an average of 49 clients; however, only an average of
26 clients can upload their models before the deadline, and the
rest of the 23 clients, who cannot upload their models before
the deadline, generates -10 reward according to Eq. (16).

B. Performance evaluation

We further compare DREAM-FL with the other two base-
line methods, i.e., Latency awarE pARticipant selectioN
(LEARN) [18] and Frequency division duplex-based deadline
Aware paRticipant selectioN (FARN) [15]–[17]. All three
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Fig. 4: Performance of DREAM-FL over 500 global iterations,
where a) measures the number of selected clients, and b)
measures the number of qualified local clients.
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(b) A2C network for transmission
power allocation.

Fig. 5: The learning curves of DREAM-FL over 500 global
iterations, where a) measures the cumulative rewards for the
client selection network, and b) measures the cumulative
rewards for the transmission power network.

algorithms have the same goal, i.e., to maximize the number
of selected clients in each global iteration, while ensuring
the selected clients to upload their local models before the
deadline. However, different algorithms apply different wire-
less access technologies. LEARN applies TDMA to enable
different clients to upload their local models to the BS in
different time slots. If a client uploads its local model during
the current time slot, it utilizes the whole spectrum, and so
other clients have to wait until the spectrum is available. So,
it is critical to estimate the time to wait for the spectrum to be
available for a client. FARN applies FDMA to upload local
models of the selected clients to the BS. That is, sufficient
bandwidth would be reserved for each selected client no matter
if it hasn’t started to upload its local model yet or has already
uploaded its local models.

1) Number of the qualified clients versus bandwidth:
Assume that |Di| = 40 and τ = 2 seconds. Fig. 6a shows
the number of qualified clients for different algorithms by
changing the amount of available bandwidth B. Varying B can
affect the uploading latency of all the clients. The DREAM-
FL algorithm performs better than LEARN and FARN to
generate the most qualified clients because DREAM-FL can
more efficiently utilize bandwidth to upload more client
models before the deadline. To prove this conclusion, we
calculate the average bandwidth utilization of a global iteration
generated by different algorithms. Figs 7a, 7b, and 7c show
the average bandwidth utilization over 30 global iterations
when B = 0.1, 1, and 3 MHz, respectively. DREAM-FL
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Fig. 6: The number of qualified clients for different algorithms by varying (a) available bandwidth B, (b) the number of training
samples |Di|, and (c) deadline τ .
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Fig. 7: Bandwidth utilization of different algorithm when a) B=0.1 MHz, b) B=1 MHz, and c) B=3 MHz.

always generates higher average bandwidth utilization than
LEARN and FARN. For instance, when B = 0.1 MHz, the
average bandwidth utilization among 30 global iterations for
DREAM-FL, LEARN, and FARN are around 80, 60, and 30
kbits/ms/MHz, respectively. Moreover, the average bandwidth
utilization reduces as B increases. This is because the clients
with better channel conditions are preferred to be selected
than the clients with worse channel conditions to achieve
higher average bandwidth utilization. As B increases, more
clients with worse channel conditions are selected to reduce
the average bandwidth utilization. Note that, when B ≥ 1
MHz, as shown in Fig. 6a, all the clients are selected by
DREAM-FL, meaning that the traffic load in terms of the
number of selected/qualified clients no longer increases as B
increases. As a result, the average bandwidth utilization for
DREAM-FL significantly reduces as B increases.

2) Number of the qualified clients versus the number of
the training data samples: Assume that B = 1 MHz and
τ = 2 seconds. Fig. 6b shows the number of qualified clients
for different algorithms by changing the number of training
samples |Di|. Note that having a larger |Di| means that each
client would have a longer time to compute its local model and
a shorter time to upload its local model in a global iteration.
DREAM-FL can adapt to the change by retraining the A2C
networks. From the figure, we can see that DREAM-FL can
always generate the most qualified clients in a global iteration.
For example, when |Di| = 40, the number of qualified clients

for DREAM-FL, LEARN, and FARN are 50, 40, and 37,
respectively. The results can also be explained by the high
average bandwidth utilization incurred by DREAM-FL. That
is, even though clients have less time to upload their local
models before the deadline as |Di| increases, DREAM-FL can
still consider the client dynamics to generate higher average
bandwidth utilization than LEARN and FARN by optimizing
the transmission power in each time slot. As a result, DREAM-
FL incurs more qualified clients than LEARN and FARN.

3) Number of the qualified clients versus the number of the
deadline: Assume that B = 1 MHz and |Di| = 40. Fig. 6c
shows the number of qualified clients for different algorithms
by changing the deadline τ . The results also demonstrate
that DREAM-FL can efficiently and adaptively optimize the
transmission power of the clients based on the changes of the
deadline to maximize the number of qualified clients.

4) Model accuracy evaluation: To evaluate how the three
algorithms affect the accuracy of a global model, we train a
convolutional neural network (CNN) network over CIFAR-10,
which is a benchmark dataset containing 10 images classes,
each of which has 5,000 images for training and 1,000 images
for testing. For each image class, we distribute 5,000 training
images to |I| clients, where |I| = 50, according to a Dirichlet
distribution, whose probability density function is

f(η1, η2, . . . , η|I|;β) =
Γ(β × |I|)
Γ(β)|I|

|I|∏
i=1

ηβ−1
i , (25)
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where ηi implies the probability of assigning an image to
client i, Γ() is the gamma function, and β is the concentration
parameter to adjust the variance of the number of images
(from the same class) among clients. For example, a larger β
indicates a more balanced image partition among the clients,
i.e., the number of images with the same class among different
clients has a lower variance. A smaller β, on the other hand,
implies less balanced image partition among the clients, i.e.,
the number of images with the same class among different
classes has a higher variance. The structure of a CNN model
to be trained comprises four 3x3 convolution layers (where the
first layer has 32 channels, and each of the following three
layers has 64 channels. Also, only the first two layers are
followed with 2 × 2 max pooling), followed with a dropout
layer with the rate of 75%, a fully connected 256 units ReLu
layer, and a 10 units softmax output layer. There are total of
1,144,650 parameters in this CNN model.

Assume that the amount of bandwidth B = 1 MHz, the
size of data samples for each client |Di| = 40, and the
deadline τ = 1 second. Different algorithms would select
different numbers of clients to participate in the model training
in each global iteration, and Figs. 8a, 8b, and 8c show
how the model accuracy changes over the global iterations
by applying different algorithms. It is easy to observe that,
when β = 10 in Fig 8c, DREAM-FL has higher model test
accuracy (∼ 0.7) than LEARN (< 0.6) and FARN (< 0.55)
after 3,000 global iterations. Also, DREAM-FL has a faster
model convergence rate than LEARN and FARN. The reason
of DREAM-FL having higher model accuracy and a faster
convergence rate is because DREAM-FL has more qualified
clients than LEARN and FARN. As shown in Fig. 6c, when
B = 1, |Di| = 40, and τ = 1, the average number of
the qualified clients for DREAM-FL, LEARN, and FARN
are 38, 22, and 13, respectively. The results demonstrate the
rationale of maximizing the number of selected clients as the
objective of the problem. In addition, as shown in Figs. 8a,
8b, and 8c, as β decreases, the model accuracy gap among
DREAM-FL, LEARN, and FARN increases. For example,
when β = 0.1, the model accuracy for DREAM-FL can still be
∼ 0.7; however, the model accuracy for LEARN and FARM
are reduced to < 0.5 and < 0.4, respectively. The results imply
that increasing the number of qualified clients can significantly
increase the model accuracy, especially when data samples are
non-independent and identically distributed among the clients.

VI. CONCLUSION

This paper investigated the joint resource allocation and
client selection problem in a NOMA-based FL system. To
efficiently solve the problem, a deep reinforcement learning-
based algorithm, i.e., DREAM-FL, has been designed. The
simulation results have demonstrated that DREAM-FL out-
performs the other two baseline algorithms, i.e., LEARN and
FARN, by selecting the most qualified clients in each global
iteration, thus accelerating the FL process.
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