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1. Introduction

In this paper we revisit and sharpen the results of our previous work [1], where we investigated the
regularity of the singular set of the free boundary in the nonlinear obstacle problem.
In its simplest form, the classical obstacle problem consists in solving

Au = X{u>0}, (1.1)

in the class of nonnegative functions « > 0 defined in a domain 2 C RY, subject to boundary conditions.
An important feature of this problem is the presence of a free boundary 0{u > 0}, which separates the
coincidence region {u = 0} from the positivity set {u > 0}.

The regularity of the free boundary was established by Caffarelli in [2,3] through a blow-up analysis. At
each point zp on d{u > 0}, the quadratic blow-ups of u converge to either a half-quadratic polynomial like
%[(x < egy) T]? for some e, € S9=1, or to a whole-quadratic polynomial like %azTAxox with A;, > 0 and
trace(Az,) = 1. In the first case, we say that g is a regular point (xo € Reg), and in the second case that
xo is a singular point (xg € X). The singular part of the free boundary X can be decomposed further into

d strata X*, according to the dimension k of the kernel of Az,
ry=xux'u...uxit
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The uniqueness of the blow-up limit and the rate of convergence of the blow-ups to this limit determine
the fine properties of Reg and X. In [2], it was shown that Reg is locally a C1'® hypersurface. Combined
with an earlier work of Kinderlehrer—Nirenberg [4], this implies that Reg is analytic. In [3], the uniqueness
of the blow-up limits was established at points in X. This implies that each X* is locally covered by a C*
submanifold of dimension k.

The regularity of X' was improved successively through quantitative rates of convergence of the blow-ups.
When d = 2, Weiss obtained the C''® regularity of the manifolds by introducing the Weiss monotonicity
formula [5]. Based on the same formula, Colombo-Spolaor—Velichkov [6] showed through a log-epiperimetric
inequality that in higher dimensions the manifolds are of class C' Llog® 'S¢ far the best result is due to Figalli—
Serra [7], who employed techniques from the thin obstacle problem. By applying Almgren’s monotonicity
formula, they improved Chlog” to 012 for the manifold covering the top stratum X!, They also showed
that each stratum X* can be further divided into a ‘good’ part Z’gk and an ‘anomalous’ part X, where the
former is covered by C'**! manifolds, and the latter is of lower dimension. With a more precise analysis using
similar techniques, Franceschini—Zaton showed that the singular set can be covered by a smooth manifold
after the removal of a (d — 2)-dimensional set [8].

In [1], we obtained a rate of convergence for the quadratic blow-ups centered at a point on X, through
an iterative scheme which is based on the linearization of the problem. At a point on the top stratum 291,
the linearized equation is given by the thin obstacle problem. At points on the lower strata X* k < d — 2,
the linearized equation is a degenerate thin obstacle problem, where the obstacle supported on a subspace
of null capacity. The results in [1] give same general regularity of the strata X'* as in [7], that is, locally, the
top stratum X9 is included in a C1* hypersurface, and, for k < d — 2, each lower stratum X* is included
in a k-dimensional C*'°¢° submanifold.

The estimates in [1] do not rely on monotonicity formulae, and are based on the propagation of
monotonicity and convexity together with the regularity properties of the linearized problems. They apply
to the more general nonlinear obstacle problem

F(D*u) = Xqus0y,  u 20, (1.2)

with F € C1% a convex, uniformly elliptic operator, and (1.2) is understood in the viscosity sense, see [9].
The convexity of F' guarantees that the pure second derivatives u.. are super solutions, while F € C*
implies that the linearized problems have constant coefficients. The regularity of Reg for the problem (1.2)
was addressed by K.A. Lee in [10], where the results of Caffarelli from [2] were extended.

In this paper, we refine the results in [1]. Similar to Figalli-Serra [7], we obtain a further decomposition
of each stratum X* for the nonlinear problem (1.2) as £* = ¥*U X¥, with £} more regular and X of lower
dimension.

Our main result is the following:

Theorem 1.1. Let u be a solution to (1.2).
FEach stratum of the singular part can be decomposed as

ok=xruzy,

with Eé“ locally covered by a k-dimensional C*'~ manifold, and S¥ relatively open in 5%, and

(a) if k < d — 2, then X has dimension at most k — 1; in particular X0 = () and X} consists of isolated
points in X' (that can have accumulation points on Ux>1 X% );

(b) if k =d — 1, then X* has dimension at most d — 3; in dimension d = 3, 52 is finite.

By a C'''~ manifold, we understand a manifold that is of class C1''~¢ for any € > 0. As mentioned above,
Figalli and Serra established the decomposition for solutions to (1.1). Their result includes the end-point
CY! regularity of the manifolds.
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Theorem 1.1 is a consequence of Whitney’s extension theorem, Theorems 3.1 and 5.1, where explicit
point-wise C? estimates for u are derived at various points on X. The set of anomalous points on X consists
of those points where wu fails to be C%¢, for some 0 < o < 1, see Definitions 3.1 and 5.2.

The proof of part (b) in Theorem 1.1 is based on related results for the thin obstacle problem. One
important ingredient is from a recent work of Focardi-Spadaro [11]. For the thin obstacle problem, they
showed that the set of free boundary points with frequencies between 2 and 3 is of dimension at most d — 3.
Another key ingredient is the stability of free boundary points of low frequencies. This stability is obtained
by establishing a general frequency gap near all integers for the thin obstacle problem, which is interesting
in its own:

Theorem 1.2 (Frequency Gap in the Thin Obstacle Problem). For each m € N, there exists a constant
Q> 0 small, depending only on the dimension d and m, so that (m — am, m 4 auy,) \ {m} does not contain
any admissible frequency for the thin obstacle problem.

We only use this result for m = 2 and 3. Near even integers, this gap was already known from
Colombo-Spolaor—Velichkov [12]. Our proof is different and applies to odd integers as well.

The paper is organized as follows. In Section 2, we review the results from [1] and explain how we will
quantify them more precisely. In Section 3, we prove Theorem 3.1, which implies part (a) of Theorem 1.1. In
Section 4, we review the relevant results for the thin obstacle problem and prove Theorem 1.2. In Section 5,
we obtain Theorem 5.1 which corresponds to part (b) of Theorem 1.1.

2. Some results of the first paper

In this section, we state our hypotheses and review some results in [1].
Let u be a solution to the nonlinear obstacle problem

F(D?u) =
(D*u) = X{u>0}> i B, 21)
u >0,

where F' is a fully nonlinear elliptic operator, satisfying the assumptions in the follow subsection.

2.1. Assumptions on F and consequences

Let S; denote the space of d-by-d symmetric matrices. The operator F' : S; — R satisfies:
F(0) =0; F is convex; (2.2)
F is C*F for some ap € (0,1) with CV*F seminorm [F] 1,05 < Cr; (2.3)
there is a constant 1 < A < +o0o such that
LIPI < F(M + Py~ F(M) < A|P| (24)

for all M,P € §; and P > 0.
We call a constant universal if it depends only on the dimension d, the elliptic constant A and Cg, ap.
For a C? function ¢, define the linearized operator L,:S;— Rby

Ly (M) = Z Fij(D*p) M,
ij

3
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where F;; denotes the derivative of F' in the (i, j)-entry, and D?p is the Hessian of ¢. One consequence of
convexity is
L,(w —v) < F(D*w) — F(D?*v) < Ly(w —v). (2.5)

Let v be a solution to
F(D?*v) =1in By.

The Evans—Krylov estimate and (2.3) imply that

[vlles.am, q) < Cllvlleoe(s)

with C, a > 0 universal. The same estimate holds for the difference between v and a quadratic polynomial
p with F((D?p) = 1, that is,
[o = plles.as, ) < Cllv =Pl (2.6)

In particular, if u solves (2.1), then in {u > 0} we can differentiate the equation in a unit direction
e € S% 1, and then use convexity of F to get

Ly(Deu) =0, Ly(Deew) <0 in {u > 0}. (2.7)

It is standard to estimate the higher norms of the difference between two solutions of F' in terms of the
L* norm of their difference (see Proposition 2.2 in [1]).

Proposition 2.1. Let F' be as above.
If v and w solve
F(D*v) = F(D*w) =1 in By,
then
lv = wllc2am, ) < Cllv=wlces)

with o € (0,1) universal, and C' further depending on ||v||zo(p,) and [|w||zo(p,)-
2.2. The free boundary

Lee established in [10] the optimal regularity u € Ch! and analyzed the free boundary O{u > 0} by a

loc?
blow-up analysis. The results can be summarized as follows.

Theorem 2.1. Let u be a solution to (2.1). Assume that 0 € 0{u > 0}. Then

lullcri(m, ,p) < C
for some C universal. Moreover, the blow-up rescalings
u, () = r2u(rz)
converge locally uniformly along subsequences of r; — 0 to global solutions that are either
(1)
a half-quadratic %Cg[(.ﬁ SO for some € € ST and ¢ € R with Fce§ @ &) =1, or

(2)
1
a whole quadratic ixTA;E with A >0, F(A) =1.

4
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If there is a blow-up sequence which ends up in case (1), then we say that 0 is a regular free boundary
point and write 0 € Reg. Otherwise, any blow-up limit is a whole quadratic, and we say that 0 is a singular
point and write 0 € X.

Remark 2.1. If 0 € X, then the zero set {u = 0} cannot contain a nontrivial cone with vertex at 0. In
particular, the solution v cannot be nondecreasing in an open cone of directions near the origin.

These definitions imply that the free boundary decomposes into the regular part and the singular part
O{u >0} = RegU X.

It was shown in [10] that Reg is open in 9{u > 0}, and that the blow-up limit at a regular point is unique.
Moreover, in a neighborhood of a point from Reg, the free boundary d{u > 0} is a C*® hypersurface which
separates the coincidence set, {u = 0}, from the positivity set {u > 0}.

In [1], we analyzed the behavior of u near points in X, and showed the uniqueness of the blow-up limit
profile in (2). As a consequence, the singular set X' can be decomposed into d disjoint sets (strata), depending
on the dimension of the kernel of the blow-up polynomial §(z — zo)” Ay (z — 2¢) at a point z¢ € X

y=xux'uy...uyit
with
5P = {2 € X|dimker(A,,) = k}.

2.3. Results in [1]

We recall the main results and some notations of [1].
First we define the class of polynomial solutions to the obstacle problem, and include also the convex
polynomials that do not necessarily satisfy the non-negative constraint.

Definition 2.1. The class of quadratic solutions is defined as
1
Q= {p: p(m)zﬁxTAac, A>0, F(A)zl}.

The larger class of unconstraint convex quadratic solutions is defined as

UQ:{p: p(x)=%xTAx+b~x, A>0, F(A):l},

Note that for a polynomial p € U Q, its convexity and the ellipticity (2.4) of F' imply
D*p<C1,

for some universal C.
The goal is to keep track of the polynomial approximations for a solution u of (2.1) in dyadic balls.

Definition 2.2. Given e, € (0,1) and p € UQ, we say that u is e-approzimated by the polynomial p in
B,., and use the notation
u € S(p,e,r)
if
w solves (2.1) in B, |u —p| < er? in B,,
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and
D?u > —coe I in B, (2.8)

where ¢ = ﬁ.
We now state the main lemmas from [1], which provide good rates of the quadratic approximations in
dyadic balls. They imply the uniqueness of blow-ups together with regularity properties of each strata.
Depending on the size of the eigenvalues of D?p with respect to &, there are two cases to consider.
For a matrix M € S;, we denote its eigenvalues by

M (M) = Ao(M) = - = Aa(M).

Up to a rotation, we assume e; is the eigenvector corresponding to A;(M). The first case deals with the
situation when u is e-approximated by a polynomial p € UQ in By with Ao(D?p) > . In this case, we
expect 0 € Yk with k < d — 2.

Lemma 2.1 (Lemma 5.1 in [1], Quadratic Approzimation near Codimension > 2). Suppose
u € S(pe,1) with0e€ X andp e UQ.
There are universal constants ko large, € small, and p € (0, %) such that if € < € and
A2(D?p) > ke, (2.9)

then
ueSp,e,p)

for some p' € UQ, and one of two alternatives happens for €':

(1)
e <(1—c)e for a universal c € (0,1); or
(2)

1
g <e—e* and (u-— h)(§p61) <C(e-¢),
for some universal constants u, C > 1, where h is the solution to the unconstrained problem

F(D?h) =1 in By, (2.10)
h=u on 0Bj. '

We make a few comments on Lemma 2.1.

The situation (1) is consistent with a C%“-estimate for u at 0 for some a € (0,1) depending on ¢ and p.
The situation (2) gives a much slower improvement for £(r) as  — 0, and it implies only a C>!°%°-estimate
for u at 0. In Section 3, by quantifying Lemma 2.1 more precisely, we give a refined characterization of the
strata XF with k < d — 2.

Firstly, given any # < 1, the estimate in (1) can be improved to & < pPe, consistent with the C27
scaling. Secondly, if alternative (2) holds for some ball B,, we show that it continues to hold for all dyadic
balls B,m,.. As a result, we show that u cannot be point-wise C? at the origin for any o > 0. In this second
case, using the notation as in [7], we say that 0 is an anomalous point of £* (0 € X¥). It follows that £¥ is
open in X*, and has dimension at most k — 1. The remaining part of £*, the ‘good’ part Z;“, can be covered
by a C'''~ submanifold of dimension k.

The key observation in the proof of Lemma 2.1 is that the hypothesis (2.9) implies that u and h are
o(g)-close away from a codimension 2 subspace. For a positive constant 1, we define the following cylinder

Cp = {|(z1,22)| < m}.
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Lemma 2.2 (Lemma 5.2 in [1]). Let u,p, h be as in Lemma 2.1.
Given n small, there is k), depending on universal constants and n, such that if ko > Ky, then

Ju— h||c2(31/2\cn) <mne

for all € small, depending on n.

The idea of the proof of Lemma 2.1 is to show that h is essentially tangent of order 2 at the origin i.e. h(0),
|[Vh(0)| = o(e) (otherwise 0 would be in Reg(u)). Then alternatives (2) and (1) are dictated by whether or
not D2h(0) has negative eigenvalues of size .

We remark that the estimate for u — h at the point fe; is used towards the convergence of the
corresponding Hessians D?h(0) as we zoom in using dyadic balls. Suppose that we are in the slow
improvement situation (2). Let A’ denote the solution to (2.10) in the ball B,. By the maximum principle,

we have u > h' > h in B,. The Harnack inequality for the difference A’ — h, and Proposition 2.1 imply
[D21'(0) — D?h(0)| < C,||h — Rl Lo (s,)
1 1
< OO = W) (Gper) < Clu—R)(zpe1) < Cile — ), (2.11)

for some (1, depending on universal constants and p.
We now state the main quadratic approximation lemma from [1] in the case when only \;(D?p) is much
larger than e.

Lemma 2.3 (Lemma 4.1 in [1]. Quadratic Approzimation near Codimension 1). Suppose
0e X, u € S(p,e,1) withpe Q

and
Ao (D?p) < ke

for some constant k > 0.
There are constants £,¢ € (0,1) and p € (0,1/2), depending on universal constants and k, such that if
€ < g, then
ueS(p,e,p) for someyp € Q,
with
e =(1-c), and p€ (p,1/2).

The idea of its proof is to show that the normalized error %(u — p) is well approximated by a solution to
the linearized problem, the thin obstacle problem. The frequency at the origin for this thin obstacle problem
cannot be 1 or %, since otherwise 0 is either interior to {u = 0} or in Reg. Then the frequency has to be at
least 2, which implies the geometric improvement € — ¢’ above.

In Section 5, we quantify Lemma 2.3 more precisely and obtain a refined characterization of the stratum
Y4=1 Depending the frequency at the origin in the thin obstacle problem, we have a dichotomy.

If the frequency is higher than or equal to 3, we show that we can replace ¢’ = p“e (for any fixed 3 < 1),
consistent with the C%# scaling. Otherwise, we leave &’ as above but the rescaled error has ‘frequency’
between 2 and 3. In addition, if the second alternative holds for some ball B,., then it continues to hold for
all other smaller dyadic balls. In this case, using the notation as above, we say that 0 is an anomalous point
(0 € ¥471). Tt follows that X¢~1 is open in X9~! and has dimension at most d — 3. The remaining part of
241 the ‘good’ part 2;171’ can be covered by a C'~ hypersurface.

Since there is no monotonicity formula for the nonlinear problem, we rely on geometric information of
the solution in terms of its monotonicity and convexity. Roughly, the following lemmas state that if w is
monotone/convex in B, away from a strip of width 7 < r, then u is monotone/convex in B, ;.

7
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Lemma 2.4 (Lemma 3.2 in [1]). Suppose u € S(p,e,r) satisfies the following for some constants K, o, and
0<n<r,and a direction e € S*1:

D.u > —Ke in B,, and Deu > oc in B. N {|x1| > n}.
There is 1, depending on universal constants, v, o and K, such that if n < 1, then

D.u >0 in Br/g.

Lemma 2.5 (Lemma 3.4 in [1]). Suppose u € S(p,e,1). There is a universal constant C such that if
D..p > Ce along some direction e € ST™1, then

Deeuw >0 in Byyp.

Remark 2.2. The hypothesis D.u > o¢ in B, N {|z1| > n} in Lemma 2.4 can be relaxed to
Deu >0 in B, N{|z1| >n}, and D.u>oe in B, N{u > er?},

for some ¢ small, universal (see Lemma 3.3 in [1]).

3. A refinement of Lemma 2.1

In this section, we refine Lemma 2.1. The proof follows the lines of the one in [1], with a few modifications
towards the end. For convenience of the reader, we reproduce the whole argument, leaving out only technical
points that are identical with the ones in [1].

Since the solution u is e-approximated by p in By with \2(D?p) > ¢, the coincidence set {u = 0}
concentrates around a subspace of codimension at least 2. As a result, the coincidence set has small capacity,
and we expect to approximate u by the solution to the following unconstrained problem.

For 0 < r < 1, let h, be the solution to the following:

F(D?*h,)=1 in B,, (3.1)
h, =u on 0B, .
and denote its Hessian at 0 by
A, = D*h,.(0). (3.2)

With these notation, Lemma 2.1 can be refined to

Lemma 3.1. Suppose
u€ S(pe,l) with0 € X andp € UQ.

Given any f € (0,1), there are constants ko, C large, €, c1, p small, depending on 5 and the universal
constants, such that if € < € and
Xo(D?p) > ke, (3:3)

then
ue Sy, e, p)

for some p’ € UQ with
|D2  — A1| < CE,

and
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(1) if |AT| < c1e then

e =¢p?

(2) if |A] | > cie then
e <e—e" and AJ] > cie

for some universal constant p > 1.

Moreover, in both cases, we have
|41 — A,| < C(e =¢).

Remark 3.1. Beginning with an initial approximating p; with error €1, Lemma 3.1 is applied to dyadic
balls of radii r = p™, and gives approximation of u by a sequence of parabolas p,, with decreasing errors
Em. By the estimates on |D?p’ — A;| and |A; — A,|, the difference between D?p,,, and D?p is at most Ce;.
Consequently, if we begin with D?p; > key for some k > kg + C, then condition (3.3) holds for all p,,, and
Lemma 3.1 can be applied inductively.

Lemma 3.1 is more precise than Lemma 2.1.

In case (1), the improvement of €’ is consistent with the C*# scaling for 3 arbitrarily close to 1. In case
(2), the lower bound on [A;| shows that if this alternative happens at one scale r, then it happens for all
finer scales p""r.

If alternative (2) happens, then the solution u cannot be C*% at the origin for any a > 0, and we say
that 0 is an anomalous point of Y.

Definition 3.1. We say that xg € X is anomalous and write
xo € My

if
1
fu — 5(9«” — 20)" D*u(x0) (2 — o)l o0 (By(g)) = 7>

for any o > 0 and all 7 small.
We denote the complement of the anomalous part, the good part, by

Yy=X\ X,
For each k < d — 2, we denote
h=3bng, ZF=3x'ng,

Alternative (1) in Lemma 3.1 implies that the solution u is C%# at all points in ng“ with k < d — 2. This
gives the desired C'*'~ covering of the good part.

On the other hand, if 0 € ¥, we have the following lemma, which states that X coincides with X, near
0, and that £* concentrates near a (k — 1)-dimensional space.

Lemma 3.2. Under the assumptions in Lemma 3.1, and assume that alternative (2) holds. Then
YNB,CX,

and, after rescaling, alternative (2) holds in any ball B, (x¢) with xg € ¥ N B, and r < p.
Moreover, if
Na—k(D?*p) > ke for some k < d— 2, (3.4)
then X' N B, is in a o(k)-neighborhood of a subspace of dimension k — 1, with o(k) = 0 as k — co.
9
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Suppose that 0 € X* for some k < d — 2, then the unique blow-up limit, say, p, satisfies
M(D?p1) > Xo(D?py) > -+ = Aa—i(D?p1) > 0.

Consequently, after an initial rescaling, we can assume u € S(p1, 1, 1) for a small 1 satisfying \yg_x(D?*p1) >
2K0€1. By the same reasoning as in Remark 3.1, A\g_x(D?p,,) > 2kge; for all subsequent approximating
parabolas p,,. On the other hand, the approximating errors €,, — 0. This implies

)\d_k(Dme)/ém — Q.

If alternative (2) as in Lemma 3.1 ever happens, then Lemma 5.2 implies that at smaller and smaller scales,
X is trapped in a neighborhood of a (k — 1)-dimensional subspace with vanishing width. Standard covering
arguments imply that X* has Hausdorff dimension k — 1. In particular for £ = 0 we have X0 = (), and for
k=1, X! consists of isolated points inside X*.

If we start with the situation of Lemma 3.1 with, say 5 = 1/2, then after a few iterations of the lemma
we may apply the estimates of Lemma 3.1 for a different value of S much closer to 1, and so on.

We summarize these in the following theorem, which gives part (a) of our main result Theorem 1.1.

Theorem 3.1. Assume that ¢ < &g,
u € S(p,e, 1) and No(D?p) > Roe,

with &g small, Ko large universal constants. Then in By /4 we have
(a) ¥ = ngd,gﬂ’“ and u is C?1°8° on X:
for each xy € X, 3qq4,, a quadratic polynomial, with |D?*q,, — D?*p| < Ce and

[t = gy |() < Claz — wo|*|log |& — w0 || ° .
(b) u is uniform C*# for any B < 1 on the non-anomalous set Xg:
[u = 4uy|(2) < CB)elw o™ if wo € 5,

(c) The anomalous set 5F is open in % and has Hausdorff dimension k — 1. In particular, X0 = (), and

XY is discrete locally (can have accumulation points on X).

Theorem 3.1 follows directly from Lemmas 3.1 and 3.2 and the discussion above. The rest of the section
is devoted towards the proof of Lemma 3.1. By examining this proof, we deduce Lemma 3.2.

Let us assume A\, (D?p) > ¢ for some,k>2 and that D?p has ordered eigenvalues on the diagonal. Then
the coincidence set {u = 0} concentrates around the set

{2/ =0 e RF}, where 2’ = (z1,...,2), 2" = (Thyt,-..,Tq). (3.5)

For simplicity of notation we denote hy by h.

The normalized error 1

u= g(u - p)
solves an obstacle problem with the obstacle

A 1
O =—-p.
€

Since the capacity of the coincidence set converges to 0 as € — 0, we expect to approximate @ by

N 1
h:=—-(h—p).
Z(h=p)

10
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By Lemma 2.2, this is true outside a small tubular neighborhood C;, around the z”-subspace. Inside C,,
however, the difference between h and @ could be of order 1, and @ might not have a uniform modulus of
continuity as € — 0.

Heuristically, as € — 0, we end up with limiting functions %, O and h, that satisfy that ||, |z and max O
are all bounded by 1 in By, and

(1) h is a solution to a constant coefficient elliptic equation,

(2) the obstacle O is a concave quadratic polynomial supported on the z”-subspace, extended to —oo
outside its support,

(3) 4 = max{h, O}, which can be discontinuous.

The improved quadratic error for @ follows from the C® estimate of h at the origin. However, first we
need to establish that 0 € X essentially implies that h and O are tangent of order 1 at the origin in the z”
direction. The dichotomy in Lemma 3.1 depends on whether or not O separates (quadratically) on top of h
in this direction.

We now give the proof of the main result in this section:

Proof of Lemma 3.1. As discussed above, we define the normalizations

Then in By, we have

and (2.6) implies
1Pllcsie sy, < C (3.6)

for some universal constant C'. By Lemma 2.2, for any small parameter 17 > 0 we have

16— 71||c2(31/2\c,7) <1, Cp = {l(z1, 22)[ <} (3.7)

provided that kg > &, and € < g, with s, €, depending on universal constants and 7.

We follow the proof of Lemma 5.1 in [1], which consists of 6 Steps. The differences appear only in Steps
5 and 6, where we choose various parameters depending on . For the convenience of the reader, we provide
the full argument, with some parts in Steps 1-3 being only sketched.

Before we proceed, we give the outline of the 6 steps.

We decompose the space = (2, 2”) according to the curvatures of the obstacle O. The curvatures are
very negative along the directions in the z’-subspace, and are uniformly bounded in the z”-subspace. In
Steps 1-2 we show that h and O are tangent in the z” direction at the origin up to an arbitrarily small error
0, and deduce that O can only separate quadratically on top of h near the origin. In Step 3, we use barriers
to show that the same is true for @. In Step 4, we use the C>“ estimate for h to approximate u quadratically
in B, by a polynomial p’ € Q. The lower bound for D?u in B,,, D*u > —coe'I (see (2.8) in Definition 2.2)
and the choice of ¢’ are given in Steps 5 and 6, according to whether the obstacle O separates quadratically
on top of h along some direction in the z” subspace. This leads to our dichotomy.

Throughout this proof, there are several parameters ¢, 1, p to be fixed in the end, depending on 8 and
universal constants. First we will specify the radius p € (0,1/2), and then the parameter § > 0 which can be
made arbitrarily small. The parameter 7 from Lemma 2.2 that allows us to make @ and h very close to each
other, will be chosen to depend on §. This 7 imposes the choice of kg = &, as in Lemma 2.2. The parameter
€ is chosen after all these.

Up to a rotation, p takes the form

1
p(a) =35 > aal+ Y bz,
11
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with
a1 > ax>---2>aq >0, a2 > Kos,

and F(D?p) = 1.
We introduce some notations. For ¢ small to be chosen, let k € {1,2,...,d} be such that

ap > 264 > apys. (3.8)
Then we decompose the entire space R? as z = (2/,2”), where
' = (w1,m2,...,71) and " = (Tpa1, Thaoy .-+, Td)-

The obstacle O is changing rapidly in the 2’ direction, and we denote by z’ the point in this direction
where its maximum is achieved. This is the same as the minimum point for p in the z’ direction.
Precisely, let 2’ be the minimum point of ' — p(z’,0). Then by (3.8), we have

z'| <62, and —e <p(2/,0) <0.
We write p as the sum of two quadratic polynomials in the ' and z” variables
p(a’ ") = pr(a’ —z') — p1(z') + p(0,2"), (3.9)

where p; > 0 is a 2-homogeneous polynomial

1
n@) =35> e

J<k
The obstacle O satisfies
|V.»Ol,|D2,0| < Cs, O((z',0)) > 0. (3.10)
Step 1: If n and € are small depending on 0, then
IV (h — 0)(0)] < 6. (3.11)

The conclusion can be rewritten as |V #h(0)| < de, and it implies |b;| < C if ¢ > k. The idea is to show
that otherwise u is monotone in a cone of directions near the z”/ subspace, and we contradict 0 € X. We
sketch the argument.

Suppose there is i > k such that D;(h — 0)(0) > 4. This estimate can be extended to D;(h — O) > 16 in
B,.(0) for some r > 0 depending only on 0. By (3.7), D;(i4 — O) > ié or equivalently, D;u > iés, in B,(0)
outside a strip of width 7. Inside this strip | D;u| < 2Cse which is a consequence of D?u > —coel and (3.10).
Now Lemma 2.4 gives D;u > 0 in B, /5, and by continuity Deu > 0 for all unit directions e close to e;. Thus
{u = 0} contains a cone of positive opening with vertex at 0, which means 0 € Reg, a contradiction.

Step 2: If n and € are small depending on d, then
|h(z',0) — O(z/,0)| < 6. (3.12)

Note that h(0) < @(0) = 0 and O(z’,0) > 0, and then the upper bound for A — O at (z/,0) follows from
|z| <62 and (3.6).

In order to establish the lower bound we prove that if 2(z’,0) — O(z’,0) < —d, then 0 € Reg. We sketch
the argument.

Using (3.7) together with the fact that O decays fast in the 2’ direction while has controlled growth in the
2’ direction (see (3.9)), one can show by constructing an explicit upper barrier that @& = O (or equivalently

12
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u = 0) at (z/,0). By continuity this can be extended to B,(z’/,0) C {u = 0} for a small » > 0, possibly
depending on e.

Since a; > 26~%¢ for j < k, we can apply Lemma 2.5 to get Decu > 0 in By 5 for all unit directions e
in a small open cone around the subspace {(z,z")|z” = 0}. Using that u(0) = 0 we conclude that {u = 0}
contains a cone with positive opening and vertex at 0, hence 0 € Reg.

Remark 3.2. The argument applies also for a point (z,y”) with |y”| < 1/2. If
E(E/a y//) - O(gla y,/) < 757

then

Eﬂ{(x',x”)| x//:y//}mBl/Qz@,

Step 3: If e,n small depending on &, we have

~ 7 a, ;2 "3 .

u§h+§|z |” + Cl2"|” + 46 in By 4 (3.13)
with C universal, and

1
a:= E|A_| < 2¢p. (3.14)

Recall that A = D?h(0), and that ¢y is the universal constant from Definition 2.2.
The inequality holds outside C,, by (3.7). It remains to establish it in C,,.
First we use Steps 1 and 2 to show that a similar inequality holds for O:

O<h+ %|x"|2 +Cl2"P+35  in By (3.15)

Then, as in Step 2, one can use the fast decay of O in the 2’ direction (away from the (z’,z”) axis) and
construct explicit barriers to extended the inequality from O to 4. By the same reason, it suffices to prove
the inequality (3.15) only on the (z’,z”) axis with 3§ replaced by 24. This is a consequence of Taylor’s
expansion in the z” direction from (z’,0). Indeed, we use Step 2 combined with the estimates

V(b —0)(0)| <6, D*(h—0)(0) > —al,
that we extend at (z/,0) with an extra error of C|z’| < C§2. This is because D30 = 0, Di,’w,,o =0, hence
D}(h—-0)<C, |D%,.,(h—0)<C. (3.16)
Finally, we remark that a < 2¢j is a consequence of D?u > —cyl. Indeed, in Bl/Q\Cn, (3.7) gives
D%*h — D*0 > D*i— D?0 —nI = §D2u —nI>—(co+n)l.

By choosing 1 small, we can extend the estimate to the full ball

D*(h—0) > —2¢y I in By . (3.17)
Step 4:
dp' €UQ such that |u—p'| < (SZ + Cop> ep? in B, (3.18)
0

if 0 1s sufficiently small, depending on universal constants and p.

13
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Define
Then (3.6) implies
|h — h(0) — q| < Cp® in B,,.
Using h <@ < h+ %|$”|2 + C|$”|3 +46 in By /4 from Step 3, and 4(0) = 0, we find
i — q| < ap® +2Cp* + 85 in B,.
Pick § small such that § < p3, then we have
lu — p — ge| < (a+ Cop)ep® in B,,

for some C( universal.
Define $ = p + q¢, then D?p = D?p +eD?q = D?h(0) = A. Thus F(A) = 1.
Next we perturb slightly p into a convex polynomial p’ € U Q.
We know A > —ael, by the definition (3.14) of a. Then (2.4) gives

1< F(AT) <1+ Aae, and % <At <24,
Consequently, we can pick ¢ € [0,aA2|A*|”"] such that
F((1-te)AT) =1.
Denote the new quadratic polynomial
p(z) = (1—te) %:v <Atz + Vh(0) - .
Then clearly p’ € UQ, and
o'~ Bl < (t=|AT| 4 [AT )57 < ak’ep? i B,

Then
lu —p'| < (2a4% + Cp)ep® in  B,,

and (3.18) is established by recalling the definition of ¢q in Definition 2.2.
Step 5: If a < $cop® = c1(B), then (1) holds:

weSp,e,p) with & =epP.

Here p is chosen sufficiently small (depending on ) so that Cop < ipﬁ.
The estimate |u — p’| < gp? follows from Step 4. We now show that

D%*u> —coep’ I in B,.
The inequality D?(h — Q) > —al at the origin together with [D3(h — O)| < C implies that
D*(h—0) > —(a+Cp)I in B,,.

By (3.7), a similar inequality holds for @ outside the strip of width 7. Thus
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satisfies
Ly(w) >0, w<cy inB,,

3
wSa—i—C’p—t—nSZCOpﬁ in B,\C,. (3.19)

Weak Harnack inequality implies that w < cop® provided that the width 7 of the strip is sufficiently small,
depending on p and the universal constants. This gives the desired lower bound on D?u.

Recall that h, is the solution to (3.1) in B, and A, = D?h,(0). To complete the proof of alternative (a)
as in Lemma 3.1, we use (2.11) to get

(4, = Al < C(p) (u—h)(5pe1) < Cipe. (3.20)

The right-hand side is bounded by ¢ — ¢’ if 7 is small.

Step 6: If a > Scop” then the conclusion (2) holds.
We distinguish 2 cases, depending on whether a is greater than cy/4.
If a < cg/4, then we can argue precisely as in Step 5, with p? replaced by 2a/cg, and from Steps 4 and 5

we obtain o .
uweSp,e,p) with ¢ =—e< e
Co 2
Moreover by (3.20),
A, | > (a—Cn)e > %06’ > ci(B)e. (3.21)

Now we consider the case a > ¢p/4, and get ¢’ € [¢/2,¢). With a > ¢p/4, (3.21) remains valid for any
g’ < e. The choice of p in Step 5 and a < 2¢q imply in (3.18) that |u — p/| < 3ep® < €/p? in B,,. It remains
to show the improvement of convexity
D*u > —coe'l in B,

with ¢/ <& — e,

We show that the improvement € —¢’ is at least proportional to (u—h)(5e1). The key observation is that
u — h is a subsolution and D..u + cge is a supersolution for the same linearized operator L., and that the
two functions can be compared in the domain B; N {u > 0}.

Since Dee(h — 0)(0) < —2¢o for some unit direction ¢, then by (3.16) we conclude Dee(h — 0) < —&co
in B, for a universal ¢ > 0. Together with Step 2, this implies the existence of some x* € Bj /4 such that
(h — O)(z*) < —c for some universal ¢, that is, h(z*) < —ce. With the universal Lipschitz regularity of h,
we get

h<—-c = wu—h>ce in By (z)

for some small universal ¢, ¢’ > 0.
Note that Lp(u—h) < 0in By as in (2.5), u = h on dB;. We compare u— h to the corresponding solution
of the maximal Pucci operator in By \ By (2*) and obtain as a consequence of Harnack inequality

u—nh>¢e"in By,

for some universal u > 1. Moreover, since v — h solves a linear equation away from C,,, the same argument
combined with Harnack inequality imply that

1
u—h>clu— h)(ipel) > ce! in Bys. (3.22)

For e € S !, we define
w = Degeu + coe.

15
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This is a nonnegative function satisfying L,(w) < 0 in By N {u > 0}. Note that w > coe along d{u > 0},
and 2¢ > u — h in By, hence
c
w > Eo(u —h) along 9(B; N{u > 0}).

Since L, (w) <0< L,(u—h) in By N {u > 0}, we have

w > %O(ufh) in By N {u> 0}.
Combining this with (3.22) we find

w > c(u— h)(%ﬁel) in By /s,

which means 1
Deeu > —coe + c(u — h)(§P€1) in By /s.

Define the right-hand side to be —cge’, then

1
g :ze—i(u—h)(ipel), M <e—e <COne <
co

| ™

Also, (u — h)(gpe1) = C(e — €') and by (3.20), (3.21) and Step 4, the second alternative holds. [

We make a few remarks about Step 6 which are helpful towards Lemma 3.2.

Remark 3.3. We actually proved a stronger bound for |A| than the one stated in alternative (2), which
is independent of 3, i.e. [A]| > 0e’, see (3.21). Thus, if we are in alternative (2), after rescaling back from
B, to By we end up in the situation a > % of Step 6. Then, in either case a € [co/8, co/4] or a > co/4, we
showed that &’ > is.

Remark 3.4. After relabeling the constants kg and € to guarantee that the hypothesis (3.3) keeps being
satisfied as we apply Lemma 3.1 inductively, we obtain

u € SPmsem,p™),  m=>1 (3.23)

If we end up in alternative (2) for some mg, then we remain in alternative (2) for all m > myg, and by
Remark 3.3, ;41 > ism if m>mg+ 1.

Remark 3.5. We can relabel the constants kg and £ so that in case (2) we also have
uweSp,e,r), |A] > %OE’, vr € [p%, pl.

Indeed, we may choose the parameters 0 and 7 sufficiently small so that Step 4, and (3.20), (3.21) remain
valid after replacing p by r as above. Thus, by Remark 3.4, if we are in case (2) then v € S(p;, &, 7) and
|A;| > Re, for all r < p.

Remark 3.6. If we are in case (2), |[A™| > c1(8)e, then the conclusion applies at all points g € 2 N B,
and not only the origin, since as in (3.20), (3.21) we can deduce that [A; (z¢)] > Q¢’.

Proof of Lemma 3.2. In view of the remarks above, it suffices to assume we are in the situation of Step
6 in the proof of Lemma 3.1 and establish the following two claims.

Claim 1: 0 € X,.

16



O. Savin and H. Yu Nonlinear Analysis 218 (2022) 112770

First we observe that u cannot be approximated in L*°(B;) by any quadratic polynomial with an error
smaller than c(f)e.
Indeed, |A~| > ae with a > ¢1(8) = 1cop?, and [D?h — A| < Cpe in B, imply

Dgghg—cQ(ﬁ)s in B,

for some unit direction £. By (3.7) a similar estimate holds for u outside C,. This and u(0) = 0, u > 0, show
that ||u — g|[zec(B,) > ce for any quadratic polynomial g.

Next we apply Lemma 3.1 inductively and obtain (3.23) with €, > ¢(g, 8)4™™ = ¢(g, 8)(p™)*, for some
«, which shows that u is not better than C%® at the origin.

On the other hand the value of p can be reset to be smaller and smaller after a finite number of steps.
This is because the rescaled value of kg tends to infinity as ,, — 0 which means that we may take the
parameters &, 17, p to be smaller and smaller. Thus v is not C% at the origin for any a > 0, and Claim 1 is
proved.

Claim 2: ¥ N B, is in a 0(8)-neighborhood of a subspace of codimension at least k+1, and o(§) — 0 as § — 0.
Under our assumption \;(D?p) > Ao(D?p) > -+ > A\ (D?p) > 6%, we already have X C {|2'| < §%}.
The goal is to exploit the negative eigenvalue of D?(h — O) in alternative (2) to get estimates in one of the
2"'-directions.
By hypothesis D2(h — 0)(0) has an eigenvalue less than —c; (). Since

~

D%, (h—0) =6 |D2,.(h-0)<C,

xlxl/

we can find a unit direction £ belonging to the =" subspace, say £ = eg41, such Dgg(ﬁ -0)< —1c1(B). By
Taylor’s expansion as in Step 3, we obtain that

(h—O)((&',0) +t&) < Cs —c(B)t2,  |t| < p.

Then, by Remark 3.2, we conclude X N B, C {|zy41]| < C(B)§Y/? = 0(0)}. O

4. Results for the thin obstacle problem

In this section, we collect some results about the thin obstacle problem which are useful in the analysis
of the top stratum X1
Assume v solves the thin obstacle problem in By,

Av <0 in By,
Av=0 in BiN{v>0}U{z #0}), (4.1)
v>0 along {z; = 0}.

In this section, we decompose the coordinate of R? as x = (x1,z’) with 2’ € RI~L.

It is well known that v is locally Lipschitz, and in fact v € C%!/2 when restricted to each half-space
{z1 > 0} and {x; < 0}. An important tool is the Almgren frequency formula which states that if v does not
vanish identically then
rf B, |Vl da

fa&- v2dx

and A(r) is constant in r if and only if v is a homogeneous solution to (4.1).

Ar) == is monotone increasing in r,

We define the frequency of v at 0 as
A= lim A(r).
r—0+
17
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The rescalings of v at 0 that fix the L? norm on 9B,
d—1

r 2

vp(x) v(rax)

B ”’UHLQ(aBr)
converge along subsequences to a global A-homogeneous solution, which we refer to as a blow-up profile of
v at 0. In particular for each small r, there exists a global A-homogeneous global solution V,. such that

lv = Vellzoo () < 0(r)||VillLoo (B, ), o(r) =0 asr—0, (4.2)

and
T,/\foc > ||V;"||L°°(B7~) > 7,)\+a’

for any fixed o > 0 and all r sufficiently small.

Athanasopoulos, Caffarelli and Salsa in [13] showed that the only possible values for the frequency A that
are less than 2 are A = 0 (when v(0) > 0), A = 1 (when 0 is interior to {v = 0} in {z1 = 0}), or A = 2. In
this last case the uniqueness of the blow-up profile was established as well, which means that the expansion
(4.2) holds for a fixed non-zero homogeneous solution V' in place of V.

Concerning higher frequencies, when X is an even integer, Garofalo and Petrosyan in [14] characterized all
possible A-homogeneous solutions as harmonic polynomials. They also proved the uniqueness of blow-ups for
these values of A. Colombo, Spolaor and Velichkov in [12] sharpened these results through a log-epiperimetric
inequality, and obtained a frequency gap near the even integers.

More recently, Figalli, Serra and Ros-Oton in [15] characterized the A-homogeneous solutions when A is
an odd integer, and proved the uniqueness of the blow-ups for these values of .

Below we give a short proof that establishes the frequency gap near all integers as in Theorem 1.2.

Proof of Theorem 1.2. Case 1: m = 2k is even.

We first point out that any 2k-homogeneous solution to (4.1) must be a harmonic polynomial. This is
already known by Garofalo—Petrosyan [14].

To see this, let v be a 2k-homogeneous solution, and let p be any 2k-homogeneous harmonic function.

Then
/ p(—Av) = / vAp — pAv = / vp, — pu, = 0. (4.3)
By By 9B

The last equality follows from the homogeneity of the functions.
Apply this with p = Py, the 2k-homogeneous harmonic function with Pr(0,2’) = |2/ in {1 = 0}, we
have fB1 Pr(—Aw) = 0. Note that —Aw is a non-negative measure supported on {x; = 0}, this implies

/|2k}

Av = 0.

Now suppose, on the contrary, that there is a sequence of non-trivial solutions to (4.1), denoted by v;,
that are A\j-homogeneous with A\; # 2k but A\; — 2k.

Up to a normalization, we assume [|v;][z2(p,) = 1. Then up to a subsequence, we have v; — v locally
uniformly in By, where v is a 2k-homogeneous solution with [|v|[;2(p,) = 1. The convergence is uniform in
C* if we restrict the domain to By N {x; > 0} or By N {z; < 0}.

A similar computation as in (4.3) gives:

/ (v 6P ) (—Awy) = (2 — Ay) / (v+ 6P )o;. (4.4)
By

8B,

Locally uniform convergence of v; — v and homogeneity of the functions imply that |, op, VVj = Cd > 0
for all large j. Consequently, fix § > 0 small, we have faBl (v £ 6Pr)v; > 0 for all large j. In particular,
regardless of the sign in front of §, the right-hand side of (4.4) has the same sign as (2k — \;).

18
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On the other hand, by the locally uniform convergence of v; — v and homogeneity of the functions, we
have that the support of —Awv, is contained in {v < gPI} for large j. Consequently, in (4.4), the left-hand side
is non-negative if we choose the positive sign in front of §, and non-positive otherwise. This is a contradiction.

Case 2: m = 2k + 1 is odd.

We first point out that any (2k + 1)-homogeneous solution to (4.1) must vanish along the hyperplane
{x1 = 0}. This is already known as in [15]. We sketch the proof here for completeness.

To see this, let v be a (2k 4 1)-homogeneous solution. Let ); denote the (2k + 1)-homogeneous function
that is even with respect to {#; = 0}, harmonic in {z; # 0}, and satisfies @Q;(0,2') = 0 and AQ; =
! PRAH 1y

A similar computation as in (4.3) gives

/Bl o(—A0Q) = 0.

With v > 0 on {z; = 0}, this forces v =0 on {x; = 0}.

Suppose that there is a sequence of non-trivial solutions to (4.1), denoted by v;, that are A;-homogeneous
with )\j # 2k + 1 but )\j — 2k + 1.

Similar to the previous case, we have v; — v, where v is a (2k + 1)-homogeneous solution, and that
lvillL2(y) = llvll2(8,) = 1. A similar computation as in (4.3) gives

B

/ vy (£6AQ1 — Av) = (A — 2k — 1) / 0, (£6Q1 —v).
B 4]

Similar to the previous case, when ¢ is small, the right-hand side has the same sign as (A; — 2k — 1),
regardless of the sign in front of 4.

On the other hand, for large j, with locally uniform convergence of v; — v as well as the homogeneity of
the functions, we have {v; # 0} N {z; = 0} C {Av > $AQ;}. Thus the left-hand side is non-positive if the
sign in front of ¢ is positive, and non-negative otherwise. This is a contradiction. [

We will use Theorem 1.2 only for m = 2,3. As a consequence we obtain the following result.

Lemma 4.1. Suppose that v solves (4.1) and that it is n-approzimated by a A\-homogeneous function W
with A < 3 — as (with ag in Theorem 1.2).

[0 = WllLoo(my) < W llLoo(s,)- (4.5)
If n < c with ¢ depending only on the dimension d, then
Azg <3 —az, in By,
where Ay, denotes the frequency at a point xo € 0{v > 0} N {x1 = 0}.

We remark that W is not assumed to be a homogeneous solution to the thin obstacle problem.

Proof. It follows by compactness. If vy, Wy, oy satisfy the hypotheses with ny — 0 and |Wg||pe = 1,
then we can extract a subsequence such that vy — v, Wy — v in By with © a homogeneous solution of
degree A < 3 — a3. Then A2 (1/8) < 3 — ag which means A7k < A7k (1/8) < 3 — jas, for all large k and the
conclusion follows by Theorem 1.2. [

We will use estimates of the type (4.5) to express that the “frequency” of v is less than 3. This is convenient
for perturbations of the thin obstacle problem, where the monotonicity formula might not apply. We make
the following definition for functions that do not necessarily solve (4.1).
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Definition 4.1. We say that
w € A(n, By)

if w can be n-approximated in B, by a A-homogeneous function W with A < 3 — as,

|w—=WllLe(s,) <0 [IWlLeo(s,).-

Lemma 4.2. Assume that v solves (4.1) and v € A(e, By) with ¢ as in Lemma 4.1. For any n > 0, there
exists ¢(n) depending on n and d such that

v e An, B,), for somer € [c(n),1/2].

Proof. The proof follows by compactness. Assume that vy, satisfies the hypothesis, and say ||vg || 15,y = 1,
but the conclusion does not hold for any » € [1/k,1/2]. Then, we can extract a convergent subsequence to
a limit solution v, for which we can find r such that v € A(n/2, B,). This implies that vy, € A(n, B,) for all
large k, and we reached a contradiction. [

Finally, we may use the result of Focardi and Spadaro [11] on the Hausdorff dimension of the set of free
boundary with frequency A ¢ Upen{m,2m — 3}, i.e.

F;:{xe{v:O}ﬂ{xleH Az £ m, )\x#Zm—%, VmEN}

Lemma 4.3 (Covering of I'). Assume that v solves (4.1) and v € A(n, Ba) for n small. For any p > d — 3,
there is a finite cover of I' such that

1
I'nB, C UBri(xi) with erg 3 r; > c1,

and
v € A(n, Bay,(x;))  for each i.

Here ¢ = ¢1(n, 1) depends onn, p and d.

Proof. The proof is again by compactness. Assume that vy, satisfies the hypothesis, and say ||vg || g1 (5,) = 1,
but the conclusion does not hold with ¢; = 1/k. Then, we can extract a convergent subsequence to a limit
solution v € A(n, B2). By Lemma 4.1 the corresponding set I'; consists of those points for v which have
frequency A, € (2,3), since the frequencies < 2 must belong to the set {0, 1, %, 2}, see [13]. By Theorem 1.2,
I; is a closed set in Bj. Since the dimension of I'; is d — 3, see [11], given any o > 0 we can find a finite
cover of I'; N By by balls By, (z;) with Y s/ < o. According to Lemma 4.2 each ball, can be enlarged by at

most a C(n) factor such that
v e An/2,2r;), with s <r; <C(n)s;.

Then

N —

o< Oty s <ol <

provided that ¢ is chosen small.

On the other hand I, N By C UB,,(x;) for all large k. Indeed, if z¢ is a point outside the union of balls,
then ]\_fm (ry <2+ %052 for some small r, which shows that Iy cannot intersect a small neighborhood of xg
for all large k.

In conclusion vy satisfies the conclusion for all large k£ and we reached a contradiction. [
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Remark 4.1. The proof shows the conclusion can be replaced by v € A(kn, Kr;) for any constants
small, K large provided that ¢; depends on these constants as well. In particular, if v solve the thin obstacle
problem for a constant coefficient linear operator L 4v = tr AD?v of ellipticity A, which can be reduced to the
case of A after an affine deformation, then we can choose n small depending on A and d, so that Lemma 4.1
applies, and then ¢; = ¢1(p, 4,d) small so that Lemma 4.3 holds with v € A(n/8, 2r;).

5. A refinement of Lemma 2.3

In this section we give a more precise version of Lemma 2.3 and characterization of the top stratum X~
In view of Theorem 3.1 each stratum X* is well defined. Indeed, if one of the blow-up quadratic polynomials
at 0 € ¥ (see Theorem 2.1), say p, satisfies Ao(D?p) > 0, then Theorem 3.1 applies, and we obtain that p is
the unique blow-up profile and 0 € £* with k = dim kerD?p, k < d — 2. Then we define the top stratum as

D= Z\ U2 zk,

Near a point in Y%, we use one-dimensional homogeneous quadratic polynomials p with D?p > 0,
Xo(D?p) = 0, F(D?p) = 1 to approximate the solution. We define the space of such polynomials as

QO::{p: p(ﬂc):%acTAac7 A=~v(e)e®e, F(A)zl}.

Similar to Definition 2.2, we define by So(p, e, r) the class of solutions to (2.1) which are e-approximated by
a quadratic polynomial p € Qg in B,..

Definition 5.1. Given e,7 € (0,1) and p € Qp, we say that
(S SO(p7€7T)

if
u solves (2.1) in B,, and  |u —p| < er? in B,. (5.1)

We remark that in Definition 5.1, we no longer require the second derivative bound D?u > —cye as in
Definition 2.2, which played an important role in Section 3. However, from (5.1) we can always deduce a
bound of the type D?u > —Ce¢ in B, /2, see Lemma 5.3.

We state the main lemma of this section, which is a dichotomy for the top stratum £~

Lemma 5.1. Assume that
0e xyi-t u € So(p, e, 1).

Given 8 < 1, there are constants €, p small, depending on B and the universal constants such that if ¢ < g,
then
ueS(p',e'r), forsomer € p, 3,

and either

(1)

e =¢erf
(2) or e’ =r7?||u—p'||Loo(B,) and (see Definition 4.1)
1
S—p) €AW B), et ze Zert,

for some constants 0 < ag < ag < 1 depending on the dimension d, and n small universal.
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We can iterate Lemma 5.1 indefinitely. Lemma 5.2 shows that if end up in case (2) during the iteration,
then we remain in case (2) and u cannot be C%® at the origin for « close to 1. We define such a point to be

anomalous for X941
Definition 5.2. We say that 2o € 29! is anomalous and write zo € ¢! if

1
flu — §(~T —20)" D*u(z0)(x — 20) || oo (B (2g)) =TT

for some o < 1 and all r small. We denote

ZIt= p\ pit

Next we describe the iteration step of case (2) in Lemma 5.1.

Lemma 5.2. Assume that

u € So(p,&,2), é(u —p) € A(n, Ba). (5.2)

Then
(a) The conclusion (2) holds at any point in X4=1 N By and X4~ = ¥4~ in B;.
(b) Fiz u > d — 3. Then, if ¢ < &(u) small, we can find a cover of X4~ ! N By with B, (x;) such that

»41nB, c UB,, (), er < § ri > c(p),

1
u € SO(p'hEi)Qri)a ;(u_pl) S A('I’],Bgri).
Moreover X471 = () in dimension d = 2, and X371 is finite if d = 3.

We combine Lemmas 5.1 and 5.2 and obtain the following characterization of the set X1,

Theorem 5.1. Assume that e < &1,
u € SO(p78a 1)7

with & a small, universal constants. Then in By /o we have
(a) u is C%%0 on X4=1: for each xo € X971, 3¢z, quadratic polynomial, with

[u — gz |(z) < Celz — o[ 7.
(b) u is uniform C*# for any B < 1 on the non-anomalous set Eg’l:
U — gz, () < C(B)elx — 330\2%, if xo € 2;1—17

and the anomalous set 371 is open in ¥4~ and has Hausdorff dimension d — 3. In particular in dimension
d=2, X} =0, and in dimension d = 3, X2 is finite.

Part (a) was obtained in [1], while part (b) is a consequence of the results of this section.
The proofs of Lemmas 5.1 and 5.2 follow the same strategy as Lemma 3.1 in Section 3. The difference is

that now the rescaled error 1
= g(u —p) (5.3)
is well approximated by a solution v to the thin obstacle problem involving L,, the linearized operator of F
at D?p, which has constant coefficients. Then the dichotomy (1) or (2) is dictated by the frequency Ao of v
at 0, whether or not Ay > 3. We will show that Ag > 2 as follows:
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a) if Ao =1 then 0 € Reyg;

(b) if Ag = 3/2 then 0 € Reg;

(c) if Ao = 2 then 0 € X¥ for some k < d — 2.

Before we proceed with the proofs of the main lemmas we provide a lower bound for D?u.

Lemma 5.3. Assume that u solves (2.1) and
|lu—p| <e in By,
for some convex quadratic polynomial p with F(D?p) = 1. Then
D*u>—Ce in B34,

for some C' universal.

Proof. Assume that p = 3" 2a;2?, with a1 > as > .. > ag > 0. Then {u = 0} C {|z1| < Ce'/?}, and by

7
Proposition 2.1 we find

|D?(u —p)| < Cela1| ™ in Brg N {|a1] > Ce/2}.

We use that D?p > 0, together with D?u > —CyI in the strip {|z;| < Ce'/?} and conclude that w = u,
satisfies
L,w>0, w>0, H’lU||Lp(B7/8)d.I‘ < Ce,

for p = % By weak Harnack inequality we obtain |w| < Ce in B;/; and the lemma is proved. [

Without loss of generality we may assume that after an affine transformation of bounded norm, and a

rotation we satisfy )
p= ialx%, DF(D%*p) =1, Lyw = Aw. (5.4)

Lemma 5.4. Let u and p be as in Lemma 5.1 and 4 as in (5.3). Then

Proof. By Lemma 5.3 we know that in Bss, @l > —C for all unit directions e L e;. Since ||/ < 1 we
obtain [D.u| < C in By .
On the other hand At = L,a < 0, thus we also have @;; < C'in By,4, which gives |Diu| < Cin Bisp. O

This lemma provides us with enough compactness for the family of normalized solutions.

Lemma 5.5. Let F; be a sequence of operators satisfying (2.2)-(2.4), and uj, p;, €; satisfying the
assumptions of Lemma 5.1, and (5.4), with £; — 0. Then up to a subsequence, the normalized solution

i = —(uj — pj)
converges locally uniformly in By to a solution v to the thin obstacle problem (4.1).

Proof. Lemma 5.4 gives locally uniform C%! bound on the family {@;}. Consequently, up to a subsequence
they converge to some v and,
1

G;(D*iy) = —
J

1
Oty >0r = 1) = = X{u;=0}
J
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with 1
Gj(M) = —(Fj(e; M + D?p;) — Ej(D?py)).
J
By uniform C*F estimate on the family {F;}, up to a subsequence G; locally uniformly converges to A,

and the result easily follows. O

Now we give the proof of Lemma 5.1, which follows the steps of Lemma 4.1 in [1]. The main difference is
that now we include the discussion on the frequency 2 case, see Step 3 below, which was not done in [1].

Proof of Lemma 5.1. Suppose by contradiction that for a sequence of €;, p; — 0, a sequence of operators
F; and a sequence of solutions u; to (2.1) with these operators such that

uj € Solpj,€5,1),  0€ 2 (uy),

and (5.4) holds, but the conclusion of Lemma 5.1 does not hold for u;, with n as in Remark 4.1. Lemma 5.5
shows that up to a subsequence,
U; — v locally uniformly in B;,

where v € O

loc

Moreover, u;(0) = 0 for all j implies v(0) = 0. Denote by Ag the frequency of v at 0, and by A§ the

solves the thin obstacle problem (4.1).

frequency of v°, the even part of v with respect to the x; variable,

1
ve(x) = 5(”(.’51,1}2, . 'a’rn) + U(il‘l?zQa s ,In))

In Steps 1-2 which are identical with [1], we show that Ao > 2. In Step 3 we prove that A\§ > 2. Then in

Steps 4-5 we establish the conclusions (1)—(2) for u;, depending on whether or not A§ > 3. We only sketch
the first 2 steps, the details can be found in Lemma 4.1 in [1].

Step 1: Vv(0) = 0.
Since v(0) = 0 we have the expansion

v=asx] +a_z] +o(z]) asz—0.

First we claim that a4+ < 0. Indeed, if say a4 > 0, then we can use the uniform convergence of the u; to
v and an explicit barrier to show that u;(0) > 0 for all large j, contradiction.

Then we claim that a+ cannot be negative. If say a4 < 0, then we can use a barrier to prove that {u; = 0}
contains a small open ball around a point te; for some ¢ small. On the other hand Lemma 2.5 implies that
Uee > 0 in By o for all unit direction e close to e;. This means that {u; = 0} contains an open cone with
vertex at 0, hence 0 € Reg(u;), contradiction.

Step 2: \g > 2.
In view of Step 1 we only need to show that \g # % Otherwise, v has an expansion

v= aRe(z%) + 0(|a:|%)7 a >0,

where z represent the complex number in a 2d plane generated by unit directions v and ey for some v L ey.
Then we fix some r > 0 so that D,v > 0 in B, N {z; # 0}, and pick ¢ small such that D,v > 20 in
{lz1] > 7} D {u; > er?} for all large j.

Since for e L e; we have _ D eUj = De@; — D.v uniformly on compact sets of B, \ {x1 = 0}, and by
Lemma 5.4, Di; > —C, we see that Remark 2.2 applies for u; and such unit directions e close to v. We
obtain D.u; > 0 and contradict 0 € X(u;).

Step 3: A\§ > 2.
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We decompose v = v° + v¢ in the odd and even part with respect to x; variable. Then v° is a harmonic
function which vanishes on x1; = 0, and by Step 1

0 = Z bixyz; + O(|z]*).

i>1
The even part v¢ still solves the thin obstacle problem (4.1), and by Steps 1-2, its frequency at 0, A\§ > 2.
Let us assume by contradiction that A\§ = 2. Then v has an expansion

1
v= o Av+o(fa])

with tr A =0, e- Ae > 0 for all e € S¥~! N {x; = 0}, and with strict inequality for some unit direction say
e, €a - Aea = as > 0. Consequently,

|lv— %x - Az| < §(r)r? in B,, with §(r) — 0 as r — 0.
The uniform convergence of ; — v gives for large j (we drop the subindex j for simplicity of notation)
|u—p—s%x~Aw| < 20er? in B,. (5.5)
By Cauchy—Schwarz inequality there is a constant Cy, depending on |A|, so that
D*p4+cA+Cue’l > cey Qe +cas e ea, (5.6)
for some ¢ universal. The hypotheses on F, (5.4), and ¢r A = 0 imply that
|F(D?*p + Ae + Cae’I) — 1| < CYettor

by assumption (2.3). Consequently, there is t € [-C’{, C'4] such that the polynomial
1
2
satisfies F(D?p’) =1 and, by (5.6), we have (for all £ small)

1 1
p(r)=p+ ex- Az + §C’A52\x|2 + §t51+°‘Fx§

D?p = D?*p+ A+ Cyae’I + te'tFe; @ e > gel ®ei+eas eg ®ey >0,
and \o(D?p’) > age. Finally (5.5) implies that

lu —p'| < 20er? + Clhe' ™ Fr? < 35er*  in B,. (5.7)

By Lemma 5.3 this implies that D?u > —Cde in B, for some C large universal. Thus u satisfies the
hypotheses of Lemma 3.1

ueS(p,e,r) with ¢ = —c;'Cde, and Mo(D?*p) > age > Koe',
provided that we choose r small (depending on as) such that 6 = §(r) < azC’ for some C’ large universal.
In conclusion 0 € X* for some k < d — 2, and we reached a contradiction.
Step 4: If \§ > 3 then (1) holds.
Then, by using the behavior of v° and v® near 0 we find that

v = szxlxl + 0(|x|2+ﬁ),
i>1
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and the computations of Step 3 apply with the corresponding A, and with § replaced by d7%. Notice that in
this case we can construct p’ such that D?p’ has rank 1, i.e. it is a multiple of ¢} ® €} where €} is the unit
direction of e; +¢ ) ;- , bi/aie;. We achieve this by first completing the square in p+e),_;
by adding a multiple te!T*Fe} @ €] so that F(D?p’) = 1. As in Step 3 we obtain (5.7) thus

b;x;x1 and then

uweSy(p,e,r), € <erf,
and (1) holds for all large j, and we reached a contradiction.

Step 5: If \§ € (2,3) then (2) holds.
By (4.2), for each small 7, we can find a Aj-homogeneous function V,., such that

HU — Z bﬂ?l.’l?i — V;

<5 Vil oo rBoys 5.8
poimy 00 Vel s, (53)

and,
5(r) =0, 107 > ||Vpllpeo(p,y = 0T as =0,

for any fixed o > 0. We can define p’ as in Step 4 and obtain as in (5.7) that
lu—p' —eVy| <268 (|Vilpoe + Che™Fr? < 326V, || (5.9)

in B,. We choose

e =172 u—pLeo(s,y ~ e VellLoo sy,

and § = 6(r) small, such that § < n/8. The inequality above shows that conclusion (2) holds for all large j
and we reached a contradiction. [

Remark 5.1. Notice that (5.9) implies that ||u — q||z(p,) > ce'r? for any quadratic polynomial gq.

Remark 5.2. In Steps 1-3 we expanded v near the origin and used the uniqueness of the blow-ups when

the frequency Ao € {1, %, 2}. This is not necessary since, as in Steps 4-5, the expansion (4.2) suffices.

Lemma 5.2 follows easily from the proof above and the results of Section 4.

Proof of Lemma 5.2. The class A(n, B,) is invariant under multiplications by constants, and after
relabeling & we may assume that & = 272||u — p|| Lo (5,)-

Then 4 is n-approximated in By by a A-homogeneous function W with A < 3—as, and with [|W|| oo (p,) ~
1. Thus, in the proof of Lemma 5.1, the limiting function v satisfies

v e A(2n,Bsy), and v° € A(4dn, By).

Since 7 is chosen small we find A*(x) < 3 — a3 < 3 for all x € By, and therefore Step 4 and case (1) cannot
happen at any « € Y91 N B;. This means that, as we iterate Lemma 5.1 at the origin, we always end up
in case (2) and obtain a sequence of radii » = r,, — 0 so that (see Remark 5.1)

HU - q”Br Z C€T2+a1, 1/2 2 Tn-l-l/rn Z C,

for any quadratic polynomial ¢. Hence, 0 € X9~! according to Definition 5.2, and part (a) is proved.

Part (b) is a direct consequence of Lemma 4.3. Indeed, we can cover the set I'(v®) of points € B
of frequency \*(x) € (2,3) by a finite cover B,,(z;) satisfying the desired properties and with v® €
A(n/8, Bay,(x;)). This means that in each ball B, (;), v satisfies (5.8) with § = /8, and by Step 5 we
conclude that

u € So(pj, e, 2ri),  (u—p;)/ei € A(n, Bar,(xi))-
By Steps 1-3 of Lemma 5.1, £4=1(u;) N By belongs to the finite cover of I'(v¢) for all large j, and the proof
is complete. [
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