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Abstract—The state-of-the-art deep neural network (DNN)
models use pruning to avoid over-fitting and reduce the number
of parameters. In order to improve storage and computational
efficiency, only nonzero elements are stored, and their locations
are encoded into a sparse format. Sparse General Matrix Mul-
tiplication (SpGEMM) is the kernel computation of DNN-based
applications. One challenge of computing SpGEMM is to avoid
multiplying zero elements while keeping hardware utilization
high in hardware accelerators that consist of processing element
(PE) arrays. Prior work tackling this challenge typically requires
complex interconnection networks, which adds high area and
energy costs.

This work proposes a HW/SW co-design architecture to
compute SpGEMM efficiently without requiring complex inter-
connection networks. A novel fast packing algorithm, SorPack,
is proposed to convert a sparse matrix into a dense matrix that
increases PE utilization. The key idea is to sort columns and
rows inside each submatrix based on the number of nonzero
elements. The goal is to keep the partial sums that need to be
added together close to each other, hence can be added locally and
avoid the use of complex interconnection networks. In addition, a
new tile-based hierarchical architecture, HIRAC, is proposed to
provide a scalable system that maximizes the parallelism of the
PEs. The HIRAC architecture consists of a novel PE array design
and interconnection network tailored for DNN applications. The
SorPack algorithm complements the HIRAC to further improve
hardware utilization and overall system performance. Based
on the evaluation results, HIRAC achieves an average of 3.2×
speedup on a single layer of DNN as compared to the state-of-
the-art sparse DNN accelerator SIGMA. In addition, HIRAC has
a 9.5% area reduction and a 32% power reduction as compared
to SIGMA. An end-to-end evaluation on a DNN model shows an
8.2× runtime reduction over the TPU.

I. INTRODUCTION

DNN models are widely used in artificial intelligence (AI)
applications such as speech and image recognition, robotics,
self-driving, etc. DNN models have significantly improved
accuracy on many AI tasks as compared to previous genera-
tions of neural network models. However, these models require
many parameters to be trained and stored, which demands high
computational complexity and considerable data movement
between on-chip and off-chip.

One of the crucial steps for widely deploying DNNs models
in AI systems is to design efficient hardware architectures.
DNN accelerators [6], [13], [20] have been proposed as a
promising solution to tailor the hardware to the specific need
of DNN computation. These accelerators typically consist of
specialized PEs and application-specific on-chip networks. For

example, tile-based architectures are well studied and applied
frequently in DNN accelerator designs [4], [5], [20], [22].

From the application side, one way to reduce the compu-
tation complexity in the state-of-the-art DNNs models is to
decrease the number of parameters in the weight matrices by
using different pruning methods to eliminate small weights,
making the weight matrix sparse. In addition, applying non-
linear layers (e.g., pooling, ReLU, and dropout) to the ac-
tivation feature maps can make these activation matrices
sparse as well. As a result, SpGEMM becomes an important
computational kernel prevalent in DNN workloads, which is
typically a performance bottleneck when these applications run
on GPUs and accelerators.

The state-of-the-art accelerators such as TPU [13] leverage
systolic arrays as the compute platform to speed up dense
GEMM operations. However, TPU does not support sparsity
properly and typically suffers from low utilization of the
PEs for SpGEMM computations. For simple hardware design,
systolic arrays restrict data movement to one-directional for
gathering the partial sum results. The PEs have low utilization
when zeros are mapped to the PEs.

SIGMA [20] proposed to handle the limitations of TPU for
SpGEMMs in DNN applications by leveraging a hierarchical
design to interconnect different PEs to improve the paral-
lelism of the multipliers that are computing nonzero elements.
However, SIGMA adds considerable area overhead and power
consumption because of the high flexibility and complexity of
the interconnection network in the non-blocking distribution
and reduction networks.

Sparse-TPU [7] proposed packing algorithms and index
matching mechanisms to efficiently process sparse matrices in
a condensed format to process sparse matrix-vector multipli-
cation in a systolic array architecture. However, Sparse-TPU
is burdened by the greedy search algorithm’s complexity when
combining candidate columns.

This work proposes a simple and fast packing algorithm,
SorPack, to efficiently convert sparse matrices to denser ones.
The SorPack algorithm takes advantage of partitioning and
sorting before packing the sparse matrices. The uniqueness
of SorPack is the sorting of columns and rows inside each
submatrix based on the number of nonzero elements. This
helps to keep the partial sums that need to be merged close
to each other, improving the possibility of reducing the partial
sums before sending them to the network, which reduces data
movement. In addition, the algorithm is simple, which enables
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it to be applied to activation matrices online.
Along with SorPack, a novel SpGEMM accelerator, HIRAC,

is proposed to take advantage of the optimization result
of SorPack. Statistics gathered from matrices with targeted
sparsity range are used to make design decisions. HIRAC is
an innovative hierarchical design to tackle the challenges of
SpGEMM computations. The innovations of HIRAC include
a new PE subarray design with same cycle mergers and a
simple interconnection network that moves the data toward one
direction based on the desired dataflow. Combining SorPack
with HIRAC improves overall hardware utilization and system
performance.

Based on the evaluations, HIRAC has greater speedup,
smaller area, and lower power consumption as compared
to SIGMA. Area saving of HIRAC is due to the simple
interconnection network and the hierarchical design of the PE
subarray. The SorPack algorithm enhances the power saving
and performance improvement of HIRAC.

The key contributions of this paper include the following:
• An HW/SW co-designed architecture to perform

SpGEMM efficiently for state-of-the-art Sparse DNN
applications.

• The SorPack algorithm is a novel fast packing algorithm
to efficiently convert sparse matrices to dense ones to
improve PE utilization and system performance.

• The HIRAC, a hierarchical accelerator for Sparse GEMM
with low network complexity and high system perfor-
mance.

• Evaluations on representative matrices in DNN workloads
to cover different SpGEMMs irregularity and sparsity
ranges.

• Design space explorations of the HIRAC and SorPack to
reduce hardware complexity and improve system perfor-
mance.

II. BACKGROUND AND RELATED WORK

This work’s key ideas center around preprocessing sparse
matrices and designing tailored hardware accelerators for
DNN and SpGEMM. Before introducing the proposed archi-
tecture, this section discusses the background and related work
on sparse matrix preprocessing and accelerators for DNNs and
SpGEMMs.

A. Preprocessing Methods

Recent work [7], [14] proposed offline preprocessing pack-
ing algorithms to condense sparse input matrices into denser
ones and then mapped them onto the systolic array to perform
SpGEMMs. Offline preprocessing can typically improve com-
putation efficiency. However, the latency overhead can be high
for large inputs.

A column combining method has been proposed by Kung et
al. [14], which packed sparse matrices and used them in a sys-
tolic array-like architecture. Kung’s work presented efficient
bit-serial multipliers and accumulators in the systolic array.
It improves system scalability by using a given number of

parallel buses on each column of the 2D systolic array. How-
ever, the design only supports integer arithmetic. Therefore,
the system cannot support high-precision applications. Sparse-
TPU [7] can efficiently handle sparse matrices in a condensed
representation using an index matching mechanism and value
holding functionalities on a systolic array-based system. It was
inspired by the column combining preprocessing method in
[14] and proposed three packing algorithms based on a greedy
algorithm. In the Sparse-TPU work, a collision-aware packing
algorithm has been proposed to increase the matrix density and
hardware utilization. This algorithm selects sparse columns to
be combined into a denser column without changing the row
positions of nonzero elements. A collision happens between
the selected columns that have one or more nonzero elements
with the same row indices. The collision-aware algorithm is
used as a baseline for evaluations in Section VII. This algo-
rithm first partitions the rows in the matrix and then performs
collision-aware column merging. The final step is to partition
the columns in the matrix. This column merging algorithm is
an iterative algorithm, which can be time-consuming for the
large matrices in the DNN applications. Also, the dataflow in
Sparse-TPU is designed for sparse matrix-vector multiplication
(SpMV), which is not optimized for SpGEMM in DNN
applications [27]. The proposed SorPack algorithm is a non-
iterative method and thus exhibits lower latency overhead as
compared to the collision-aware packing algorithm [7].

In addition, recent work [11] proposes online preprocess-
ing methods by implementing dedicated hardware units for
skipping the zero values in the input feature map. It searches
for nonzero elements in each lane within the search window
during the runtime. However, the search process is limited by
the search window size, which increases hardware complexity
to address the overlap between search windows. Additionally,
inter-lane search requires multiple multiplexers, which in-
creases hardware complexity and area. The proposed SorPack
algorithm will run on the CPU, hence does not add hardware
overhead for packing matrices.

Besides the above mentioned preprocessing techniques,
various compressed storage formats (i.e., CSR [15], TJDS
[18], ELLPACK [31]) have been used to store nonzero values
and their corresponding indices. These compression methods
significantly reduce storage requirements, especially in highly
sparse matrices. However, predicting the locations of nonzero
elements in the input matrices with matching indices in
SpGEMM computation is difficult without decoding the sparse
format first [28]. Thus, index matching increases the latency
for data fetching.

Sorting-based compression methods like TJDS, SELL-C-σ
format [2] applies sorting and reordering in their compression
method. The goal of using the sorting step is to improve
cache utilization. The proposed SorPack algorithm also uses
a sorting step, but the goal is to keep the partial sums that
need to be added together close to each other to reduce the
data movement on the global wires. This makes the partial
sum merging more efficient in the proposed sparse DNN
accelerators.
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B. Accelerator Designs for DNNs and SpGEMMs

Accelerators should pay attention to providing system effi-
ciency by leveraging adequate dataflow to perform SpGEMM
computation. Many hardware accelerators have been proposed
to speed up DNNs and SpGEMMs. There are three types of
dataflows commonly adopted by these accelerators to optimize
for data reuse: inner product [8], [20], outer product [9], [30],
and row-wise product (column-wise is similar) [24], [29]. The
inner product dataflow computes the dot product of a row
and a column of the input matrices for one output matrix
element before moving on to the next output matrix element,
which achieves good output reuse but poor input reuse. The
inner product works better for relatively denser input matrices
(DNN sparsity ranges) [29], where a row and a column of the
input matrices have nonzero elements with the same indices.
The outer product computes the tensor product of a column
and a row of the input matrices before moving on to another
pair of a column and a row. The outer product can have
better input reuse but worse output reuse as compared to the
inner product, which typically favors sparser input matrices
[9], [30]. The row-wise product (a.k.a. Gustavson’s algorithm)
takes one row of the first input matrix to compute a row
of the output matrix before moving on to the next row. As
compared to the outer product, row-wise typically generates
less memory traffic and has simpler merging operations for
partial sums in highly sparse matrices such as matrices in
graph analytics applications [29]. The inner product is chosen
for the proposed HIRAC due to the relatively higher nonzero
density in the matrices of the DNN applications. In SpGEMM
computation, a weight matrix (KN in Fig. 1) is multiplied
with an activation feature map matrix (MK). The weight
matrix is called stationary matrix because the weights are
mapped to and stay in the PEs until the corresponding elements
in the feature map matrix are multiplied by the weights.
The activation feature map matrix is called streaming matrix
because its elements are sent through different PEs columns.

The hierarchical interconnection network is a common
feature in the accelerators, which can improve parallelism and
reduce data movement. Eyeriss v2 [5] presents a hierarchical
mesh network for a small mobile convolutional neural network
that supports sparse activation feature maps and weights stored
in a compressed format. The implementation cost of accumula-
tion increases linearly in the architecture design. Google’s TPU
[13] is a collection of multiplier-accumulator (MAC) units
arranged in a 2D grid to speed up dense GEMM computation.
However, TPU cannot support sparsity properly due to its
rigid structure, which faces the challenge of maintaining
high PE utilization. Facebook (Meta) designed a specialized
computing platform to accelerate recommendation systems
and the natural language processing [1], which includes six
power-efficient accelerator cards and a single-socket host CPU,
enabling them to perform complex and large models for their
targeted workloads that cannot efficiently run on CPUs. Simba
[22] is proposed as the first chiplet-based DNN accelerator.
Each of the Simba chiplets can be used as an inference

accelerator, while multiple Simba chiplets can be packaged
together to deliver data-center-scale throughput across a wide
range of workloads. In a Simba-like architecture, communi-
cation latency is crucial in improving large-scale systems’
performance and energy efficiency. This proposed HIRAC is
inspired by the hierarchical design in Simba. SIGMA [20]
was inspired by Simba, which proposed a hierarchical design
to compute SpGEMM using a set of Flexible Dot Product
Engine (Flex-DPE) units to construct a Flexible Dot Product
Unit (Flex-DPU). SIGMA maps only nonzero elements of
the stationary matrix to the Flex-DPEs and uses separate
networks to improve the flexibility of data movement as well
as hardware utilization and performance. SIGMA uses the
Benes topology for non-blocking data distribution and a novel
tree-based Forward Adder Network (FAN) as the reduction
network to enable efficient irregular SpGEMM computations
for DNNs. These design choices enabled SIGMA to handle
the sparsity efficiently. The flexibility of SIGMA improved
weight distribution and reuse, which decreased the imple-
mentation cost of the reduction network by designing the
spatial accumulation with FAN as compared to the Eyeriss v2
[20]. However, the interconnection networks in SIGMA add
significant area and energy overhead [21] due to its complexity.
Additionally, the PE utilization of SIGMA is determined by
the sparsity of the streaming matrix. As a result, the SIGMA
design does not perform as efficiently when streaming a
sparser matrix compared to a denser one [20]. Moreover,
SIGMA requires preprocessing to find the nonzeros before
mapping the stationary matrix, which also adds latency and
energy overhead. SIGMA is the closest work to the proposed
HIRAC for the same kind of targeted applications. HIRAC
uses a simple interconnection network to reduce the area and
energy overhead of SIGMA while achieving an average of
3.2× performance improvement on a single layer of DNN
computation.

In addition to the related work discussed above, other recent
studies target alternative applications (e.g., language process-
ing) that also involve sparse matrices and SpGEMM computa-
tions. These accelerators typically have different dataflows or
targets on sparse matrices after structured pruning. SPOTS [23]
presents a hardware accelerator using flexible systolic array
architecture for sparse convolutional neural networks (CNNs),
which supports structured pruning. Structured pruning sets
weights to zero at specific block sizes or defined locations,
which might degrade model accuracy in some applications.
Sanger [17] proposed and evaluated an HW/SW co-design
for the BERT language model leveraging a reconfigurable
systolic array architecture. In Sanger, the SW component
applies dynamic structured pattern pruning in the attention
matrix. S2 Engine [27] proposed a new systolic architecture
and a collective element (CE) array for maximizing the data
reuse in sparse CNNs. Some other work proposed row-wise
accelerator designs for highly sparse matrices in which the
nonzero elements range from 10−6−1% [24], [29]. However,
the sparsity ranges go beyond the scope of typical DNN
applications. Therefore, these designs are not suitable for DNN

3



Streaming (Original)

K

M

Streaming

 (after Packing)

Level 1 Level 2

SorPack

PE 

PE 

PE 

PE 

PE 

PE 

PE 

Same 

Cycle 

Merger

Same 

Cycle 

Merger

PS 

Buffer

PE Subarray

R

PE 

Accelerator 

Step 1-Preprocessing 

Step 3- 
Streaming

 to PEs 

2-Sorting rows 

3-Packing rows 

Step 4- 
Multlipication

Step 5- 
Merging

same color means the 

nonzero elements of 

the same row (id)

Step 6- 
Propagation to SRAM

On-Chip SRAM Step 7- 
Summation in SRAM

1-Partitioning rows 

PE 
Subarray 

Stationary (Original)

K

N

Stationary

(after Packing)

Level 1

Level 2

SorPack

Step 2-
Loading 

to PEs 

2-Sorting columns 

3-Packing columns 

same color means the 

nonzero elements of 

the same column (id) 1-Partitioning columns 

4-Deleting blank rows 

4-Deleting blank columns 

Same 

Cycle 

Merger

Same 

Cycle 

Merger

PS 

Buffer

PE 
Subarray 

PE 
Subarray 

PE 
Subarray 

R

R

R

PE 
Subarray 

PE 
Subarray 

PE 
Subarray 

PE 
Subarray 

PE 
Subarray 

PE 
Subarray 

PE 
Subarray 

PE 
Subarray 

R

R

R

R

R

R

R

R

Fig. 1. An overview of proposed HW/SW co-design architecture composed of preprocessing and accelerator parts.

applications.

III. SYSTEM DESIGN OVERVIEW

The goal of the proposed HW/SW co-design architecture
is to take advantage of the interaction between the software
(i.e., the preprocessing algorithm) and the hardware (i.e., the
accelerator) to improve the system performance and reduce
the hardware complexity. In general, some design decisions in
the preprocessing algorithm have to be made considering the
hardware organization and vice versa.

The software part of the proposed architecture focuses on
packing the sparse matrices in the DNN workloads using the
proposed SorPack algorithm. The hardware part dedicates to
executing SpGEMM efficiently through mapping the nonzero
elements to PEs and merging the corresponding partial sums
through merging units in the HIRAC in a pipelined manner.

For each layer of a DNN architecture that requires a
SpGEMM computation, a weight matrix is multiplied with an
activation matrix. Fig. 1 shows an illustration of performing
a SpGEMM operation on the proposed HW/SW co-designed
architecture, which consists of software preprocessing and
hardware acceleration. In the preprocessing step (step 1), the
SorPack algorithm is applied to both streaming and stationary
matrices to condense them. Either the weight or activation
matrix can be stationary or streaming. For the weight matrices
in DNN inference, the preprocessing step can be performed
offline. In step 2, a packed stationary matrix is loaded to the PE
subarray. In step 3, a packed streaming matrix is sent to the PE
array. In step 4, streamed elements to the PEs are multiplied
with the nonzero stationary elements. In step 5, the partial
sums are merged within the PE subarrays. In step 6, partial
sums are propagated from the PE subarrays to the SRAM. In
step 7, partial sums are added to corresponding entries in the
SRAM. The following sections will discuss each of these steps
in detail.

IV. THE SORPACK ALGORITHM

One goal of a packing algorithm is to convert a sparse
matrix to its denser representation that contains fewer zeros to
increase the PE utilization in a PE array. However, a denser

representation can challenge the merging of partial sums that
share the same indices. These partial sums can be produced
by different PEs or, at a different time, far away from each
other.

In this work, the SorPack algorithm is proposed, which
aims to improve packing density while keeping partial sums
to be merged close to each other spatially and temporally. In
the SpGEMM operation, a streaming matrix with the size of
M ×K is multiplied by a stationary matrix with the size of
K ×N . The dot product of each row of the streaming matrix
and column of the stationary matrix has to be computed. In
each dot product, nonzero elements with matching indices in
the streaming matrix row i and stationary matrix column j
contribute to summing up the element Cij in the result matrix
C. In order to avoid the additional complexity of index match-
ing for multiplication, the proposed SorPack algorithm does
not change the column position of the nonzero elements in the
streaming matrix or the row position of the nonzero elements
in the stationary matrix. During the streaming process, each
column of the streaming matrix is sent to the row of the
PE array that stores the corresponding row of the stationary
matrix. Therefore, every nonzero streaming element must be
multiplied by every nonzero stationary element within the row
of the PE array. Index matching is required only for summing
up the partial sums.

The nonzero elements in the same stationary column or the
same streaming row should not be split into different locations
far away from each other to keep the partial sums of a group
close to each other for merging. For example, assuming all
the nonzero elements in the stationary matrix are directly
packed toward the left within each row, the column split
distance after packing of two nonzero elements in the same
column is the difference in the number of nonzero elements
in their corresponding rows on the left of this column. The
SorPack algorithm keeps the row/column split distance small
by sorting and rearranging the rows in the streaming matrix
and the column in the stationary matrix based on the number
of nonzero elements in that row/column before packing.

As shown in Algorithm 1, SorPack has four steps (lines
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39-45), which include two steps before packing to limit and
reduce the column/row split distance. This algorithm uses a
stationary matrix as an example, while the following explana-
tion covers both stationary and streaming matrices to make it
general. The four steps include: 1) Partitioning the columns
and rows of the matrix into P × P sub-matrices (lines 3-15).
Further column and row position rearrangements are limited
within the partition. The purpose of this partitioning step is
to limit the column/row split distance to be smaller than P ,
which is a configurable parameter. 2) Sorting columns of the
stationary matrix and rows of the streaming matrix within
each partition based on the number of nonzero elements in the
columns and rows respectively from large to small (lines 17-
23) and rearrange their positions (lines 24-28). 3) Packing the
stationary and streaming matrices by moving nonzero elements
next to each other towards the left and the top within the rows
and columns, respectively, within each partition (lines 29-34).
4) Deleting all-zero columns in the stationary matrix and all-
zero rows of the streaming matrix after packing, which helps
to increase matrix density and PE utilization (lines 35-38).

Fig. 2 shows an example of applying the proposed SorPack.
In this example, the partition size P is 4. Partitioned tiles in
the same row of the stationary matrix or the same column of
the streaming matrix are called a level. When a PE subarray
row cannot fit the entire stationary level, tiles in that level are
loaded to the next row. The tiles in a streaming matrix level are
sent to all PE subarrays that store the corresponding stationary
matrix level. After sorting, dense rows in the streaming matrix
are placed on the top of each partition, whereas dense columns
in the stationary matrix are placed on the left of each partition.
Because of the sorting, the nonzero elements in the dense rows
and columns stay in the same row/column (e.g., I, E, J, K in
the streaming matrix and b, s, t in the stationary matrix). Both
matrices’ size is reduced after deleting all blank rows and
columns, which results in memory space saving and runtime
reduction.

Impact of the SorPack Steps on the Hardware Design.
A critical goal of the SorPack algorithm is to increase the
merging of partial sums at the same cycle and column, which
does not require hardware to buffer the partial sums and their
corresponding labels for comparing and merging. Increasing
the percentage of the same-cycle, same-column merging can
improve performance, reduce data movement, and reduce
hardware complexity.

a) Impact of Partitioning: The Partitioning step deter-
mines the maximum column/row split distance, which also
influences packing density, performance, and energy consump-
tion. Smaller P size limits the column/row split distance and
increases the same-cycle/col merging percentages. As a result,
the number of partial sums to be moved on the network might
be reduced, and the merging latency and energy efficiency can
be improved. However, a smaller P size reduces matrix density
after packing, which leads to bigger matrices being loaded
and streamed. This can increase the loading and streaming
latency and energy. After applying the packing algorithm,
the ratio of the number of nonzeros and the product of the

Algorithm 1: SorPack Algorithm
1 Input: Stationary matrix M, Partitioning size pSize
2 Output: Sorted and packed partitions
3 Function PARTITION(M, pSize):
4 nRows, nColumns = M.shape
5 for i← 0 to nColumns− 1 do
6 for j ← 0 to nRows− 1 do
7 tmpSubPartition = {}
8 aRowIndex = min(pSize, nRows - j)
9 aColIndex = min(pSize, nColumns - i)

10 for counter ← 0 to aRowIndex do
11 tmpSubPartition += M[j + counter][i: i +

aColIndex]

12 j += pSize
13 partitions += tmpSubPartition

14 i += pSize

15 return partitions

16 Function SORT(subPartition):
17 nRows, nColumns = subPartition.shape
18 numNonZeroElement[0:nColumns - 1] = 0
19 for each column ∈ subPartition do
20 for each element ∈ column do
21 if element ̸= 0 then
22 numNonZeroElement[column.index]++

23 sIndices = quickSort(numNonZeroElement)
24 tmpArray = subPartition
25 j = 0
26 for each i ∈ sIndices do
27 subPartition[i] = tmpArray[j]
28 j += 1

29 Function PACK(subPartition):
30 nRows, nColumns = subPartition.shape
31 for i← 0 to nRows− 1 do
32 for j ← 0 to nColumns− 1 do
33 if subPartition[i][j] = 0 then
34 delete(subPartition[i][j])

35 Function DELETE-COLUMNS(subPartition):
36 for each column ∈ subPartition do
37 if column.isBlank() then
38 delete(column)

39 Function SorPack(M, pSize):
40 partitions = PARTITION(M, pSize)
41 for each subPartition ∈ partitions do
42 SORT(subPartition)
43 PACK(subPartition)
44 DELETE-COLUMNS(subPartition)

45 return partitions

number of columns and rows is defined as the condensing
factor. Thus, the higher condensing factor is better since it
demonstrates higher condensing after applying the packing
algorithm. Fig. 3 shows the impact of partitioning sizes on
merging and condensing factor.

b) Impact of Sorting: The uniqueness of the SorPack is
the application of the Sorting step. This step helps to increase
the same-cycle/col merging because the sorting is based on
the number of nonzeros. After packing, the splitting distances
are minimized. Table I presents the same-cycle/col merging
percentage comparison with and without sorting for a variety
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Fig. 2. An example of applying the SorPack in the streaming and stationary
matrices.

TABLE I
THE SAME-CYCLE/COL MERGING PERCENTAGE COMPARISON OF

SORPACK WITHOUT SORTING VS. WITH SORTING.

Percentage of Without With
Zero Elements Sorting Sorting

Stationary=50%, Streaming=50% 8.7% 20.9%
Stationary=50%, Streaming=70% 7.6% 12.8%
Stationary=70%, Streaming=70% 5.8% 9.8%
Stationary=80%, Streaming=90% 1.3% 2.1%

Both stationary and streaming matrices are 100× 100, and P is 4.

of matrix sparsity ranges. As shown in the table, the Sorting
step increases the percentage of same-cycle/col merging of
partial sums, especially when matrices are relatively denser.

V. THE HIRAC DESIGN

An important design consideration of HIRAC is to effi-
ciently locate partial sums to be accumulated. HIRAC requires
an index labeling to find partial sums that need to be added
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Fig. 3. Condensing factor and the percentage of partial sums with the same-
cycle/col merging for different matrix partitioning sizes. The result is from
the 100 × 100 matrix size, and the sparsity of the stationary and streaming
matrices are 50% and 70%, respectively.

together. The label consists of the column id of the original
stationary matrix and the row id of the original streaming
matrix. Accumulation occurs in the merging units, and the
partial sums can only accumulate together when labels match.

Based on a study of the target matrices, 42% of the partial
sums do not need to be merged when the sparsity of stationary
and streaming matrices are 50% and 70%1, respectively. This
number increases for sparser matrices.

Fig. 4 shows an example of a preprocessed streaming and
stationary matrix after applying SorPack. The elements in the
streaming matrix are the row ids of the original streaming
matrix, and the elements in the stationary matrix are the
column ids of the original stationary matrix. This figure shows
when and where the PEs produce each partial sum. The
merging can take place under three situations 1) at the same
cycle, same column (e.g., (18,3)), 2) at different cycles but
the same column (e.g., (1,1)), and 3) across different columns
(e.g., (19,2)). The first situation is preferred for a simple
hardware implementation of accumulations. The proposed
HIRAC design includes a novel PE array, interconnection
network, and On-Chip memory (SRAM) to cover all of the
above mentioned situations efficiently.

A. PE Array

The PE array is hierarchically organized into multiple PE
subarrays. Each PE subarray has columns of PEs, Same Cycle
Merger, and Partial Sum Buffer (PS Buffer) as shown in Fig.
5. The Same Cycle Merger is a dedicated unit to handle same-
cycle/col merging efficiently without requiring any buffering,
which takes advantage of the SorPack that maximizes the
same-cycle/col merging.

1) PE Columns: In a column of PEs, each PE computes
multiplications when labels match. The results are then sent
to the same cycle merger dedicated to this column or the
corresponding router. If a stationary column id does not match
with any other column id in the same PE column, no partial
sum produced by this PE would be able to merge with other
partial sums in this column. These partial sums are sent to the
router, and the corresponding PEs can be identified when the
stationary matrix is loaded.

1These numbers are the middle of targeted sparsity ranges for both matrices.
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Fig. 4. Examples of partial sums to be merged produced under different
situations. A -1 col or row id means a zero element that needs to be skipped.
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Fig. 5. An illustration of the PE subarray of the HIRAC.

2) Same Cycle Merger: The same cycle merger adds the
partial sums produced at the same cycle, same column with
matching labels. The partial sums that have matching column
ids are sent to the same cycle mergers from of PEs in the
same column via tri-state buffers as highlighted in Path 1
and 2 in Fig. 5. The tri-state buffer is responsible for serially

transferring the partial sums from PEs. Same Cycle Merger
compares partial sums row ids to identify the correct merging.
About 14% of the total partial sums should be merged at
the same cycle and column in the PE subarray when the
sparsity of stationary and streaming matrices are 50% and
70%, respectively. Therefore, the same cycle merger plays an
important role.

The same cycle merger, as shown in Fig. 5, consists of a
pair of registers, an adder, and a comparator. When the partial
sum arrives at the same cycle merger, it checks whether the
register is empty or not. If it is empty, it means this is the
only partial sum available at that cycle in the same cycle
merger. Otherwise, it is stored in the second register. When
both registers are full, the comparator checks the row ids. If
the row ids match, the two partial sums are added together.
A priority encoder is used to transfer partial sums from both
registers to the PS buffer when the row ids are not matched.

3) PS Buffer: A PS buffer is associated with each PE
column, which is used to compute the additions of partial
sums from different cycles in the same column or when
more than two partial sums from the same cycle need to be
merged. About 23% of the merging is on partial sums from
different cycles, same column within the PE subarray when
the sparsity of stationary and streaming matrices are 50%
and 70%, respectively. PS Buffer requires comparators and
sequential logics to buffer partial sums and their corresponding
labels to search for potential merging candidates. The PS
buffer highlighted in blue in Fig. 5 consists of two adders,
a multiplexer, a comparator, a cache, a register, and a set of
lookup comparators. Streaming is stalled in the column when
the PS buffer is full, and the entries are evicted based on a
FIFO order before streaming is resumed. When a partial sum
arrives at the PS buffer, the labels from the two same cycle
mergers are compared. This is to cover the situation where
more than two labels from the same cycle merger are the same.
If they match, merging occurs, and the result is stored in the
cache. Otherwise, the partial sum is stored in the cache directly
or sent out to the router when the cache is full.

B. Interconnection Network

A single direction forwarding is supported to keep the in-
terconnection network simple. Each PE subarray is connected
to a router, which includes a set of the input-output buffers.
The main goal of the router is to transfer the partial sums
from PE subarrays to the SRAM for the final merging of
matching partial sums from different columns. Fig. 1 illustrates
the topology of the proposed interconnection network. The
partial sums can be sent to the router directly from the PE
subarray or from another router.

C. On-Chip SRAM

All of the partial sums are sent to the on-chip SRAM to
check if they can be further merged. This covers situations
where partial sums are produced in different columns or
different PE subarrays. Therefore, comparators and adders
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are required at the on-chip SRAM to handle these remaining
partial sums that need to be merged.

As discussed in Section IV, the stationary matrix is loaded
level by level, and the corresponding level of the streaming
matrix are streamed accordingly. This requires the on-chip
SRAM to hold the entire output matrix to capture all potential
partial sums to be merged before sending the results to the off-
chip. One optimization is to keep a tile of the output matrix
and change the loading and streaming order such that all of
the partial sums for this tile are computed before the next tile
is computed. Fig. 6 shows an illustration of the optimization
to compute the tiled output matrix.

Multi-bank direct mapped cache is considered for the
SRAM design since the output result matrix in the DNN
application is dense [28]. After each tile computation, the
SRAM is cleared before computing the next output result
matrix tile. It saves the on-chip area for last level merging.
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Fig. 6. An illustration of the optimization to compute the tiled output matrix.
The red block represents submatrices in level 1, and the blue block represents
submatrices in level 2. Shaded submatrices in (a) and (b) are the ones to load
and stream to compute tiles 1 and 2.

VI. EXPERIMENTAL SETUP

An in-house cycle-accurate simulator is used to model the
timing and functional behavior of the HIRAC architecture
to evaluate the performance. Architectural parameters of the
HIRAC with different configurations are listed in Table II.

To compare performance with SIGMA and TPU, an an-
alytical model is adopted directly from the SIGMA work.
The proposed SorPack algorithm is implemented in Python
as described in Section IV to generate packed streaming and
stationary matrices, which are then fed as inputs to the HIRAC.
The area and power of HIRAC are estimated by synthesizing
with the 45nm Synopsys standard cell library [25]. The results
are scaled to 28nm. BookSim 2.0 [12] is used to estimate
the power and area of the global wires in the interconnection
network. CACTI [3] is used to estimate the power and area of
the SRAM. The sparsity in the activation feature maps ranges
between 50-98% [26], and the sparsity range for weights from
pruning varies during training iterations from 10% to 90%
[20]. Table III shows the matrix dimensions of real-world DNN
workloads [19], [20] that are used in the evaluation.

TABLE II
ARCHITECTURAL PARAMETERS OF HIRAC.

Common Parameters
Technology 28nm

Clock Frequency 500 MHz
Total Num. of PEs 16384

Data Type BFP16 Multiplier, FP32 Adder
Channel Width 46 bits

Num. of Channels Per Router 32
Router’s In/Output Buffer Size 32 bits

Cache Buffer in PS 128 bytes
On-Chip SRAM 64 KB (32 banks, Direct-Mapped)

Sensitivity Study Parameters
2× 2 PE subarray:

Num of Same Cycle Merger: 2
Num of PS buffer: 2
4× 4 PE subarray:

Num of Same Cycle Merger: 8
Num of PS buffer: 4
8× 8 PE subarray:

Num of Same Cycle Merger: 32
Num of PS buffer: 8

TABLE III
COMMON DNN WORKLOADS DIMENSIONS.

Workloads M size N size K size

NCF (Set 0) 2048 1 128
Transformer (Set 1) 84 1024 4096

GNMT (Set 2) 1632 36548 1024
Nvidia GPU (Set 3) [19] 6912 2048 4096
Nvidia GPU (Set 4) [19] 27648 384 4096

Transformer (Set 5) 31999 1024 84

VII. EVALUATION RESULTS

A. The SorPack Algorithm

The proposed SorPack algorithm is faster than the collision-
aware packing algorithm in the Sparse-TPU work. Fig. 7
shows the runtime comparison of the SorPack and the
collision-aware algorithms for three different matrix sizes and
sparsities for both stationary and streaming matrices. The
result shows about 32× average reduction in runtime for the
smallest matrix. As the matrix size increases, a greater runtime
reduction is expected. The collision-aware algorithm partitions
a matrix vertically based on the number of PE rows in the
hardware design. Then greedy column merging is performed
inside each partition. A bigger matrix has more columns
for the iterative algorithm to find compatible candidates to
merge; hence, the algorithm takes longer for each iteration. In
contrast, the SorPack algorithm partitions both vertically and
horizontally. The packing step in the SorPack algorithm occurs
inside each partition with a constant partition size independent
of the matrix size, and the packing step is a faster non-iterative
single-pass process. Hence, SorPack is a scalable algorithm as
the matrix size gets bigger.

The impact of the sorting step in the SorPack on the overall
system performance is also evaluated. Fig. 8 shows the results
for different sparsities. The performance improvement is due
to the increased percentage of the same-cycle/col merging after
applying the sorting step in the SorPack. In the DNN appli-
cation, the nonzero elements have a uniform distribution [16].
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Fig. 7. The runtime comparison of the SorPack and the collision-aware
algorithm for different matrix sizes (a-c) and sparsities.

The percentage of the same-cycle/col merging is expected
to have greater improvement after applying the sorting step
in matrices with non-uniform distribution of nonzeros (e.g.,
adjacency graphs of real-world networks).
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Sorting also helps to reduce data movement energy because
it allows more merging to happen within the PE subarrays.
After applying sorting, the network energy is reduced by 10%,
and the SRAM energy is reduced by 8.5%.

B. The HIRAC Architecture

The HIRAC architecture is evaluated and compared against
the SIGMA and TPU architectures, which are faithfully mod-
eled for the same data type and architecture configurations.
TPU and SIGMA have 128× 128 MAC units and 128× 128
PEs, respectively. SIGMA has the same number of adders and
multipliers as the TPU does.

1) Speedup: Fig. 9 shows the overall speedup of the
HIRAC as compared to the SIGMA when computing matrices
with different sparsities for matrix sizes in Table III. The
HIRAC works most efficiently between the sparsity ranges
of 40% to 90%, which covers many important applications
[20], [26]. One reason for using the SorPack is to increase the
same-cycle/col merging percentage. There are fewer partial
sums that would need to be merged for graph analytic-like
applications with hyper-sparse graphs (sparsity > 90%). For
these applications, the benefit of using SorPack would be
less. The results in Fig. 9 are normalized to the performance
of TPU. Generally, when the sparsity range is high in both
matrices, about 3× speedup can be achieved. One main reason
for this speedup is the use of the SorPack algorithm, which
makes the streaming matrices dense. Therefore, in the cases
where the streaming matrices are sparser, more improvement
is expected. When the streaming matrix is denser, the speedup
of the HIRAC over SIGMA is smaller. This is because SIGMA
does not remove zeros from streaming matrices.

2) Area and Power: The area of HIRAC is estimated
based on the synthesis of standard cells without place and
route. To make a fair comparison with TPU and SIGMA, the
layout overhead of HIRAC is conservatively overestimated.
The layout area overhead of HIRAC is considered the same
percentage for the HIRAC as it is for SIGMA, even though
the interconnection network of the HIRAC is simpler than it
is in SIGMA. The wire area of the interconnection network is
estimated separately using a similar methodology used in the
BookSim, and then the layout area overhead is added on top
of the estimated area of HIRAC. Since the TPU and SIGMA
did not consider the area of SRAM in the evaluation, the
SRAM area is not included in the comparison but will be
reported separately. Fig. 10 shows the area breakdown of all
three designs. The area of the HIRAC is 58.7 mm2, which
is 9.5% smaller than the area of SIGMA. The reason for this
improvement is the simpler interconnection network of the
HIRAC as compared to SIGMA. However, the HIRAC adds a
24.6% area overhead as compared to the TPU because of the
interconnection network and its conservative layout overhead.
The local buffer and logic area in the HIRAC is 1.4 mm2,
which includes the buffer and logic used in the same cycle
merger and the PS buffer. This area is higher than it is in
SIGMA and TPU because of the use of more buffers in the
HIRAC. The on-chip SRAM in HIRAC adds a 2.4 mm2 area
overhead, which is 4.1% of the total area.

The total power consumption of the HIRAC is 15.2 W,
including the dynamic and leakage power, which is a 32%
reduction as compared to SIGMA. However, the HIRAC con-
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Fig. 10. Area breakdown of the HIRAC.

sumes 23.8% more power than TPU because of the improved
PE utilization as well as the use of more buffers, logic, and the
interconnection network in the design. Although consuming
more power is a side effect, better energy efficiency is achieved
due to the overall speedup. For example, the HIRAC reduces
14.2× of energy as compared to TPU for the geomean of Set
5 workload in Fig. 9(f).

C. Sensitivity Study

The partitioning sizes of the SorPack algorithm, the PE
subarray sizes in the HIRAC architecture, and the number of
banks of the on-chip SRAM can significantly influence the
performance of the proposed architecture. This section reports
the sensitivity study results of these configuration parameters.

1) Partitioning Sizes of SorPack: Fig. 11 demonstrates the
speedup over the SIGMA for different matrix partitioning sizes
P of SorPack. When the matrix partitioning size is small,
the percentage of the same-cycle/col merging partial sums
increases, as shown in Fig. 3. Therefore, more merging would

happen inside the PE subarray, and fewer unmerged partial
sums need to be sent through the interconnection network to
the on-chip SRAM, which improves the speedup significantly,
as shown in Fig. 11(a). However, when the matrix size is
larger, a larger partitioning size P can reduce the matrix size
more, which reduces the rounds of loading and streaming. For
the sensitivity result (Fig. 11(b)) with larger matrices like the
set 3 workload in Table III, the 2048×2048 partition size has
an advantage of 20% and 39% reduction in the rounds of
loading and streaming, respectively, as compared to the 4×4
partition size. However, the 4×4 partition size still outperforms
the larger ones.
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2) PE Subarray Sizes in the HIRAC: PE subarray size in
the HIRAC can be chosen independently from the matrix
partitioning size P in the SorPack. Table IV presents area,
power, and cycle runtime evaluation results for the different
PE subarray sizes. Based on the results, as the size of the
PE subarray increases, area and power are reduced. The main
reason is a reduction in the area overhead of the intercon-
nection network due to the reduced number of routers in the
design. However, the overall cycle runtime reduces as the PE
subarray size decreases due to an increase in the number of
PE subarrays working parallelly. So, there is a trade-off for
choosing the PE subarray size in the HIRAC, which should be
based on whether the system has a stringent power constraint
or prioritize a fast runtime.

TABLE IV
AREA, POWER, AND CYCLE RUNTIME FOR DIFFERENT PE SUBARRAY

SIZES.

PE subarray size Area Power Cycle runtime
2× 2 64.7 mm2 16.1 W 4559
4× 4 58.7 mm2 15.1 W 5106
8× 8 56.7 mm2 14.7 W 5830

100× 100 matrices are used with 80% and 90% sparsity for stationary and
streaming matrices, respectively, to evaluate the sparser cases, and P is 4.

3) Number of Banks of the On-Chip SRAM: Choosing
the number of banks of the on-chip SRAM can influence
the area, power, and access parallelism of the SRAM. The
number of bank conflicts reflects whether the number of
banks is enough to support the required parallelism. As the
number of banks increases in the SRAM, the number of bank
conflicts decreases. Therefore, the number of banks improves
the system performance. However, increasing the number of
banks would increase the area and power. Fig. 12 shows the
cycle runtime, the number of bank conflicts and the area as
the number of banks increases. Beyond 32 banks does not
improve the number of SRAM conflicts and cycle runtime;
however, the area will continue to increase. Thus, 32 banks
are used for the on-chip SRAM.
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Fig. 12. Results of cycle runtime, SRAM bank conflicts and area for the
different number of the banks.

D. End-to-End Evaluations of a DNN Workload

A pruned GNMT v2 model with the WMT16 EN-DE
dataset is used to further evaluate the overhead of running
SorPack for online preprocessing of sparse activation matrices
in an end-to-end DNN application [10]. This model uses a

4-layer LSTM encoder and a 4-layer LSTM decoder, which
require SpGEMM computations. The SorPack algorithm is
applied offline to the weight matrices since they will not
change during inference. The runtime overhead of SorPack
is counted for preprocessing of the sparse activation matrices
only, which is evaluated on an Intel Xeon Silver 4114 CPU
at 2.2 GHz. The serial- and parallel- SorPack computation
overhead is measured in isolation on a CPU and added to
the accelerator time. The SorPack runtime includes all the
steps of the Algorithm 1 wherein SORT takes 75% of the
total runtime of serial-SorPack. The total runtime of this DNN
application running on the HIRAC is compared with TPU,
which does not require preprocessing. Running a parallel ver-
sion of SorPack on multiple cores can reduce the preprocessing
overhead, wherein each partition performs its sorting, packing,
and deleting blank rows (Fig. 2) in parallel. This makes the
execution time of the parallel-SorPack bound by the partition
that takes the longest to sort, pack, and delete blank rows.
As shown in Fig. 13, the HIRAC perform 1.5× and 8.2×
better than TPU when running serial- and parallel- SorPack
on the CPU. The performance of the SorPack can be further
improved by optimizing the software implementation, which
is left as future work.
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Fig. 13. An end-to-end runtime evaluation using GNMT v2 [10].

VIII. CONCLUSION

This paper proposes a novel sorting-based packing al-
gorithm, SorPack, and a hierarchical SpGEMM accelerator,
HIRAC, for DNN applications. The key idea is to use the
sorting step in the SorPack to keep the partial sums that need
to be merged close to each other to reduce data movement. The
proposed SorPack algorithm is simple and faster as compared
to the state-of-the-art packing algorithm used in the Sparse-
TPU [7]. Representative matrices in the DNN workloads are
used for the evaluation of the HIRAC to compare with the
state-of-the-art sparse DNN accelerator, SIGMA [20]. The
results show that HIRAC can achieve a significant speedup
with lower power and area as compared to SIGMA.
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