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Sparse linear algebra is an important kernel in many different applications. Among various sparse general
matrix-matrix multiplication (SpGEMM) algorithms, Gustavson’s column-wise SpGEMM has good locality
when reading input matrix and can be easily parallelized by distributing the computation of different columns
of an output matrix to different processors. However, the sparse accumulation (SPA) step in column-wise
SpGEMM, which merges partial sums from each of the multiplications by the row indices, is still a perfor-
mance bottleneck. The state-of-the-art software implementation uses a hash table for partial sum search in
the SPA, which makes SPA the largest contributor to the execution time of Sp)GEMM. There are three reasons
that cause the SPA to become the bottleneck: (1) hash probing requires data-dependent branches that are diffi-
cult for a branch predictor to predict correctly; (2) the accumulation of partial sum is dependent on the results
of the hash probing, which makes it difficult to hide the hash probing latency; and (3) hash collision requires
time-consuming linear search and optimizations to reduce these collisions require an accurate estimation of
the number of non-zeros in each column of the output matrix.

This work proposes ASA architecture to accelerate the SPA. ASA overcomes the challenges of SPA by
(1) executing the partial sum search and accumulate with a single instruction through ISA extension to elimi-
nate data-dependent branches in hash probing, (2) using a dedicated on-chip cache to perform the search and
accumulation in a pipelined fashion, (3) relying on the parallel search capability of a set-associative cache
to reduce search latency, and (4) delaying the merging of overflowed entries. As a result, ASA achieves an
average of 2.25x and 5.05X speedup as compared to the state-of-the-art software implementation of a Markov
clustering application and its SPGEMM kernel, respectively. As compared to a state-of-the-art hashing accel-
erator design, ASA achieves an average of 1.95x speedup in the SpGEMM kernel.

CCS Concepts: « Computer systems organization — Multicore architectures;

Additional Key Words and Phrases: Sp)GEMM, sparse accumulation, sparse linear algebra, Markov clustering

ACM Reference format:

Chao Zhang, Maximilian Bremer, Cy Chan, John Shalf, and Xiaochen Guo. 2022. ASA: Accelerating Sparse
Accumulation in Column-wise SpGEMM. ACM Trans. Arch. Code Optim. 19, 4, Article 49 (September 2022),
24 pages.

https://doi.org/10.1145/3543068

Authors’ addresses: C. Zhang, Lehigh University; email: chz616@lehigh.edu; M. Bremer, C. Chan, and J. Shalf, Lawrence
Berkeley National Laboratory; emails: mb2010@lbl.gov, cychan@lbl.gov, jshalf@lbl.gov; X.Guo, Lehigh University; email:
xig515@lehigh.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).
1544-3566/2022/09-ART49
https://doi.org/10.1145/3543068

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 4, Article 49. Publication date: September 2022.

49




49:2 C. Zhang et al.

1 INTRODUCTION

Graph analytics [8, 15, 17, 34, 49, 51] has emerged as one of the key computational methods to solve
important problems with irregular structures that arise across a variety of scientific and engineer-
ing disciplines, including bioinformatics [6, 20, 33], social networks [5], and physical systems [3].
The graphs representing these problem spaces are typically large and sparse, which means that the
connections among vertices are a small percentage (i.e., typically less than 1% and hyper-sparse
graphs have fewer connections than the number of vertices) of the total number of vertex pairs.
For example, bioinformatics applications such as metagenome assembly [33] and protein cluster-
ing [28] work with sparse graphs of genetic and protein sequences that have 0.35% of non-zero
connections [56]. General-purpose computer architectures that are optimized for dense computa-
tion and regular data access patterns struggle to attain high levels of computation throughput for
graph analytic applications due to their innate data irregularity, which limits the capabilities to
solve large and important problems in an affordable amount of time. As a result, there is a dire
need to explore hardware acceleration for sparse graph analytic kernels.

To facilitate the optimization of these kernels in a way that can be applied across many do-
mains, this work targets the GraphBLAS [12] specification, which recasts graph algorithms as
sparse linear algebra operations. By developing optimized designs for these primitives, we can iso-
late changes to the GraphBLAS layer and use the accelerated functionality across multiple graph
applications. The sparse general matrix-matrix multiplication (SpGEMM) is one of the most
commonly used GraphBLAS kernels. This work focuses on accelerating Sp)GEMM and assesses the
performance impact of the proposed design on HipMCL [2], which uses Markov clustering [53] to
identify protein families. The HipMCL algorithm consists of an iterative loop, which updates clus-
ter membership through an expansion, pruning, and inflation phase. As seen in Figure 1, expansion,
which is represented as the local SpGEMM, is the most computationally expensive component.

The HipMCL library adopts Gustavson’s column-wise SpGEMM [22] implementation (Algo-
rithm 1), which multiplies non-zeros in columns of the second input matrix B with the columns of
the first input matrix A and accumulates all of the partial sums through a sparse accumulation
(SPA). The state-of-the-art software implementation of the column-wise SpGEMM (e.g., Graph-
BLAS) uses a hash-based SPA with a symbolic-numeric method. The symbolic phase estimates the
number of non-zeros in each output column and allocates a hash table for each column. In the
subsequent numeric phase, partial sums are calculated by using the row index to look up the hash
table to find the latest partial sums to add to. Before writing back the output column to the memory,
all of the valid entries in the hash table are sorted by their row indices. As shown in Figure 1, the
numeric phase takes the longest latency in the local Sp)GEMM computation, which is dominated
by the hash-based SPAs. This is because linear probing is used when there are hash collisions that
map indices to the same key. Processing hash lookups on general-purpose processors also suffer
from hard-to-predict branches.

Prior work has proposed HTA [59] to accelerate common hash operations with ISA extensions.
However, HTA is designed for general hash operations with a large memory footprint, whereas
column-based SpGEMM can use matrix tiling to optimize for locality and to reduce hash table
sizes. Using an HTA-like approach to accelerate the hashing operations in column-based SpGEMM
would be overkill and cannot achieve the optimal efficiency. Moreover, accelerating hash opera-
tions alone cannot address SPA-specific computational challenges. Accelerators have been pro-
posed for Sp)GEMM as well, in which hardware merger trees are used to sum up the multiplication
results within a single pass [41, 58, 60]. In the merger design, the radix of the merger tree should be
chosen carefully to balance between latency and area. A small-radix merger has to read the same
input row multiple times when the merging factor exceed the radix, whereas a large-radix merger
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Fig. 1. Execution time breakdown of a High-performance Markov Clustering (HipMCL) [2] application with
a protein bank [26] data input.

costs a large area overhead. For example, a merge tree in Sparch [60] costs more than 55% of the
area and power.

This work proposes ASA, which is an in-core extension to a general-purpose processor for ac-
celerating sparse accumulations in column-wise SpGEMM that maintains the generality of the
multicore processors and adds minimum area overheads. The key contributions of the proposed
ASA architecture are listed below:

e ASA extends the existing ISA to execute the partial sum search and accumulate with a single
instruction, which improves the core utilization by eliminating hard-to-predict branches.

o ASA adds a small dedicated set-associative on-chip cache with an accumulator to hold partial
sums and compute SPAs, which improves SPA throughput and reduces dynamic energy for
cache lookups.

e ASA replaces hash linear probing with parallel search in the set-associative cache and delays
merging of partial sum entries evicted from cache due to set conflicts.

o ASA provides a simple software interface to allow flexible use of the ASA hardware and easy
integration with other software optimization of merging and sorting.

2 BACKGROUND

This section summarizes SpGEMM variants and existing works for sparse accumulation
acceleration.

Sparse Matrix Matrix Multiplication (SpGEMM) is an important kernel in many applica-
tions, such as machine learning [21, 30, 54], numerical analysis [14], graph algorithms [45], and so
on. The broad use of the SpGEMM in data-intensive applications leads to many different parallel
SpGEMM implementations.

An inner product implementation computes SpPGEMM using a series of dot product operations
between rows of the first matrix (A) and columns of the second matrix (B) for each element of the

result matrix (C):
N-1

Ctint = ), Atk X Bren:
k=0
in which N is the matrix dimension, i and j are the row and column indices. Inner product S GEMM
has a good locality for matrix C and can be easily parallelized by sending different rows and
columns to different cores without synchronization overhead. However, to select the non-zero ele-
ments from matrices A and B, it requires index matching before multiplication. The sparse storage
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Fig. 2. Compression factor versus MCL iteration for Eukarya network graph [2].

format of A and B requires indirect memory accesses to load By ;; for each non-zero Ay; xj. These
dependent loads have poor spatial locality and are on the critical path of the computation, which
can cause processor stalls and low core utilization even with an ideal tiling optimization [55].

An outer product implementation [9] multiplies matrix A and B by decomposing the operation
into outer product multiplications of pairs of columns of A and rows of B:

-1 N-1
C= CFZA[ i1 X Bfi, ]
i=0 i=0

where A[, ;] is the ith column of A and By; ; is the ith row of B. C; is the partial matrix of the final
result matrix C. The computation is divided into two phases: (1) A[, ;] X Bf; ) multiplication and
(2) partial matrix merging. For the multiplication phase, every non-zero element in A(, ;) is multi-
plied with every non-zero element in By; .. Hence, the accesses to both matrix A and matrix B have
good spatial locality and have short reuse distance. However, the partial matrix merging phase re-
quires high synchronization overhead to merge the partial matrix products that are assigned to
different cores. AaOther outer-product approaches, such as PB-SpGEMM [19], avoid the synchro-
nization by streaming the intermediate partial matrices to memory for merging later (expand, sort,
compress), which may generate substantial memory traffic.

In Gustavson’s column-wise SpGEMM [22] algorithm, columns of A are multiplied with the
non-zeros of a column of B, and the results are accumulated into a column of C using a sparse
accumulator (SPA) [18].

N-1
Crj = Z ALk X Bk, j)
k=0

Bik, j) is anon-zero element in a column of matrix B, A[ x] is the corresponding columns in matrix A,
C(,,j is a output column of matrix C. In column-wise SpGEMM, different columns can be computed
in parallel.

For SpGEMM, there is no single optimal formulation for all contexts, as the performance depends
on the sparsity of the input matrices as well as the compression factor. Assuming the computation
of C = A X Brequires ngj,,s multiply-accumulate operations, and n,.. equals the number of non-
zeros in C, the compression factor is defined as nfjops/nnzc, Which corresponds to the average
number of terms that must be summed up to produce a single non-zero entry of C. When the
compression factor is low, the outer product formulation outperforms Gustavson’s as the extra
memory traffic incurred by splitting up the multiplication phase and the merging phase is relatively
small [19]. But as the compression factor rises, the lower memory traffic of Gustavson’s algorithm
leads it to outperform the outer product based formulation.

Ultimately, the Sp)GEMM implementation preference is application specific. In Figures 2 and 3,
we show the average compression factor of the SpGEMM and wallclock time elapsed per MCL
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Fig. 3. Execution time versus MCL iteration for Eukarya network graph [2].

iteration for HipMCL on the Eukarya network with 32.4M vertices and 360M edges [2]. Comparing
the two figures, 92% of the total execution time is spent in the first five MCL iterations, which
consist of high compression factor SPGEMM multiplications, which favor the use of column-wise
SpGEMM algorithms. Thus, to maximize performance gains, this article focuses on optimizing the
performance of column-wise Sp GEMM.

In SpGEMM, the pattern and number of non-zero elements of the output matrix is unknown
before computation. But the memory allocation of the output matrix should be decided ahead of
time. One way is to allocate large enough memory space, which might be inefficient. The other way
is to use a symbolic-numeric method (Algorithm 1) [10, 39] to analyze output computation patterns,
which is time-consuming. Alternatively, recently developed hash-based SpGEMM algorithm uses
symbolic analysis for tiling and uses hash tables within each tile to record and lookup partial
sums. The purpose of symbolic analysis is to precisely control the hash table size to reduce hash
probing overhead. However, the hash operations are still the performance bottleneck due to high
branch mis-prediction rate and poor spatial locality. As shown in the Figure 1, the numeric and
symbolic phases dominate the execution time of the SpGEMM kernel. Therefore, in HipMCL
(High-performance Markov Clustering) [2], more than 50% of the entire application runtime
is devoted to computing SpGEMM hash operations.

Algorithm 1 shows the procedure of a column-wise SpPGEMM. The bottleneck of this algorithm
is the sparse accumulation at lines 5-7 and 16-20 in Algorithm 1. Recent software implementations
adopt many different data structures to do the accumulation, such as hash tables, vectorized hash
tables, and heaps [2, 37, 44].

3 MOTIVATION AND KEY IDEAS

The proposed design is motivated by the computation challenges of the sparse accumulation in
column-wise Sp)GEMM. The goal of this work is to overcome these challenges by designing a sparse
accumulation accelerator that can be easily integrated into general-purpose multi-core architec-
ture with minimum hardware overhead and a simple software interface. This section discusses the
three key ideas of ASA to achieve this goal.

3.1 Extending ISA to Avoid Data-dependent Branches

As discussed in Section 2, Hash probing is the bottleneck for both symbolic and numeric phases.
One reason is that the core does not know whether the probing will hit, miss, or have a collision.
When multiple keys are hashed to the same cell, this cell has collisions. A hash lookup typically
compares keys that are mapped to the same cell one-by-one. The implementation of hash prob-
ing requires data-dependent branches, which are difficult to predict. Prior work [59] observed
that mispredicted branches can be the performance bottleneck of many hash-intensive applica-
tions. To avoid these difficult-to-predict branches, this work proposes to extend an ISA with a
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ALGORITHM 1: Symbolic-Numeric Sp)GEMM.
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23
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27
28
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32

33

Procedure Symbolic(A, B):
for By ;) in B, ;) do
for A(; ky in A[, k) do
value = Af; k] X Bg, )
if c[i,j] ¢ C[:’j] then
‘ nnzColC+ =1
end

end

end
return nnzColC

Procedure Numeric(A, B):
for By j) in B ;) do
for A[i,k] in A[:, k] do
value = A[i,k] X B[k,j]
if C[i,j] € C[:,j] then
‘ C[l,]] = C[l,]] + value
else
‘ insert Cp; ;] into C. j]
end
end

end
return tupleC

Procedure ColumnWiseSpGEMM(C, A, B):
for By, j) in matrix Bdo
nnzColC = Symbolic(A, B)
AllocateHashTable(nnzColC)
Hashtable = Numeric(A, B)

C+ = tupleC
end

return C

tupleC = PairSort(Hashtable.begin(), Hashtable.end())

hardware probing and accumulation (HPA) instruction similar as other instruction extensions
in References [13, 43, 59]. As a result, lines 16-20 in Algorithm 1 can be consolidated into a single
instruction, which helps to reduce the total instruction count, avoid branch misprediction penalty,
and improve core utilization.

The collision resolution and overflow handling are performed by hardware and are hidden from

the programmer. A programming interface is included in this design to provide key-value pairs to

the sparse accumulator hardware, which will be discussed in Section 5.

3.2 Dedicated Hardware for Probing and Accumulation

The ASA architecture adds a dedicated hardware cache to store partial sums and an accumulator
per core to directly add the multiplication result to an intermediate partial sum with a matching
key. The size of the cache should be small to allow fast lookup and minimize area overhead. In
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the symbolic-numeric method, the symbolic phase first identifies the total number of non-zeros
in an output column of matrix C to allocate a hash table with an appropriate size. As a result, the
software hash table size varies based on the number of non-zeros in the output column of matrix.
We adopted SUMMA [11], which is a distributed SpGEMM implementation, assigns each processor
a submatrix of C, and broadcasts input matrices A and B to different processors that can limit the
size of the output matrix sizes. As a result, with a smaller output matrix to compute, the size for
each hash table can be reduced. As shown in Figure 4(b), more than 90% of the hash tables have
fewer than 512 entries, which means they can fit into a small hardware cache. Instead of storing
the entries into a private L1 cache, this work uses a dedicated on-chip cache with an accumulator
for sparse accumulations (Partial Sum Cache). This design choice of using a cache smaller than
the L1 cache reduces the energy of cache accesses. Having a dedicated cache and an accumulator
also enables high-throughput hardware probing and accumulation via pipelining the cache lookup,
addition, and writeback.

Applying tiling algorithm [55] to the input and output matrices can help to fit the intermediate
partial sums, which are stored in the hash table in the software implementation, into the partial
sum cache. A set-associative cache is used to strike a balance between hardware complexity and
set conflict rate. When set conflicts happen, the proposed design evicts a partial sum entry and
handles these overflows later with a relatively small performance overhead. Figure 4(a) shows the
set conflict rates of different hash table sizes and under different cache configurations. An 8-way,
8 KB cache with an 8 B block size can accommodate more than 99% of the hash probing without
set conflicts, because most of the hash tables are smaller than 512.

3.3 Resolving Collisions in Hardware and Delaying Overflow Merging

A set-associative cache searches all of the tags (i.e., hash keys) in parallel, which is an important rea-
son to anticipate performance improvement when comparing ASA with the software hash probing
that resolves collisions through linear search. The symbolic-numeric method in GraphBLAS [12]
uses the symbolic phase to determine the hash table size to minimize collisions. It is helpful to
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allocate the hash table with an appropriate size for each output column, which saves space when
the column is sparse and reduces collisions when the column is dense. The hardware cache has a
fixed size and associativity. It is not necessary to use the symbolic phase to estimate the hash table
size but it is helpful to apply a tiling algorithm. A fallback mechanism is essential to handle cache
overflows due to set conflicts.

In the ASA architecture, a FIFO queue data structure is allocated through malloc function before
the sparse accumulation. Evicted entries from the partial sum cache are inserted into the FIFO
queue by using a hardware address generator to issue store requests. Using dedicated hardware
to handle cache overflows avoids stalling the processor. After a partial sum entry is evicted from
the cache, it will not be searched for the rest of the sparse accumulation. There could be multiple
intermediate partial sums in the FIFO queue that have the key, which means they need to be added
together to produce the final partial sums. An architecture register is added to keep track of the
size of the FIFO queue. At the end of the sparse accumulation, the head and tail pointers of the
FIFO queue are read by software and these overflowed entries are merged. By taking the merging of
overflowed entries off the critical path of sparse accumulation, it is also to use the partial sum cache
for one column while merging overflowed entries for another column. The detailed explanation
of the overflow handling with FIFO queue is in Section 4.2.

3.4 Minimizing Both Software and Hardware Overhead

Multiple SpPGEMM accelerators have been proposed recently [23, 38, 40, 58, 60], which can be
used to execute limited applications. Serving multiple types of computational kernels in a single
accelerator is challenging, because different kernels prefer different system tradeoffs. Sp GEMM
accelerators usually have a similar size of a CPU core. For example, SpArch [60] uses more than
55% of the area and power for building a merge tree to accumulate partial sums. To make the design
cost-effective in terms of both performance and area, ASA can provide a competitive speedup with
a lightweight software interface and negligible hardware area (less than 0.1% of the core area).

4 ASA ARCHITECTURE

The proposed ASA architecture augments each core with an accumulation waiting buffer to store
the multiplication results and its corresponding hash key, a floating-point adder, a small hardware
cache to each core to store partial sums, and an address generator for both overflow handling
and hardware gathering (Figure 5). The address generator has two architectural registers visible
to the software: a tail pointer register recording the current tail position of the associated partial
sum FIFO queue in memory and a tail boundary register recording the boundary address of the
allocated space.

4.1 Hardware Probing and Accumulation

A hardware probing and accumulation (HPA) instruction is similar to a store instruction,
which has three source operands, which are the hash key for indexing cache sets, row index for
tag comparison, and the multiplication result of a pair of non-zeros as the value. Similar to a store
instruction an HPA instruction is issued from the load-store queue (LSQ) when the instruction
is at the head of the reorder buffer and both operands are available. The hash key and the multipli-
cation result of an issued HPA instruction will be stored in an accumulation waiting buffer to be
added to a matching partial sum (@) in Figure 5). The key is used to lookup the partial sum cache
by first using the key to index to the corresponding cache set and then comparing the row index
i with the stored tags. As shown in Figure 6, if the reference hits in the cache, then the value of
the matching entry is read and added with the multiplication result. If the reference misses in the
cache, then a new entry is allocated and the multiplication result is directly stored in the cache.
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If miss in the cache but the corresponding cache set is full, then a cache overflow happens. An
entry needs to be selected according to a replacement policy and evicted from the cache. A good
choice of the replacement policy will help to prevent premature evictions. This work uses a least
recently used (LRU) replacement policy.

Each HPA instruction takes three cycles to complete after being issued from the LSQ. One cycle
for cache lookup, one cycle for accumulation, and another cycle for writing back to cache. To im-
prove the throughput, a three-stage pipeline is implemented such that when one HPA instruction
is computing accumulation, the following HPA issued back-to-back can lookup the cache. It is pos-
sible that the back-to-back HPAs have matching keys, hence the hash key also needs to compare
with the keys of the previous outstanding HPAs. If the back-to-back HPAs have the same key, then
the previous accumulation result is forwarded to the input of the accumulator.
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4.2 Overflow Handling

A contiguous memory address space is pre-allocated to store both the overflowed key-value pairs
of the partial sum entries evicted from the partial sum cache during the hardware probing and
accumulation phase (@) in Figure 5) as well as the writeback partial sum entries during the hard-
ware gathering phase (@ in Figure 5). The memory space pre-allocation is done in software in a
FIFO queue data structure. During phases @ and @, the FIFO requires only insertion operations.
An address generator is added to ASA to calculate the virtual addresses for these insertions to the
FIFO queue, which is equipped with a tail pointer register storing the position of the next insertion
and a tail boundary register storing the boundary address of the pre-allocated memory space. The
virtual address range is sent to ASA when the memory space for the FIFO queue is pre-allocated.
The tail pointer register is initialized to the start position (i.e., head pointer) of the pre-allocated
FIFO queue. Each eviction of the key-value pair will use the tail pointer value to calculate the
addresses for the key and the value (Figure 6). ASA generates normal store instructions to write
these entries into the FIFO queue through the memory hierarchy, which is the same as other store
instructions from the load store queue. An evicted partial sum entry due to cache overflow can
have a repeating key with another evicted entry or the same key as a writeback entry. To prevent
stalling, the hardware overflow handling does not merge these entries with repeating keys at the
eviction time. After each insertion to the FIFO queue, the tail pointer will increment and compare
with the value of the tail boundary register. If the tail pointer equals to or exceeds the boundary
address, then the FIFO queue is full and an interrupt is triggered to allocate more space. After
memory allocation, both the tail pointer and the tail boundary registers are reset accordingly for
the newly allocated space.

4.3 Sorting and Merging

Elements in the output column need to be sorted. As shown in Figure 7, all valid entries in the
partial sum cache are first added to the FIFO queue, which waits for a subsequent sorting opera-
tion. Implementing sorting logic in the hardware can be expensive, whereas the execution time of
sorting non-zeros of the output column in software is relatively low for S) GEMM as compared to
other operations [44]. Hence, this design keeps sorting in software. After the gathering phase @),
all key-value pairs are written into FIFO queue in memory. A pair sort is used to sort all key-value
pairs by its keys, which is the same as the original software implementation. The pair sort needs
the start and end position of the unsorted FIFO queue. In phase @), the software reads the tail
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Table 1. ASA Programming Interfaces

Names Explanation
Allocate space for the partial sum tuples and
ASA.malloc(size) initialize ASA internal registers accordingly

Insert a pair of key and value into partial
ASA .insert(key,i,value) | sum cache, accumulate if hit in the cache
Write all valid entries from partial sum

ASA .gather() cache into reserved address space

ASA tail() Return the tail pointer of the partial sum tuples

ASA . overflow() Return whether there is any overflow
Invalidate all entries in the partial sum cache

ASA .clear() and clear the internal registers

pointer register value before and after the hardware gathering. The sorted tupleC can be directly
added to the output matrix C if there are no overflows during the column computation (phase @).
If there are overflowed key-value pairs, then additional merge operations can be performed to add
the overflowed entries to the sorted array. In this case, entries with the same key would be merged
first. After that, all key-value pairs would be sorted to the output tupleC, which takes additional
O(N) of time complexity on top of the original software sorting with O(NIgN).

Overflow requires additional instructions, which can offset the benefits of using the proposed
partial sum cache. The amount of the overflows can be well controlled if appropriate tiling algo-
rithm is applied to the column-wise SpGEMM. This means breaking down the denser columns of
the input matrix B into multiple smaller sub-columns.

4.4 Context Switch

Modern processors usually adopt Lazy FP State Save/Restore, which defers the save and restore of
certain CPU context states on the task switch. Similarly, the content in the partial sum cache is part
of the state that will be saved and restored lazily when the hardware resources are not required in
a new context.

5 PROGRAMMING INTERFACE

The proposed design includes a simple programming interface to use ASA. Table 1 lists impor-
tant procedure calls. Algorithm 2 shows an example implementation of SpGEMM using ASA.
Compressed data format (e.g., DCSC [9]) is typically used for both the input and output matrices
to reduce memory footprint by avoiding storing zeros. During the computation of each output
column, the partial sums can be calculated in an order different from the index order. Hence,
a series of key-value pairs are stored in a FIFO queue data structure (tupleC in Algorithm 2),
where the key is the row index and the value is the partial sum. This FIFO queue is used when
storing the intermediate partial sums as well as the final sorted non-zeros of an output column.
The size of the memory allocation (line 2 in Algorithm 2) should be equal to or greater than the
capacity of the partial sum cache. If more cache overflows are anticipated, then a larger size can
be pre-allocated. This parameter can be optimized for different matrices and partitions.

As discussed in Section 3, the symbolic phase can be removed when using ASA. In the numeric
phase, the proposed design uses the FPU in the core for multiplication of A; x} and By j;. We dis-
cussed the design choice of not offloading the multiplication and hash key calculation in Section 7.2.
Lines 16-20 in Algorithm 1 now can be replaced with a simpler ASA.insert(key, i, value) function
at line 7 in Algorithm 2. The key is the hash value calculated by applying the hash function to the
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ALGORITHM 2: An Example SpGEMM using ASA.

1 Procedure Numeric(A, B):

2 tupleC = ASA.malloc(size);

3 for By j) in B[, ;) do

4 for A k] in Af, ) do

5 value =A[i,k] XB[k,j]§
6 key = hash(i);

7 ASA insert(key,i,value);
8 end

9 end

10 return tupleC

11

12 Procedure ColumnWiseSpGEMM(C, A, B):

13 for By, j) in matrix B do

14 tupleC = Numeric(A, B);

15 sortStart = ASA. tail();

16 ASA .gather();

17 PairSort(sortStart, ASA.tail());
18 if ASA.overflow() then

19 ‘ AdditionalMerge(tupleC);
20 end

21 C+ = tupleC;

22 tupleC.free();

23 ASA .clear();

24 end

25 return C

original row index i for A[; &}, which achieves better load balancing among cache sets than row
indices does when used to index the hardware cache. ASA.insert(key, i, value) will insert a pair of
key and value to the partial sum cache (dedicated for sparse accumulation). If the key hits in the
cache, then it reads the current partial sum C; j), adds value with C; j1, and stores the new partial
sum back to the cache. The cache lookup, addition, and writeback are perceived as an atomic op-
eration. If the key misses in the cache, then it inserts a new entry into the cache. Cache overflow
is handled by hardware, which will be discussed in detail in Section 4.2. The evicted entries will
be stored in the pre-allocated tupleC. Regardless of partial sum cache hit, miss, or overflow, the
ASA unit will handle it by hardware without data-dependent branches, which is one of the key
advantages as compared to the original software implementation.

After the numeric phase, ASA.gather() (line 16) writes all of the valid entries into tupleC follow-
ing evicted partial sums if there are cache overflows during the numeric phase. The tail pointer
position is recorded before calling ASA.gather() to allow a pair sort function call to perform in-
place sorting on non-repeating keys (line 17). If there are overflows for this column computation,
then additional software merges to tupleC will be used to merge overflowed key-value pairs to
the sorted key-value pairs in tupleC (lines 18-20) with O(N) time complexity, where N is the total
number of the overflows. After this additional merging, the size of tupleC might be reduced and
can be added to matrix C in the compressed storage format. Finally, the allocated space for tupleC
is released and ASA.clear() (line 23) is invoked to clear the partial sum cache and ASA internal
registers.
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Table 2. Baseline Configuration for Simulation

8 cores, 2.6 GHz, 4-wide 000, 256-entry ROB
Processors 64-entry LSQ

Partial Sum Cache | private, 8 KB, 8-way, LRU, delay = 1 cycle
private, 32 KB, 8-way, 8-entry MSHR

L1-Ds/Is delay = 4 cycles

private, 256 KB, 8-way, 16-entry MSHR
L2s delay = 12 cycles

shared, 8 MB, 16-way, 128-entry MSHR
LLC delay = 38 cycles

Memory Controller | FCFS, Open page, read and write queue size = 64
4 GB, 2,400 Mhz, 1 channel, 1 rank, 16 banks
tCL = tRCD = tRP = 17 cycles

Main Memory

6 EXPERIMENTAL SETUP

To evaluate the proposed ASA architecture, this work modifies ZSim [42], which is a PIN-
based [32], execution-driven, and cycle-accurate simulator, to model the proposed architecture
and compare the performance with a baseline multi-core architecture and the HTA architecture.
Cache sizes and latency of the baseline architecture are modeled based on Intel i7-6700 [24], which
are listed in Table 2. The main memory timing parameters are based on the Micron MT40A2G4 [35]
DDR4-2400-CL17 datasheet. This work uses CACTI 7.0 [4] to model the partial sum cache and esti-
mate its area, latency, and power. Area overhead of other components is estimated based on logic
synthesis using the FreePDK45nm [48] standard cell library, and is scaled to 14 nm. Accessing
partial sum cache costs 0.004 nJ per read and 0.012 n] per write of dynamic energy. The latency
fits into one processor cycle at 2.6 GHz. McPAT [27] is used to estimate the energy consumption
of other on-chip components. In the ASA architecture, each of the cores is augmented with an
ASA unit for SPA acceleration, which includes an accumulation waiting buffer, a floating-point
adder, a partial sum cache, and an address generator. To have a fair comparison with the baseline
and the HTA, we increase the L1 cache size of the baseline and the HTA by the size of the partial
sum cache. As a result, all three evaluated architectures have the same total on-chip cache capac-
ity. For CPI breakdown analysis, ZSim does not execute wrong-path execution but recovers from
mispredictions in a fixed 17 cycles and cancels in-flight data misses [42].

This work evaluates a SpGEMM implementation from a highly optimized GraphBLAS [12] li-
brary, which powers HipMCL [2, 44]. The datasets of the SpGEMM are listed in Table 3, which
covers representative inputs with different characteristics (i.e., size, sparsity). As HipMCL runs
the SpGEMM kernel iteratively, we mark the first five iterations as the ROI (regions of inter-
est) to save simulation time. Given the fact that the first few iterations take most of the MCL
runtime (Figure 3), the sampled iterations are critical and representative of the entire application.
The typical input graphs for HipMCL are too large (20 GB to 10 TB) to use on a simulator and re-
quire partitioning to run on real machines. This work focuses on accelerating the local SpGEMM,
which makes it sufficient to use sub-matrices. Table 3 lists all of the graphs used in the evaluation.
Subgraph4, subgraph5, Eukarya, virus, and archaea datasets are subsampled by CombBLAS [10]
matrix partition library from the original dataset. The sampling algorithm randomizes the vertex
labels before extraction of the sub-matrices. Besides sub-matrices, we also tested a synthetic graph
(RMAT), a protein bank data (pb), a social network (soc-epinions), and a physical citation network
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Table 3. Datasets (Compressed into CSC Format)

Number Names #Vertices | #Edges | Sizes
1 RMAT [7] 6.72 M 104 M | 840 MB
2 pb [26] 364K 43M | 55 MB
3 soc-epinions [26] | 75.8 K 500 K 11 MB
4 hepth [26] 277K 350K | 5.7 MB
5 virus [2] 02M 45M | 90 MB
6 subgraph4 [2] 13.6 M 41.3M | 550 MB
7 subgraph5 [2] 41 M 103 M | 140 MB
8 Eukarya [2] 125 M 56.2M | 560 MB
9 archaea [2] 0.7M 3.2M 47 MB
35
3.0
25
}% 2.0
215
Sl Il ol Al ol
05 II
0.0
RMAT hepth soc-epinions virus subgraph4 subgraph5  eukarya archaea  GEOMEAN

Basellne—t|l|ng B HTA ®HTA-tiling MASA 1 ASA-tiling

Fig. 8. HipMCL Performance comparisons for baseline software implementation, HTA, and ASA with and
without tiling algorithm.

graph (hepth).! For denser column computation, we break it down to multiple sub-columns as a
simple tiling algorithm to reduce the number of partial sum cache overflows. HipMCL requires a
larger memory footprint than the input size. For example, it uses more than 12 GB of memory for
a 500 MB input (subgraph4 in the evaluation). When the ASA is used for larger inputs, tiling algo-
rithms are expected to be applied to reduce memory usage, which will also reduce the overflows.

7 EVALUATION RESULTS

This section presents the evaluation results of the proposed ASA architecture on performance
and energy. A roofline model analysis is performed to demonstrate the computation bottlenecks.
Moreover, sensitivity studies are conducted on the partial sum cache configurations and alternative
design choices on offloading computation to the hardware accelerator.

7.1 Performance

The performance benefit of the proposed ASA design comes from three aspects: (1) it avoids branch
mis-prediction penalty in the baseline hash-based Sp GEMM, (2) it reduces the total number of the
instructions by consolidating hash probing, collision handling, and accumulation operations into a
single instruction and removing symbolic phase, and (3) it provides a higher throughput for sparse
accumulation by using a dedicated cache and accumulator.

Speedup. On average, ASA achieves a 2.25X speedup as compared to the baseline hash-based
SpGEMM, which is 67% more than what HTA can achieve (Figure 8). As compared to HTA, which

INote that HipMCL computes matrix multiplication with input matrix B = AT.
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SpGEMM Timing Breakdown
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Fig. 9. Average execution time breakdown for SPGEMM kernel across all inputs.

accelerates only hash operations, ASA uses a dedicated partial sum cache and a dedicated accu-
mulator to provide higher throughput for sparse accumulation. HTA relies on a software rollback
for collision and overflow handling. Overflows in the HTA table will trigger a software fallback
path for an update, whereas ASA uses the address generator to write the overflowed entries to a
pre-allocated memory space and merge overflowed partial sums in the end. HTA evicts a randomly
chosen key-value pair to the next level to make space for a new one, which may cause premature
eviction when hash probing has locality. ASA uses an LRU replacement policy to exploit locality
in SpGEMM computation and minimize premature eviction of partial sums. HTA was designed
for hash-intensive applications, especially those that have large hash tables, where poor locality
causes cache thrashing and long memory stalls. In SpGEMM, the input matrices can be partitioned
into tiles to allow non-zeros in a sub-column to fit into on-chip caches; the sparse accumulation
throughput is a greater concern than cache thrashing. In fact, applying tiling does not help to im-
prove performance for the baseline nor the HTA for the evaluated application and inputs. This is
because the non-zeros in each output column can already fit in an L1 cache. Tiling does not pro-
vide more locality benefit for the baseline and HTA, but rather adds overheads due to increased
number of branches and more irregular memory accesses in the tiled input matrix A.

Tiling helps to improve performance for ASA by reducing cache overflows in the small partial
sum cache. In general, input graphs that observe a large reduction on cache overflows (e.g., pb,
subgraph4, subgraph5, Eukarya, and archaea, according to Figure 11) have performance benefit
from tiling.

Speedup breakdown. To understand how well the proposed ASA helps with improving hash
probing throughput and how much overhead comes from the cache overflows, we break down the
SpGEMM kernel timing in Figure 9. On average, the proposed ASA can achieve a 4.55x of perfor-
mance speedup for the SpGEMM kernel. The symbolic phase takes 14.5% of the execution time
for the baseline, which can be eliminated from ASA-enabled SpGEMM. The sparse accumulation
(hash-based numeric phase) takes 76% of the baseline runtime, which can be reduced by 6.33x.
The performance overhead of the ASA is when there are overflows and costs conditional merging
for all of the overflowed entries. In the baseline SpGEMM, sorting and merging takes 8.7% of the
total execution time, whereas in ASA, sorting and merging now takes 9.5% relative to the base-
line execution time. As a result, the conditional merging only costs 0.8% of the total performance
overhead, because the selected partial sum cache allows most of the hash probing to be overflow-
free. Applying tiling can further reduce the number of overflows and hence reduce the sorting and
merging latency to 8.45% of total execution time. This is because sorting multiple small chunks
takes less time than sorting all chunks together.

We further break down HipMCL workload; the localspgemm in Figure 10 refers to the total
execution time of the Sp GEMM kernel. The overall performance of the MCL algorithm can be
improved by 2.25X because of the speedup from the Sp GEMM kernel.
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HipMCL Timing Breakdown
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Fig. 10. Average execution time breakdown for HipMCL application across all inputs.

7.2 Offload Hash and Multiplication

The proposed ASA architecture does not offload hash key calculation and multiplication to hard-
ware for a cost-effective design. Adding more hardware resources for hash key calculation and
multiplication (lines 5-6 in Algorithm 2) can further achieve an average of 15.8% and a 5.3% of
additional speedup for the Sp)GEMM kernel and the HipMCL application, respectively.

There are three reasons to keep hash key computation and multiplication in software: (1) the pro-
grammer can have the flexibility to explore different hash functions, which may result in different
optimal choices for different problem domains. The choice of the hash function will influence the
load balancing among different cache sets, which can result in different number of cache overflows
due to set conflicts. The evaluated design uses a prime number modulo hash function. (2) Multipli-
cations of the non-zero elements can be vectorized using an existing vector engine inside the core
to achieve higher throughput such as the Intel AVX-512. The evaluated design of ASA uses the ex-
isting floating-point unit (FPU) to reduce area overhead. And (3) offloading hash function and
multiplication to dedicated hardware logic only achieves an incremental improvement according
the simulation results of the selected inputs.

7.3 Overflow Rate

Instead of precisely split tiles based on the number of nonzeros, we use a simple tiling algorithm
that breaks dense output columns into multiple sub-columns. During the actual computation, if a
column of C will cause overflow, then the column is broken up into several chunks. The chunks
span uniform parts of A, e.g., if A has 2 million rows and we would like to break the column
into 2 chunks, then the first chunk will contain entries [0,1e6) and the second chunk [1e6,2e6). We
assume that the distribution of the non-zeros is not particularly skewed towards either chunk. The
SpGEMM then proceeds to fully compute one chunk at a time. As shown in Figure 11, the overflow
rate can be significantly reduced by applying a simple tiling algorithm.

7.4 Partial Sum Cache Configurations

The size and associativity of the partial sum cache can influence the set conflict rate as shown in
Figure 4. We found that the performance is more sensitive to the cache capacity than associativity
(Figure 12). In our design, the partial sum cache is implemented as a fine-grained cache with a
block size equal to the word size of a partial sum (i.e., 8 B). The ASA can achieve a good speedup
with a 4 KB cache, which can save up to 512 key-value pairs. The tiling algorithm selects the size of
the sub-matrices to fit the number of non-zeros into the cache. The smaller the cache, the faster the
cache lookup and the lower the lookup energy. However, if the cache is too small, then the input
sub-matrices of A would have fewer rows and hence increase the amount of irregular accesses
due to the DCSC storage format used in HipMCL. Ideally, the partial sum cache should be large
enough to allow the input data broadcasting to saturate the system memory bandwidth, yet small
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Fig. 12. Performance with different partial sum cache configurations. (The L1 cache size is kept as 32 KB.)

enough to allow fast cache lookup to match with the demand sparse accumulation throughput.
This optimal design point of cache size depends on the sparsity and merging factor of the matrices.
Luckily, for the evaluated graphs, the selected 8 KB cache is within this optimal range.

7.5 Roofline Modeling

Sparse accumulation is the bottleneck of the baseline system that prevents it from achieving a
higher throughput. A roofline model for HipMCL application with different inputs is shown in
Figure 13, which includes bandwidth ceilings of different levels of the memory hierarchy and
a computation ceiling. The original HipMCL implementation does not fully utilize the memory
bandwidth nor the processing throughput. This is because the sparse accumulation is bounded by
the data-dependent branches. The proposed ASA eliminates those hard-to-predict branches and
improves sparse accumulate throughput using dedicated partial sum caches. The performance is
improved by more than 2X. As a result, for all of the inputs, their positions on the roofline graph
are shifted toward the upper left. After using ASA, all of the inputs are closer to the rooflines. Most
inputs are bounded by the memory and last level cache throughput.

7.6 Instruction Reduction

The proposed ASA reduces the total number of instructions by (1) packing complicated hash prob-
ing and collision handling into a single instruction and (2) removing the symbolic execution, as the
implementation does not require allocating the hash table from software anymore. On average, the
HipMCL algorithm running on ASA architecture observes a 54.4% dynamic instruction reduction
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Fig. 15. Energy consumption normalized to the baseline (left bar: Baseline, mid bar: HTA, right bar: ASA).

as compared to the baseline (Figure 14). Although additional instructions are expected when there
are cache overflows, the frequency of overflows remains low for all evaluated inputs. As a result,
it does not contribute a large portion to the total instruction count.

7.7 On-chip Energy

HTA reduces the energy consumption and achieves a better performance as compared to the base-
line. The proposed ASA architecture reduces more energy as compared to HTA, shown in Figure 15.

2The FLOP calculation does not include the accumulations done by ASA.
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Fig. 16. Average normalized execution time breakdown.

There are three reasons for this further energy reduction. (1) The reduced instruction counts con-
tribute to a reduction in energy associated with instruction fetching and decoding. (2) hardware
hash probings in ASA use a smaller partial sum cache, which has a lower access energy than the
access energy of an L1 cache. And (3) the reduced execution time in ASA reduces energy associated
with leakage power. As a result, the ASA reduces the total on-chip energy by 57.1% as compared
to the baseline, which is a nearly 20% more reduction than HTA does.

7.8 Execution Time Breakdown

To quantify the performance bottleneck, an execution time breakdown is shown in Figure 16,
which followed the CPI stack methodology [16]. Each bar represents the average stalling time
across cores and memory hierarchy:.

ASA can reduce the stalling by branch mispredictions more than HTA does. This is because ASA
can handle collision and data-dependent accumulation automatically by hardware. Moreover, ASA
offloads the sparse accumulation to the partial sum cache. Execution time on L1 and LLC cache is
also significantly reduced as compared to baseline.

7.9 Area Overhead

The area overhead of the ASA architecture consists of four major components: (1) the partial sum
caches, (2) the additional FP adders, (3) the accumulation waiting buffers, and (4) the address gener-
ators. The total area overhead is 0.014 mm? at 14 nm, which occupies 0.013% of an 8-core processor
die (100.708 mm?).

8 RELATED WORK

To the best of our knowledge, ASA is the first tailored accelerator design for sparse accumulation
in column-wise SpGEMM. In this section, we discuss the pros and cons of related works that target
SpGEMM.

Hardware-accelerated index matching. SMASH [25] proposed a novel software encoding
based on a hierarchical bitmapAiand used a bitmap management unit per core for highly efficient
indexing of sparse matrices for the inner-product method. It does not fundamentally reduce the
dependent loads, as each multiplication is always followed by an index matching of two elements.
Moreover, the hierarchical bitmaps occupy a larger memory footprint as compared to the CSR [31]
format. The method requires converting the data format from CSR to the hierarchy of bitmaps as
a pre-processing step, which adds a 4%-30% of the end-to-end execution with different inputs.

Hardware-accelerated scatter updates. PHI [36] added compute logic at each cache level
to buffer and coalesce these commutative updates throughout the hierarchy. As a result, it ex-
ploits temporal locality with low cost of synchronizations. In column-based SpGEMM, especially
SUMMA [11], the input matrices are partitioned and broadcast to different cores, so most of the
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scatter updates will hit in the cache with minimal synchronizations with other cores. In our works,
ASA has the following differences that makes it a better fit for column-based SpGEMM: (1) ASA
extends the ISA for reducing branch-misprediction cost, while PHI did not improve the branch
predictions. (2) ASA supports hardware hash-based SpGEMM, which can effectively reduce the
footprint of the scatter updates, while PHI focused on scatter updates to larger memory space.
And (3) ASA leverages the partial sum cache with a higher throughput as compared to L1 cache
to improve the speed of the sparse accumulations.

Hardware-accelerated hash lookup. HTA [59] proposed to extend the ISA for hash-specific
operations, including hash lookup, insertion, and deletion, which helps to reduce the hard-to-
predict branches and improve the core utilization. As compared to HTA, the proposed ASA can
accelerate sparse accumulation in addition to hash operation. ASA handles hash collisions and
cache overflows by hardware. Instead of leveraging existing caches to store hash table entries as
HTA does, ASA adds dedicated on-chip storage as partial sum cache to provide higher throughput.
With the same total on-chip cache capacity (data cache + partial sum cache), ASA outperforms
HTA by more than 62.2% for a Markov clustering application with a Sp)GEMM kernel. SPX64 [46]
proposed to add an on-chip scratchpad for accelerating hash lookups in redo logging for the trans-
actional memory. However, it does not resolve data-dependent branches.

Processing-in-memory. PIM [29, 47, 61] exploits high internal bandwidth in/near memory. In
3D-stacked memory technology, cores on the logic layer can access the memory layer much faster
than cores on the processors die do, which is helpful for memory-intensive applications. LiM [61]
added CAM-based SpGEMM cores at the logic layer for fast lookup in sparse accumulation. As
compared to the ASA design, LiM requires more hardware modifications and advanced technology.

SpGEMM accelerators. Software/hardware co-designs [23, 38, 40, 58, 60] of the outer-product
based Sp GEMM have shown significant improvements over the implementations on the traditional
architectures. The OuterSPACE [38] architecture uses reconfigurable coalescing caches to sepa-
rately optimize the multiplication and merging phases [38]. This is improved upon by SpArch [60],
which proposed a dedicated merger and used a Huffman tree scheduler to merge together partial
sums in a way that reduces memory traffic. Gamma [58] leverages Gustavson’s algorithm to accel-
erate SpGEMM, which manages data through fiber cache explicitly and improves the row traversal
schedule to improve the data reuse. The proposed ASA architecture is an in-core extension to accel-
erate SpGEMM with good performance (5x speedup), which maintains the generality of multicore
processors and requires a small area overhead (0.1%). Dedicated SpGEMM accelerators can achieve
more than 20X speedup at a cost of more than 200X area overhead as compared to ASA.

Heap-based sparse accumulation [1, 10]. Instead of a hash table, some SpGEMM implemen-
tations use priority queues (heap) that are indexed by row indices for sparse accumulation. The
advantage of using a heap-based accumulator is it does not require a sort and merge operation, be-
cause the entries in the heap are sorted already. However, heap-based Sp)GEMM can be expensive,
because it requires logarithmic time to extract elements from the heap. As a result, heap-based
SpGEMM is more suitable for S\GEMMs with a low compression factor. In CombBLAS [10], a hy-
brid method is used to dynamically select whether to use a heap- or hash-based approach based
on the symbolic phase analysis result. However, hash probing is still the bottleneck in CombBLAS
when the applications have a high compression ratio.

Branch predication. Predicated execution [52] removes conditional branches from the instruc-
tion stream by conditionally executing instructions based on the results of the Boolean conditions,
which can effectively reduce the branch misprediction penalty. However, predication increases the
number of executed instructions and energy consumption. The ASA design replaces the software
hash lookups by the hardware cache lookups. As a result, there is no branch in sparse accumu-
lations. Moreover, ASA reduces the total number of instructions by packing complicated hash
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probing and collision handling into a single instruction, which can further improve performance
and reduce energy.

Indirect memory prefetching. Indirect memory prefetching [50, 57] can hide front-end
stalling time by prefetching dependent data ahead of the time. In this work, the columns of the
output matrix are tilled to fit into the partial sum cache. Hence, prefetching does not help in the
sparse accumulation phase. Input columns of matrix A that are indexed by column values in matrix
B can potentially benefit from indirect memory prefetching, which is complementary to ASA.

9 CONCLUSION

This work proposes ASA, an in-core extension for accelerating sparse accumulations in column-
base SpGEMM. By using a single instruction to compute sparse accumulation for each multipli-
cation result of a pair of non-zeros, ASA can reduce the total number of dynamic instructions,
execution time, and energy. ASA adds a small dedicated on-chip set-associative cache with an ac-
cumulator to compute hash probing and accumulate to achieve a high throughput. Linear hash
probing is replaced by parallel tag search in the set-associative cache. And cache overflows are
stored to a pre-allocated data structure in memory to avoid stalling by allowing delayed merging
of partial sums. The proposed ASA architecture has a simple programming interface that allows
further software optimizations. As compared to the baseline as well as a state-of-the-art hashing
accelerator design, ASA achieves better performance and energy efficiency with the same total
on-chip cache capacity.
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