
Deep Reinforcement Learning for Online Latency
Aware Workload Offloading in Mobile Edge

Computing
Zeinab Akhavan∗, Mona Esmaeili∗, Babak Badnava†, Mohammad Yousefi∗, Xiang Sun∗, Michael Devetsikiotis∗,

and Payman Zarkesh-Ha∗
∗University of New Mexico, Albuquerque, NM 87131, USA.

†University of Kansas, Lawrence, KS 66045, USA.

Abstract—Owing to the resource-constrained feature of Inter-
net of Things (IoT) devices, offloading tasks from IoT devices
to the nearby mobile edge computing (MEC) servers can not
only save the energy of IoT devices but also reduce the response
time of executing the tasks. However, offloading a task to the
nearest MEC server may not be the optimal solution due to the
limited computing resources of the MEC server. Thus, jointly
optimizing the offloading decision and resource management is
critical, but yet to be explored. Here, offloading decision refers
to where to offload a task and resource management implies
how much computing resource in an MEC server is allocated
to a task. By considering the waiting time of a task in the
communication and computing queues (which are ignored by
most of the existing works) as well as tasks priorities, we propose
the Deep reinforcement lEarning based offloading deCision and
rEsource managemeNT (DECENT) algorithm, which leverages
the advantage actor critic method to optimize the offloading
decision and computing resource allocation for each arriving task
in real-time such that the cumulative weighted response time can
be minimized. The performance of DECENT is demonstrated via
different experiments.

Index Terms—Internet of Things, edge computing, resource
allocation, machine learning, reinforcement learning

I. INTRODUCTION

The growing number of Internet of Things (IoT) devices,
such as smart phones and smart watches, generate huge
amount of data and tasks. Normally, some of these IoT devices
are resource-constrained and do not have the capacity to
process the tasks locally. The mobile cloud computing (MCC)
technology has been proposed to allow these devices to offload
their tasks to a remote data center. However, transmitting the
tasks from IoT devices to a remote data center via the Internet
is expensive, leading to high and uncontrollable latency [1],
thus unable to meet many IoT applications’ requirements. For
example, augmented reality requires the network delay to be
less than 20 ms, which cannot be satisfied by MCC [2].

To reduce the network latency, mobile edge computing
(MEC) has been proposed to deploy many MEC servers at the
network edge. Hence, instead of offloading tasks to a remote
data center, IoT devices can offload their tasks to the nearby

This work was supported by the National Science Foundation under Award
CNS-2148178.

MEC servers offering low network delay, thus potentially
reducing the response time. However, computing resources
of MEC servers are limited, thus offloading a task to the
nearest MEC server may not always be optimal because it may
incur high computing latency of executing the task, although
the network delay to offload the task is minimized. Many
studies have designed methods to determine whether to offload
tasks from the IoT devices under a dynamic environment [3],
[4]. This paper is built based on these methods by assuming
the tasks have already been determined to be offloaded, but
we are trying to solve the offloading decision problem, i.e.,
which MEC server should be selected to execute each of these
task in a dynamic environment. Note that offloading decision
and resource management are coupled together, meaning that
whether an MEC server is suitable to execute a task depends
on how much computing resource in the MEC server is
allocated to the task, which is determined by the amount
of remaining computing resource of the MEC server and the
priority of the task. That is, if the task has low priority, i.e.,
low latency requirement, it is not necessary to assign all the
remaining computing resource of the MEC server to the task.

Fig. 1: The MEC architecture.
To solve the joint offloading decision and resource manage-

ment problem, machine learning and non-machine learning
based solutions have been developed. Non-machine learning
based solutions suggest a centralized controller to solve the
optimization problem and determine the offloading and re-978-1-6654-3540-6/22 c© 2022 IEEE

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

2218

GL
O

BE
CO

M
 2

02
2

- 2
02

2
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

8-
1-

66
54

-3
54

0-
6/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
48

09
9.

20
22

.1
00

01
67

8

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 20,2023 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

source allocation of the incoming tasks at the BS [5]–[7].
However, these solutions have the following drawbacks: 1)
they only minimize the latency of the current IoT tasks by
optimizing the offloading decision and resource allocation
and do not consider the performance of the future IoT tasks,
which may lead to the insufficient computing resources for
the future IoT tasks at an MEC server, thus increasing their
response time, and 2) they cannot make real-time decisions,
i.e., the offloading decision and resource allocation cannot
be made upon the arrival of a task. The existing machine
learning based solutions employ deep reinforcement learning
(DRL) to minimize the expected cumulative response time
of all the tasks, which can resolve the second drawback of
the non-machine learning based solutions [8], [9]. However,
these solutions simplify the system by ignoring the waiting
time of the tasks in the queues as well as the priorities of
the tasks. Specifically, Fig. 1 shows the architecture of MEC,
where each base station (BS) is attached to an MEC server via
an access switch and maintains a number of communication
queues, each of which buffers the arriving IoT tasks. Each
MEC server executes the offloaded tasks and has a computing
queue holding the tasks that are waiting for the computing
resources to be released by the running tasks. The waiting time
of an IoT task in the communication and computing queues
would significantly affect the offloading decision and resource
allocation, but yet to be considered in the existing solutions.

In this paper, we apply the advantage actor critic (A2C)
method to solve the mentioned problem. Each BS observes the
states of the system and determines the actions including the
destination MEC server ID and the amount of the computing
resources allocated to a task upon its arrival at the BS. The
major contributions of the paper are listed as follows:
• We formulate the joint offloading decision and resource

management problem by considering different priorities
of tasks and the waiting time of the tasks in the com-
munication and computing queues. We model this opti-
mization problem as Markov Decision Process (MDP).

• We propose the Deep reinforcement lEarning based
offloading deCision and rEsource managemeNT (DE-
CENT) algorithm to solve the problem based on A2C.

• We demonstrate that DECENT outperforms the other two
baseline approaches via extensive simulations.

The rest of this paper is organized as follows. Section II
presents related work. Section III illustrates the related system
model and presents the problem formulation of joint offload-
ing decision and resource management. Section IV provides
the detail of the DECENT algorithm. Section V discusses the
simulation results, and Section VI concludes the work.

II. RELATED WORK

Many works focus on the strategy to determine a task
should be offloaded to the nearby MEC server or executed
locally such that the response time or the energy consump-
tion of executing the task can be minimized [10]–[12]. For
example, Elgazzar et al. [13] proposed a decision model to

evaluate whether offloading a task to the nearby MEC server
improves its performance or not. The system operates by
selecting a suitable resource provider to perform a task based
on contextual information. Sun and Ansari [5] proposed a
solution to place private virtual machines (VMs) with fixed
computing resources for different mobile users to optimize the
tradeoff between the migration gain and the migration cost.
Assigning static computing resources to different VMs may
lead to low resource utilization and increase the response time.
By classifying the tasks into different IoT applications, Fan et
al. [6] converted the task offloading problem into the applica-
tion VM allocation problem. They proposed a method to dy-
namically adjust computing resources of different applications
in each MEC server based on their workloads, thus reducing
the computing delay of all tasks in the MEC server. Sun and
Ansari [7] proposed a Latency aware workload offloading
algorithm to optimize the offloading decision such that the
average response time of the tasks can be minimized. These
two papers require a centralized server to obtain the tasks
from different BSs and solve an optimization problem. Also,
the waiting time of the tasks in the communications queue and
the priorities of the tasks are not considered in these papers.
Badnava et al. [12] employed a Deep Q-Network to choose the
best communication channel for task offloading to maximize
the lifetime of a swarm of unmanned aerial vehicles (UAVs).
Jia et al. [14] aimed to balance the workload among different
geo-distributed MEC servers such that the computing latency
could be minimized. Yet, the network delay of transmitting the
workload among the MEC servers is ignored. Alfakih et al.
[8] applied the reinforcement learning approach to optimize
the offloading decision and bandwidth allocation to minimize
the system cost, which comprises energy consumption of
a mobile device and computing delay of a task. However,
the paper does not dynamically allocate computing resources
to different tasks. Huang et al. [9] proposed performance-
aware resource allocation to efficiently assign computing and
communication resources to users. The objective of the work
is to maximize the long term performance of the system by
using deep deterministic policy gradient (DDPG) to achieve
the best resource allocation.

III. SYSTEM MODEL

Fig. 1 shows the MEC architecture, where each BS is
attached to an MEC server and communicates with the IoT
devices in the coverage area of the BS. Each BS maintains a
number of communications queues, each of which holds the
tasks waiting to be transmitted to the desired MEC server, and
each MEC server maintains a computing queue that holds the
tasks waiting for sufficient computing resources to be released
on the MEC server. Each BS determines where to offload a
task and how much computing resources is allocated to the
task upon its arrival such that the average response time of a
task is minimized. Let I and K be the sets of the tasks and
MEC servers in the system, respectively. Let i and k be the
indices of the tasks and MEC servers, respectively. Note that
each BS is attached to an MEC server and we will use the

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

2219

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 20,2023 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

same index to represent a BS and its attached MEC server.
In general, the response time of offloading task i to MEC
sever k, denoted as Tik, comprises the network delay Tnetik

and computing delay T compik , i.e., Tik = Tnetik + T compik . The
network delay Tnetik is the elapsed time from the arrival of task
i at the BS until its delivery to an MEC server k. Furthermore,
the computing delay T compik is the length of time from the
arrival of task i at MEC server k to its completion. Without
loss of generality, we do not consider the delay of sending
the result of a task back to the IoT device.

Network Delay: The network delay of offloading task i
to MEC server k comprises: 1) the transmission time T transik

of task i from the BS to MEC server k via the network, i.e.,
T transik = li

wk
, where li is the size of task i in bits and wk is the

capacity of the path from the BS to MEC server k in bps. 2)
the E2E delay between the BS and MEC server k, denoted as
T e2eik , and 3) the waiting time of task i in the communication
queue from the BS to MEC server k, denoted as Twait netik .
Here, T e2eik can be measured and monitored by the network
controller. For instance, software defined networking (SDN)
can be applied to the mobile core network and thus the SDN
controller can periodically monitor and record the E2E delay
between any two endpoints [15], [16]. Also, Twait netik is
the time duration between the arrival of task i at the BS
and its transmission starting time to MEC server k, which
approximately equals the sum of the transmission time of all
the tasks in the communications queue, i.e.,

Twait netik =
∑

i′∈I′ik

li′

wk
, (1)

where I ′ik is the set of tasks in the communications queue
for MEC server k when task i arrives at the BS. Hence, the
network delay of offloading task i to MEC server k is

Tnetik =T transik +T e2eik +Twait netik =
li
wk

+T e2eik +
∑
i′∈I′ik

li′

wk
. (2)

Computing Delay: The computing delay of offloading task
i to MEC server k comprises 1) the waiting time Twait compik

of task i to be executed in the computing queue of MEC server
k, and 2) the execution time T exe compik of task i at MEC
server k. Normally, T exe compik depends on the complexity
of task i (i.e., how many CPU cycles are required) and
the amount of computing resources allocated to task i in
MEC server k, denoted as rik. The complexity of task i
is usually proportional to the size of task i [17], and thus
we have T exe compik = µli

rik
, where µ is the coefficient to

map the size of a task in bits to the complexity of the
task in CPU cycles. In addition, the waiting time Twait compik

depends on the number of tasks and their complexities in the
computing queue when task i arrives at MEC server k, i.e.,
Twait compik =

∑
i′′∈I′′ik

µli′′
ri′′k

, where I ′′ik is the set of tasks
in the computing queue of MEC server k at the arrival of task
i. Hence, the computing delay of task i to MEC server k is

T compik = T exe compik + Twait compik =
µli
rik

+
∑
i′′∈I′′ik

µli′′

ri′′k
. (3)

Problem Formulation: We formulate the joint offloading
decision and resource management problem as follows.

P0: argmin
rik,xik

∑
i∈I

ηi

(∑
k∈K

xik
(
T compik + Tnetik

))
, (4)

s.t. ∀i ∈ I,
∑
k∈K

xik = 1, (5)

∀i ∈ I,∀k ∈ K, xik ∈ {0, 1} , (6)
∀i ∈ I,∀k ∈ K, rik = {0, R1, R2, R3, · · ·Rmax} , (7)

where xik is a binary variable indicating whether task i is
offloaded to MEC server k (xik = 1) or not (xik = 0)
and ηi is the priority or weight of task i. A larger ηi
indicates the system prefers to reduce the response time of
the task and vice versa. The objective of P0 is to minimize
the overall weighted response time of all the tasks, where∑
k∈K xik (T

comp
ik + Tnetik) is the response time of task i.

Constraint (5) indicates any task can only be offloaded to a
specific MEC server. Constraint (6) means that xik is a binary
variable. Constraint (7) defines the feasible values of rik,
where {0, R1, R2, · · · } are the different computing resource
blocks (e.g., the number of CPU cores) that can be allocated
to task i in MEC server k and Rmax is the maximum capacity
of an MEC server.

P0 is nontrivial to be solved because 1) different tasks
arrive at different time slots, and thus the BS cannot make the
immediate decision for a task to minimize the delay if it is not
aware of the future incoming tasks’ information, and 2) P0 is
an NP hard problem even if the BS can predict the information
of all the tasks (i.e., their arrival time, complexities, and
weights). Hence, we propose to apply a DRL method to find
the sub-optimal solution of P0 in real-time.

IV. DEEP REINFORCEMENT LEARNING BASED
OFFLOADING DECISION AND RESOURCE MANAGEMENT

We apply MDP (S,A,F ,R) to reformulate P0: 1) S
indicates the state space. A state at the arrival of task i,
denoted as si ∈ S, includes
• Weight and data size of a new task, i.e., ηi and li.
• Remaining computing resource of the MEC servers once

new task i arrives, i.e., C = {ck |∀k ∈ K}, where ck
is the remaining computing resource of MEC server k.
Here, ck = cmax−

∑
j∈Icomp

ik
rjk, where Icompik is the set

of tasks executed by MEC server k once task i arrives.
• Computing workload of MEC servers’ computing queues

once new task i arrives, i.e., D = {dk |∀k ∈ K}, where
dk is the computing workload of MEC server k’s com-
puting queue, i.e., dk =

∑
j∈Icomp queue

ik
zj . Icomp queueik

is the set of tasks in MEC server k’s computing queue
once new task i arrives.

• Waiting time of the communication queues once task i
arrives, i.e., B = {bk |∀k ∈ K}, where bk is the waiting
time of the communication queue for MEC server k,
i.e., bk =

∑
j∈Icomm queue

ik

lj
wk

. Icomm queue
ik is the set of

tasks in the communications queue once task i arrives.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

2220

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 20,2023 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

2) A is the set of actions for a BS to offload a task.
The action set of task i, denoted as ai ∈ A, comprises
ai = {rik, xik}; 3) F : S × A → S defines the state
transition probability density function that maps the current
states and actions into the next states; 4) R : S ×A → R
is the reward function. The reward function for task i can be
defined as the negative value of task i’s response time, i.e.,
ri = −ηi

(∑
k∈K xik (T

comp
ik + Tnetik)

)
.

We then design the DECENT algorithm, which is based
on Advantage Actor Critic (A2C) [18], to solve the MDP
problem. A2C is a DRL method combining policy-based and
value-based reinforcement learning. In A2C, there are two
neural networks, i.e., the actor and critic networks. The actor
network provides the stochastic policy πθ(ai|si) to choose the
actions ai such that the expected cumulative reward, denoted
as J (θ), is maximized. Here,

J (θ) = E

 |I|∑
i′=i

γi
′
ri′

 , (8)

where θ is the parameter of the actor network, γ ∈ [0, 1] is
the discount factor, and |I| is the total number of the tasks.
According to [19], the gradient of J (θ) is:

∇θJ(θ) = E[∇θ log πθ(ai|si)A(si,ai)], (9)

where A(si,ai) is the Advantage function defined as

A(si,ai) = ri + γVυ(si+1)− Vυ(si). (10)

Here, Vυ(si) and Vυ(si+1) are the state-values with respect
to task i and i+1 estimated by the critic network and υ is the
parameter of the critic network. Hence, the actor’s parameter
θ is updated by the gradient descend, i.e.,

θ := θ − βa∇θJ(θ), (11)

where βa is the learning rate of the actor network.
The critic network in A2C is used to evaluate the actions

taken by the actor network and provides the advantage value to
the actor network to improve the policy. The objective of the
critic network is to minimize the loss function J(υ), which
is defined as the mean square error between the estimated
state-value and the expected cumulative reward, i.e.,

J (υ) = (ri + γVυ(si+1)− Vυ(si))2 (12)

Denote ∇υJ (υ) as the gradient of J (υ) with respect to the
parameter υ. Then, υ is updated based on

υ := υ − βc∇υJ (υ) , (13)

where βc is the learning rate of the critic network.
The structures of the actor and critic networks are as

follows. The actor network comprises an input layer taking
in the input state si = {ηi, li,C,D,B}, a hidden layer with
128 neurons and a relu activation function, and an output
layer generating a probability distribution over actions with
a softmax activation function. Likewise, critic network has an
input layer taking in the state and action pair 〈si,ai〉, a hidden

Algorithm 1: DECENT algorithm

1 Initialize discount factor γ, learning rates βa and βc,
and exploration rate ε.

2 for each training episode do
3 for each task arrival do
4 Obtain the current state si;
5 Input si to the actor network to calculate the

actions ai = [xik, rik] using ε-greedy;
6 Calculate reward ri;
7 Store transition (si, ai, ri, si+1) in the replay

buffer;
8 end
9 Sample transitions from the replay buffer;

10 Update the actor neural network based on Eq. (11);
11 Update the critic neural network based on Eq. (13);
12 end

layer with 128 neurons and a relu activation function, and an
output layer generating the state value.

Algorithm 1 summarizes the DECENT algorithm, which
is the process of training the actor and critic networks.
Specifically, upon an arrival of task i at the BS, the actor
network applies the current policy to generate the action
ai = {rik, xik} based on the current state si. Note that
we apply the ε-greedy policy where it selects the random
actions with the probability of 10% and the greedy actions
(that maximize the expected cumulative reward) with the
probability of 90%. Based on the actions ai, we calculate
the corresponding reward ri. This process is repeated until
the actor and critic networks are converged. The well-trained
actor and critic networks are used to determine the actions of
incoming tasks in real-time.

V. SIMULATION RESULTS

In this section, we will conduct extensive simulations to
validate the performance of the DECENT algorithm. Assume
that there are one BS and 4 MEC servers located in different
distances from the BS in km. The distances dk from the
BS to 4 MEC servers are 0, 1, 2, and 3 km, respectively,
where the distance is used to calculate the E2E delay T e2eik

between the BS and an MEC server, i.e., T e2eik = α× dk + ζ.
Here, α and ζ are the coefficients, which are initially set to be
0.03 s/km and 0.03 s, respectively. The computing capacity
of all the MEC servers are the same, i.e., Rmax = 200
Mcycles/s. The capacity of the links from the BS to the
MEC servers are the same, i.e., wk = 2 × 109 bits/s. The
arrival of tasks follows a Poisson distribution with the average
arrival rate equaling to 50 tasks. The data size of an arrival
task li is randomly generated from a normal distribution, i.e.,
li ∼ N(3 × 107 bits, 3 × 105). The computation intensity
of a task µ = 0.15 CPU cycles/bit. In addition, the number
of computing resource blocks that can be assigned to an in-
coming task rik ∈ {10, 20, 40, 60, 80, 100, 120, 140, 160, 200}
Mcycles/s, and the weight of an arrival task ηi is uniformly
selected, i.e., ηi ∼ U{10, 20, 50, 100}, where a higher weight

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

2221

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 20,2023 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Learning curve of DECENT.

of a task implies the task has to be executed in a lower delay,
and vice versa. Table I shows other simulation parameters.

The two baseline algorithms, i.e., nearest server and largest
server, are used to compare the performance with DECENT.
Here, the nearest server algorithm selects the closest MEC
server (i.e., the lowest E2E delay) from the BS, and the
largest server algorithm picks the MEC server with the largest
remaining computing resource to offload a task.

Parameter Value

Learning rate of the actor network βa 0.0001
Learning rate of the critic network βc 0.0002
Exploration rate ε 0.1
Link capacity wk 2× 109 bits/s
MEC server capacity Rmax 200 Mcycle/s

TABLE I: Simulation Parameters.

Fig. 2 illustrates the learning curve for the DECENT algo-
rithm, where DECENT can train the actor and critic networks
to generate a better actions to maximize the average weighted
reward in terms of minimizing the average weighted response
time. The learning curves can quickly be converged around
500 episodes. Fig. 3 compares the weighted response time
of different tasks for different algorithms where the average
task arrival rate λ is 50 tasks/s. DECENT outperforms the
baseline algorithms as the weighted response time of all the
tasks can be lower than 1 second. The nearest MEC server and
largest capacity MEC server algorithms, on the other hand,
incurs a longer computing delay and communications delay,
thus leading to a longer weighted response time.

We also examine the impact of the average task arrival rate
λ on the average weighted response time among 6,400 tasks.
As shown in Fig. 4, as λ increases, the average weighted
response time incurred by DECENT slightly increases, while
still maintaining a low level, i.e., < 500 ms. The average
weighted response time increment of the other two baseline
algorithms over λ is similar but much larger than DECENT,
which demonstrates that DECENT achieves better offloading
decision and resource management in both light and heavy
workload scenarios. All the tasks can be clustered into four
classes, and each class contains the tasks with the same
weight. Fig. 5 shows the average network and computing

Fig. 3: Performance comparison.

Fig. 4: Average weighted response time over average task
arrival rate for different algorithms.

delay of the tasks from different classes for DECENT. We can
find that the tasks with higher weight incur lower execution
time than the tasks with lower weight, which demonstrates
that DECENT can adjust the offloading decision and resource
allocation according to the weight of incoming tasks.

Figs. 6 and 7 show the average weighted response time
among 6,400 tasks by varying the computation intensity µ
and E2E delay coefficient α, respectively. Note that increasing
µ and α would directly increase the E2E delay T e2eik and
the execution time T exe compik , respectively. DECENT always
incurs the lowest average weighted response time than the
two baseline algorithms in different scenarios. It is interesting
to see that the performance of the largest server algorithm in
Fig. 7 is significantly degraded as α increases. This is because
increasing α increases T e2eik , which may dominate the response
time, and so offloading tasks to the nearby servers is preferred
to reduce the weighted response time. Yet, the largest server
algorithm does not consider the network delay, thus leading
to significant performance degradation.

VI. CONCLUSION

By considering the waiting time of a task in the communi-
cation and computing queues as well as different priorities
of the tasks, this paper proposed the DECENT algorithm
allowing each BS to determine the offloading decision and
computing resource allocation for each arrival task in real-time
such that the cumulative weighted response time is minimized.
As compared to the two baseline algorithms, DECENT has

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

2222

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 20,2023 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Average response time w.r.t λ and weights of the tasks.

Fig. 6: Average weighted response time over µ.

been demonstrated to have lower response time in different
scenarios via extensive simulations. Also, DECENT is capable
of adjusting the offloading decision and computing resource
allocation based on the weights of the incoming tasks to
minimize the cumulative weighted response time.

REFERENCES

[1] X. Sun and N. Ansari, “Edgeiot: Mobile edge computing for the internet
of things,” IEEE Commun. Mag., vol. 54, no. 12, pp. 22–29, 2016.

[2] M. Abrash, “Latency–the sine qua non of ar and vr,” Blog post, Dec,
2012.

[3] X. Sun and N. Ansari, “Adaptive avatar handoff in the cloudlet network,”
IEEE Trans. Cloud Comput., vol. 7, no. 3, pp. 664–676, 2019.

[4] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, 2013.

[5] X. Sun and N. Ansari, “Primal: Profit maximization avatar placement
for mobile edge computing,” in 2016 IEEE International Conference
on Communications (ICC). IEEE, 2016, pp. 1–6.

[6] Q. Fan and N. Ansari, “Application aware workload allocation for edge
computing-based iot,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 2146–2153, 2018.

[7] X. Sun and N. Ansari, “Latency aware workload offloading in the
cloudlet network,” IEEE Commun. Lett., vol. 21, no. 7, pp. 1481–1484,
2017.

[8] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino,
“Task offloading and resource allocation for mobile edge computing by
deep reinforcement learning based on sarsa,” IEEE Access, vol. 8, pp.
54 074–54 084, 2020.

[9] B. Huang, Z. Li, Y. Xu, L. Pan, S. Wang, H. Hu, and V. Chang,
“Deep reinforcement learning for performance-aware adaptive resource
allocation in mobile edge computing,” Wireless Communications and
Mobile Computing, vol. 2020, 2020.

[10] Y. Liu, M. J. Lee, and Y. Zheng, “Adaptive multi-resource allocation for
cloudlet-based mobile cloud computing system,” IEEE Trans. Mobile
Comput., vol. 15, no. 10, pp. 2398–2410, 2015.

Fig. 7: Average weighted response time over α.

[11] A. Mukherjee, D. De, and D. G. Roy, “A power and latency aware
cloudlet selection strategy for multi-cloudlet environment,” IEEE Trans.
Cloud Comput., vol. 7, no. 1, pp. 141–154, 2016.

[12] B. Badnava, T. Kim, K. Cheung, Z. Ali, and M. Hashemi, “Spectrum-
aware mobile edge computing for uavs using reinforcement learning,”
in 2021 IEEE/ACM Symposium on Edge Computing (SEC), 2021, pp.
376–380.

[13] K. Elgazzar, P. Martin, and H. S. Hassanein, “Cloud-assisted computa-
tion offloading to support mobile services,” IEEE Trans. Cloud Comput.,
vol. 4, no. 3, pp. 279–292, 2014.

[14] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communica-
tions. IEEE, 2016, pp. 1–9.

[15] C. Yu, C. Lumezanu, A. Sharma, Q. Xu, G. Jiang, and H. V. Mad-
hyastha, “Software-defined latency monitoring in data center networks,”
in International Conference on Passive and Active Network Measure-
ment. Springer, 2015, pp. 360–372.

[16] X. Sun and N. Ansari, “Green cloudlet network: A sustainable platform
for mobile cloud computing,” IEEE Trans. Cloud Comput., vol. 8, no. 1,
pp. 180–192, 2020.

[17] Q. Fan, J. Bai, H. Zhang, Y. Yi, and L. Liu, “Delay-aware resource
allocation in fog-assisted iot networks through reinforcement learning,”
IEEE Internet of Things Journal, vol. 9, no. 7, pp. 5189–5199, 2022.

[18] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural
information processing systems, vol. 12, 1999.

[19] C. Yoon, “Understanding actor critic methods and a2c,” [On-
line]. Available: https://towardsdatascience.com/understanding-actor-
critic-methods-931b97b6df3f.

[20] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE network, vol. 32,
no. 1, pp. 96–101, 2018.

[21] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of caching,
computing, and radio resources for fog-enabled iot using natural actor–
critic deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2061–2073, 2018.

[22] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in iot edge computing,” IEEE J. Sel.
Areas Commun., vol. 38, no. 6, pp. 1133–1146, 2020.

[23] J. Yao and N. Ansari, “Power control in internet of drones by deep rein-
forcement learning,” in ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE, 2020, pp. 1–6.

[24] X. Liu, Z. Qin, and Y. Gao, “Resource allocation for edge computing
in iot networks via reinforcement learning,” in ICC 2019-2019 IEEE
international conference on communications. IEEE, 2019, pp. 1–6.

[25] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep
reinforcement learning for user association and resource allocation
in heterogeneous cellular networks,” IEEE Transactions on Wireless
Communications, vol. 18, no. 11, pp. 5141–5152, 2019.

[26] X. Chen, J. Wu, Y. Cai, H. Zhang, and T. Chen, “Energy-efficiency
oriented traffic offloading in wireless networks: A brief survey and a
learning approach for heterogeneous cellular networks,” IEEE J. Sel.
Areas Commun., vol. 33, no. 4, pp. 627–640, 2015.

2022 IEEE Global Communications Conference: Selected Areas in Communications: Cloud

2223

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on April 20,2023 at 17:38:11 UTC from IEEE Xplore. Restrictions apply.

