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show that each stratum can be further decomposed into a ‘good’ part and an
‘anomalous’ part, where the former is covered by C1,1− manifolds, and the latter
is of lower dimension.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we revisit and sharpen the results of our previous work [1], where we investigated the
regularity of the singular set of the free boundary in the nonlinear obstacle problem.

In its simplest form, the classical obstacle problem consists in solving

△u = χ{u>0}, (1.1)

n the class of nonnegative functions u ≥ 0 defined in a domain Ω ⊂ Rd, subject to boundary conditions.
n important feature of this problem is the presence of a free boundary ∂{u > 0}, which separates the

oincidence region {u = 0} from the positivity set {u > 0}.
The regularity of the free boundary was established by Caffarelli in [2,3] through a blow-up analysis. At

ach point x0 on ∂{u > 0}, the quadratic blow-ups of u converge to either a half-quadratic polynomial like
1
2 [(x · ex0)+]2 for some ex0 ∈ Sd−1, or to a whole-quadratic polynomial like 1

2 xT Ax0x with Ax0 ≥ 0 and
race(Ax0) = 1. In the first case, we say that x0 is a regular point (x0 ∈ Reg), and in the second case that
0 is a singular point (x0 ∈ Σ ). The singular part of the free boundary Σ can be decomposed further into
strata Σk, according to the dimension k of the kernel of Ax0 ,

Σ = Σ 0 ∪ Σ 1 ∪ · · · ∪ Σd−1.
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The uniqueness of the blow-up limit and the rate of convergence of the blow-ups to this limit determine
the fine properties of Reg and Σ . In [2], it was shown that Reg is locally a C1,α hypersurface. Combined
with an earlier work of Kinderlehrer–Nirenberg [4], this implies that Reg is analytic. In [3], the uniqueness
of the blow-up limits was established at points in Σ . This implies that each Σk is locally covered by a C1

submanifold of dimension k.
The regularity of Σ was improved successively through quantitative rates of convergence of the blow-ups.

When d = 2, Weiss obtained the C1,α regularity of the manifolds by introducing the Weiss monotonicity
formula [5]. Based on the same formula, Colombo–Spolaor–Velichkov [6] showed through a log-epiperimetric
inequality that in higher dimensions the manifolds are of class C1,logε . So far the best result is due to Figalli–
Serra [7], who employed techniques from the thin obstacle problem. By applying Almgren’s monotonicity
formula, they improved C1,logε to C1,α for the manifold covering the top stratum Σd−1. They also showed
that each stratum Σk can be further divided into a ‘good’ part Σk

g and an ‘anomalous’ part Σk
a , where the

former is covered by C1,1 manifolds, and the latter is of lower dimension. With a more precise analysis using
similar techniques, Franceschini–Zatoń showed that the singular set can be covered by a smooth manifold
after the removal of a (d − 2)-dimensional set [8].

In [1], we obtained a rate of convergence for the quadratic blow-ups centered at a point on Σ , through
an iterative scheme which is based on the linearization of the problem. At a point on the top stratum Σd−1,
the linearized equation is given by the thin obstacle problem. At points on the lower strata Σk k ≤ d − 2,
the linearized equation is a degenerate thin obstacle problem, where the obstacle supported on a subspace
of null capacity. The results in [1] give same general regularity of the strata Σk as in [7], that is, locally, the
top stratum Σd−1 is included in a C1,α hypersurface, and, for k ≤ d − 2, each lower stratum Σk is included
in a k-dimensional C1,logε submanifold.

The estimates in [1] do not rely on monotonicity formulae, and are based on the propagation of
monotonicity and convexity together with the regularity properties of the linearized problems. They apply
to the more general nonlinear obstacle problem

F (D2u) = χ{u>0}, u ≥ 0, (1.2)

ith F ∈ C1,α a convex, uniformly elliptic operator, and (1.2) is understood in the viscosity sense, see [9].
he convexity of F guarantees that the pure second derivatives uee are super solutions, while F ∈ C1

implies that the linearized problems have constant coefficients. The regularity of Reg for the problem (1.2)
as addressed by K.A. Lee in [10], where the results of Caffarelli from [2] were extended.
In this paper, we refine the results in [1]. Similar to Figalli–Serra [7], we obtain a further decomposition

f each stratum Σk for the nonlinear problem (1.2) as Σk = Σk
g ∪Σk

a , with Σk
g more regular and Σk

a of lower
imension.

Our main result is the following:

heorem 1.1. Let u be a solution to (1.2).
Each stratum of the singular part can be decomposed as

Σk = Σk
g ∪ Σk

a ,

ith Σk
g locally covered by a k-dimensional C1,1− manifold, and Σk

a relatively open in Σk, and
(a) if k ≤ d − 2, then Σk

a has dimension at most k − 1; in particular Σ 0
a = ∅ and Σ 1

a consists of isolated
oints in Σ 1 (that can have accumulation points on ∪k≥1Σ

k);
(b) if k = d − 1, then Σk

a has dimension at most d − 3; in dimension d = 3, Σ 2
a is finite.

By a C1,1− manifold, we understand a manifold that is of class C1,1−ε for any ε > 0. As mentioned above,
igalli and Serra established the decomposition for solutions to (1.1). Their result includes the end-point
1,1
 regularity of the manifolds.
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Theorem 1.1 is a consequence of Whitney’s extension theorem, Theorems 3.1 and 5.1, where explicit
point-wise C2 estimates for u are derived at various points on Σ . The set of anomalous points on Σ consists
f those points where u fails to be C2,α, for some 0 < α < 1, see Definitions 3.1 and 5.2.

The proof of part (b) in Theorem 1.1 is based on related results for the thin obstacle problem. One
mportant ingredient is from a recent work of Focardi–Spadaro [11]. For the thin obstacle problem, they
howed that the set of free boundary points with frequencies between 2 and 3 is of dimension at most d − 3.
nother key ingredient is the stability of free boundary points of low frequencies. This stability is obtained
y establishing a general frequency gap near all integers for the thin obstacle problem, which is interesting
n its own:

heorem 1.2 (Frequency Gap in the Thin Obstacle Problem). For each m ∈ N, there exists a constant
m > 0 small, depending only on the dimension d and m, so that (m − αm, m + αm) \ {m} does not contain
ny admissible frequency for the thin obstacle problem.

We only use this result for m = 2 and 3. Near even integers, this gap was already known from
olombo–Spolaor–Velichkov [12]. Our proof is different and applies to odd integers as well.
The paper is organized as follows. In Section 2, we review the results from [1] and explain how we will

uantify them more precisely. In Section 3, we prove Theorem 3.1, which implies part (a) of Theorem 1.1. In
ection 4, we review the relevant results for the thin obstacle problem and prove Theorem 1.2. In Section 5,

we obtain Theorem 5.1 which corresponds to part (b) of Theorem 1.1.

2. Some results of the first paper

In this section, we state our hypotheses and review some results in [1].
Let u be a solution to the nonlinear obstacle problem{

F (D2u) = χ{u>0},

u ≥ 0,
in B1, (2.1)

here F is a fully nonlinear elliptic operator, satisfying the assumptions in the follow subsection.

.1. Assumptions on F and consequences

Let Sd denote the space of d-by-d symmetric matrices. The operator F : Sd → R satisfies:

F (0) = 0; F is convex; (2.2)

F is C1,αF for some αF ∈ (0, 1) with C1,αF seminorm [F ]C1,αF ≤ CF ; (2.3)

here is a constant 1 ≤ Λ < +∞ such that

1
Λ

∥P∥ ≤ F (M + P ) − F (M) ≤ Λ∥P∥ (2.4)

for all M, P ∈ Sd and P ≥ 0.
We call a constant universal if it depends only on the dimension d, the elliptic constant Λ and CF , αF .
For a C2 function φ, define the linearized operator Lφ : Sd → R by

Lφ(M) =
∑

Fij(D2φ)Mij ,

ij

3
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here Fij denotes the derivative of F in the (i, j)-entry, and D2φ is the Hessian of φ. One consequence of
onvexity is

Lv(w − v) ≤ F (D2w) − F (D2v) ≤ Lw(w − v). (2.5)

Let v be a solution to
F (D2v) = 1 in B1.

The Evans–Krylov estimate and (2.3) imply that

∥v∥C3,α(B1/2) ≤ C∥v∥L∞(B1)

with C, α > 0 universal. The same estimate holds for the difference between v and a quadratic polynomial
p with F (D2p) = 1, that is,

∥v − p∥C3,α(B1/2) ≤ C∥v − p∥L∞(B1). (2.6)

In particular, if u solves (2.1), then in {u > 0} we can differentiate the equation in a unit direction
e ∈ Sd−1, and then use convexity of F to get

Lu(Deu) = 0, Lu(Deeu) ≤ 0 in {u > 0}. (2.7)

It is standard to estimate the higher norms of the difference between two solutions of F in terms of the
L∞ norm of their difference (see Proposition 2.2 in [1]).

Proposition 2.1. Let F be as above.
If v and w solve

F (D2v) = F (D2w) = 1 in B1,

then
∥v − w∥C2,α(B1/2) ≤ C∥v − w∥L∞(B1)

with α ∈ (0, 1) universal, and C further depending on ∥v∥L∞(B1) and ∥w∥L∞(B1).

2.2. The free boundary

Lee established in [10] the optimal regularity u ∈ C1,1
loc , and analyzed the free boundary ∂{u > 0} by a

blow-up analysis. The results can be summarized as follows.

Theorem 2.1. Let u be a solution to (2.1). Assume that 0 ∈ ∂{u > 0}. Then

∥u∥C1,1(B1/2) ≤ C

for some C universal. Moreover, the blow-up rescalings

ur(x) := r−2u(rx)

converge locally uniformly along subsequences of rj → 0 to global solutions that are either
(1)

a half-quadratic 1
2cξ[(x · ξ)+]2 for some ξ ∈ Sd−1 and cξ ∈ R with F (cξξ ⊗ ξ) = 1, or

(2)
a whole quadratic 1

xT Ax with A ≥ 0, F (A) = 1.
2
4
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If there is a blow-up sequence which ends up in case (1), then we say that 0 is a regular free boundary
point and write 0 ∈ Reg. Otherwise, any blow-up limit is a whole quadratic, and we say that 0 is a singular

oint and write 0 ∈ Σ .

emark 2.1. If 0 ∈ Σ , then the zero set {u = 0} cannot contain a nontrivial cone with vertex at 0. In
articular, the solution u cannot be nondecreasing in an open cone of directions near the origin.

These definitions imply that the free boundary decomposes into the regular part and the singular part

∂{u > 0} = Reg ∪ Σ .

It was shown in [10] that Reg is open in ∂{u > 0}, and that the blow-up limit at a regular point is unique.
oreover, in a neighborhood of a point from Reg, the free boundary ∂{u > 0} is a C1,α hypersurface which

eparates the coincidence set, {u = 0}, from the positivity set {u > 0}.
In [1], we analyzed the behavior of u near points in Σ , and showed the uniqueness of the blow-up limit

rofile in (2). As a consequence, the singular set Σ can be decomposed into d disjoint sets (strata), depending
n the dimension of the kernel of the blow-up polynomial 1

2 (x − x0)T Ax0(x − x0) at a point x0 ∈ Σ :

Σ = Σ 0 ∪ Σ 1 ∪ · · · ∪ Σd−1

ith
Σk := {x0 ∈ Σ | dim ker(Ax0) = k}.

.3. Results in [1]

We recall the main results and some notations of [1].
First we define the class of polynomial solutions to the obstacle problem, and include also the convex

olynomials that do not necessarily satisfy the non-negative constraint.

efinition 2.1. The class of quadratic solutions is defined as

Q =
{

p : p(x) = 1
2xT Ax, A ≥ 0, F (A) = 1

}
.

he larger class of unconstraint convex quadratic solutions is defined as

UQ =
{

p : p(x) = 1
2xT Ax + b · x, A ≥ 0, F (A) = 1

}
.

Note that for a polynomial p ∈ UQ, its convexity and the ellipticity (2.4) of F imply

D2p ≤ C I,

or some universal C.
The goal is to keep track of the polynomial approximations for a solution u of (2.1) in dyadic balls.

efinition 2.2. Given ε, r ∈ (0, 1) and p ∈ UQ, we say that u is ε-approximated by the polynomial p in
r, and use the notation

u ∈ S(p, ε, r)

f
u solves (2.1) in B , |u − p| ≤ εr2 in B ,
r r

5
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D2u ≥ −c0ε I in Br, (2.8)

here c0 = 1
16Λ2 .

We now state the main lemmas from [1], which provide good rates of the quadratic approximations in
yadic balls. They imply the uniqueness of blow-ups together with regularity properties of each strata.

Depending on the size of the eigenvalues of D2p with respect to ε, there are two cases to consider.
For a matrix M ∈ Sd, we denote its eigenvalues by

λ1(M) ≥ λ2(M) ≥ · · · ≥ λd(M).

p to a rotation, we assume ej is the eigenvector corresponding to λj(M). The first case deals with the
situation when u is ε-approximated by a polynomial p ∈ UQ in B1 with λ2(D2p) ≫ ε. In this case, we
expect 0 ∈ Σk with k ≤ d − 2.

Lemma 2.1 (Lemma 5.1 in [1], Quadratic Approximation near Codimension ≥ 2). Suppose

u ∈ S(p, ε, 1) with 0 ∈ Σ and p ∈ UQ.

There are universal constants κ0 large, ε̄ small, and ρ ∈ (0, 1
2 ) such that if ε < ε̄ and

λ2(D2p) ≥ κ0ε, (2.9)

then
u ∈ S(p′, ε′, ρ)

for some p′ ∈ UQ, and one of two alternatives happens for ε′:

(1)
ε′ ≤ (1 − c)ε for a universal c ∈ (0, 1); or

(2)
ε′ ≤ ε − εµ and (u − h)(1

2ρe1) ≤ C(ε − ε′),

for some universal constants µ, C > 1, where h is the solution to the unconstrained problem{
F (D2h) = 1 in B1,
h = u on ∂B1.

(2.10)

We make a few comments on Lemma 2.1.
The situation (1) is consistent with a C2,α-estimate for u at 0 for some α ∈ (0, 1) depending on c and ρ.

he situation (2) gives a much slower improvement for ε(r) as r → 0, and it implies only a C2,logc -estimate
or u at 0. In Section 3, by quantifying Lemma 2.1 more precisely, we give a refined characterization of the
trata Σk with k ≤ d − 2.

Firstly, given any β < 1, the estimate in (1) can be improved to ε′ ≤ ρβε, consistent with the C2,β

caling. Secondly, if alternative (2) holds for some ball Br, we show that it continues to hold for all dyadic
alls Bρmr. As a result, we show that u cannot be point-wise C2,α at the origin for any α > 0. In this second
ase, using the notation as in [7], we say that 0 is an anomalous point of Σk (0 ∈ Σk

a ). It follows that Σk
a is

pen in Σk, and has dimension at most k −1. The remaining part of Σk, the ‘good’ part Σk
g , can be covered

y a C1,1− submanifold of dimension k.
The key observation in the proof of Lemma 2.1 is that the hypothesis (2.9) implies that u and h are

(ε)-close away from a codimension 2 subspace. For a positive constant η, we define the following cylinder

Cη = {|(x1, x2)| ≤ η}.
6
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emma 2.2 (Lemma 5.2 in [1]). Let u, p, h be as in Lemma 2.1.
Given η small, there is κη, depending on universal constants and η, such that if κ0 ≥ κη, then

∥u − h∥C2(B1/2\Cη) ≤ ηε

or all ε small, depending on η.

The idea of the proof of Lemma 2.1 is to show that h is essentially tangent of order 2 at the origin i.e. h(0),
∇h(0)| = o(ε) (otherwise 0 would be in Reg(u)). Then alternatives (2) and (1) are dictated by whether or
ot D2h(0) has negative eigenvalues of size ε.

We remark that the estimate for u − h at the point ρ
2 e1 is used towards the convergence of the

orresponding Hessians D2h(0) as we zoom in using dyadic balls. Suppose that we are in the slow
mprovement situation (2). Let h′ denote the solution to (2.10) in the ball Bρ. By the maximum principle,
e have u ≥ h′ ≥ h in Bρ. The Harnack inequality for the difference h′ − h, and Proposition 2.1 imply

|D2h′(0) − D2h(0)| ≤ Cρ∥h′ − h∥L∞(Bρ)

≤ C(h′ − h)(1
2ρe1) ≤ C(u − h)(1

2ρe1) ≤ C1(ε − ε′), (2.11)

or some C1, depending on universal constants and ρ.
We now state the main quadratic approximation lemma from [1] in the case when only λ1(D2p) is much

arger than ε.

emma 2.3 (Lemma 4.1 in [1]. Quadratic Approximation near Codimension 1). Suppose

0 ∈ Σ , u ∈ S(p, ε, 1) with p ∈ Q

nd
λ2(D2p) ≤ κε

or some constant κ > 0.
There are constants ε̄, c ∈ (0, 1) and ρ̄ ∈ (0, 1/2), depending on universal constants and κ, such that if

< ε̄, then
u ∈ S(p′, ε′, ρ) for some p′ ∈ Q,

ith
ε′ = (1 − c)ε, and ρ ∈ (ρ̄, 1/2).

The idea of its proof is to show that the normalized error 1
ε (u − p) is well approximated by a solution to

he linearized problem, the thin obstacle problem. The frequency at the origin for this thin obstacle problem
annot be 1 or 3

2 , since otherwise 0 is either interior to {u = 0} or in Reg. Then the frequency has to be at
east 2, which implies the geometric improvement ε → ε′ above.

In Section 5, we quantify Lemma 2.3 more precisely and obtain a refined characterization of the stratum
Σd−1. Depending the frequency at the origin in the thin obstacle problem, we have a dichotomy.

If the frequency is higher than or equal to 3, we show that we can replace ε′ = ρβε (for any fixed β < 1),
consistent with the C2,β scaling. Otherwise, we leave ε′ as above but the rescaled error has ‘frequency’
between 2 and 3. In addition, if the second alternative holds for some ball Br, then it continues to hold for
all other smaller dyadic balls. In this case, using the notation as above, we say that 0 is an anomalous point
(0 ∈ Σd−1

a ). It follows that Σd−1
a is open in Σd−1, and has dimension at most d − 3. The remaining part of

Σd−1, the ‘good’ part Σd−1
g , can be covered by a C1,1− hypersurface.

Since there is no monotonicity formula for the nonlinear problem, we rely on geometric information of
the solution in terms of its monotonicity and convexity. Roughly, the following lemmas state that if u is
monotone/convex in B away from a strip of width η ≪ r, then u is monotone/convex in B .
r r/2

7
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emma 2.4 (Lemma 3.2 in [1]). Suppose u ∈ S(p, ε, r) satisfies the following for some constants K, σ, and
< η < r, and a direction e ∈ Sd−1:

Deu ≥ −Kε in Br, and Deu ≥ σε in Br ∩ {|x1| ≥ η}.

There is η̄, depending on universal constants, r, σ and K, such that if η ≤ η̄, then

Deu ≥ 0 in Br/2.

emma 2.5 (Lemma 3.4 in [1]). Suppose u ∈ S(p, ε, 1). There is a universal constant C such that if
eep ≥ Cε along some direction e ∈ Sd−1, then

Deeu ≥ 0 in B1/2.

emark 2.2. The hypothesis Deu ≥ σε in Br ∩ {|x1| ≥ η} in Lemma 2.4 can be relaxed to

Deu ≥ 0 in Br ∩ {|x1| ≥ η}, and Deu ≥ σε in Br ∩ {u ≥ cr2},

or some c small, universal (see Lemma 3.3 in [1]).

. A refinement of Lemma 2.1

In this section, we refine Lemma 2.1. The proof follows the lines of the one in [1], with a few modifications
owards the end. For convenience of the reader, we reproduce the whole argument, leaving out only technical
oints that are identical with the ones in [1].

Since the solution u is ε-approximated by p in B1 with λ2(D2p) ≫ ε, the coincidence set {u = 0}
oncentrates around a subspace of codimension at least 2. As a result, the coincidence set has small capacity,
nd we expect to approximate u by the solution to the following unconstrained problem.

For 0 < r < 1, let hr be the solution to the following:{
F (D2hr) = 1 in Br,
hr = u on ∂Br,

(3.1)

nd denote its Hessian at 0 by
Ar = D2hr(0). (3.2)

With these notation, Lemma 2.1 can be refined to

emma 3.1. Suppose
u ∈ S(p, ε, 1) with 0 ∈ Σ and p ∈ UQ.

iven any β ∈ (0, 1), there are constants κ0, C large, ε̄, c1, ρ small, depending on β and the universal
onstants, such that if ε < ε̄ and

λ2(D2p) ≥ κ0ε, (3.3)

hen
u ∈ S(p′, ε′, ρ)

or some p′ ∈ UQ with
|D2p′ − A1| ≤ Cε,

nd

8
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(1) if |A−
1 | ≤ c1ε then

ε′ = ερβ

(2) if |A−
1 | ≥ c1ε then

ε′ ≤ ε − εµ and |A−
ρ | ≥ c1ε′

for some universal constant µ > 1.

Moreover, in both cases, we have
|A1 − Aρ| ≤ C(ε − ε′).

emark 3.1. Beginning with an initial approximating p1 with error ε1, Lemma 3.1 is applied to dyadic
alls of radii r = ρm, and gives approximation of u by a sequence of parabolas pm with decreasing errors
m. By the estimates on |D2p′ − A1| and |A1 − Aρ|, the difference between D2pm and D2p is at most Cε1.
onsequently, if we begin with D2p1 ≥ κε1 for some κ ≥ κ0 + C, then condition (3.3) holds for all pm, and
emma 3.1 can be applied inductively.

Lemma 3.1 is more precise than Lemma 2.1.
In case (1), the improvement of ε′ is consistent with the C2,β scaling for β arbitrarily close to 1. In case

2), the lower bound on |A−
ρ | shows that if this alternative happens at one scale r, then it happens for all

ner scales ρmr.
If alternative (2) happens, then the solution u cannot be C2,α at the origin for any α > 0, and we say

hat 0 is an anomalous point of Σ .

efinition 3.1. We say that x0 ∈ Σ is anomalous and write

x0 ∈ Σa

f
∥u − 1

2(x − x0)T D2u(x0)(x − x0)∥L∞(Br(x0)) ≥ r2+α

or any α > 0 and all r small.
We denote the complement of the anomalous part, the good part, by

Σg := Σ \ Σa.

For each k ≤ d − 2, we denote

Σk
a := Σk ∩ Σa, Σk

g := Σk ∩ Σg.

Alternative (1) in Lemma 3.1 implies that the solution u is C2,β at all points in Σk
g with k ≤ d − 2. This

ives the desired C1,1− covering of the good part.
On the other hand, if 0 ∈ Σk

a , we have the following lemma, which states that Σ coincides with Σa near
, and that Σk

a concentrates near a (k − 1)-dimensional space.

emma 3.2. Under the assumptions in Lemma 3.1, and assume that alternative (2) holds. Then

Σ ∩ Bρ ⊂ Σa

nd, after rescaling, alternative (2) holds in any ball Br(x0) with x0 ∈ Σ ∩ Bρ and r ≤ ρ.
Moreover, if

λd−k(D2p) ≥ κε for some k ≤ d − 2, (3.4)

hen Σ ∩ B is in a σ(κ)-neighborhood of a subspace of dimension k − 1, with σ(κ) → 0 as κ → ∞.
ρ

9
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Suppose that 0 ∈ Σk for some k ≤ d − 2, then the unique blow-up limit, say, p1, satisfies

λ1(D2p1) ≥ λ2(D2p1) ≥ · · · ≥ λd−k(D2p1) > 0.

onsequently, after an initial rescaling, we can assume u ∈ S(p1, ε1, 1) for a small ε1 satisfying λd−k(D2p1) ≥
κ0ε1. By the same reasoning as in Remark 3.1, λd−k(D2pm) ≥ 2κ0ε1 for all subsequent approximating
arabolas pm. On the other hand, the approximating errors εm → 0. This implies

λd−k(D2pm)/εm → ∞.

f alternative (2) as in Lemma 3.1 ever happens, then Lemma 5.2 implies that at smaller and smaller scales,
Σ is trapped in a neighborhood of a (k − 1)-dimensional subspace with vanishing width. Standard covering
arguments imply that Σk

a has Hausdorff dimension k − 1. In particular for k = 0 we have Σ 0
a = ∅, and for

k = 1, Σ 1
a consists of isolated points inside Σ 1.

If we start with the situation of Lemma 3.1 with, say β = 1/2, then after a few iterations of the lemma
we may apply the estimates of Lemma 3.1 for a different value of β much closer to 1, and so on.

We summarize these in the following theorem, which gives part (a) of our main result Theorem 1.1.

Theorem 3.1. Assume that ε ≤ ε̄0,

u ∈ S(p, ε, 1) and λ2(D2p) ≥ κ̄0ε,

with ε̄0 small, κ̄0 large universal constants. Then in B1/4 we have
(a) Σ = ∪k≤d−2Σ

k and u is C2,logc on Σ :
for each x0 ∈ Σ , ∃ qx0 , a quadratic polynomial, with |D2qx0 − D2p| ≤ Cε and

|u − qx0 |(x) ≤ C|x − x0|2| log |x − x0 ∥−c .

(b) u is uniform C2,β for any β < 1 on the non-anomalous set Σg:

|u − qx0 |(x) ≤ C(β)ε|x − x0|2+β if x0 ∈ Σg.

(c) The anomalous set Σk
a is open in Σk and has Hausdorff dimension k − 1. In particular, Σ 0

a = ∅, and
Σ 1

a is discrete locally (can have accumulation points on Σ).

Theorem 3.1 follows directly from Lemmas 3.1 and 3.2 and the discussion above. The rest of the section
is devoted towards the proof of Lemma 3.1. By examining this proof, we deduce Lemma 3.2.

Let us assume λk(D2p) ≫ ε for some,k≥2 and that D2p has ordered eigenvalues on the diagonal. Then
he coincidence set {u = 0} concentrates around the set

{x′ = 0 ∈ Rk}, where x′ := (x1, . . . , xk), x′′ := (xk+1, . . . , xd). (3.5)

For simplicity of notation we denote h1 by h.
The normalized error

û = 1
ε

(u − p)

solves an obstacle problem with the obstacle

Ô = −1
ε

p.

Since the capacity of the coincidence set converges to 0 as ε → 0, we expect to approximate û by

ĥ := 1(h − p).

ε

10
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By Lemma 2.2, this is true outside a small tubular neighborhood Cη around the x′′-subspace. Inside Cη,
owever, the difference between ĥ and û could be of order 1, and û might not have a uniform modulus of
ontinuity as ε → 0.

Heuristically, as ε → 0, we end up with limiting functions ū, Ō and h̄, that satisfy that |h̄|, |ū| and max Ō

re all bounded by 1 in B1, and
(1) h̄ is a solution to a constant coefficient elliptic equation,
(2) the obstacle Ō is a concave quadratic polynomial supported on the x′′-subspace, extended to −∞

utside its support,
(3) ū = max{h̄, Ō}, which can be discontinuous.
The improved quadratic error for û follows from the C3 estimate of h̄ at the origin. However, first we

eed to establish that 0 ∈ Σ essentially implies that h̄ and Ō are tangent of order 1 at the origin in the x′′

irection. The dichotomy in Lemma 3.1 depends on whether or not Ō separates (quadratically) on top of h̄

n this direction.
We now give the proof of the main result in this section:

roof of Lemma 3.1. As discussed above, we define the normalizations

û = 1
ε

(u − p), ĥ = 1
ε

(h − p) and Ô = 1
ε

(0 − p).

hen in B1, we have
−1 ≤ ĥ ≤ û ≤ 1, û(0) = Ô(0) = 0,

nd (2.6) implies
∥ĥ∥C3,α(B3/4) ≤ C (3.6)

or some universal constant C. By Lemma 2.2, for any small parameter η > 0 we have

∥û − ĥ∥C2(B1/2\Cη) ≤ η, Cη = {|(x1, x2)| ≤ η}. (3.7)

rovided that κ0 ≥ κη and ε̄ ≤ εη, with κη, εη depending on universal constants and η.
We follow the proof of Lemma 5.1 in [1], which consists of 6 Steps. The differences appear only in Steps

and 6, where we choose various parameters depending on β. For the convenience of the reader, we provide
he full argument, with some parts in Steps 1–3 being only sketched.

Before we proceed, we give the outline of the 6 steps.
We decompose the space x = (x′, x′′) according to the curvatures of the obstacle Ô. The curvatures are

ery negative along the directions in the x′-subspace, and are uniformly bounded in the x′′-subspace. In
teps 1–2 we show that ĥ and Ô are tangent in the x′′ direction at the origin up to an arbitrarily small error
, and deduce that Ô can only separate quadratically on top of ĥ near the origin. In Step 3, we use barriers
o show that the same is true for û. In Step 4, we use the C3,α estimate for ĥ to approximate u quadratically
n Bρ by a polynomial p′ ∈ UQ. The lower bound for D2u in Bρ, D2u ≥ −c0ε′I (see (2.8) in Definition 2.2)
nd the choice of ε′ are given in Steps 5 and 6, according to whether the obstacle Ô separates quadratically
n top of ĥ along some direction in the x′′ subspace. This leads to our dichotomy.

Throughout this proof, there are several parameters δ, η, ρ to be fixed in the end, depending on β and
niversal constants. First we will specify the radius ρ ∈ (0, 1/2), and then the parameter δ > 0 which can be
ade arbitrarily small. The parameter η from Lemma 2.2 that allows us to make û and ĥ very close to each

other, will be chosen to depend on δ. This η imposes the choice of κ0 = κη as in Lemma 2.2. The parameter
ε̄ is chosen after all these.

Up to a rotation, p takes the form

p(x) = 1 ∑
ajx2 +

∑
bjxj
2 j

11



O. Savin and H. Yu Nonlinear Analysis 218 (2022) 112770

w

a

T

w

T

B

o
N

t

x

ith
a1 ≥ a2 ≥ · · · ≥ ad ≥ 0, a2 ≥ κ0ε,

nd F (D2p) = 1.
We introduce some notations. For δ small to be chosen, let k ∈ {1, 2, . . . , d} be such that

ak ≥ 2δ−4ε > ak+1. (3.8)

hen we decompose the entire space Rd as x = (x′, x′′), where

x′ = (x1, x2, . . . , xk) and x′′ = (xk+1, xk+2, . . . , xd).

The obstacle Ô is changing rapidly in the x′ direction, and we denote by x′ the point in this direction
here its maximum is achieved. This is the same as the minimum point for p in the x′ direction.
Precisely, let x′ be the minimum point of x′ ↦→ p(x′, 0). Then by (3.8), we have

|x′| ≤ δ2, and − ε ≤ p(x′, 0) ≤ 0.

We write p as the sum of two quadratic polynomials in the x′ and x′′ variables

p(x′, x′′) = p1(x′ − x′) − p1(x′) + p(0, x′′), (3.9)

where p1 ≥ 0 is a 2-homogeneous polynomial

p1(x′) = 1
2

∑
j≤k

ajx2
j .

he obstacle Ô satisfies
|∇x′′Ô|, |D2

x′′Ô| ≤ Cδ, Ô((x′, 0)) ≥ 0. (3.10)

Step 1: If η and ε are small depending on δ, then

|∇x′′(ĥ − Ô)(0)| < δ. (3.11)

The conclusion can be rewritten as |∇x′′h(0)| ≤ δε, and it implies |bi| ≤ C if i > k. The idea is to show
that otherwise u is monotone in a cone of directions near the x′′ subspace, and we contradict 0 ∈ Σ . We
sketch the argument.

Suppose there is i > k such that Di(ĥ − Ô)(0) > δ. This estimate can be extended to Di(ĥ − Ô) ≥ 1
2 δ in

r(0) for some r > 0 depending only on δ. By (3.7), Di(û − Ô) ≥ 1
4 δ or equivalently, Diu ≥ 1

4 δε, in Br(0)
utside a strip of width η. Inside this strip |Diu| ≤ 2Cδε which is a consequence of D2u ≥ −c0εI and (3.10).
ow Lemma 2.4 gives Diu ≥ 0 in Br/2, and by continuity Deu ≥ 0 for all unit directions e close to ei. Thus

{u = 0} contains a cone of positive opening with vertex at 0, which means 0 ∈ Reg, a contradiction.

Step 2: If η and ε are small depending on δ, then

|ĥ(x′, 0) − Ô(x′, 0)| < δ. (3.12)

Note that ĥ(0) ≤ û(0) = 0 and Ô(x′, 0) ≥ 0, and then the upper bound for ĥ − Ô at (x′, 0) follows from
|x′| ≤ δ2 and (3.6).

In order to establish the lower bound we prove that if ĥ(x′, 0) − Ô(x′, 0) < −δ, then 0 ∈ Reg. We sketch
he argument.

Using (3.7) together with the fact that Ô decays fast in the x′ direction while has controlled growth in the
′′ direction (see (3.9)), one can show by constructing an explicit upper barrier that û = Ô (or equivalently
12
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= 0) at (x′, 0). By continuity this can be extended to Br(x′, 0) ⊂ {u = 0} for a small r > 0, possibly
epending on ε.

Since aj > 2δ−4ε for j ≤ k, we can apply Lemma 2.5 to get Deeu ≥ 0 in B1/2 for all unit directions e

n a small open cone around the subspace {(x′, x′′)|x′′ = 0}. Using that u(0) = 0 we conclude that {u = 0}
ontains a cone with positive opening and vertex at 0, hence 0 ∈ Reg.

emark 3.2. The argument applies also for a point (x′, y′′) with |y′′| ≤ 1/2. If

ĥ(x′, y′′) − Ô(x′, y′′) < −δ,

then
Σ ∩ {(x′, x′′)| x′′ = y′′} ∩ B1/2 = ∅.

Step 3: If ε, η small depending on δ, we have

û ≤ ĥ + a

2 |x′′|2 + C|x′′|3 + 4δ in B1/4 (3.13)

with C universal, and
a := 1

ε
|A−| ≤ 2c0. (3.14)

Recall that A = D2h(0), and that c0 is the universal constant from Definition 2.2.
The inequality holds outside Cη by (3.7). It remains to establish it in Cη.
First we use Steps 1 and 2 to show that a similar inequality holds for Ô:

Ô ≤ ĥ + a

2 |x′′|2 + C|x′′|3 + 3δ in B1/2. (3.15)

Then, as in Step 2, one can use the fast decay of Ô in the x′ direction (away from the (x′, x′′) axis) and
construct explicit barriers to extended the inequality from Ô to û. By the same reason, it suffices to prove
the inequality (3.15) only on the (x′, x′′) axis with 3δ replaced by 2δ. This is a consequence of Taylor’s
xpansion in the x′′ direction from (x′, 0). Indeed, we use Step 2 combined with the estimates

|∇x′′(ĥ − Ô)(0)| ≤ δ, D2(ĥ − Ô)(0) ≥ −aI,

hat we extend at (x′, 0) with an extra error of C|x′| ≤ Cδ2. This is because D3Ô = 0, D2
x′,x′′Ô = 0, hence

|D3(ĥ − Ô)| ≤ C, |D2
x′x′′(ĥ − Ô)| ≤ C. (3.16)

inally, we remark that a ≤ 2c0 is a consequence of D2u ≥ −c0I. Indeed, in B1/2\Cη, (3.7) gives

D2ĥ − D2Ô ≥ D2û − D2Ô − η I = 1
ε

D2u − η I ≥ −(c0 + η) I.

y choosing η small, we can extend the estimate to the full ball

D2(ĥ − Ô) ≥ −2c0 I in B1/2. (3.17)

Step 4:
∃ p′ ∈ UQ such that |u − p′| ≤

(
a

8c0
+ C0ρ

)
ε ρ2 in Bρ, (3.18)

f δ is sufficiently small, depending on universal constants and ρ.

13
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Define
q(x) = 1

2x · D2ĥ(0)x + ∇ĥ(0) · x.

hen (3.6) implies
|ĥ − ĥ(0) − q| ≤ Cρ3 in Bρ.

Using ĥ ≤ û ≤ ĥ + a
2 |x′′|2 + C|x′′|3 + 4δ in B1/4 from Step 3, and û(0) = 0, we find

|û − q| ≤ aρ2 + 2Cρ3 + 8δ in Bρ.

ick δ small such that δ ≤ ρ3, then we have

|u − p − qε| ≤ (a + C0ρ) ερ2 in Bρ,

or some C0 universal.
Define p̃ = p + qε, then D2p̃ = D2p + εD2q = D2h(0) = A. Thus F (A) = 1.
Next we perturb slightly p̃ into a convex polynomial p′ ∈ UQ.
We know A ≥ −aεI , by the definition (3.14) of a. Then (2.4) gives

1 ≤ F (A+) ≤ 1 + Λaε, and 1
Λ

≤ |A+| ≤ 2Λ.

Consequently, we can pick t ∈ [0, aΛ2|A+|−1] such that

F ((1 − tε)A+) = 1.

Denote the new quadratic polynomial

p′(x) := (1 − tε) 1
2x · A+x + ∇h(0) · x.

hen clearly p′ ∈ UQ, and

|p′ − p̃| ≤ (tε|A+| + |A−|)1
2ρ2 ≤ aΛ2ερ2 in Bρ.

hen
|u − p′| ≤ (2aΛ2 + Cρ)ερ2 in Bρ,

nd (3.18) is established by recalling the definition of c0 in Definition 2.2.

Step 5: If a ≤ 1
2 c0ρβ =: c1(β), then (1) holds:

u ∈ S(p′, ε′, ρ) with ε′ = ερβ .

ere ρ is chosen sufficiently small (depending on β) so that C0ρ ≤ 1
4 ρβ.

The estimate |u − p′| ≤ ερ2 follows from Step 4. We now show that

D2u ≥ −c0ερβ I in Bρ.

he inequality D2(ĥ − Ô) ≥ −aI at the origin together with |D3(ĥ − Ô)| ≤ C implies that

D2(ĥ − Ô) ≥ −(a + Cρ)I in Bρ.

y (3.7), a similar inequality holds for û outside the strip of width η. Thus

w := 1
u−
ε ee

14
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atisfies
Lu(w) ≥ 0, w ≤ c0 in Bρ,

w ≤ a + Cρ + η ≤ 3
4c0ρβ in Bρ \ Cη. (3.19)

Weak Harnack inequality implies that w ≤ c0ρβ provided that the width η of the strip is sufficiently small,
depending on ρ and the universal constants. This gives the desired lower bound on D2u.

Recall that hρ is the solution to (3.1) in Bρ and Aρ = D2hρ(0). To complete the proof of alternative (a)
as in Lemma 3.1, we use (2.11) to get

|Aρ − A| ≤ C(ρ) (u − h)(1
2ρe1) ≤ Cη ε. (3.20)

he right-hand side is bounded by ε − ε′ if η is small.

Step 6: If a > 1
2 c0ρβ then the conclusion (2) holds.

We distinguish 2 cases, depending on whether a is greater than c0/4.
If a ≤ c0/4, then we can argue precisely as in Step 5, with ρβ replaced by 2a/c0, and from Steps 4 and 5

e obtain
u ∈ S(p′, ε′, ρ) with ε′ = 2a

c0
ε ≤ 1

2ε.

oreover by (3.20),
|A−

ρ | ≥ (a − Cη)ε ≥ c0

8 ε′ ≥ c1(β)ε′. (3.21)

Now we consider the case a ≥ c0/4, and get ε′ ∈ [ε/2, ε). With a ≥ c0/4, (3.21) remains valid for any
′ ≤ ε. The choice of ρ in Step 5 and a ≤ 2c0 imply in (3.18) that |u − p′| ≤ 1

2 ερ2 ≤ ε′ρ2 in Bρ. It remains
o show the improvement of convexity

D2u ≥ −c0ε′I in Bρ

ith ε′ ≤ ε − εµ.
We show that the improvement ε−ε′ is at least proportional to (u−h)( ρ

2 e1). The key observation is that
− h is a subsolution and Deeu + c0ε is a supersolution for the same linearized operator Lu, and that the

wo functions can be compared in the domain B1 ∩ {u > 0}.
Since Dξξ(ĥ − Ô)(0) ≤ − 1

2 c0 for some unit direction ξ, then by (3.16) we conclude Dξξ(ĥ − Ô) < − 1
16 c0

in Bc for a universal c > 0. Together with Step 2, this implies the existence of some x∗ ∈ B1/4 such that
(ĥ − Ô)(x∗) < −c for some universal c, that is, h(x∗) < −cε. With the universal Lipschitz regularity of h,
we get

h < −cε =⇒ u − h ≥ cε in Bc′ε(x∗)

for some small universal c, c′ > 0.
Note that Lh(u−h) ≤ 0 in B1 as in (2.5), u = h on ∂B1. We compare u−h to the corresponding solution

f the maximal Pucci operator in B1 \ Bc′ε(x∗) and obtain as a consequence of Harnack inequality

u − h ≥ εµ in B1/2,

or some universal µ > 1. Moreover, since u − h solves a linear equation away from Cη, the same argument
ombined with Harnack inequality imply that

u − h ≥ c(u − h)(1
2ρe1) ≥ cεµ in B1/2. (3.22)

or e ∈ Sd−1, we define

w = Deeu + c0ε.

15
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his is a nonnegative function satisfying Lu(w) ≤ 0 in B1 ∩ {u > 0}. Note that w ≥ c0ε along ∂{u > 0},
nd 2ε ≥ u − h in B1, hence

w ≥ c0

2 (u − h) along ∂(B1 ∩ {u > 0}).

Since Lu(w) ≤ 0 ≤ Lu(u − h) in B1 ∩ {u > 0}, we have

w ≥ c0

2 (u − h) in B1 ∩ {u > 0}.

Combining this with (3.22) we find

w ≥ c(u − h)(1
2ρe1) in B1/2,

hich means
Deeu ≥ −c0ε + c(u − h)(1

2ρe1) in B1/2.

efine the right-hand side to be −c0ε′, then

ε′ := ε − c

c0
(u − h)(1

2ρe1), ε2µ ≤ ε − ε′ ≤ Cηε ≤ ε

2 .

Also, (u − h)( 1
2 ρe1) = C(ε − ε′) and by (3.20), (3.21) and Step 4, the second alternative holds. □

We make a few remarks about Step 6 which are helpful towards Lemma 3.2.

emark 3.3. We actually proved a stronger bound for |A−
ρ | than the one stated in alternative (2), which

s independent of β, i.e. |A−
ρ | ≥ c0

8 ε′, see (3.21). Thus, if we are in alternative (2), after rescaling back from
ρ to B1 we end up in the situation a ≥ c0

8 of Step 6. Then, in either case a ∈ [c0/8, c0/4] or a ≥ c0/4, we
showed that ε′ ≥ 1

4 ε.

Remark 3.4. After relabeling the constants κ0 and ε̄ to guarantee that the hypothesis (3.3) keeps being
atisfied as we apply Lemma 3.1 inductively, we obtain

u ∈ S(pm, εm, ρm), m ≥ 1. (3.23)

f we end up in alternative (2) for some m0, then we remain in alternative (2) for all m ≥ m0, and by
emark 3.3, εm+1 ≥ 1

4 εm if m ≥ m0 + 1.

Remark 3.5. We can relabel the constants κ0 and ε̄ so that in case (2) we also have

u ∈ S(p′, ε′, r), |A−
r | ≥ c0

8 ε′, ∀r ∈ [ρ2, ρ].

ndeed, we may choose the parameters δ and η sufficiently small so that Step 4, and (3.20), (3.21) remain
valid after replacing ρ by r as above. Thus, by Remark 3.4, if we are in case (2) then u ∈ S(pr, εr, r) and
|A−

r | ≥ c0
8 εr for all r ≤ ρ.

Remark 3.6. If we are in case (2), |A−| ≥ c1(β)ε, then the conclusion applies at all points x0 ∈ Σ ∩ Bρ

and not only the origin, since as in (3.20), (3.21) we can deduce that |A−
ρ (x0)| ≥ c0

8 ε′.

roof of Lemma 3.2. In view of the remarks above, it suffices to assume we are in the situation of Step
in the proof of Lemma 3.1 and establish the following two claims.

laim 1: 0 ∈ Σ .
a

16
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First we observe that u cannot be approximated in L∞(B1) by any quadratic polynomial with an error
maller than c(β)ε.

Indeed, |A−| ≥ aε with a ≥ c1(β) = 1
2 c0ρβ , and |D2h − A| ≤ Cρε in Bρ imply

D2
ξξh ≤ −c2(β)ε in Bρ,

for some unit direction ξ. By (3.7) a similar estimate holds for u outside Cη. This and u(0) = 0, u ≥ 0, show
that ∥u − q∥L∞(Bρ) ≥ cε for any quadratic polynomial q.

Next we apply Lemma 3.1 inductively and obtain (3.23) with εm ≥ c(ε, β)4−m = c(ε, β)(ρm)α, for some
α, which shows that u is not better than C2,α at the origin.

On the other hand the value of ρ can be reset to be smaller and smaller after a finite number of steps.
This is because the rescaled value of κ0 tends to infinity as εm → 0 which means that we may take the
parameters δ, η, ρ to be smaller and smaller. Thus u is not C2,α at the origin for any α > 0, and Claim 1 is
proved.

Claim 2: Σ ∩Bρ is in a σ(δ)-neighborhood of a subspace of codimension at least k+1, and σ(δ) → 0 as δ → 0.
Under our assumption λ1(D2p) ≥ λ2(D2p) ≥ · · · ≥ λk(D2p) ≥ δ−4ε, we already have Σ ⊂ {|x′| ≤ δ2}.

The goal is to exploit the negative eigenvalue of D2(ĥ − Ô) in alternative (2) to get estimates in one of the
x′′-directions.

By hypothesis D2(ĥ − Ô)(0) has an eigenvalue less than −c1(β). Since

D2
x′x′(ĥ − Ô) ≥ δ−4, |D2

x′x′′(ĥ − Ô)| ≤ C,

we can find a unit direction ξ belonging to the x′′ subspace, say ξ = ek+1, such D2
ξξ(ĥ − Ô) ≤ − 1

2 c1(β). By
aylor’s expansion as in Step 3, we obtain that

(ĥ − Ô)((x′, 0) + tξ) ≤ Cδ − c(β)t2, |t| ≤ ρ.

hen, by Remark 3.2, we conclude Σ ∩ Bρ ⊂ {|xk+1| ≤ C(β)δ1/2 =: σ(δ)}. □

. Results for the thin obstacle problem

In this section, we collect some results about the thin obstacle problem which are useful in the analysis
f the top stratum Σd−1.

Assume v solves the thin obstacle problem in B1,⎧⎪⎨⎪⎩
∆v ≤ 0 in B1,
∆v = 0 in B1 ∩ ({v > 0} ∪ {x1 ̸= 0}),
v ≥ 0 along {x1 = 0}.

(4.1)

n this section, we decompose the coordinate of Rd as x = (x1, x′) with x′ ∈ Rd−1.
It is well known that v is locally Lipschitz, and in fact v ∈ C1,1/2 when restricted to each half-space

x1 ≥ 0} and {x1 ≤ 0}. An important tool is the Almgren frequency formula which states that if v does not
vanish identically then

λ(r) :=
r

∫
Br

|∇v|2dx∫
∂Br

v2dx
is monotone increasing in r,

and λ(r) is constant in r if and only if v is a homogeneous solution to (4.1).
We define the frequency of v at 0 as

λ := lim λ(r).

r→0+

17
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he rescalings of v at 0 that fix the L2 norm on ∂B1,

vr(x) := r
d−1

2

∥v∥L2(∂Br)
v(rx)

onverge along subsequences to a global λ-homogeneous solution, which we refer to as a blow-up profile of
at 0. In particular for each small r, there exists a global λ-homogeneous global solution Vr such that

∥v − Vr∥L∞(Br) ≤ δ(r)∥Vr∥L∞(Br), δ(r) → 0 as r → 0, (4.2)

nd
rλ−α ≥ ∥Vr∥L∞(Br) ≥ rλ+α,

or any fixed α > 0 and all r sufficiently small.
Athanasopoulos, Caffarelli and Salsa in [13] showed that the only possible values for the frequency λ that

re less than 2 are λ = 0 (when v(0) > 0), λ = 1 (when 0 is interior to {v = 0} in {x1 = 0}), or λ = 3
2 . In

his last case the uniqueness of the blow-up profile was established as well, which means that the expansion
4.2) holds for a fixed non-zero homogeneous solution V in place of Vr.

Concerning higher frequencies, when λ is an even integer, Garofalo and Petrosyan in [14] characterized all
ossible λ-homogeneous solutions as harmonic polynomials. They also proved the uniqueness of blow-ups for

these values of λ. Colombo, Spolaor and Velichkov in [12] sharpened these results through a log-epiperimetric
nequality, and obtained a frequency gap near the even integers.

More recently, Figalli, Serra and Ros-Oton in [15] characterized the λ-homogeneous solutions when λ is
n odd integer, and proved the uniqueness of the blow-ups for these values of λ.

Below we give a short proof that establishes the frequency gap near all integers as in Theorem 1.2.

roof of Theorem 1.2. Case 1: m = 2k is even.
We first point out that any 2k-homogeneous solution to (4.1) must be a harmonic polynomial. This is

lready known by Garofalo–Petrosyan [14].
To see this, let v be a 2k-homogeneous solution, and let p be any 2k-homogeneous harmonic function.

hen ∫
B1

p(−△v) =
∫

B1

v△p − p△v =
∫

∂B1

vpν − pvν = 0. (4.3)

he last equality follows from the homogeneity of the functions.
Apply this with p = PI , the 2k-homogeneous harmonic function with PI(0, x′) = |x′|2k in {x1 = 0}, we

ave
∫

B1
PI(−△v) = 0. Note that −△v is a non-negative measure supported on {x1 = 0}, this implies

∆v = 0.

Now suppose, on the contrary, that there is a sequence of non-trivial solutions to (4.1), denoted by vj ,
hat are λj-homogeneous with λj ̸= 2k but λj → 2k.

Up to a normalization, we assume ∥vj∥L2(B1) = 1. Then up to a subsequence, we have vj → v locally
niformly in B1, where v is a 2k-homogeneous solution with ∥v∥L2(B1) = 1. The convergence is uniform in
1 if we restrict the domain to B1 ∩ {x1 ≥ 0} or B1 ∩ {x1 ≤ 0}.
A similar computation as in (4.3) gives:∫

B1

(v ± δPI)(−△vj) = (2k − λj)
∫

∂B1

(v ± δPI)vj . (4.4)

Locally uniform convergence of vj → v and homogeneity of the functions imply that
∫

∂B1
vvj ≥ cd > 0

or all large j. Consequently, fix δ > 0 small, we have
∫

∂B1
(v ± δPI)vj > 0 for all large j. In particular,

egardless of the sign in front of δ, the right-hand side of (4.4) has the same sign as (2k − λ ).
j
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On the other hand, by the locally uniform convergence of vj → v and homogeneity of the functions, we
have that the support of −△vj is contained in {v < δ

2 PI} for large j. Consequently, in (4.4), the left-hand side
s non-negative if we choose the positive sign in front of δ, and non-positive otherwise. This is a contradiction.

Case 2: m = 2k + 1 is odd.
We first point out that any (2k + 1)-homogeneous solution to (4.1) must vanish along the hyperplane

{x1 = 0}. This is already known as in [15]. We sketch the proof here for completeness.
To see this, let v be a (2k + 1)-homogeneous solution. Let QI denote the (2k + 1)-homogeneous function

that is even with respect to {x1 = 0}, harmonic in {x1 ̸= 0}, and satisfies QI(0, x′) = 0 and △QI =
−|x′|2k

dHd−1|{x1=0}.
A similar computation as in (4.3) gives ∫

B1

v(−△QI) = 0.

With v ≥ 0 on {x1 = 0}, this forces v = 0 on {x1 = 0}.
Suppose that there is a sequence of non-trivial solutions to (4.1), denoted by vj , that are λj-homogeneous

with λj ̸= 2k + 1 but λj → 2k + 1.
Similar to the previous case, we have vj → v, where v is a (2k + 1)-homogeneous solution, and that

∥vj∥L2(B1) = ∥v∥L2(B1) = 1. A similar computation as in (4.3) gives∫
B1

vj(±δ△QI − △v) = (λj − 2k − 1)
∫

∂B1

vj(±δQI − v).

Similar to the previous case, when δ is small, the right-hand side has the same sign as (λj − 2k − 1),
regardless of the sign in front of δ.

On the other hand, for large j, with locally uniform convergence of vj → v as well as the homogeneity of
the functions, we have {vj ̸= 0} ∩ {x1 = 0} ⊂ {△v ≥ δ

2 △QI}. Thus the left-hand side is non-positive if the
ign in front of δ is positive, and non-negative otherwise. This is a contradiction. □

We will use Theorem 1.2 only for m = 2, 3. As a consequence we obtain the following result.

Lemma 4.1. Suppose that v solves (4.1) and that it is η-approximated by a λ-homogeneous function W

with λ ≤ 3 − α3 (with α3 in Theorem 1.2).

∥v − W∥L∞(B1) ≤ η∥W∥L∞(B1). (4.5)

If η ≤ c with c depending only on the dimension d, then

λx0 ≤ 3 − α3, in B1/2,

where λx0 denotes the frequency at a point x0 ∈ ∂{v > 0} ∩ {x1 = 0}.

We remark that W is not assumed to be a homogeneous solution to the thin obstacle problem.

Proof. It follows by compactness. If vk, Wk, σk satisfy the hypotheses with ηk → 0 and ∥Wk∥L∞ = 1,
then we can extract a subsequence such that vk → v̄, Wk → v̄ in B3/4 with v̄ a homogeneous solution of
degree λ̄ ≤ 3 − α3. Then λv̄

x0(1/8) ≤ 3 − α3 which means λ
vk
x0 ≤ λ

vk
x0(1/8) ≤ 3 − 1

2 α3, for all large k and the
onclusion follows by Theorem 1.2. □

We will use estimates of the type (4.5) to express that the “frequency” of v is less than 3. This is convenient
or perturbations of the thin obstacle problem, where the monotonicity formula might not apply. We make
he following definition for functions that do not necessarily solve (4.1).
19
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efinition 4.1. We say that
w ∈ A(η, Br)

f w can be η-approximated in Br by a λ-homogeneous function W with λ ≤ 3 − α3,

∥w − W∥L∞(Br) ≤ η ∥W∥L∞(Br).

emma 4.2. Assume that v solves (4.1) and v ∈ A(c, B1) with c as in Lemma 4.1. For any η > 0, there
xists c(η) depending on η and d such that

v ∈ A(η, Br), for some r ∈ [c(η), 1/2].

roof. The proof follows by compactness. Assume that vk satisfies the hypothesis, and say ∥vk∥H1(B1) = 1,
ut the conclusion does not hold for any r ∈ [1/k, 1/2]. Then, we can extract a convergent subsequence to
limit solution v̄, for which we can find r such that v̄ ∈ A(η/2, Br). This implies that vk ∈ A(η, Br) for all

arge k, and we reached a contradiction. □

Finally, we may use the result of Focardi and Spadaro [11] on the Hausdorff dimension of the set of free
oundary with frequency λ /∈ ∪m∈N{m, 2m − 1

2 }, i.e.

Γ :=
{

x ∈ {v = 0} ∩ {x1 = 0}| λx ̸= m, λx ̸= 2m − 1
2 , ∀m ∈ N

}
Lemma 4.3 (Covering of Γ ). Assume that v solves (4.1) and v ∈ A(η, B2) for η small. For any µ > d − 3,
there is a finite cover of Γ such that

Γ ∩ B1 ⊂
⋃

Bri
(xi) with

∑
rµ

i ≤ 1
2 , ri ≥ c1,

nd
v ∈ A(η, B2ri

(xi)) for each i.

ere c1 = c1(η, µ) depends on η, µ and d.

roof. The proof is again by compactness. Assume that vk satisfies the hypothesis, and say ∥vk∥H1(B1) = 1,
ut the conclusion does not hold with c1 = 1/k. Then, we can extract a convergent subsequence to a limit
olution v̄ ∈ A(η, B2). By Lemma 4.1 the corresponding set Γv̄ consists of those points for v̄ which have
requency λx ∈ (2, 3), since the frequencies ≤ 2 must belong to the set {0, 1, 3

2 , 2}, see [13]. By Theorem 1.2,
v̄ is a closed set in B1. Since the dimension of Γv̄ is d − 3, see [11], given any σ > 0 we can find a finite

cover of Γv̄ ∩ B1 by balls Bsi
(xi) with

∑
sµ

i ≤ σ. According to Lemma 4.2 each ball, can be enlarged by at
most a C(η) factor such that

v̄ ∈ A(η/2, 2ri), with si ≤ ri ≤ C(η)si.

Then ∑
rµ

i ≤ C(η)µ
∑

sµ
i ≤ σC(η)µ ≤ 1

2 ,

rovided that σ is chosen small.
On the other hand Γk ∩ B1 ⊂ ∪Bri

(xi) for all large k. Indeed, if x0 is a point outside the union of balls,
then N̄x0(r) ≤ 2 + 1

2 α2 for some small r, which shows that Γk cannot intersect a small neighborhood of x0
or all large k.

In conclusion v satisfies the conclusion for all large k and we reached a contradiction. □
k

20



O. Savin and H. Yu Nonlinear Analysis 218 (2022) 112770

R
s
p
c

5

I
a
t

N
λ

S
a

D

i

a

emark 4.1. The proof shows the conclusion can be replaced by v ∈ A(κη, Kri) for any constants κ

mall, K large provided that c1 depends on these constants as well. In particular, if v solve the thin obstacle
roblem for a constant coefficient linear operator LAv = trAD2v of ellipticity Λ, which can be reduced to the
ase of △ after an affine deformation, then we can choose η small depending on Λ and d, so that Lemma 4.1

applies, and then c1 = c1(µ,Λ, d) small so that Lemma 4.3 holds with v ∈ A(η/8, 2ri).

. A refinement of Lemma 2.3

In this section we give a more precise version of Lemma 2.3 and characterization of the top stratum Σd−1.
n view of Theorem 3.1 each stratum Σk is well defined. Indeed, if one of the blow-up quadratic polynomials
t 0 ∈ Σ (see Theorem 2.1), say p, satisfies λ2(D2p) > 0, then Theorem 3.1 applies, and we obtain that p is
he unique blow-up profile and 0 ∈ Σk with k = dim kerD2p, k ≤ d − 2. Then we define the top stratum as

Σd−1 := Σ \ ∪d−2
k=0Σ

k.

ear a point in Σd−1, we use one-dimensional homogeneous quadratic polynomials p with D2p ≥ 0,
2(D2p) = 0, F (D2p) = 1 to approximate the solution. We define the space of such polynomials as

Q0 :=
{

p : p(x) = 1
2xT Ax, A = γ(e) e ⊗ e, F (A) = 1

}
.

imilar to Definition 2.2, we define by S0(p, ε, r) the class of solutions to (2.1) which are ε-approximated by
quadratic polynomial p ∈ Q0 in Br.

efinition 5.1. Given ε, r ∈ (0, 1) and p ∈ Q0, we say that

u ∈ S0(p, ε, r)

f
u solves (2.1) in Br, and |u − p| ≤ εr2 in Br. (5.1)

We remark that in Definition 5.1, we no longer require the second derivative bound D2u ≥ −c0ε as in
Definition 2.2, which played an important role in Section 3. However, from (5.1) we can always deduce a
bound of the type D2u ≥ −Cε in Br/2, see Lemma 5.3.

We state the main lemma of this section, which is a dichotomy for the top stratum Σd−1.

Lemma 5.1. Assume that
0 ∈ Σd−1, u ∈ S0(p, ε, 1).

Given β < 1, there are constants ε̄, ρ small, depending on β and the universal constants such that if ε < ε̄,
then

u ∈ S0(p′, ε′, r), for some r ∈ [ρ, 1
2 ],

nd either

(1)
ε′ = ε rβ ,

(2) or ε′ = r−2∥u − p′∥L∞(Br) and (see Definition 4.1)

1
ε′ (u − p′) ∈ A(η, Br), εrα0 ≥ ε′ ≥ εrα1 ,

for some constants 0 < α < α < 1 depending on the dimension d, and η small universal.
0 1

21



O. Savin and H. Yu Nonlinear Analysis 218 (2022) 112770

a

D

f

L

T

w

a
d

t

a

We can iterate Lemma 5.1 indefinitely. Lemma 5.2 shows that if end up in case (2) during the iteration,
then we remain in case (2) and u cannot be C2,α at the origin for α close to 1. We define such a point to be
nomalous for Σd−1.

efinition 5.2. We say that x0 ∈ Σd−1 is anomalous and write x0 ∈ Σd−1
a if

∥u − 1
2(x − x0)T D2u(x0)(x − x0)∥L∞(Br(x0)) ≥ r2+α

or some α < 1 and all r small. We denote

Σd−1
g := Σd−1 \ Σd−1

a .

Next we describe the iteration step of case (2) in Lemma 5.1.

emma 5.2. Assume that
u ∈ S0(p, ε, 2), 1

ε
(u − p) ∈ A(η, B2). (5.2)

Then
(a) The conclusion (2) holds at any point in Σd−1 ∩ B1 and Σd−1 = Σd−1

a in B1.
(b) Fix µ > d − 3. Then, if ε ≤ ε̄(µ) small, we can find a cover of Σd−1 ∩ B1 with Bri

(xi) such that

Σd−1 ∩ B1 ⊂ ∪Bri
(xi),

∑
rµ

i ≤ 1
2 , ri ≥ c(µ),

u ∈ S0(pi, εi, 2ri),
1
εi

(u − pi) ∈ A(η, B2ri
).

Moreover Σd−1
a = ∅ in dimension d = 2, and Σd−1

a is finite if d = 3.

We combine Lemmas 5.1 and 5.2 and obtain the following characterization of the set Σd−1.

heorem 5.1. Assume that ε ≤ ε̄1,
u ∈ S0(p, ε, 1),

ith ε̄1 a small, universal constants. Then in B1/2 we have
(a) u is C2,α0 on Σd−1: for each x0 ∈ Σd−1, ∃ qx0 quadratic polynomial, with

|u − qx0 |(x) ≤ Cε|x − x0|2+α0 .

(b) u is uniform C2,β for any β < 1 on the non-anomalous set Σd−1
g :

|u − qx0 |(x) ≤ C(β)ε|x − x0|2+β
, if x0 ∈ Σd−1

g ,

nd the anomalous set Σd−1
a is open in Σd−1 and has Hausdorff dimension d − 3. In particular in dimension

= 2, Σ 1
a = ∅, and in dimension d = 3, Σ 2

a is finite.

Part (a) was obtained in [1], while part (b) is a consequence of the results of this section.
The proofs of Lemmas 5.1 and 5.2 follow the same strategy as Lemma 3.1 in Section 3. The difference is

hat now the rescaled error
û := 1

ε
(u − p) (5.3)

is well approximated by a solution v to the thin obstacle problem involving Lp, the linearized operator of F

at D2p, which has constant coefficients. Then the dichotomy (1) or (2) is dictated by the frequency λ0 of v
t 0, whether or not λ0 ≥ 3. We will show that λ0 > 2 as follows:
22
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(a) if λ0 = 1 then 0 ∈ Reg;
(b) if λ0 = 3/2 then 0 ∈ Reg;
(c) if λ0 = 2 then 0 ∈ Σk for some k ≤ d − 2.
Before we proceed with the proofs of the main lemmas we provide a lower bound for D2u.

Lemma 5.3. Assume that u solves (2.1) and

|u − p| ≤ ε in B1,

or some convex quadratic polynomial p with F (D2p) = 1. Then

D2u ≥ −Cε in B3/4,

or some C universal.

roof. Assume that p =
∑ 1

2 ai x2
i , with a1 ≥ a2 ≥ .. ≥ ad ≥ 0. Then {u = 0} ⊂ {|x1| ≤ Cε1/2}, and by

roposition 2.1 we find

|D2(u − p)| ≤ Cε|x1|−2 in B7/8 ∩ {|x1| ≥ Cε1/2}.

e use that D2p ≥ 0, together with D2u ≥ −CdI in the strip {|x1| ≤ Cε1/2} and conclude that w = u−
ee

satisfies
Luw ≥ 0, w ≥ 0, ∥w∥Lp(B7/8)dx ≤ Cε,

or p = 1
3 . By weak Harnack inequality we obtain |w| ≤ Cε in B1/2 and the lemma is proved. □

Without loss of generality we may assume that after an affine transformation of bounded norm, and a
otation we satisfy

p = 1
2a1x2

1, DF (D2p) = I, Lpw = △w. (5.4)

emma 5.4. Let u and p be as in Lemma 5.1 and û as in (5.3). Then

|∇û| ≤ C in B1/2.

roof. By Lemma 5.3 we know that in B3/2, ûee ≥ −C for all unit directions e ⊥ e1. Since ∥û∥L∞ ≤ 1 we
btain |Deu| ≤ C in B1/2.

On the other hand △û = Lpû ≤ 0, thus we also have û11 ≤ C in B3/4, which gives |D1u| ≤ C in B1/2. □

This lemma provides us with enough compactness for the family of normalized solutions.

emma 5.5. Let Fj be a sequence of operators satisfying (2.2)–(2.4), and uj, pj, εj satisfying the
ssumptions of Lemma 5.1, and (5.4), with εj → 0. Then up to a subsequence, the normalized solution

ûj = 1
εj

(uj − pj)

onverges locally uniformly in B1 to a solution v to the thin obstacle problem (4.1).

roof. Lemma 5.4 gives locally uniform C0,1 bound on the family {ûj}. Consequently, up to a subsequence
hey converge to some v and,

Gj(D2ûj) = 1 (χ{uj>0} − 1) = − 1
χ{uj=0},
εj εj
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ith
Gj(M) := 1

εj
(Fj(εjM + D2pj) − Fj(D2pj)).

y uniform C1,αF estimate on the family {Fj}, up to a subsequence Gj locally uniformly converges to △,
nd the result easily follows. □

Now we give the proof of Lemma 5.1, which follows the steps of Lemma 4.1 in [1]. The main difference is
hat now we include the discussion on the frequency 2 case, see Step 3 below, which was not done in [1].

roof of Lemma 5.1. Suppose by contradiction that for a sequence of εj , ρj → 0, a sequence of operators
Fj and a sequence of solutions uj to (2.1) with these operators such that

uj ∈ S0(pj , εj , 1), 0 ∈ Σd−1(uj),

and (5.4) holds, but the conclusion of Lemma 5.1 does not hold for uj , with η as in Remark 4.1. Lemma 5.5
shows that up to a subsequence,

ûj → v locally uniformly in B1,

here v ∈ C0,1
loc solves the thin obstacle problem (4.1).

Moreover, uj(0) = 0 for all j implies v(0) = 0. Denote by λ0 the frequency of v at 0, and by λ∗
0 the

requency of ve, the even part of v with respect to the x1 variable,

ve(x) := 1
2(v(x1, x2, . . . , xn) + v(−x1, x2, . . . , xn)).

n Steps 1–2 which are identical with [1], we show that λ0 ≥ 2. In Step 3 we prove that λ∗
0 > 2. Then in

Steps 4–5 we establish the conclusions (1)–(2) for uj , depending on whether or not λ∗
0 ≥ 3. We only sketch

the first 2 steps, the details can be found in Lemma 4.1 in [1].

Step 1: ∇v(0) = 0.
Since v(0) = 0 we have the expansion

v = a+x+
1 + a−x+

1 + o(|x|) as x → 0.

First we claim that a± ≤ 0. Indeed, if say a+ > 0, then we can use the uniform convergence of the uj to
v and an explicit barrier to show that uj(0) > 0 for all large j, contradiction.

Then we claim that a± cannot be negative. If say a+ < 0, then we can use a barrier to prove that {uj = 0}
contains a small open ball around a point te1 for some t small. On the other hand Lemma 2.5 implies that
uee ≥ 0 in B1/2 for all unit direction e close to e1. This means that {uj = 0} contains an open cone with
vertex at 0, hence 0 ∈ Reg(uj), contradiction.

Step 2: λ0 ≥ 2.
In view of Step 1 we only need to show that λ0 ̸= 3

2 . Otherwise, v has an expansion

v = aRe(z 3
2 ) + o(|x|

3
2 ), a > 0,

here z represent the complex number in a 2d plane generated by unit directions ν and e1 for some ν ⊥ e1.
hen we fix some r > 0 so that Dνv > 0 in Br ∩ {x1 ̸= 0}, and pick σ small such that Dνv ≥ 2σ in
|x1| ≥ c′r} ⊃ {uj > cr2} for all large j.

Since for e ⊥ e1 we have 1
εj

Deuj = Deûj → Dev uniformly on compact sets of Br \ {x1 = 0}, and by
Lemma 5.4, Dûj ≥ −C, we see that Remark 2.2 applies for uj and such unit directions e close to ν. We
obtain Deuj ≥ 0 and contradict 0 ∈ Σ (uj).

Step 3: λ∗ > 2.
0
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We decompose v = vo + ve in the odd and even part with respect to x1 variable. Then vo is a harmonic
unction which vanishes on x1 = 0, and by Step 1

vo =
∑
i>1

bix1xi + O(|x|3).

he even part ve still solves the thin obstacle problem (4.1), and by Steps 1–2, its frequency at 0, λ∗
0 ≥ 2.

Let us assume by contradiction that λ∗
0 = 2. Then v has an expansion

v = 1
2x · Ax + o(|x|2)

ith tr A = 0, e · Ae ≥ 0 for all e ∈ Sd−1 ∩ {x1 = 0}, and with strict inequality for some unit direction say
e2, e2 · Ae2 = a2 > 0. Consequently,

|v − 1
2x · Ax| < δ(r) r2 in Br, with δ(r) → 0 as r → 0.

The uniform convergence of ûj → v gives for large j (we drop the subindex j for simplicity of notation)

|u − p − ε
1
2x · Ax| < 2δεr2 in Br. (5.5)

By Cauchy–Schwarz inequality there is a constant CA, depending on |A|, so that

D2p + εA + CAε2I ≥ c e1 ⊗ e1 + ε a2 e2 ⊗ e2, (5.6)

or some c universal. The hypotheses on F , (5.4), and tr A = 0 imply that

|F (D2p + Aε + CAε2I) − 1| ≤ C ′
Aε1+αF

y assumption (2.3). Consequently, there is t ∈ [−C ′′
A, C ′′

A] such that the polynomial

p′(x) = p + 1
2εx · Ax + 1

2CAε2|x|2 + 1
2 tε1+αF x2

1

atisfies F (D2p′) = 1 and, by (5.6), we have (for all ε small)

D2p′ = D2p + εA + CAε2I + tε1+αF e1 ⊗ e1 ≥ c

2 e1 ⊗ e1 + ε a2 e2 ⊗ e2 ≥ 0,

and λ2(D2p′) ≥ a2ε. Finally (5.5) implies that

|u − p′| ≤ 2δεr2 + C ′′
Aε1+αF r2 ≤ 3δεr2 in Br. (5.7)

By Lemma 5.3 this implies that D2u ≥ −Cδε in Br for some C large universal. Thus u satisfies the
hypotheses of Lemma 3.1

u ∈ S(p′, ε′, r) with ε′ := −c−1
0 Cδε, and λ2(D2p′) ≥ a2ε ≥ κ0ε′,

provided that we choose r small (depending on a2) such that δ = δ(r) ≤ a2C ′ for some C ′ large universal.
In conclusion 0 ∈ Σk for some k ≤ d − 2, and we reached a contradiction.

Step 4: If λ∗
0 ≥ 3 then (1) holds.

Then, by using the behavior of vo and ve near 0 we find that

v =
∑

bix1xi + o(|x|2+β),

i>1
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nd the computations of Step 3 apply with the corresponding A, and with δ replaced by δrβ . Notice that in
his case we can construct p′ such that D2p′ has rank 1, i.e. it is a multiple of e′

1 ⊗ e′
1 where e′

1 is the unit
irection of e1 +ε

∑
i>2 bi/a1ei. We achieve this by first completing the square in p+ε

∑
i>1 bixix1 and then

y adding a multiple tε1+αF e′
1 ⊗ e′

1 so that F (D2p′) = 1. As in Step 3 we obtain (5.7) thus

u ∈ S0(p′, ε′, r), ε′ ≤ εrβ ,

nd (1) holds for all large j, and we reached a contradiction.

Step 5: If λ∗
0 ∈ (2, 3) then (2) holds.

By (4.2), for each small r, we can find a λ∗
0-homogeneous function Vr, such thatv −

∑
bix1xi − Vr


L∞(Br)

≤ δ(r) ∥Vr∥L∞(Br), (5.8)

nd,
δ(r) → 0, rλ∗

0−α ≥ ∥Vr∥L∞(Br) ≥ rλ∗
0+α as r → 0,

or any fixed α > 0. We can define p′ as in Step 4 and obtain as in (5.7) that

|u − p′ − εVr| ≤ 2ε δ ∥Vr∥L∞ + C ′′
Aε1+αF r2 ≤ 3ε δ ∥Vr∥L∞ (5.9)

n Br. We choose
ε′ := r−2∥u − p′∥L∞(Br) ∼ εr−2∥Vr∥L∞(Br),

nd δ = δ(r) small, such that δ ≤ η/8. The inequality above shows that conclusion (2) holds for all large j

nd we reached a contradiction. □

emark 5.1. Notice that (5.9) implies that ∥u − q∥L∞(Br) ≥ cε′r2 for any quadratic polynomial q.

emark 5.2. In Steps 1–3 we expanded v near the origin and used the uniqueness of the blow-ups when
he frequency λ0 ∈ {1, 3

2 , 2}. This is not necessary since, as in Steps 4–5, the expansion (4.2) suffices.

Lemma 5.2 follows easily from the proof above and the results of Section 4.

Proof of Lemma 5.2. The class A(η, Br) is invariant under multiplications by constants, and after
relabeling ε we may assume that ε = 2−2∥u − p∥L∞(B2).

Then û is η-approximated in B2 by a λ-homogeneous function W with λ < 3−α3, and with ∥W∥L∞(B2) ∼
. Thus, in the proof of Lemma 5.1, the limiting function v satisfies

v ∈ A(2η, B2), and ve ∈ A(4η, B2).

ince η is chosen small we find λ∗(x) ≤ 3 − α3 < 3 for all x ∈ B1, and therefore Step 4 and case (1) cannot
appen at any x ∈ Σd−1 ∩ B1. This means that, as we iterate Lemma 5.1 at the origin, we always end up
n case (2) and obtain a sequence of radii r = rn → 0 so that (see Remark 5.1)

∥u − q∥Br ≥ cεr2+α1 , 1/2 ≥ rn+1/rn ≥ c,

or any quadratic polynomial q. Hence, 0 ∈ Σd−1
a according to Definition 5.2, and part (a) is proved.

Part (b) is a direct consequence of Lemma 4.3. Indeed, we can cover the set Γ (ve) of points x ∈ B1
f frequency λ∗(x) ∈ (2, 3) by a finite cover Bri

(xi) satisfying the desired properties and with ve ∈
(η/8, B2ri

(xi)). This means that in each ball B2ri
(xi), v satisfies (5.8) with δ = η/8, and by Step 5 we

onclude that
u ∈ S0(p′

i, ε′
i, 2ri), (u − p′

i)/ε′
i ∈ A(η, B2ri

(xi)).
y Steps 1–3 of Lemma 5.1, Σd−1(uj) ∩ B1 belongs to the finite cover of Γ (ve) for all large j, and the proof
is complete. □
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