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Abstract. We develop an existence and regularity theory for a class of degenerate one-phase
free boundary problems. In this way we unify the basic theories in free boundary problems like
the classical one-phase problem, the obstacle problem, or more generally for minimizers of the Alt—
Phillips functional.
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1. Introduction. The most basic elliptic free boundary problems arise in the
study of minimizers of energy functionals,

1
J(u,Q):/Q§|Vu|2—|—W(u)dJ:,

among functions v which are prescribed on the boundary
u=¢ on Jf.

The potential W (¢) > 0 is assumed to be nonnegative and to vanish on (—o0, 0].

If we restrict our attention to nonnegative boundary data ¢ > 0, then the condi-
tions on W guarantee that minimizers must satisfy v > 0. The strict positivity of u
in the interior of € can be deduced from the Euler-Lagrange equation

Au = W'(u),

and the strong maximum principle, whenever W is of class C'™! at the origin. Oth-
erwise {u = 0} can develop patches, and then interesting questions arise concerning
the properties of the free boundary 0{u > 0}.

Historically the first such case that was analyzed systematically is the obstacle
problem, that corresponds to

W(t) =tt, Au = X{u>0}-

The optimal regularity of the solution was first obtained by Frehse in [F]. The general
regularity theory of the free boundary was established by Caffarelli in [C] (see also
[C4]). He made use of monotonicity and convexity estimates of the solution u to
obtain the smoothness of the reduced part of the free boundary 0*{u > 0}.

An important class of potentials which were studied later by Alt and Caffarelli
are those which are discontinuous at 0, and in the simplest form correspond to

W(t) = x{t>0}s Au=0 in{u>0}, |[Vu|=+v2 ond{u>0}.
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650 DANIELA DE SILVA AND OVIDIU SAVIN

This is known as the one-phase or Bernoulli free boundary problem and the smooth-
ness of the reduced part of the free boundary was established by variational techniques
in [AC]. Later Caffarelli developed an alternate viscosity theory approach for the reg-
ularity of the free boundary, based on the Harnack inequality and regularizations by
sup-convolutions [C1, C2, C3]. A method based on Harnack inequality and compact-
ness arguments was subsequently developed by the first author in [D].

Another general class of examples with free boundaries is given by the Alt—Phillips
energy functional, which corresponds to the power-growth potentials

W(t) = (t*)" with v € (0,2), Au = ~yu? "L,

When v € (0,1) these potentials interpolate between the one-phase problem v = 0
and the obstacle problem v = 1. Alt and Phillips showed in [AP] that a similar
analysis as in the one-phase problem can be carried out in this case as well, and they
established the smoothness of the reduced part of the free boundary.

As observed by Alt and Phillips, after a simple change of variables

2

w:ul/ﬁ, 6::72—7’

p e (1,00),

the problem above can be viewed as a one-phase free boundary problem for w. It
turns out that w is Lipschitz and it solves a degenerate equation of the type

(1.1) Aw = h(Zw) in {w > 0}
with
(1.2) Vw C {h =0} on {w > 0},
where h is the quadratic polynomial

hp) = 5 = (3= Dl

A key feature of (1.1) is that it remains invariant under Lipschitz scaling w(z) =
w(rz)/r. The right-hand side degenerates as w approaches 0 and the free boundary
condition (1.2) can be understood as a natural balancing condition in order to seek
out for Lipschitz solutions w.

In this paper we are interested in developing the viscosity theory for the degen-
erate class of one-phase free boundary problems (1.1)—(1.2) for general functions h.
When h is not necessarily quadratic as in the examples above, then (1.1) cannot revert
back to an Alt—Phillips equation by a change of variables. Our main assumptions are
that h € C* and h > 0 in a star-shaped domain D and h < 0 outside D. The free
boundary condition (1.2) then reads as Vw € dD. The interior regularity for solu-
tions to (1.1) is not immediate as the right-hand side degenerates either as w — 0 or
Vw — oo. In our analysis we will make use of the results of Imbert and Silvestre [IS]
in order to establish a uniform Hélder modulus of continuity for w. Similar estimates
for a related nonvariational degenerate elliptic equation were obtained by Teixeira in
[T].

Equations (1.1)-(1.2) do not necessarily have a variational structure, but can
be thought of as interpolating free boundary conditions for different exponents -~y
depending on the behavior of h near 0D, and the direction v to the free boundary.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/20/23 to 128.59.222.107 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DEGENERATE ONE-PHASE FREE BOUNDARY PROBLEMS 651

For example, a region around 0D where h vanishes corresponds to the classical one-
phase free boundary problem, while in a region where h is quadratic corresponds to
solving the Alt—Phillips free boundary problem for some exponent ~.

We remark that the sign assumptions on the function h are crucial. When h
changes sign across 0D in the opposite directions, h < 0 in D and h > 0 outside D,
then the problem becomes completely different and it would correspond to the case
of negative 4’s in the Alt—Phillips functional. We will address this interesting case in
a subsequent paper.

1.1. Setup and definitions. Let D C R™ be a bounded C' domain and let
h € CY(R") vanish on I' := dD. Assume that 0 € D and

(1.3) h>0 inD, h<0 in D"
(1.4) h(p) > —Clp|*>, C >0, as|p|— oo.
Here and throughout the paper, the superscript ¢ denotes the complement of the set
" RWe ask for D to be star-shaped with respect to the origin. Precisely, given a unit
direction v € S"~1, we denote by f(v) € R the positive number such that
f(v)v € T =0D.

In view of the C! regularity of D, the function

f:S"t =R
is also C!. In particular there exists a § > 0 such that,
(1.5) §<f<o
and if z = f(v)v € T and w, is the unit normal to I' at 2 pointing towards D¢, then
(1.6) Wy -V > 0.

Without loss of generality we may relabel the constant C' in (1.4), such that the
inequality holds in the whole space

(1.7) h(p) > —Culp|* Vp € R™

We are now ready to introduce our one-phase free boundary problem: find a
continuous function w > 0 in By which is prescribed on dB; and solves

Aw:M on By (w) :== By N {w > 0},

(1.8) w
VweTl on F(w):= 0B (w)N By.

The two conditions above are understood in the viscosity sense and we make them
precise below. First we recall that given two continuous functions u, v in Bi, we say
that v touches u from below (resp., above) at xg € By if

¥ <wu (resp., ¥ >u) mnear xg, P(rg) = u(xo).

If the first inequality is strict (except at zp), we say that ¢ touches u strictly from
below (resp., above).
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The notion of viscosity solution for the interior equation is standard and in fact
we will show that w is locally Lipschitz and it is a classical solution in the set {w > 0}.
We therefore provide only the definition of a viscosity solution to the free boundary
condition. From now on, for any continuous function v, we denote

F(y) :== o{y > 0}.

DEFINITION 1.1. We say that w satisfies the free boundary condition in (1.8) in
the viscosity sense if, given xo € F(w), and 1 € C? such that ¥ touches w from
below (resp., from above) at xy with |Vip(xo)| # 0, and v denotes the unit normal to
F(y) at xy pointing towards {w > 0}, then

|V (z0)| < f(v), i.e., Vib(xg) € D, supersolution property
(resp., |V(xo)| > f(v) ie., Vip(xo) € D,  subsolution property).
As observed earlier on, this problem is invariant under Lipschitz rescaling:

w(x) = w(:::c)’ x € By,

a crucial ingredient in the body of the proofs.

1.2. Main results. We investigate here the question of existence and regularity
of viscosity solutions to (1.8) together with qualitative properties of their free bound-
aries. The main difficulty comes from the fact that the equation is degenerate near
the free boundary.

We summarize our main results below. The universal constants that appear in
the theorems depend only on the dimension n, the C* norm of A in a neighborhood
of I', the C! norm of f, the constant Cj, in (1.7), and the constant ¢ in (1.5)—(1.6).
In each section we will point out the precise dependence of the constants.

Existence of a nondegenerate viscosity solution (see section 3 for the precise defini-
tion of nondegeneracy) is obtained by Perron’s method. Under appropriate regularity
assumptions on D, the free boundary of the Perron solution has finite Hausdorff
dimension. We obtain this precisely.

THEOREM 1.2 (existence and finite Hausdorff dimension). Given ¢ € C%®(9By),
there exists a viscosity solution to (1.8) in By with w = ¢ on 0B;. Moreover, w is
nondegenerate and if the set D is C? and convez, then

(1.9) H" Y(F(w)N Byj) < C
for a C > 0 universal (depending also on the C? norm of f).

In fact, estimate (1.9) holds for any viscosity solution which is nondegenerate, as
long as D is convex and C? smooth.

Remark 1.3. In general uniqueness for this problem is not expected. The solution
in Theorem 1.2 is obtained as the least supersolution in the appropriate class of
competitors. This may differ from the energy minimizer, whenever a variational
formulation exists.

Concerning the regularity of viscosity solutions we prove the following.

THEOREM 1.4 (Lipschitz regularity). Let w be a viscosity solution to (1.8) in
Bi1, and assume that F(w) N Byg # 0. Then w is locally Lipschitz in By s, i.e.,

VwllLe s, ,,) < C

with C universal. Moreover, w € C>* in B (w), for some 0 < a < 1 universal.

loc
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Finally, we provide an improvement of flatness lemma which leads to the following
“flatness implies C1'*” type result. The strategy follows the lines of [D].

THEOREM 1.5 (flatness implies regularity). Let w be a viscosity solution to (1.8)
in By with 0 € F(w). There exists eg universal such that, if w is e-flat, i.e.,

(1.10) (fWz-v—et <w(x) < (fw)ax-v+et inBy, €<,

or some v € S*1, then F(w) N By is a CY® graph in the v direction with norm
/
bounded by Ce for a universal 0 < a < 1.

This theorem gives the regularity of the reduced boundary 0*{w > 0} C F(w)
for solutions satisfying (1.9) since, after a sufficiently large dilation, the flatness hy-
pothesis (1.10) is guaranteed (see Lemma 4.6 in section 4).

The paper is organized as follows. In section 2 we provide the proof of the exis-
tence statement in Theorem 1.2. The following section is dedicated to Theorem 1.4,
while measure theoretic properties of the free boundary are determined in section 4,
completing the proof of Theorem 1.2. The last three sections are devoted to Theorem
1.5. Precisely, in section 5 we obtain a Harnack type inequality for “flat” solutions
of (1.8). This is the key ingredient which allows us to use a linearization method
to obtain in section 6 an improvement of flatness lemma. Finally the last section is
dedicated to the linear problem associated with (1.8).

2. Existence. In this section we use Perron’s method to prove the existence of
a nondegenerate viscosity solution to (1.8), with a given boundary data.
Let ¢ > 0 be a C%“ function on dB;. We claim that, by choosing « possibly
smaller, the functions
o) = inf ($(ao) + Ol —w0) - va|*/?), @€ By,
ro€EOB1
and -
pol@) = sup (#lxo) = Ol —20) - va |2, € By,
zo€EOB1
are, respectively, a supersolution and a subsolution to (1.8). Moreover, it easily follows
that

(2.1) Yy = pp = ¢ on 0By,

provided that we choose C' large, depending on the C%“ norm of ¢. Here v,, is the
outer unit normal to 0B; at zg.

We prove the first claim. It is readily seen that the infimum of a family of
supersolutions is again a supersolution, thus it is enough to show that

U(x) := ¢(xo) + C|(x — x0) - V$0|O‘/2, o € 0B84,

is a supersolution. After a change of coordinates, let us assume that zg = 0,v,, = e,.
Then, using the quadratic bound (1.7) of h, and assumption (1.3), we get

AU(z) = C2 (% ~1)2i 7 < 013 h (C%xﬁ‘l) < h(\vf),
Tn

as long as C is large enough so that V¥ ¢ D, and « is small enough so that

leyae’ 1
(2 1)< loen
2(2 S =30
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The second claim follows similarly by noticing that
a/2 +
(@) = (¢(a0) = Cl(@ = 20) - viy| /%)
is a subsolution for our problem (1.8) since V® ¢ D and

aw >0z MY

We can now prove our existence theorem. We refer to the solution achieved in
the following theorem as the Perron solution associated with ¢.

THEOREM 2.1. Let
A= {p € C(By) : ¥ < by is a supersolution to (1.8), 1 = ¢ on OB1}

and set

w(x) := i&fw(x).

Then w € C(By) is a viscosity solution to (1.8) in By with w = ¢ on 0B;.

Proof. First, since ¢4 € A, w is well defined. Furthermore, by the maximum
principle it is easily seen that each v € A satisfies

P> e

Indeed, this follows from the fact that ® — ¢, with ® as above ant ¢ > 0, cannot touch
a supersolution 1 from below.

Now we show that we can restrict the minimization to elements in A that are
uniformly Holder continuous of exponent «/2. Precisely, for each ¢ € A we can
construct another element of A, 1) < v, which is uniformly Holder continuous, and is
given by the inf-convolution

d(x) = inf (Y(y) +2C|z —y|*/?) w € B
yebB1

Clearly 1 < 1. We claim that ¢ € A.
To show this, first notice that since 1y > 9 > ¢4 and (2.1) holds, then for all
Yy e Bl,

(2.2) Y(y) + 20|z — y|*/? > ¢(x) > P(y) — 20|z —y|*/? if 2 € OB,

with strict inequality if y € Bj.
From this we deduce that

Y =¢ ondB;
and, moreover, if
(2.3) b(yo) = (o) — 2C|wo — yo|*/?, @y € By,
then
Yo € B]_.

Now we prove that 1) satisfies the equation

26 <0 i)
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A similar argument holds for the free boundary condition. To this aim, let P be a
quadratic polynomial touching v (strictly) from below at zo € B (¢), and let us
show that
h(VP(x0))

P(zo)

Let yp be as in (2.3). We distinguish two cases. If yo = ¢, the claim is obvious since
P touches also 9 from below at xy. Otherwise, notice that

AP(JJO) S

(2.4) VP(zy) & D,
let n := 29 — yo, and set
P,(z) := P(x +n) — 2C|n|*/2.

It is easily verified that P, touches v from below at yo, hence in view of (2.4), we
conclude yg € By N{¢ > 0}. Thus,

- h(VP(yo)) — h(VP(x0)) h(VP(x0))
AP(z0) = AP, (y) < P (o) _P(iﬂo)—2c|77|a/2§ Plzg)

where in the last inequality we again used (2.4) and (1.3).

The claim is proved and we conclude that the function w defined above is also a
Holder continuous supersolution which coincides with ¢ on the boundary. It remains
to show that w is a subsolution.

Let P be a quadratic polynomial touching w strictly from above at xq € Bi"(w),
and assume by contradiction that

h(VP(z0))

AP(SIJQ) < P(ajo)

Then, in a small neighborhood B, of xg, P > 0 and

h(VP)
AP < I

Then for € > 0 small,

= {w in B; \ B,

min{w, P — €|z — zo|*} in B,,

belongs to A and it is strictly below w. This contradicts the minimality of w.

Now we check the free boundary condition. If PT touches w from above at
2o € F(w) N F(P) with P € C?, we need to show that VP(x) & D. Suppose not,
and let

g(x) := P(x) + Ced(z) — Cd?*(x) + | — z0|® — €, 2 € Be(wo),

with d(z) the signed distance from z to F(P), positive in {P > 0}. The constant
C > 0 is chosen large enough so that

Ag <0 in B(zg) N{g > 0},
while € is small enough so that

Vg(x) € D, x € B(x).
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Notice that
gt >0=P" in {d <0} N B(zo),

while
g>P on{d>0}N3IB(xo).

Thus ¢g" is a supersolution in B.(z¢) and g* > w on dB.(x¢). We conclude that

_ {w in By \ Be(zo)

min{g",w} in B.(zo)

is still a supersolution which is less than w. Since (for € small) g7 = 0 in a small
neighborhood of zp € F(w), ¢ does not coincide with w, and this contradicts the
minimality of w. O

We conclude this section with a form of nondegeneracy satisfied by our solutions.

PROPOSITION 2.2. Let w be the Perron solution in By such that 0 € F(w). Then,

maxw >cr, <1,
B

r

with ¢ > 0 universal.

Proof. By rescaling, it is enough to show that
maxw > c¢ on 0B;

for some ¢ > 0 universal to be specified later. Assume not, and let v be defined as
(say n > 2)
b= a((1/2)*" — [22) for [o] = 1/2,

extended to zero in By 9, with ¢ sufficiently small universal such that [Vo|(z) € D for
x € 0B1/5. We then conclude that v is a supersolution to (1.8) in B;. By choosing c
small enough we guarantee that v > ¢ > w on 0B;. Thus,

¥ = min{w, v}

is a supersolution to (1.8) with the same boundary data as w, and by the minimality
of w we find ¢y = w. On the other hand, w = ¢ = 0 in By /3 and we contradict that
0 € F(w). o

3. Lipschitz regularity. In this section we show that any viscosity solution to
(1.8) is uniformly Lipschitz continuous near the free boundary. The strategy is to
show first the Holder continuity of the solutions in the set where w is positive and
then to use the free boundary condition and the scaling of the equation to obtain the
Lipschitz continuity.

The only hypotheses needed in this section are (with D C Bjs for some large
M > 0),

(3.1) — Chlpl* < h(p) < CxBy,-

The starting point is that w is superharmonic when |Vw| is large, and that we can use
the L€ estimate due to Imbert and Silvestre [IS] for supersolutions of uniformly elliptic
equations that hold only for large gradients. First we recall the following Theorem
5.1 from [IS], for the special case of the Laplace operator.
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THEOREM 3.1 (Imbert-Silvestre). There exist small constants ng,& > 0, such
that if u € C(B1) is a nonnegative function satisfying (in the viscosity sense)

Au <1 in ByN{|Vu| >no},
and infBl/2 u <1, then
(3.2) lull e (s, ) < €

with C,ng, & depending only on the dimension n.
With this result at hand, we can prove the following Harnack type inequality.

LEMMA 3.2. Let w > 0 solve (in the viscosity sense)

h
Aw = (V) in By.
w
Then given o > 0, if w > o,
(3.3) sup(w — o) < C(l + inf (w — a))
By /o Bi/2

with C' > 0 universal.

Proof. From assumption (3.1), the function

o w—o
- M/no(1+infp, ,(w—0))

satisfies the hypothesis of Theorem 3.1 (say we choose M > 1), and

(3.4) lw = ol e (s, ) < C(l—&-énf (w—o)).

1/2
On the other hand, using the equation together with assumption (3.1), we get (in the
viscosity sense) in By,

w—ah

Aw =) = (“ZH(Vu) + (2 - DIVl

> (=Cu|Vwl* + (v — 1)[Vw|?) >0,

as long as v > 0 is large enough. By the weak Harnack inequality for (w — o)?
(Theorem 9.26 in [GT]),

sup w — o < C(’ng)Hw - O'HLE’
By

which combined with (3.4) gives the desired bound. 0

We are now ready to prove a Hélder continuity result for solutions to (1.8) with
universal estimates. We start with an oscillation decay lemma. In what follows, given
a continuous function w defined in a ball B, we denote

w(r) :=supw — inf w
B, B,

as the oscillation of w on B,.
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LEMMA 3.3. Let w > 0 solve (in the viscosity sense)

h(Vw)

w

Aw =

m B,

If w(r) > Kr for some K large universal, then
w(r/2) <yw(r), 0<y<l.

Proof. Let
w(x) := w, r € By, o, :=infw,
T B,

then w > 0 and according to Proposition 3.2,

3.5 b < C(1+ inf w).
) s = c(1+ o)

Our desired claim follows if we show that for some 0 < v < 1,
(3.6) 0scp, , W < 7y 0sCp,W.

Notice that
w(r
oscp, W = ( ), infw=0.
r B,

If for all x € By /9, we have w(x) > ;g27 the bound (3.6) trivially follows. Otherwise,
w(xo) < % for some z¢ € By /5, and (3.5) yields

supw < C + w(r)7
Bi/s 2r

which again implies the desired bound if we choose K > 2C. |
We can now deduce our Holder continuity estimate.

PROPOSITION 3.4. Let w > 0 solve (in the viscosity sense)

w

Then, w € CO’O‘(Bl/Q) and
[wllco.e (s, ,,) < C(1+w(0))

with C' > 0 universal and 0 < o« < 1 universal.

Proof. We wish to show that
(3.7) w(r) <Cre, r=r,:=2"F vk>o.

We choose C' > max{w(1),2K} with K given by Lemma 3.3, and argue by induction.
It
w(r) > Kr,

then
r

w(5) <) <70 <C(5)
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so by choosing o = a(y) appropriately, our claim is satisfied. If w(r) < K7, the claim
is obviously satisfied (by our choice of C').
The final estimate follows as in view of Lemma 3.2,

w (;) < C(1 + w(0)). .

Next we deduce that solutions to our free boundary problem grow at most linearly
away from the free boundary.

PROPOSITION 3.5. Let w be a viscosity solution to (1.8) in By, then
w(zr) < Cd(x), d(x):= dist(x, F(w)), Bgu)(x) C B

with C > 0 universal.

Proof. By a Lipschitz rescaling we can assume that 0 € Bj/3(w), and that B
is the largest ball around 0 contained in BZ/S(w)7 tangent to F'(w) say at xg. Thus,
we need to show that w(0) is bounded above by a universal constant. We claim that
if w(0) > C, with C the constant in Lemma 3.2 then it follows from that lemma
(applied with o = 0) that

w>cw(0) on dB;

for some ¢ universal. Now set,
(o) = M(a|™" = 1) in |z > 1/2,
and we have -
AY >0, |VY[>M in A:= B\ By,
hence (see (3.1)),
h(VY)
(0

If we assume by contradiction that w(0) is sufficiently large, then ¢ — ¢ with ¢t > 0
cannot touch w from below in A or on 9By /3, and it follows that

Ay >0> in A.

Y <w on A

Thus 9+ touches w from below at zy € F(w) N F(yT) and |Vi| € R\ D. This
contradicts the free boundary condition for w. 0

Finally, we show that solutions are locally Lipschitz with universal bound, and
C1* in their positive phase.

THEOREM 3.6. Let w be a viscosity solution to (1.8) in By with h satisfying (3.1).
Assume that F(w) N Byjy # (0. Then w is locally Lipschitz in By /o with universal
Lipschitz norm. Moreover, w € C’llo’g in B (w) for some 0 < a < 1.

Remark 3.7. Since w € C}% in the set {w > 0}, we can then apply Schauder

loc
estimates and conclude that if h € C ., then w € C’l2 o’g is a classical solution in

oc?
Bt (w).
Proof. We prove the estimates near a point x¢ € Bf/Q(w). In view of Proposition
3.5, the Lipschitz rescaling

w(x) == A w(zo + \x), A= w(xp),

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/20/23 to 128.59.222.107 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

660 DANIELA DE SILVA AND OVIDIU SAVIN

satisfies
w(0) =1, @w>0 in B, for some r universal.

Thus, by Proposition 3.4, we find @ € C%® with
[@][coa(m,,,) <C

and in particular

1
3 <®w <2 in B,, for all p sufficiently small.
Now set 5pr) 1
_ w(pzx) —
w(xr) = ————, € By,
(@) = 2o
and then
|Aw| < 2C7 >~ |h(Cp*~ Vo (x))), |w] <1 in Bj.

Thus, in view of (1.7), we can choose p small universal, such that
_ _ 1
|Aw| <n when |Vwo| < —
n

with n(n) > 0 the universal constant in Lemma 3.8 below. Hence,
[@lloras, ) < Cn) = [@llcras,,. < Cn, p).

Since Vw(zg) = Vw(0), the desired conclusion easily follows. O

The following lemma says that if w is almost harmonic except possibly in the
region where the gradients are large, then it is of class C1®. Its proof follows from
the perturbations arguments developed in [S]. Here we only sketch the main ideas.

LEMMA 3.8. There exists n > 0 universal (i.e., depending only on n), such that
if u solves in the viscosity sense in By,

1
(3.8) |Aul <n  when |Vu| < —,

3

and ||lul|p~ <1, then
[ulloras, 5 < Cn)

for some 0 < a < 1 universal.

Proof. Tt suffices to show that there exists a linear function ! with |VI| < C
universal, such that for » > 0 small universal, and 0 < o < 1 universal,

(3.9) lu—1| <r'*™  in B,.
Then it is enough to observe that

(u—1)(rz)

o) = e =€ DB,

satisfies the assumptions of the lemma, hence estimate (3.9) can be iterated indefi-
nitely, leading to the O estimate.
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Let » > 0 be fixed, to be made precise later. Assume by contradiction that there
exists a sequence 7; — 0 as j — oo and a sequence u; of solutions to (3.8) with
|uj| <1, which do not satisfy the conclusion (3.9).

We divide the proof into two steps.

Step 1. Improvement of oscillation.

Claim 1: There exist universal constants Cy, C; > 0 such that if u > 0 and

u(zo) <1, g € By,

and
|Au| <1 when |Vu| < (Y,

then 5
H{u < Co} N Byja| > 1|Bl/2"

This follows from a version of the Alexandrov-Bakelman—Pucci estimate; see [S].
A precise reference is Theorem 2.4 in [DS], by noticing that « is a “supersolution” in
the sense of Definition 2.1 of [DS] with A = 4n, r arbitrarily small, and I = [1, +00):
u cannot be touched from below in a B, neighborhood by a polynomial of the form

aP with a € I, and

Po= @&~ L+ L)

with £ a unit direction and L(z) :=b- 2z +d, |b|,|d| < 1.
After dividing u by 4Cy we can restate the claim as follows.
Claim 2: There exist universal constants ¢ > 0 (small) and Cy > 0, such that if
u(wo) <e¢, x0 € By,

and

(3.10) |Au| < ¢ when |Vu| < Cs,

1
— B
’{u<4}m 1/2

Thus if |u| <1, and if there exist x¢,z1 € By /o such that

then

3
> —|B .
> 4| 1/2]

(1—u)(zo) <e, (L+u)(z)<ec

we would reach a contradiction, as, in view of Claim 2,

3 3
Hu>4}ﬂ31/2 {u<—4}ﬂB1/2

In conclusion either
u<l—c or u>-1+c in Byp.

3
> 2By ol
4| 1/2]

i

Thus, the following diminishing of oscillation statement holds: if oscp,u < 2 and
(3.10) holds, then

c
0SCB, ), U <2 (1 — 5) .
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Step 2. Compactness. Consider the rescalings

—k
Ujp(x) = (1 - %) uj(27%z), k>0, x¢By,

and apply Claim 2 inductively on k. We have

2—k
FlAugl(27 ) <y < e

Adis =
Ak 2-0)

(z) =

when |V, ,|(x) < Cy as long as k satisfies
A
Cy<(2—¢) "—.
Ny

Thus, for all such £’s, say k < k7,
N
oscp, u; <2 (1 - 5) <2(27F)8

for some § > 0 small universal. Notice that k*(1;) — 0o as j goes to co. Hence the
modulus of continuity w;(¢) : [0,1] — R of the u;’s satisfies

w;(t) < Ct7,

as long as t > 2% . Thus, by the Ascoli-Arzela theorem, we conclude that u; con-
verges (up to a subsequence) uniformly on compacts to a Holder continuous function
Uso- Passing to the limit in (3.8), we obtain that

Ao, =0 in Byjs.
By elliptic regularity,
luso — 1| < Cr? in B,, [ linear and |VI| < C universal.
From the uniform convergence,
lu; —1] < 20r? <r'*t® in B,
provided that 7, o are chosen appropriately, and we have reached a contradiction. 0O

4. Measure theoretic properties of the free boundary. In this section we
show that if D is convex and C? smooth and h € C', then the free boundary of a
nondegenerate viscosity solution to (1.8) has finite Hausdorff measure. We follow a
strategy inspired by the work of Alt and Phillips in [AP]. The universal constants in
this section depend on the C? norm of D and the C' norm of h in a neighborhood of
oD.

We say that a solution w to (1.8) is nondegenerate if there exists a constant £ > 0
such that for any zg € F(w) and r such that B,(xg) C By we have
(4.1) x9 € Flw) = ag},z(lfo)w > Kr.

THEOREM 4.1. Assume that D is a bounded convex set with C? boundary, and let
w be a wiscosity solution to (1.8) satisfying the nondegeneracy condition (4.1). Then

Hnil(ﬁ{w > 0} N B1/2) S C(I{)

for some C(k) > 0 depending on the universal constants and k.
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For this we first prove the following lemma.
LEMMA 4.2. Assume that w is a global Lipschitz solution to (1.8). Then Vw € D.

_ Proof. Since D is convex, it suffices to show that Vw belongs to the convex hull
of D. Let L := supw, and assume by contradiction that

L > maxe, -y,
yeD

which means that
(4.2) h(y) < 0if y, > L.

Let zp be a sequence of points for which w,, approaches the limit L. For each k we
rescale w into

(4.3) wh(z) == %w(xk +rpz), 1 =w(zK),

so that
wh(0) =1, 0w (0) = wp(zy), |Vr| <||Vw|e, wk <L

We can extract a subsequence of the w*’s which converges uniformly on compact sets
to w. Moreover, by Theorem 3.6, in a ball B, with ¢ universal, the convergence holds
in the C1'* norm due to the uniform C1® estimates. In conclusion, w solves the same
equation, and

Wy, < L =w,(0).

Differentiating in the x,, direction we find

h h
= 1 . an - 71571;

(4.4) Aw, =

w

and h, Vh are evaluated at V.

At the origin @, has a maximum and h(Vw) < 0 by (4.2). The strong maximum
principle implies that @, is constant (w,, = L) in the connected component of {w > 0}
which contains the origin. Thus, for all 2’ with |z’| small,

w(x', z,) = w(z',0) + La,,

as long as the right-hand side is positive. In particular the point zy := —e, /L belongs
to the free boundary of w, given by x,, = —L~!w(2’,0). Since w € C** near the origin
(in view of Theorem 3.6), we find that {w > 0} is C*“ in a neighborhood of z.
This means that we can touch w at x¢ by a quadratic polynomial P with P, > L — 4,
AP > 0 in a neighborhood of xy3. Then we easily contradict the definition of viscosity
solutions for the w*’s and reach a contradiction. ]

We define a convex function 7 in a neighborhood of D which is comparable to the
distance to D. Precisely 7 is such that

n=0 onD, n(y)~ dist(y,D), neC*(D°),

and ||D?n|| < C universal, by the C? regularity of the domain D.
By compactness, from Lemma 4.2 above we obtain the following corollary.
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COROLLARY 4.3. Assume that w is a viscosity solution to (1.8) in By with 0 €
F(w). For any € > 0 there exists p(e) > 0 small such that

n(Vw) <e in B,N{w >0}

Proof. Indeed, assume by contradiction that there exist sequences p; — 0 and w;
solutions to (1.8) with 0 € F'(w;) such that

n(Vw;(z;)) > e for some x; € B, N{w; > 0}.

We rescale w; around z; as in (4.3), and obtain a sequence that converges uniformly
(up to a subsequence) to a global Lipschitz solution w with

n(Vw(0)) > e with w(0) = 1.
This contradicts Lemma 4.2. O

Next, we show the following.

LEMMA 4.4. Assume that w is a viscosity solution to (1.8) in By and
n(Vw) <€ in Bs.
Then
n(Vw) < w® in By
with €g and & sufficiently small.

Proof. Let ¢ be a nonnegative C? function which vanishes in B; and ¢ = 1 on
0Bs. We show that

g9(z) == n(Vw) — w* — ¢(x)

cannot have a positive maximum in the region By N {w > 0}. Notice that ¢ < 0
on 9B; and, by Corollary 4.3, limsup g < 0 as we approach d{w > 0}. Assume by
contradiction that g achieves a positive maximum xg. At xg,

(4.5) w® < n(Vw) < €,
and Vw(zq) belongs to D¢ and is sufficiently close to 9D. Then Vg = 0 implies
(4.6) B (n(Vw)) = €w*~w, + .

At zp we compute (the functions 7 and h and their derivatives are evaluated at
Vw(xo))
An(Vw) = ni Awg, + Nk Wi wi;.-

The last term is nonnegative by the convexity of 7, and after replacing Awy, (see (4.4))
we obtain

1 h
An(Vw) > —nghswrs — —5Nkw.
w w

Using nx(y)yr > ¢ and h < 0 in D¢ we find that the second term is nonnegative hence

1 A
A > — sVUs )
n(Vw) > wh 9s(n(Vw)) —|—cw2
and by (4.6),
An(Vw) > éw*?hyws — Cw™! + cl%l.
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On the other hand
Awt =& 2 (h+ (€ — 1)|Vw|?) < —cbw* 2,

hence
Ag > w2 (c€ + cw™¢|h| + Ehw, — Cw' ™% — C’w2_€) >0,

and we reach a contradiction.

In the last inequality we used that w is sufficiently small, and then either |hsw,| <
¢/2 and the claim is clear or C > |hsws| > 1/2 which together with A = 0 on 0D and
the C! smoothness of h gives (see (4.5)) |h| > ¢y > cw® and, again, the inequality
follows provided that £ is sufficiently small. 0

The lemma above leads to the following integral estimate.

LEMMA 4.5. Assume that w is a viscosity solution to (1.8) in By and

n(Vw) < e in Bs.

+
/ V)" < o
Bin{w>0}

Proof. Let f(t) be a C! smoothing of (t7)'*+¢ i.e.,
f(0)=f'(0)=0, f”"=min{e ' 71}
We have h(Vw) > —Ce so, if € is sufficiently small, then

Then

Afw) = £'(w) (Froh+ 196) 2 ef )Tl
We integrate and use
Af(w)dx = O f(w) <C,
B oB,

hence

/ " (w)dz < C.
Bin{|Vw|>c}

Now the result follows by letting ¢ — 0 and noticing that by Lemma 4.4,

(n(Vw))tw™! <wt™t = lim £ (w),

and nt = 0 when |Vw| < ¢ with ¢ small. 0
We are now ready to show the proof of Theorem 4.1.

Proof. By Corollary 4.3 we may assume that after some initial dilation around
a free boundary point we have n(Vw) < ¢y in Bs. Let f be a smoothing of ¢¥, i.e.,
f(0) = f'(0) =0 and f” > 0 supported on [e, 4¢]. From the computations above with
this choice of f we find

(4.7) C> Af(w)dr = ' (w)|Vw? + f(w)hw ™t dz
B1 By

C
> / 7)(1116[6,26]|vu]|2d3j - Ca
B, €

1

where in the last inequality we have used hw~' > —CnTw™! and Lemma 4.5.
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On a ball of radius Ce around a free boundary point z we have due to nondegen-
eracy (4.1) and Lipschitz continuity

1

/ |Vw|?dz > c(k)e™ L.
€ JBeoc(z)N{e<w<2e}

We cover the free boundary in By, with N balls Bee(zx) that have the finite over-
lapping property. By adding the inequalities above over k, we obtain

1

/ |Vw|*dz > ¢ N(Ce)" L.
€ J B3/ an{e<w<2e}

This combined with (4.7) gives the claim. 0
We conclude the section with the following lemma.

LEMMA 4.6. Assume w satisfies the hypotheses of Theorem 4.1 and 0 € 9*{w > 0}.
If v is the unit inner normal to F(w) at 0, then

(fW)z-v—ror) <w< (fWx-v+ro(r)t in B,

with o(r) — 0 as r — 0.

Proof. We need to show that any blowup sequence of rescalings w,.(z) = r~lw(rz)

with 7 — 0 converges to f(v)(z -v)". Let @ be such a blowup limit. Assume for
simplicity of notation that v = e, and f(v) = 1.

The nondegeneracy and Lipschitz continuity imply that the positive set {w > 0}
has positive density in any ball centered at a free boundary point. This together with
our assumption that 0 € 9*{w > 0} gives that 0 € F(w) and

(4.8) w=0 inz, <0.
On the other hand Vw € D by Lemma 4.2, and then we easily obtain
w < x;‘;

from the convexity of D and (4.8). Assume by contradiction that @ does not coincide
with ;7. Then, by the strong maximum principle we have that w < z;} in x,, > 0. In
particular we can find € > 0 such that

w<zf—¢ on Byn{z,=I}

with [ small, universal. Now we can argue as in the proof of Lemma 5.3 below and
construct a barrier from above to conclude

w < (2, —ce)t  near the origin.

This shows that 0 is an interior point of {@w = 0} which contradicts 0 € F(w). d

5. Harnack inequality. In this section we prove a Harnack type inequality for
viscosity solutions to (1.8), which satisfy a flatness assumption. This will be the key
ingredient in the improvement of flatness argument leading to the C® regularity of
flat free boundaries, that is Theorem 1.5. We follow the strategy from [D].

The constants in this section depend on the dimension n, the C' norm of 0D,
the constant ¢ in (1.5),(1.6), and the Lipschitz norm of h in a neighborhood of 9D.
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Recall that h satisfies (1.3) which is important in our analysis since we can construct
comparison subsolutions ¥* with

_ h(VUT)
+
AU>0, VUED = AT 0>
and supersolutions ®* with
h(VOt
(5.1) AP <0, VPeD = A<I>+<O§%.

We also assume for simplicity that
(5.2) en € 0D.

We wish to prove the following result.

THEOREM 5.1 (Harnack inequality). Letw be a viscosity solution to (1.8) in Ba,
and assume (5.2) holds. There exist universal constants €,1m, such that if w satisfies
at some point xy € Bo

(5.3) (7, +ag)™ <w(x) < (z, +b9)T in B.(z0) C By

and
bo —ag < er

for some e < €, then
(xn 4+ a1)t <w(z) < (xn +b1)"  in Bpy(xo)

with
ap < ay <by <bg, by —ar <(1—c)er,
and 0 < ¢ < 1 universal.

Before giving the proof we deduce an important consequence.
If w satisfies (5.3) with, say » = 1, then we can apply the Harnack inequality
repeatedly and obtain

(Tn 4 am)T <w(@) < (Xp +bm)T  in Bym(x0)

with
b — am < (1 —¢)™e

for all m’s such that
(I-—¢m™p me<e.

This implies that for all such m’s, the oscillation of the function

o) = YE T B ) U F(w)

in B,(zo),p = n™, is less than (1 — ¢)™ = n?™ = p?. Thus, the following corollary
holds.
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COROLLARY 5.2. Let w be as in Theorem 5.1 satisfying (5.3) for r = 1. Then in
Bi(xg), We has a Holder modulus of continuity at xq, outside the ball of radius €/€,
i.e., for all x € Bi(xg) with |x — xo| > €/€

|7116($) - ﬁ)e(xo)\ < C|1' — $0|’Y.

The proof of the Harnack inequality relies on the following lemma.

LEMMA 5.3. Let w be a viscosity solution to (1.8) in By which satisfies
(7, +26)" > w(x) >z} in B;.

n

1
There exist universal constants €,m > 0 such that if at T = 5(3”

(5.4) w(Z) > (Tn+6€)7, e<E
then
(5.5) w(x) > (zn+ce)t  in B,

for some 0 < ¢ < 1 universal. Analogously, if
(xn —26)T <w(z) <t in B

and
w(z) < (Tn — )T,

then -
w(z) < (z, —ce)t  in B,,.

Proof. We prove the first statement. The second one follows from a similar argu-
ment.

First set B
R — defined only in By (w) U F(w),
€

and

l 1
Ci == By X {2<xn<2}CBf“(w)

with [ small, universal, to be made precise later. Using that h(e,) = 0 and w is
bounded below in C;, we have

1 1
Ad] = —|Aw| = —[h(e, + V)| < COIVa| in €N (V| < e},

This means that a sufficiently large dilation of w satisfies the hypotheses of Lemma
3.8 and we conclude that |Vw| < C(I) in the interior of C;. Since

[Aw| < C()|Vw|] and w >0, w(z)>1,
we can apply the Harnack inequality and obtain

W >c(l) inTy =By x{z, =1},

(5.6) w > x, +ec(l) onTj.
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Now, let w be the unit normal to I' at e,, pointing towards R™ \ D, which in view
of (1.6) satisfies w,, > J. Set

2
+ A2? 4z,

/

/
T - —x,
Wn,

Q) = -

with A > (n — 1) + 62 universal and define (¢ = ¢(1))
U, i=x, +ec(Q+1t), teR
Then for ¢t = ¢ < 0 depending on 4§,
U <z, <w
on the region C, := 31/2 X {—2¢ <z, <1}. Let t be the largest ¢ such that
U; <w onC,

and let & € C, such that

Ui(7) = w(z).
We show that ¢ > £. Indeed if £ < %, then for ¢, small universal, we can guarantee
that
Uy <0<w onB’l/2 x{zp =—2¢}, Vi<z,+ec<w onT],
and

Uy <x, <w on{lx|=1/2} x {2 <z, <I}.

We conclude that € CF(¥;) U F(¥5). On the other hand, we argue that ¥y is a
strict subsolution to the interior equation, and w satisfies the free boundary condition,
hence no touching can occur in CF(¥;) U F(¥;), as long as V¥; ¢ D. This leads to a
contradiction.

To show our claim for \Iftir we check that for e small,

AV; = ecAQ > 0,
which follows by our choice of A. We are left to prove that V¥; ¢ D. Since

VU; =e, +eVQ,
and w is perpendicular to I" at e,, it is enough to show that

w-VQ > 0.
A quick computation gives that for e small,
w-VQ =2Aw,x,, +w, >0 in C..
Thus,
wZa:n—&—ec(Q—l-;), on C,,

and for n small universal,

1
QZ*E on Bn.

This concludes our proof. 0
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We can now prove our Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality, we can assume that xg = 0,7 =
1. First notice that, for e small, if ag < —1/5 then B /19(0) belongs to the zero phase
of w, and the conclusion is trivial. Thus we only need to distinguish two cases.

If ag > 1/5, then By/5 C {w > 0} and

w — (2, + agp)
€

0<w:= <1

satisfies (see proof of Lemma 5.3)
|Av| < C|Vu| in Bys.

Therefore, the claim is deduced from the standard Harnack inequality for v.
If |ag| < 1/5, we set

v(z) == w(x —aoen), x € Byys.

Then, v satisfies the assumptions of Lemma 5.3, and the desired conclusion follows. 0O

6. Improvement of flatness. In this section we prove our main improvement
of flatness proposition, from which Theorem 1.5 follows by standard arguments. The
universal constants in this section depend on the dimension n, the C'* norm of 9D,
the constant d in (1.5),(1.6), and the C! norm of h in a neighborhood of dD.

PROPOSITION 6.1. Let w be a viscosity solution to (1.8) in By. There exist g, 7 >
0 universal, such that if w is e-flat, i.e.,

(6.1) (flen)zn — )T <w(x) < (fen)rn +€)" in By, €< e,

with 0 € F(w), then

(6.2) (f(u)x~u—§r)+§w(x)§ (f(u)ﬂc-u—l—gr)+ in By

with |v] =1, and |f(v)v — f(en)en| < Ce for C > 0 universal.
Proof of Theorem 1.5. By iterating Proposition 6.1, we obtain

(6.3) (fr)z v —epri)t <w(z) < (Fvp)r - vk +exri)™  in By,
with |vg| = 1, and | f(vk)vk — f(vg—1)vk—1| < Ceg, for C > 0 universal,

e =2"%e, r=rF k>1
This implies that the free boundary is pointwise C1'® at the origin. The same argu-
ment can be repeated at all free boundary points in By 5, and the conclusion follows
(see for example [CC]). O

Proof of Proposition 6.1. Without loss of generality, we assume that f(e,) = 1.

Let r be fixed small (to be made precise later.) Assume by contradiction that
there exist a sequence €, — 0 and a sequence of domains Dy, (and corresponding f%),
functions hy (satisfying the same assumptions as f, h with the same bounds), and
solutions wy, satisfying (6.1) but not the conclusion (6.2). Since hg, Dy, fr have a
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uniformly bounded C! norm, and Vhyg, Vfi have a uniformly bounded modulus of
continuity, up to extracting a subsequence,

hk%h*, Dk—)D*, fk*)f*

uniformly on compacts, with A* defined only in a neighborhood of dD*. The limits
are also C! with
Vhy — Vh*, VL —Vf*

uniformly on compacts.

Step 1. Let
Wy, = YeZTn 4 Q. := B (wy) U F(uy,).
€k
Then, by (6.1)
(6.4) —1<@p<1 inQy

and, moreover, F'(wy) converges to By N {z, = 0} in the Hausdorff distance.

By Corollary 5.2, and the Ascoli-Arzela theorem, it follows that as ¢, — 0, the
graphs of the w@y’s over By, N Qy converge (up to a subsequence) in the Hausdorff
distance to the graph of a Holder continuous function w on BT/Q.

Step 2. We wish to show that w is a viscosity solution to the linearized problem

- Vw .
(65) AW +v- Z =0 in Bf/2,
w, =0 on By N{x, =0},

where
V= —Vh*(en) = |Vh'*(€”)|w’

and w is the outer unit normal to D* at e,. For the precise definition of a viscosity
solution to (6.5) we refer to section 7, where the problem above is analyzed and the
necessary properties which will be used later on in this proof, are established.

Since Wy, satisfies

1 N —
Adiyy = — hk(en + ekak)~ hk(en) in Q
€k Ty + €ELWE

and Vhy — Vh*, Proposition 2.9 in [CC] implies that @ satisfies the equation in the
interior.
We only need to verify the free boundary condition. Following the notation in
subsection 7.2 we set
5=y

and notice that in our case
(6.6) C>s>0, wy, > 0.

In view of (6.4), the case s > 1 is trivial. Consider the case s < 1 and assume by
contradiction that there exists a test function

2
+B+pzl=®, A BeR,z eR"!,

n

Tn _
- =

Wn

A
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with
p <0,

which touches @ by above at Z € {x,, = 0}. Notice that since s > 0 we can replace
the test function above with

2
o~ | +B- C(A)z2 + gxn

Wn

¢p:=A

which still touches W strictly from above at Z (in a small neighborhood) and has the
property that (for C(A) appropriately chosen),

Ag < 0.

Then, the convergence of the wy’s to w implies that there exist points in By /M€
with zp — Z and constants ¢; — 0 such that

¢(x) + ok = Wi (k)
and (N a small neighborhood of xzy)

W, < ¢+ ¢ in/\[\{l‘k}.

Equivalently,
wi(zk) = (k) + ex (k)
and
wg < Ty +ep(@+ck) In N\ {zg}
Call

Py =2, + ek(qb + Ck).

In order to reach a contradiction it suffices to show that ®T is a strict supersolution
to our problem. Indeed (see (5.1)),

A, = EkA¢ <0,
and it remains to prove that
(6.7) V& (x) € Dy, for x near xy.

Notice that
v(bk =ep+ GkV(bv

and using the convergence of Dy to D* it suffices to check that
w-Vep <0

in a neighborhood of Z. It is easily verified that

w- Vi ==2C(A)z,w, + gwn,

and the conclusion follows since p < 0, w, > 0.
Step 3. The limit function w solves (6.5) and w(0) = 0 since 0 € F(wy). According
to Theorem 7.11 and recalling (6.6) we find that @ satisfies the pointwise C1'# estimate
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(7.20) with universal constants. Thus, by the convergence of the Wy, we conclude that
lg(x) —a- x| < Cir'™ in B, N Qy
with
|a|SCOa a-w:O,

with Cy, C7, p universal. Hence for r small enough universal,
r r
(6.8) Ty +€pa-x — €k <wg(z) <zp+epa-z+ €y in B, N Q.

Since
a-w=0, la|<Cy, TreC!, T\ —>T*

we can write
en + €xa = oV, |Vk| :1’

with ,
low — fr(vr)] SEkZ, fr(vp)ve € Ty,

as long as € is small enough. Thus, (6.8) gives
(frwp)x - v — exr/2)T < wi(x) < (fr(vp)x - vp + 16, /2)T  in B,
and we reach a contradiction. ]

7. The linearized problem. In this section we study the linearized problem
associated with the free boundary problem (1.8). This is a Neumann type problem in
the upper half-ball, governed by the the degenerate equation

Ago—l—v-E:O

n
for some constant vector v € R™. We develop the viscosity theory for such a problem.
We use the following notation:

B} := B, N{z, >0}

and
B! = B, N{z, =0}

denotes a ball in R"~!. Points in R™ are sometimes denoted by = = (2/,x,) with
¥ e RPL

7.1. The normalized linear problem. After an affine deformation, we reduce
to the case when v is parallel to e,, and the operator is given by a general constant
coeflicients linear operator.

Let A = (a;j);; be uniformly elliptic with ellipticity constants 0 < A < A,
ann =1, and let s > —1.

DEFINITION 7.1. We say that ¢ is a viscosity subsolution in Bf' to

Lsp =34, aijpij + s% =0 in ByN{z, >0},

(7.1) (1) — o), 0)
tlfs

s = limy_,q =0 on Bj

if it is continuous in B, Lsp > 0 in By N {x, > 0} in the viscosity sense, and ¢
satisfies the boundary condition in the following sense:
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i. if s > 1, then ¢ is uniformly bounded in By ;
ii. if s <1, then v is continuous in Bf' and it cannot be touched from above at
a point xg € B} by a test function

¢:=Alx' —y)>+ B+pzl~°, A BeRy, R
with
p <0.

Similarly we can define the notion of viscosity supersolution and viscosity solution
to (7.1).
The main result in this section is the following theorem. From now on,

b7l >s> -1+,

and universal constants depend on n, d, A, A.
THEOREM 7.2. Let ¢ be a wviscosity solution to (7.1) with || < 1 in Bf". Then

p € C’“‘(B;r/z) with a universal bound on the CY* norm. In particular, ¢ satisfies

for any o € 31/2,
(7.2) o(x) = p(x0) —d - (¢ —x5)] < Clo —ao|"™,  [d| <C,

for C >0, 0 < p < 1 universal, and a vector a’ € R~ depending on xg.
First we need to prove a Holder regularity result.

THEOREM 7.3. Let ¢ be a wviscosity solution to (7.1) with |¢| < 1 in Bf". Then
pE C’O‘(BT/Z) with a universal bound on the C* norm.

The theorem above immediately follows from the next lemma.

LEMMA 7.4. Let ¢ be a viscosity solution to (7.1) with |¢| < 1 in Bf". Assume
that

(7.3) o (;en> > 0.

Then, there exists a universal constant ¢ > 0 such that

p>—-1+c oanr/Q.

Proof. From the Harnack inequality, and assumption (7.3), we get that for [ > 0
small,

(7.4) e+1>c(l) on{|z|<3/4} x {x, =1}.

We consider first the case when s < 1. Let (¢ := ¢(I))

(n—1)

0

1
(7.5) wi=c <—|ars’|2 + Ax? + 32x,115> , A>A

It is easy to verify that w is a strict subsolution to the interior equation in (7.1) in
B; N{xz, > 0}. Moreover, if [ is chosen sufficiently small (depending on A),

1
(7.6) w< e on {|x|’:i} < {0 < an < 1},
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1
(7.7) w < 5¢ on {|2'| <3/4} x {z, =1}.
Now, let
wy=w+t, t>—T,

with T large enough so that wr < ¢+ 11in C := {|2'| < 3/4} x {0 < z,, <1}. Let ¢
be the largest ¢ such that w; < ¢ + 1 on C and let T be the first contact point. We
wish to show that ¢ > §. Indeed, if that is the case then

w + g <p+1 onC.
The desired claim then would follow since

ergz on {|2| < 1/2} x {0 < z,, < I}

>0

We are left with the proof that ¢ > §. Indeed if £ < §, then in view of (7.4), (7.6),
(7.7), the first contact point for w + ¢ cannot occur on {|z|' = 3} x {0 < =z, <1} or
on {|z'| < 3/4} x {x,, =1}. On the other hand, the first contact point cannot occur
either on {x,, = 0} (because of the free boundary condition), or in the interior of C
(because w + ¢ is a strict subsolution to the interior equation). We have reached a
contradiction, hence the desired claim holds.

If s > 1, we set

N0

we = c(—|2'|? + Az? —ex}™®), s#1,

we = c(—|2'|? + Az +elnz,), s=1,
with

n—1

A>A

and € > 0. We choose d(e) > 0 so that

w€<—g if x,, <d(e), d(e) >0 ase—0.

Then it is easy to check that for [ small,

we < on {|2'| < 3/4} x {z, =1},

N O

we < fg on {x|’ = i} x {0 <z, <I}.
Since L we > 0, we conclude that

we + g <p+1 in{|2/| <3/4} x {d(e) <z <1}

By letting ¢ — 0,we obtain the desired estimate. 0

One key ingredient in the proof of Theorem 7.2 is the next proposition, from
which the subsequent corollary immediately follows . We postpone its proof till the
end of the section.

PROPOSITION 7.5. Let o, 1) be subsolutions (resp., supersolutions) to (7.1). Then
w+ 1 is a subsolution (resp., supersolution) to (7.1).
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COROLLARY 7.6. Let ¢ be a viscosity solution to (7.1) then for any unit vector €'
in the ©' direction,
o+ ee’) — p(x)
€

is a viscosity solution to (7.1).

Combining Corollary 7.6 with the Holder regularity of viscosity solutions, we
obtain by standard techniques [CC] the following result.

THEOREM 7.7. Let ¢ be a wviscosity solution to (7.1) with |¢| < 1 in Bf. Then
for some € (0,1) universal, o € C** in the x' direction in B;r/4, for all k > 1, with

CkH norm bounded by a universal constant (depending on k).
We are now ready to provide the proof of our main theorem.
Proof of Theorem 7.2. We rewrite the interior equation in (7.1) as

Gun + 52 = g(x) + h(z)

n
with
9(@) ==Y ayey, h(@) ==Y tinpin.
i,jF#n i#n
By Theorem 7.7, the function g(z’, x,,) is smooth in the z’-direction and, in particular,
it is uniformly bounded on 0 < z,, < 1/2. Similarly, by interior estimates and Theorem
7.3, we conclude that for some 0 < a < 1,

|h(2', )| < C2& 1 in Bf_/z-

Thus, for each fixed 2’ € B] /2 We are led to consider the ODE

!

u”+su? = f(t), telo0,1/2],
with
(7.8) [f()] < CA+7).
The general solution is given by
u(t) = e t' ™ + ey +a(t) for s #1

and
u(t) =cilnt+co+a(t) fors=1,

with @(t) a particular solution. It is easy to check that since f satisfies (7.8), we can
choose a particular solution @ that satisfies,

lu| < Cttre,

In conclusion

lp(z', 2,) — c1(z’)zh* — c2(a’)] < Calite.

Using the smoothness of ¢ in the x’ direction together with the free boundary
condition, we conclude that ¢; = 0, ca(2’) = p(2/,0), and (7.2) holds. d
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In order to prove Proposition 7.5 we also need the following expansion lemma.

LEMMA 7.8 (expansion at regular points). Let s < 1 and let ¢ € C(By) be a
viscosity supersolution to (7.1) in By. Assume that ¢(2',0) is CY! at O in the '-
direction. If ¢ is a solution to Ly =0 in By N {x, > 0} with ¢ = p on OB;, then,
?s(0) is well defined and

54(0) < 0.

Proof. Without loss of generality, we can assume that ¢(0,0) = 0, V,/¢(0,0) = 0.
Since ¢(z',0) is CT! at 0, in a neighborhood of 0 we have that for some large constant
C >0,

—C|2'|* < ¢(2,0) < Cl2').

We define (k > 0)
pr = sup{p: ¢ > —2C|a'|* + Az, +pr,° in B},
my := inf{m : g < 2C|2'|> — Az? + ma)* in Bf,}
with A > 0 chosen so that
Ls(—2C|2'|? + Az2) = 0.
Notice that {px} is an increasing sequence, while {my}, is decreasing. Thus,
p=suppr, m:=infmy,

are well defined.
We wish to show that

(7.9) D =1m € (—o0,+00),

from which our claims will follow immediately.
First, set
w= —2C2'|* + Az? — Mz} ~*

with A as above, and M > 0 large so that
w<¢@ ondBy.

Thus, w < ¢ in Bf” and {px}x is bounded below. Similarly, {my}; is bounded above.
In order to obtain (7.9),we prove by induction that there exist sequences {py}, {mx}
with pr < pg and my > my such that

(7.10) my, — pr < my — pr = Co(1 — co)*
with ¢y > 0 universal to be specified later, and Cj chosen universal so that the

statement holds for k = 0. Towards this aim let p := w and assume (7.10) holds
for k>1. If

1—s
(7.11) #(5en) =t (5) o r=27"
then we claim that

(7.12) Dk+1 = Pk + C1pt.
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Similarly, if

/T _ ry\l-s _
(7.13) 2(5e) <m-m(3) . r=2
then
(7.14) Mpy1 < Mg — CLU.

Thus assuming (7.10) holds for k& > 1 with ¢g = ¢1/2, if (7.11) is satisfied, we can
choose pr11 = px + c1p0 and my4+1 = My, otherwise we choose pyy1 = pr, and My =
mg — C1lL.

To conclude our proof, let us assume that (7.11) hold and let us show that (7.12)
follows.

Call
vy, i= —2C|2'|* + Az? + proi™®
and
up(z) == r7 (P —wp)(rx), x € By.
Then,
Loug = 0, wurg=>0 in Bin {xn > 0},
and

1 r\stl
Zep | > —A(—) > =

where in the last inequality we used that by the induction hypothesis
Hn = Co(l — Co)k = Co’l“a

for some small «, and Cj, ¢y can be chosen possibly larger and smaller respectively
(recall that s +1 > 0). By a standard barrier argument (see proof of Lemma 7.4) we
conclude that

uy > clux}l_s in Bfr/27
and the desired claim follows. O

Remark 7.9. The existence of the replacement
¢ € C*(By N {x, > 0}) UC(BY)

can be achieved via Perron’s method. Using the barrier functions +w in the proof
above, one can guarantee the continuity up to the boundary.

We conclude this section with the proof of Proposition 7.5. First, let us introduce
the following regularizations. Given a continuous function ¢ in Bf' , we define for
€ > 0 the upper e-envelope in the z’ direction,

o (Y yn) = sup {w(:v’,yn) - 1Ix' - y’z} . y=( yn) € B}.
2€B7 N{zn=yn} €
The proof of the following facts is standard (see [CC]):
(1) ¢ € C(B]) and ¢, — ¢ uniformly in B as € — 0.
(2) ¢¢ is C™' in the a'-direction from below in Bf. Thus, ¢ is pointwise second
order differentiable in the z’-direction at almost every point in B;.
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(3) If ¢ is a viscosity subsolution to (7.1) in Bf” and r < p, then for € < € (g
depending on ¢, p, 1) ¢ is a viscosity subsolution to (7.1) in B;. This fact follows from
the obvious remark that the maximum of solutions of (7.1) is a viscosity subsolution.

Analogously we can define ., the lower e-envelope of u in the z’-direction which
enjoys the corresponding properties.

We are now ready to prove our main proposition.

Proof of Proposition 7.5. In view of property (1) above, it is enough to show that
v = ¢ +°

is a subsolution to (7.1) on B;". The case s > 1 is trivial, and the interior property is
standard. We only need to check the boundary condition when s < 1.
Assume by contradiction that there exists A > 0 so that

¢ = Al |* + pr,°

touches v from above, say at 0, and p < 0. Then ¢, 1¢ are C1! at zero in the 2'-
direction. This follows from the fact that ¢¢, ¢ are C1'! from below (see property
(2)) and their sum is C1'! from above at the origin. According to Lemma 7.8, we can
consider their replacements @€, 7,55. Thus ¢ will touch @€+ 77/;5 from above at zero and

@5(0) +¢5(0) >0,
a contradiction. 0

7.2. The linear problem. We now discuss the general case. Let w € S™ and
v := Aw with A € R. Denote
S:=0-ey

and assume that for § > 0,

(7.15) S>> 146, w, >0

DEFINITION 7.10. We say that ¢ is a viscosity subsolution to

\Y%
Agp+v~m—w:0 in By N{x, > 0},

(7.16) o(zo + tw) — p(z0)
tl—s

Yo = limy_yg =0 on Bj
if it is continuous in By, it is a subsolution to the equation in By N {x, > 0} in the
viscosity sense, and
i. if s > 1, then ¢ is uniformly bounded in B ;
il. if s <1, then @ is continuous in Bf and it cannot be touched from above at
a point xg € By by a test function

2
+B+pzl™®, A BeR,y,cR"

I
/ W !
r ——Tn— Y
Wn,

¢o:=A

with
p <0.
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We remark that, after performing the following domain variation,

/
. o(x',xy) = T + padiadl} T
(7.17) oz, zn) sa( ' ; n>
Wn
the function ¢ satisfies the equation
(7.18) > dij@is + D bidin + Gun + s% =0 in B,
i,j#n i#n "
where
wWiw; w;
7.19 dij = —2L, b =2—".
( ) J wrQL W,

In particular, in view of (7.15), (7.18) is uniformly elliptic with ellipticity constants
depending only on 4. It is also easy to see that ¢ satisfies the free boundary condition
®s = 0 on B.. Thus, the next result follows from Theorem 7.2. Here constants
depending on n, J, are called universal.

THEOREM T7.11. Let ¢ be a viscosity solution to (7.1) with || < 1 in By. Then
p € C’l’“(Bf/z) with a universal bound on the CY* norm. In particular, ¢ satisfies,
for any xg € B1/2,

(7.20) o(x) — p(x0) — a- (& — m0)| < Cla — xo|'*H, la| < C,
with C' >0, 0 < p < 1 universal, and a vector a € Rn1 depending on xq, with
a-w=>0.
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