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Abstract. We develop an existence and regularity theory for a class of degenerate one-phase
free boundary problems. In this way we unify the basic theories in free boundary problems like
the classical one-phase problem, the obstacle problem, or more generally for minimizers of the Alt--
Phillips functional.
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1. Introduction. The most basic elliptic free boundary problems arise in the
study of minimizers of energy functionals,

J(u,\Omega ) =

�
\Omega 

1

2
| \nabla u| 2 +W (u) dx,

among functions u which are prescribed on the boundary

u = \varphi on \partial \Omega .

The potential W (t) \geq 0 is assumed to be nonnegative and to vanish on ( - \infty , 0].
If we restrict our attention to nonnegative boundary data \varphi \geq 0, then the condi-

tions on W guarantee that minimizers must satisfy u \geq 0. The strict positivity of u
in the interior of \Omega can be deduced from the Euler--Lagrange equation

\Delta u =W \prime (u),

and the strong maximum principle, whenever W is of class C1,1 at the origin. Oth-
erwise \{ u = 0\} can develop patches, and then interesting questions arise concerning
the properties of the free boundary \partial \{ u > 0\} .

Historically the first such case that was analyzed systematically is the obstacle
problem, that corresponds to

W (t) = t+, \Delta u = \chi \{ u>0\} .

The optimal regularity of the solution was first obtained by Frehse in [F]. The general
regularity theory of the free boundary was established by Caffarelli in [C] (see also
[C4]). He made use of monotonicity and convexity estimates of the solution u to
obtain the smoothness of the reduced part of the free boundary \partial \ast \{ u > 0\} .

An important class of potentials which were studied later by Alt and Caffarelli
are those which are discontinuous at 0, and in the simplest form correspond to

W (t) = \chi \{ t>0\} , \Delta u = 0 in \{ u > 0\} , | \nabla u| =
\surd 
2 on \partial \{ u > 0\} .
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650 DANIELA DE SILVA AND OVIDIU SAVIN

This is known as the one-phase or Bernoulli free boundary problem and the smooth-
ness of the reduced part of the free boundary was established by variational techniques
in [AC]. Later Caffarelli developed an alternate viscosity theory approach for the reg-
ularity of the free boundary, based on the Harnack inequality and regularizations by
sup-convolutions [C1, C2, C3]. A method based on Harnack inequality and compact-
ness arguments was subsequently developed by the first author in [D].

Another general class of examples with free boundaries is given by the Alt--Phillips
energy functional, which corresponds to the power-growth potentials

W (t) = (t+)\gamma with \gamma \in (0, 2), \Delta u = \gamma u\gamma  - 1.

When \gamma \in (0, 1) these potentials interpolate between the one-phase problem \gamma = 0
and the obstacle problem \gamma = 1. Alt and Phillips showed in [AP] that a similar
analysis as in the one-phase problem can be carried out in this case as well, and they
established the smoothness of the reduced part of the free boundary.

As observed by Alt and Phillips, after a simple change of variables

w = u1/\beta , \beta :=
2

2 - \gamma 
, \beta \in (1,\infty ),

the problem above can be viewed as a one-phase free boundary problem for w. It
turns out that w is Lipschitz and it solves a degenerate equation of the type

(1.1) \Delta w =
h(\nabla w)
w

in \{ w > 0\} 

with

(1.2) \nabla w \subset \{ h = 0\} on \partial \{ w > 0\} ,

where h is the quadratic polynomial

h(p) =
\gamma 

\beta 
 - (\beta  - 1)| p| 2.

A key feature of (1.1) is that it remains invariant under Lipschitz scaling \~w(x) =
w(rx)/r. The right-hand side degenerates as w approaches 0 and the free boundary
condition (1.2) can be understood as a natural balancing condition in order to seek
out for Lipschitz solutions w.

In this paper we are interested in developing the viscosity theory for the degen-
erate class of one-phase free boundary problems (1.1)--(1.2) for general functions h.
When h is not necessarily quadratic as in the examples above, then (1.1) cannot revert
back to an Alt--Phillips equation by a change of variables. Our main assumptions are
that h \in C1 and h \geq 0 in a star-shaped domain D and h \leq 0 outside D. The free
boundary condition (1.2) then reads as \nabla w \in \partial D. The interior regularity for solu-
tions to (1.1) is not immediate as the right-hand side degenerates either as w \rightarrow 0 or
\nabla w \rightarrow \infty . In our analysis we will make use of the results of Imbert and Silvestre [IS]
in order to establish a uniform H\"older modulus of continuity for w. Similar estimates
for a related nonvariational degenerate elliptic equation were obtained by Teixeira in
[T].

Equations (1.1)--(1.2) do not necessarily have a variational structure, but can
be thought of as interpolating free boundary conditions for different exponents \gamma 
depending on the behavior of h near \partial D, and the direction \nu to the free boundary.
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DEGENERATE ONE-PHASE FREE BOUNDARY PROBLEMS 651

For example, a region around \partial D where h vanishes corresponds to the classical one-
phase free boundary problem, while in a region where h is quadratic corresponds to
solving the Alt--Phillips free boundary problem for some exponent \gamma .

We remark that the sign assumptions on the function h are crucial. When h
changes sign across \partial D in the opposite directions, h \leq 0 in D and h \geq 0 outside D,
then the problem becomes completely different and it would correspond to the case
of negative \gamma 's in the Alt--Phillips functional. We will address this interesting case in
a subsequent paper.

1.1. Setup and definitions. Let D \subset Rn be a bounded C1 domain and let
h \in C1(Rn) vanish on \Gamma := \partial D. Assume that 0 \in D and

h \geq 0 in D, h \leq 0 in \=Dc,(1.3)

h(p) \geq  - C| p| 2, C > 0, as | p| \rightarrow \infty .(1.4)

Here and throughout the paper, the superscript c denotes the complement of the set
in Rn.

We ask for D to be star-shaped with respect to the origin. Precisely, given a unit
direction \nu \in Sn - 1, we denote by f(\nu ) \in R the positive number such that

f(\nu ) \nu \in \Gamma = \partial D.

In view of the C1 regularity of D, the function

f : Sn - 1 \rightarrow R

is also C1. In particular there exists a \delta > 0 such that,

(1.5) \delta \leq f \leq \delta  - 1,

and if x = f(\nu ) \nu \in \Gamma and \omega x is the unit normal to \Gamma at x pointing towards \=Dc, then

(1.6) \omega x \cdot \nu \geq \delta .

Without loss of generality we may relabel the constant C in (1.4), such that the
inequality holds in the whole space

(1.7) h(p) \geq  - Ch| p| 2 \forall p \in Rn.

We are now ready to introduce our one-phase free boundary problem: find a
continuous function w \geq 0 in \=B1 which is prescribed on \partial B1 and solves

(1.8)

\left\{   \Delta w =
h(\nabla w)
w

on B+
1 (w) := B1 \cap \{ w > 0\} ,

\nabla w \in \Gamma on F (w) := \partial B+
1 (w) \cap B1.

The two conditions above are understood in the viscosity sense and we make them
precise below. First we recall that given two continuous functions u, \psi in B1, we say
that \psi touches u from below (resp., above) at x0 \in B1 if

\psi \leq u (resp., \psi \geq u) near x0, \psi (x0) = u(x0).

If the first inequality is strict (except at x0), we say that \psi touches u strictly from
below (resp., above).
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652 DANIELA DE SILVA AND OVIDIU SAVIN

The notion of viscosity solution for the interior equation is standard and in fact
we will show that w is locally Lipschitz and it is a classical solution in the set \{ w > 0\} .
We therefore provide only the definition of a viscosity solution to the free boundary
condition. From now on, for any continuous function \psi , we denote

F (\psi ) := \partial \{ \psi > 0\} .

Definition 1.1. We say that w satisfies the free boundary condition in (1.8) in
the viscosity sense if, given x0 \in F (w), and \psi \in C2 such that \psi + touches w from
below (resp., from above) at x0 with | \nabla \psi (x0)| \not = 0, and \nu denotes the unit normal to
F (\psi ) at x0 pointing towards \{ w > 0\} , then

| \nabla \psi (x0)| \leq f(\nu ), i.e., \nabla \psi (x0) \in \=D, supersolution property

(resp., | \nabla \psi (x0)| \geq f(\nu ) i.e., \nabla \psi (x0) \not \in D, subsolution property).

As observed earlier on, this problem is invariant under Lipschitz rescaling:

\~w(x) :=
w(rx)

r
, x \in B1,

a crucial ingredient in the body of the proofs.

1.2. Main results. We investigate here the question of existence and regularity
of viscosity solutions to (1.8) together with qualitative properties of their free bound-
aries. The main difficulty comes from the fact that the equation is degenerate near
the free boundary.

We summarize our main results below. The universal constants that appear in
the theorems depend only on the dimension n, the C1 norm of h in a neighborhood
of \Gamma , the C1 norm of f , the constant Ch in (1.7), and the constant \delta in (1.5)--(1.6).
In each section we will point out the precise dependence of the constants.

Existence of a nondegenerate viscosity solution (see section 3 for the precise defini-
tion of nondegeneracy) is obtained by Perron's method. Under appropriate regularity
assumptions on D, the free boundary of the Perron solution has finite Hausdorff
dimension. We obtain this precisely.

Theorem 1.2 (existence and finite Hausdorff dimension). Given \phi \in C0,\alpha (\partial B1),
there exists a viscosity solution to (1.8) in B1 with w = \phi on \partial B1. Moreover, w is
nondegenerate and if the set D is C2 and convex, then

(1.9) \scrH n - 1(F (w) \cap B1/2) \leq C

for a C > 0 universal (depending also on the C2 norm of f).

In fact, estimate (1.9) holds for any viscosity solution which is nondegenerate, as
long as D is convex and C2 smooth.

Remark 1.3. In general uniqueness for this problem is not expected. The solution
in Theorem 1.2 is obtained as the least supersolution in the appropriate class of
competitors. This may differ from the energy minimizer, whenever a variational
formulation exists.

Concerning the regularity of viscosity solutions we prove the following.

Theorem 1.4 (Lipschitz regularity). Let w be a viscosity solution to (1.8) in
B1, and assume that F (w) \cap B1/8 \not = \emptyset . Then w is locally Lipschitz in B1/2, i.e.,

\| \nabla w\| L\infty (B1/2) \leq C

with C universal. Moreover, w \in C2,\alpha 
loc in B+

1 (w), for some 0 < \alpha < 1 universal.
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DEGENERATE ONE-PHASE FREE BOUNDARY PROBLEMS 653

Finally, we provide an improvement of flatness lemma which leads to the following
``flatness implies C1,\alpha "" type result. The strategy follows the lines of [D].

Theorem 1.5 (flatness implies regularity). Let w be a viscosity solution to (1.8)
in B1 with 0 \in F (w). There exists \epsilon 0 universal such that, if w is \epsilon -flat, i.e.,

(1.10) (f(\nu )x \cdot \nu  - \epsilon )+ \leq w(x) \leq (f(\nu )x \cdot \nu + \epsilon )+ in B1, \epsilon \leq \epsilon 0,

for some \nu \in Sn - 1, then F (w) \cap B1/2 is a C1,\alpha graph in the \nu direction with norm
bounded by C\epsilon for a universal 0 < \alpha < 1.

This theorem gives the regularity of the reduced boundary \partial \ast \{ w > 0\} \subset F (w)
for solutions satisfying (1.9) since, after a sufficiently large dilation, the flatness hy-
pothesis (1.10) is guaranteed (see Lemma 4.6 in section 4).

The paper is organized as follows. In section 2 we provide the proof of the exis-
tence statement in Theorem 1.2. The following section is dedicated to Theorem 1.4,
while measure theoretic properties of the free boundary are determined in section 4,
completing the proof of Theorem 1.2. The last three sections are devoted to Theorem
1.5. Precisely, in section 5 we obtain a Harnack type inequality for ``flat"" solutions
of (1.8). This is the key ingredient which allows us to use a linearization method
to obtain in section 6 an improvement of flatness lemma. Finally the last section is
dedicated to the linear problem associated with (1.8).

2. Existence. In this section we use Perron's method to prove the existence of
a nondegenerate viscosity solution to (1.8), with a given boundary data.

Let \phi \geq 0 be a C0,\alpha function on \partial B1. We claim that, by choosing \alpha possibly
smaller, the functions

\psi \phi (x) := inf
x0\in \partial B1

(\phi (x0) + C| (x - x0) \cdot \nu x0 | \alpha /2), x \in \=B1,

and
\varphi \phi (x) := sup

x0\in \partial B1

(\phi (x0) - C| (x - x0) \cdot \nu x0
| \alpha /2)+, x \in \=B1,

are, respectively, a supersolution and a subsolution to (1.8). Moreover, it easily follows
that

(2.1) \psi \phi = \varphi \phi = \phi on \partial B1,

provided that we choose C large, depending on the C0,\alpha norm of \phi . Here \nu x0
is the

outer unit normal to \partial B1 at x0.
We prove the first claim. It is readily seen that the infimum of a family of

supersolutions is again a supersolution, thus it is enough to show that

\Psi (x) := \phi (x0) + C| (x - x0) \cdot \nu x0
| \alpha /2, x0 \in \partial B1,

is a supersolution. After a change of coordinates, let us assume that x0 = 0, \nu x0 = en.
Then, using the quadratic bound (1.7) of h, and assumption (1.3), we get

\Delta \Psi (x) = C
\alpha 

2

\Bigl( \alpha 
2
 - 1

\Bigr) 
x

\alpha 
2  - 2
n \leq 1

Cx
\alpha 
2
n

h
\Bigl( 
C
\alpha 

2
x

\alpha 
2  - 1
n

\Bigr) 
\leq h(\nabla \Psi )

\Psi 
,

as long as C is large enough so that \nabla \Psi \not \in D, and \alpha is small enough so that

\alpha 

2

\Bigl( \alpha 
2
 - 1

\Bigr) 
\leq  - 1

4
Ch\alpha 

2.
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654 DANIELA DE SILVA AND OVIDIU SAVIN

The second claim follows similarly by noticing that

\Phi (x) :=
\Bigl( 
\phi (x0) - C| (x - x0) \cdot \nu x0

| \alpha /2
\Bigr) +

is a subsolution for our problem (1.8) since \nabla \Phi /\in D and

\Delta \Phi > 0 \geq h(\nabla \Phi )

\Phi 
.

We can now prove our existence theorem. We refer to the solution achieved in
the following theorem as the Perron solution associated with \phi .

Theorem 2.1. Let

A := \{ \psi \in C( \=B1) : \psi \leq \psi \phi is a supersolution to (1.8), \psi = \phi on \partial B1\} 

and set
w(x) := inf

\scrA 
\psi (x).

Then w \in C( \=B1) is a viscosity solution to (1.8) in B1 with w = \phi on \partial B1.

Proof. First, since \psi \phi \in \scrA , w is well defined. Furthermore, by the maximum
principle it is easily seen that each \psi \in \scrA satisfies

\psi \geq \varphi \phi .

Indeed, this follows from the fact that \Phi  - t, with \Phi as above ant t > 0, cannot touch
a supersolution \psi from below.

Now we show that we can restrict the minimization to elements in \scrA that are
uniformly H\"older continuous of exponent \alpha /2. Precisely, for each \psi \in \scrA we can
construct another element of \scrA , \=\psi \leq \psi , which is uniformly H\"older continuous, and is
given by the inf-convolution

\=\psi (x) := inf
y\in \=B1

(\psi (y) + 2C| x - y| \alpha /2) x \in \=B1.

Clearly \=\psi \leq \psi . We claim that \=\psi \in \scrA .
To show this, first notice that since \psi \phi \geq \psi \geq \varphi \phi and (2.1) holds, then for all

y \in \=B1,

(2.2) \psi (y) + 2C| x - y| \alpha /2 \geq \phi (x) \geq \psi (y) - 2C| x - y| \alpha /2 if x \in \partial B1

with strict inequality if y \in B1.
From this we deduce that

\=\psi = \phi on \partial B1

and, moreover, if

(2.3) \psi (y0) = \=\psi (x0) - 2C| x0  - y0| \alpha /2, x0 \in B1,

then
y0 \in B1.

Now we prove that \=\psi satisfies the equation

\Delta \=\psi \leq h(\nabla \=\psi )
\=\psi 

in B+
1 ( \=\psi ).
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DEGENERATE ONE-PHASE FREE BOUNDARY PROBLEMS 655

A similar argument holds for the free boundary condition. To this aim, let P be a
quadratic polynomial touching \=\psi (strictly) from below at x0 \in B+

1 ( \=\psi ), and let us
show that

\Delta P (x0) \leq 
h(\nabla P (x0))
P (x0)

.

Let y0 be as in (2.3). We distinguish two cases. If y0 = x0, the claim is obvious since
P touches also \psi from below at x0. Otherwise, notice that

(2.4) \nabla P (x0) \not \in D,

let \eta := x0  - y0, and set

P\eta (x) := P (x+ \eta ) - 2C| \eta | \alpha /2.

It is easily verified that P\eta touches \psi from below at y0, hence in view of (2.4), we
conclude y0 \in B1 \cap \{ \psi > 0\} . Thus,

\Delta P (x0) = \Delta P\eta (y0) \leq 
h(\nabla P\eta (y0))

P\eta (y0)
=

h(\nabla P (x0))
P (x0) - 2C| \eta | \alpha /2

\leq h(\nabla P (x0))
P (x0)

,

where in the last inequality we again used (2.4) and (1.3).
The claim is proved and we conclude that the function w defined above is also a

H\"older continuous supersolution which coincides with \phi on the boundary. It remains
to show that w is a subsolution.

Let P be a quadratic polynomial touching w strictly from above at x0 \in B+
1 (w),

and assume by contradiction that

\Delta P (x0) <
h(\nabla P (x0))
P (x0)

.

Then, in a small neighborhood B\rho of x0, P > 0 and

\Delta P <
h(\nabla P )
P

.

Then for \epsilon > 0 small,

\psi :=

\Biggl\{ 
w in B1 \setminus \=B\rho 

min\{ w,P  - \epsilon | x - x0| 2\} in B\rho ,

belongs to \scrA and it is strictly below w. This contradicts the minimality of w.
Now we check the free boundary condition. If P+ touches w from above at

x0 \in F (w) \cap F (P ) with P \in C2, we need to show that \nabla P (x0) \not \in D. Suppose not,
and let

g(x) := P (x) + C\epsilon d(x) - Cd2(x) + | x - x0| 2  - \epsilon 3, x \in B\epsilon (x0),

with d(x) the signed distance from x to F (P ), positive in \{ P > 0\} . The constant
C > 0 is chosen large enough so that

\Delta g \leq 0 in B\epsilon (x0) \cap \{ g > 0\} ,

while \epsilon is small enough so that

\nabla g(x) \in D, x \in B\epsilon (x0).
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656 DANIELA DE SILVA AND OVIDIU SAVIN

Notice that
g+ \geq 0 = P+ in \{ d \leq 0\} \cap B\epsilon (x0),

while
g > P on \{ d > 0\} \cap \partial B\epsilon (x0).

Thus g+ is a supersolution in B\epsilon (x0) and g
+ \geq w on \partial B\epsilon (x0). We conclude that

\psi :=

\Biggl\{ 
w in B1 \setminus \=B\epsilon (x0)

min\{ g+, w\} in B\epsilon (x0)

is still a supersolution which is less than w. Since (for \epsilon small) g+ \equiv 0 in a small
neighborhood of x0 \in F (w), \psi does not coincide with w, and this contradicts the
minimality of w.

We conclude this section with a form of nondegeneracy satisfied by our solutions.

Proposition 2.2. Let w be the Perron solution in B1 such that 0 \in F (w). Then,

max
\partial Br

w \geq cr, r < 1,

with c > 0 universal.

Proof. By rescaling, it is enough to show that

maxw \geq c on \partial B1

for some c > 0 universal to be specified later. Assume not, and let v be defined as
(say n > 2)

v = \=c((1/2)2 - n  - | x| 2 - n) for | x| \geq 1/2,

extended to zero in B1/2, with \=c sufficiently small universal such that | \nabla v| (x) \in D for
x \in \partial B1/2. We then conclude that v is a supersolution to (1.8) in B1. By choosing c
small enough we guarantee that v \geq c > w on \partial B1. Thus,

\psi := min\{ w, v\} 

is a supersolution to (1.8) with the same boundary data as w, and by the minimality
of w we find \psi = w. On the other hand, w = \psi \equiv 0 in B1/2 and we contradict that
0 \in F (w).

3. Lipschitz regularity. In this section we show that any viscosity solution to
(1.8) is uniformly Lipschitz continuous near the free boundary. The strategy is to
show first the H\"older continuity of the solutions in the set where w is positive and
then to use the free boundary condition and the scaling of the equation to obtain the
Lipschitz continuity.

The only hypotheses needed in this section are (with D \subset BM for some large
M > 0),

(3.1)  - Ch| p| 2 \leq h(p) \leq C\chi BM
.

The starting point is that w is superharmonic when | \nabla w| is large, and that we can use
the L\epsilon estimate due to Imbert and Silvestre [IS] for supersolutions of uniformly elliptic
equations that hold only for large gradients. First we recall the following Theorem
5.1 from [IS], for the special case of the Laplace operator.
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DEGENERATE ONE-PHASE FREE BOUNDARY PROBLEMS 657

Theorem 3.1 (Imbert--Silvestre). There exist small constants \eta 0, \xi > 0, such
that if u \in C(B1) is a nonnegative function satisfying (in the viscosity sense)

\Delta u \leq 1 in B1 \cap \{ | \nabla u| \geq \eta 0\} ,

and infB1/2
u \leq 1, then

(3.2) \| u\| L\xi (B1/2) \leq C

with C, \eta 0, \xi depending only on the dimension n.

With this result at hand, we can prove the following Harnack type inequality.

Lemma 3.2. Let w > 0 solve (in the viscosity sense)

\Delta w =
h(\nabla w)
w

in B1.

Then given \sigma \geq 0, if w \geq \sigma ,

(3.3) sup
B1/2

(w  - \sigma ) \leq C
\Bigl( 
1 + inf

B1/2

(w  - \sigma )
\Bigr) 

with C > 0 universal.

Proof. From assumption (3.1), the function

u :=
w  - \sigma 

M/\eta 0(1 + infB1/2
(w  - \sigma ))

satisfies the hypothesis of Theorem 3.1 (say we choose M \geq \eta 0), and

(3.4) \| w  - \sigma \| L\xi (B1/2) \leq C
\Bigl( 
1 + inf

B1/2

(w  - \sigma )
\Bigr) 
.

On the other hand, using the equation together with assumption (3.1), we get (in the
viscosity sense) in B1,

\Delta (w  - \sigma )\gamma = \gamma 

\biggl( 
w  - \sigma 

w
h(\nabla w) + (\gamma  - 1)| \nabla w| 2

\biggr) 
\geq \gamma 

\bigl( 
 - Ch| \nabla w| 2 + (\gamma  - 1)| \nabla w| 2

\bigr) 
\geq 0,

as long as \gamma > 0 is large enough. By the weak Harnack inequality for (w  - \sigma )\gamma 

(Theorem 9.26 in [GT]),

sup
B1/4

w  - \sigma \leq C(\gamma , \xi )\| w  - \sigma \| L\xi ,

which combined with (3.4) gives the desired bound.

We are now ready to prove a H\"older continuity result for solutions to (1.8) with
universal estimates. We start with an oscillation decay lemma. In what follows, given
a continuous function w defined in a ball Br we denote

\omega (r) := sup
Br

w  - inf
Br

w

as the oscillation of w on Br.
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658 DANIELA DE SILVA AND OVIDIU SAVIN

Lemma 3.3. Let w > 0 solve (in the viscosity sense)

\Delta w =
h(\nabla w)
w

in Br.

If \omega (r) \geq Kr for some K large universal, then

\omega (r/2) \leq \gamma \omega (r), 0 < \gamma < 1.

Proof. Let

\~w(x) :=
w(rx) - \sigma r

r
, x \in B1, \sigma r := inf

Br

w,

then \~w \geq 0 and according to Proposition 3.2,

(3.5) sup
B1/2

\~w \leq C
\Bigl( 
1 + inf

B1/2

\~w
\Bigr) 
.

Our desired claim follows if we show that for some 0 < \gamma < 1,

(3.6) oscB1/2
\~w \leq \gamma oscB1

\~w.

Notice that

oscB1 \~w =
\omega (r)

r
, inf

B1

\~w = 0.

If for all x \in B1/2, we have \~w(x) \geq \omega (r)
2Cr , the bound (3.6) trivially follows. Otherwise,

\~w(x0) <
\omega (r)
2Cr for some x0 \in B1/2, and (3.5) yields

sup
B1/2

\~w \leq C +
\omega (r)

2r
,

which again implies the desired bound if we choose K > 2C.

We can now deduce our H\"older continuity estimate.

Proposition 3.4. Let w > 0 solve (in the viscosity sense)

\Delta w =
h(\nabla w)
w

in B1.

Then, w \in C0,\alpha (B1/2) and

\| w\| C0,\alpha (B1/2) \leq C(1 + w(0))

with C > 0 universal and 0 < \alpha < 1 universal.

Proof. We wish to show that

(3.7) \omega (r) \leq \=Cr\alpha , r = rk := 2 - k \forall k \geq 0.

We choose \=C \geq max\{ \omega (1), 2K\} with K given by Lemma 3.3, and argue by induction.
If

\omega (r) \geq Kr,

then

\omega 
\Bigl( r
2

\Bigr) 
\leq \gamma \omega (r) \leq \gamma \=Cr\alpha \leq \=C

\Bigl( r
2

\Bigr) \alpha 

,
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so by choosing \alpha = \alpha (\gamma ) appropriately, our claim is satisfied. If \omega (r) < Kr, the claim
is obviously satisfied (by our choice of \=C).

The final estimate follows as in view of Lemma 3.2,

\omega 

\biggl( 
1

2

\biggr) 
\leq C(1 + w(0)).

Next we deduce that solutions to our free boundary problem grow at most linearly
away from the free boundary.

Proposition 3.5. Let w be a viscosity solution to (1.8) in B1, then

w(x) \leq Cd(x), d(x) := dist(x, F (w)), Bd(x)(x) \subset B3/4

with C > 0 universal.

Proof. By a Lipschitz rescaling we can assume that 0 \in B+
4/3(w), and that B1

is the largest ball around 0 contained in B+
4/3(w), tangent to F (w) say at x0. Thus,

we need to show that w(0) is bounded above by a universal constant. We claim that
if w(0) \gg C, with C the constant in Lemma 3.2 then it follows from that lemma
(applied with \sigma = 0) that

w \geq c w(0) on \partial B1/2

for some c universal. Now set,

\psi (x) :=M(| x|  - n  - 1) in | x| \geq 1/2,

and we have
\Delta \psi > 0, | \nabla \psi | \geq M in A := B1 \setminus \=B1/2,

hence (see (3.1)),

\Delta \psi > 0 \geq h(\nabla \psi )
\psi 

in A.

If we assume by contradiction that w(0) is sufficiently large, then \psi  - t with t > 0
cannot touch w from below in A or on \partial B1/2, and it follows that

\psi \leq w on A.

Thus \psi + touches w from below at x0 \in F (w) \cap F (\psi +) and | \nabla \psi | \in Rn \setminus \=D. This
contradicts the free boundary condition for w.

Finally, we show that solutions are locally Lipschitz with universal bound, and
C1,\alpha in their positive phase.

Theorem 3.6. Let w be a viscosity solution to (1.8) in B1 with h satisfying (3.1).
Assume that F (w) \cap B1/4 \not = \emptyset . Then w is locally Lipschitz in B1/2 with universal

Lipschitz norm. Moreover, w \in C1,\alpha 
loc in B+

1 (w) for some 0 < \alpha < 1.

Remark 3.7. Since w \in C1,\alpha 
loc in the set \{ w > 0\} , we can then apply Schauder

estimates and conclude that if h \in C\alpha 
loc, then w \in C2,\alpha 

loc is a classical solution in
B+(w).

Proof. We prove the estimates near a point x0 \in B+
1/2(w). In view of Proposition

3.5, the Lipschitz rescaling

\~w(x) := \lambda  - 1w(x0 + \lambda x), \lambda := w(x0),
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660 DANIELA DE SILVA AND OVIDIU SAVIN

satisfies
\~w(0) = 1, \~w > 0 in Br for some r universal.

Thus, by Proposition 3.4, we find \~w \in C0,\alpha with

\| \~w\| C0,\alpha (Br/2) \leq C

and in particular

1

2
\leq \~w \leq 2 in B\rho , for all \rho sufficiently small.

Now set

\=w(x) =
\~w(\rho x) - 1

C\rho \alpha 
, x \in B1,

and then
| \Delta \=w| \leq 2C - 1\rho 2 - \alpha | h(C\rho \alpha  - 1\nabla \=w(x))| , | \=w| \leq 1 in B1.

Thus, in view of (1.7), we can choose \rho small universal, such that

| \Delta \=w| \leq \eta when | \nabla \=w| \leq 1

\eta 

with \eta (n) > 0 the universal constant in Lemma 3.8 below. Hence,

\| \=w\| C1,\alpha (B1/2) \leq C(n) \Rightarrow \| \~w\| C1,\alpha (B\rho /2) \leq C(n, \rho ).

Since \nabla w(x0) = \nabla \~w(0), the desired conclusion easily follows.

The following lemma says that if u is almost harmonic except possibly in the
region where the gradients are large, then it is of class C1,\alpha . Its proof follows from
the perturbations arguments developed in [S]. Here we only sketch the main ideas.

Lemma 3.8. There exists \eta > 0 universal (i.e., depending only on n), such that
if u solves in the viscosity sense in B1,

(3.8) | \Delta u| \leq \eta when | \nabla u| \leq 1

\eta 
,

and \| u\| L\infty \leq 1, then
\| u\| C1,\alpha (B1/2) \leq C(n)

for some 0 < \alpha < 1 universal.

Proof. It suffices to show that there exists a linear function l with | \nabla l| \leq C
universal, such that for r > 0 small universal, and 0 < \alpha < 1 universal,

(3.9) | u - l| \leq r1+\alpha in Br.

Then it is enough to observe that

\~u(x) :=
(u - l)(rx)

r1+\alpha 
, x \in B1,

satisfies the assumptions of the lemma, hence estimate (3.9) can be iterated indefi-
nitely, leading to the C1,\alpha estimate.
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Let r > 0 be fixed, to be made precise later. Assume by contradiction that there
exists a sequence \eta j \rightarrow 0 as j \rightarrow \infty and a sequence uj of solutions to (3.8) with
| uj | \leq 1, which do not satisfy the conclusion (3.9).

We divide the proof into two steps.
Step 1. Improvement of oscillation.
Claim 1: There exist universal constants C0, C1 > 0 such that if u \geq 0 and

u(x0) \leq 1, x0 \in B1/2,

and

| \Delta u| \leq 1 when | \nabla u| \leq C1,

then

| \{ u < C0\} \cap B1/2| \geq 
3

4
| B1/2| .

This follows from a version of the Alexandrov--Bakelman--Pucci estimate; see [S].
A precise reference is Theorem 2.4 in [DS], by noticing that u is a ``supersolution"" in
the sense of Definition 2.1 of [DS] with \Lambda = 4n, r arbitrarily small, and I = [1,+\infty ):
u cannot be touched from below in a Br neighborhood by a polynomial of the form
aP with a \in I, and

P :=
\Lambda 

2
(x \cdot \xi )2  - 1

2
| x| 2 + L(x)

with \xi a unit direction and L(x) := b \cdot x+ d, | b| , | d| \leq 1.
After dividing u by 4C0 we can restate the claim as follows.
Claim 2: There exist universal constants c > 0 (small) and C2 > 0, such that if

u(x0) \leq c, x0 \in B1/2,

and

(3.10) | \Delta u| \leq c when | \nabla u| \leq C2,

then \bigm| \bigm| \bigm| \bigm| \biggl\{ u < 1

4

\biggr\} 
\cap B1/2

\bigm| \bigm| \bigm| \bigm| \geq 3

4
| B1/2| .

Thus if | u| \leq 1, and if there exist x0, x1 \in B1/2 such that

(1 - u)(x0) \leq c, (1 + u)(x1) \leq c

we would reach a contradiction, as, in view of Claim 2,\bigm| \bigm| \bigm| \bigm| \biggl\{ u > 3

4

\biggr\} 
\cap B1/2

\bigm| \bigm| \bigm| \bigm| , \bigm| \bigm| \bigm| \bigm| \biggl\{ u <  - 3

4

\biggr\} 
\cap B1/2

\bigm| \bigm| \bigm| \bigm| \geq 3

4
| B1/2| .

In conclusion either

u < 1 - c or u >  - 1 + c in B1/2.

Thus, the following diminishing of oscillation statement holds: if oscB1u \leq 2 and
(3.10) holds, then

oscB1/2
u \leq 2

\Bigl( 
1 - c

2

\Bigr) 
.
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662 DANIELA DE SILVA AND OVIDIU SAVIN

Step 2. Compactness. Consider the rescalings

\~uj,k(x) :=
\Bigl( 
1 - c

2

\Bigr)  - k

uj(2
 - kx), k \geq 0, x \in B1,

and apply Claim 2 inductively on k. We have

| \Delta \~uj,k| (x) =
2 - k

(2 - c)k
| \Delta uj | (2 - kx) \leq \eta j \leq c

when | \nabla \~uj,k| (x) \leq C2 as long as k satisfies

C2 \leq (2 - c) - k 1

\eta j
.

Thus, for all such k's, say k \leq k\ast j ,

oscB
2 - k

uj \leq 2
\Bigl( 
1 - c

2

\Bigr) k

\leq 2(2 - k)\beta 

for some \beta > 0 small universal. Notice that k\ast (\eta j) \rightarrow \infty as j goes to \infty . Hence the
modulus of continuity \omega j(t) : [0, 1] \rightarrow R+ of the uj 's satisfies

\omega j(t) \leq Ct\beta ,

as long as t \geq 2 - k\ast 
j . Thus, by the Ascoli--Arzela theorem, we conclude that uj con-

verges (up to a subsequence) uniformly on compacts to a H\"older continuous function
u\infty . Passing to the limit in (3.8), we obtain that

\Delta u\infty = 0 in B1/2.

By elliptic regularity,

| u\infty  - l| \leq Cr2 in Br, l linear and | \nabla l| \leq C universal.

From the uniform convergence,

| uj  - l| \leq 2Cr2 \leq r1+\alpha in Br

provided that r, \alpha are chosen appropriately, and we have reached a contradiction.

4. Measure theoretic properties of the free boundary. In this section we
show that if D is convex and C2 smooth and h \in C1, then the free boundary of a
nondegenerate viscosity solution to (1.8) has finite Hausdorff measure. We follow a
strategy inspired by the work of Alt and Phillips in [AP]. The universal constants in
this section depend on the C2 norm of D and the C1 norm of h in a neighborhood of
\partial D.

We say that a solution w to (1.8) is nondegenerate if there exists a constant \kappa > 0
such that for any x0 \in F (w) and r such that Br(x0) \subset B1 we have

(4.1) x0 \in F (w) =\Rightarrow max
\partial Br(x0)

w \geq \kappa r.

Theorem 4.1. Assume that D is a bounded convex set with C2 boundary, and let
w be a viscosity solution to (1.8) satisfying the nondegeneracy condition (4.1). Then

\scrH n - 1(\partial \{ w > 0\} \cap B1/2) \leq C(\kappa )

for some C(\kappa ) > 0 depending on the universal constants and \kappa .
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For this we first prove the following lemma.

Lemma 4.2. Assume that w is a global Lipschitz solution to (1.8). Then \nabla w \in D.

Proof. Since D is convex, it suffices to show that \nabla w belongs to the convex hull
of D. Let L := supwn and assume by contradiction that

L > max
y\in D

en \cdot y,

which means that

(4.2) h(y) \leq 0 if yn \geq L.

Let xk be a sequence of points for which wn approaches the limit L. For each k we
rescale w into

(4.3) wk(x) :=
1

rk
w(xk + rkx), rk = w(xk),

so that

wk(0) = 1, \partial nw
k(0) = wn(xk), | \nabla wk| \leq \| \nabla w\| \infty , wk

n \leq L.

We can extract a subsequence of the wk's which converges uniformly on compact sets
to \=w. Moreover, by Theorem 3.6, in a ball Bc with c universal, the convergence holds
in the C1,\alpha norm due to the uniform C1,\alpha estimates. In conclusion, \=w solves the same
equation, and

\=wn \leq L = \=wn(0).

Differentiating in the xn direction we find

(4.4) \Delta \=wn =
\nabla h
\=w

\cdot \nabla \=wn  - h

\=w2
\=wn,

and h,\nabla h are evaluated at \nabla \=w.
At the origin \=wn has a maximum and h(\nabla \=w) \leq 0 by (4.2). The strong maximum

principle implies that \=wn is constant ( \=wn \equiv L) in the connected component of \{ \=w > 0\} 
which contains the origin. Thus, for all x\prime with | x\prime | small,

\=w(x\prime , xn) = \=w(x\prime , 0) + Lxn,

as long as the right-hand side is positive. In particular the point x0 :=  - en/L belongs
to the free boundary of \=w, given by xn =  - L - 1 \=w(x\prime , 0). Since \=w \in C2,\alpha near the origin
(in view of Theorem 3.6), we find that \partial \{ \=w > 0\} is C2,\alpha in a neighborhood of x0.
This means that we can touch \=w at x0 by a quadratic polynomial P with Pn \geq L - \delta ,
\Delta P > 0 in a neighborhood of x0. Then we easily contradict the definition of viscosity
solutions for the wk's and reach a contradiction.

We define a convex function \eta in a neighborhood of D which is comparable to the
distance to D. Precisely \eta is such that

\eta = 0 on D, \eta (y) \sim dist(y,D), \eta \in C2(Dc),

and \| D2\eta \| \leq C universal, by the C2 regularity of the domain D.
By compactness, from Lemma 4.2 above we obtain the following corollary.
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664 DANIELA DE SILVA AND OVIDIU SAVIN

Corollary 4.3. Assume that w is a viscosity solution to (1.8) in B1 with 0 \in 
F (w). For any \epsilon > 0 there exists \rho (\epsilon ) > 0 small such that

\eta (\nabla w) \leq \epsilon in B\rho \cap \{ w > 0\} .

Proof. Indeed, assume by contradiction that there exist sequences \rho j \rightarrow 0 and wj

solutions to (1.8) with 0 \in F (wj) such that

\eta (\nabla wj(xj)) > \epsilon for some xj \in B\rho j
\cap \{ wj > 0\} .

We rescale wj around xj as in (4.3), and obtain a sequence that converges uniformly
(up to a subsequence) to a global Lipschitz solution \=w with

\eta (\nabla \=w(0)) \geq \epsilon with \=w(0) = 1.

This contradicts Lemma 4.2.

Next, we show the following.

Lemma 4.4. Assume that w is a viscosity solution to (1.8) in B2 and

\eta (\nabla w) \leq \epsilon 0 in B2.

Then
\eta (\nabla w) \leq w\xi in B1

with \epsilon 0 and \xi sufficiently small.

Proof. Let \varphi be a nonnegative C2 function which vanishes in B1 and \varphi = 1 on
\partial B2. We show that

g(x) := \eta (\nabla w) - w\xi  - \varphi (x)

cannot have a positive maximum in the region B1 \cap \{ w > 0\} . Notice that g \leq 0
on \partial B1 and, by Corollary 4.3, lim sup g \leq 0 as we approach \partial \{ w > 0\} . Assume by
contradiction that g achieves a positive maximum x0. At x0,

(4.5) w\xi \leq \eta (\nabla w) \leq \epsilon 0,

and \nabla w(x0) belongs to Dc and is sufficiently close to \partial D. Then \nabla g = 0 implies

(4.6) \partial s(\eta (\nabla w)) = \xi w\xi  - 1ws + \varphi s.

At x0 we compute (the functions \eta and h and their derivatives are evaluated at
\nabla w(x0))

\Delta \eta (\nabla w) = \eta k \Delta wk + \eta kl wkiwli.

The last term is nonnegative by the convexity of \eta , and after replacing \Delta wk (see (4.4))
we obtain

\Delta \eta (\nabla w) \geq 1

w
\eta khswks  - 

h

w2
\eta kwk.

Using \eta k(y)yk \geq c and h \leq 0 in Dc we find that the second term is nonnegative hence

\Delta \eta (\nabla w) \geq 1

w
hs\partial s(\eta (\nabla w)) + c

| h| 
w2

,

and by (4.6),

\Delta \eta (\nabla w) \geq \xi w\xi  - 2hsws  - Cw - 1 + c
| h| 
w2

.
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On the other hand

\Delta w\xi = \xi w\xi  - 2
\bigl( 
h+ (\xi  - 1)| \nabla w| 2

\bigr) 
\leq  - c\xi w\xi  - 2,

hence
\Delta g \geq w\xi  - 2

\bigl( 
c\xi + cw - \xi | h| + \xi hsws  - Cw1 - \xi  - Cw2 - \xi 

\bigr) 
> 0,

and we reach a contradiction.
In the last inequality we used that w is sufficiently small, and then either | hsws| <

c/2 and the claim is clear or C \geq | hsws| \geq 1/2 which together with h = 0 on \partial D and
the C1 smoothness of h gives (see (4.5)) | h| \geq c\eta \geq cw\xi and, again, the inequality
follows provided that \xi is sufficiently small.

The lemma above leads to the following integral estimate.

Lemma 4.5. Assume that w is a viscosity solution to (1.8) in B2 and

\eta (\nabla w) \leq \epsilon 0 in B2.

Then �
B1\cap \{ w>0\} 

(\eta (\nabla w))+

w
dx \leq C.

Proof. Let f(t) be a C1,1 smoothing of (t+)1+\xi , i.e.,

f(0) = f \prime (0) = 0, f \prime \prime = min\{ \epsilon  - 1, t\xi  - 1\} .

We have h(\nabla w) \geq  - C\epsilon 0 so, if \epsilon 0 is sufficiently small, then

\Delta f(w) = f \prime \prime (w)

\biggl( 
f \prime 

f \prime \prime w
h+ | \nabla w| 2

\biggr) 
\geq cf \prime \prime (w)| \nabla w| 2.

We integrate and use �
B1

\Delta f(w)dx =

�
\partial B1

\partial \nu f(w) \leq C,

hence �
B1\cap \{ | \nabla w| >c\} 

f \prime \prime (w)dx \leq C.

Now the result follows by letting \epsilon \rightarrow 0 and noticing that by Lemma 4.4,

(\eta (\nabla w))+w - 1 \leq w\xi  - 1 = lim
\epsilon \rightarrow 0

f \prime \prime (w),

and \eta + = 0 when | \nabla w| < c with c small.

We are now ready to show the proof of Theorem 4.1.

Proof. By Corollary 4.3 we may assume that after some initial dilation around
a free boundary point we have \eta (\nabla w) \leq \epsilon 0 in B2. Let f be a smoothing of t+, i.e.,
f(0) = f \prime (0) = 0 and f \prime \prime \geq 0 supported on [\epsilon , 4\epsilon ]. From the computations above with
this choice of f we find

C \geq 
�
B1

\Delta f(w)dx =

�
B1

f \prime \prime (w)| \nabla w| 2 + f \prime (w)hw - 1 dx(4.7)

\geq 
�
B1

c

\epsilon 
\chi w\in [\epsilon ,2\epsilon ]| \nabla w| 2dx - C,

where in the last inequality we have used hw - 1 \geq  - C\eta +w - 1 and Lemma 4.5.
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666 DANIELA DE SILVA AND OVIDIU SAVIN

On a ball of radius C\epsilon around a free boundary point z we have due to nondegen-
eracy (4.1) and Lipschitz continuity

1

\epsilon 

�
BC\epsilon (z)\cap \{ \epsilon <w<2\epsilon \} 

| \nabla w| 2dx \geq c(\kappa )\epsilon n - 1.

We cover the free boundary in B1/2 with N balls BC\epsilon (zk) that have the finite over-
lapping property. By adding the inequalities above over k, we obtain

1

\epsilon 

�
B3/4\cap \{ \epsilon <w<2\epsilon \} 

| \nabla w| 2dx \geq c N(C\epsilon )n - 1.

This combined with (4.7) gives the claim.

We conclude the section with the following lemma.

Lemma 4.6. Assume w satisfies the hypotheses of Theorem 4.1 and 0\in \partial \ast \{ w> 0\} .
If \nu is the unit inner normal to F (w) at 0, then

(f(\nu )x \cdot \nu  - r\sigma (r))+ \leq w \leq (f(\nu )x \cdot \nu + r\sigma (r))+ in Br

with \sigma (r) \rightarrow 0 as r \rightarrow 0.

Proof. We need to show that any blowup sequence of rescalings wr(x) = r - 1w(rx)
with r \rightarrow 0 converges to f(\nu )(x \cdot \nu )+. Let \=w be such a blowup limit. Assume for
simplicity of notation that \nu = en and f(\nu ) = 1.

The nondegeneracy and Lipschitz continuity imply that the positive set \{ w > 0\} 
has positive density in any ball centered at a free boundary point. This together with
our assumption that 0 \in \partial \ast \{ w > 0\} gives that 0 \in F ( \=w) and

(4.8) \=w = 0 in xn \leq 0.

On the other hand \nabla \=w \in \=D by Lemma 4.2, and then we easily obtain

\=w \leq x+n

from the convexity of D and (4.8). Assume by contradiction that \=w does not coincide
with x+n . Then, by the strong maximum principle we have that \=w < x+n in xn > 0. In
particular we can find \epsilon > 0 such that

\=w \leq x+n  - \epsilon on B1 \cap \{ xn = l\} 

with l small, universal. Now we can argue as in the proof of Lemma 5.3 below and
construct a barrier from above to conclude

\=w \leq (xn  - c\epsilon )+ near the origin.

This shows that 0 is an interior point of \{ \=w = 0\} which contradicts 0 \in F ( \=w).

5. Harnack inequality. In this section we prove a Harnack type inequality for
viscosity solutions to (1.8), which satisfy a flatness assumption. This will be the key
ingredient in the improvement of flatness argument leading to the C1,\alpha regularity of
flat free boundaries, that is Theorem 1.5. We follow the strategy from [D].

The constants in this section depend on the dimension n, the C1 norm of \partial D,
the constant \delta in (1.5),(1.6), and the Lipschitz norm of h in a neighborhood of \partial D.
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DEGENERATE ONE-PHASE FREE BOUNDARY PROBLEMS 667

Recall that h satisfies (1.3) which is important in our analysis since we can construct
comparison subsolutions \Psi + with

\Delta \Psi > 0, \nabla \Psi /\in \=D =\Rightarrow \Delta \Psi + > 0 \geq h(\nabla \Psi +)

\Psi +
,

and supersolutions \Phi + with

(5.1) \Delta \Phi < 0, \nabla \Phi \in D =\Rightarrow \Delta \Phi + < 0 \leq h(\nabla \Phi +)

\Phi +
.

We also assume for simplicity that

(5.2) en \in \partial D.

We wish to prove the following result.

Theorem 5.1 (Harnack inequality). Let w be a viscosity solution to (1.8) in B2,
and assume (5.2) holds. There exist universal constants \=\epsilon , \eta , such that if w satisfies
at some point x0 \in B2

(5.3) (xn + a0)
+ \leq w(x) \leq (xn + b0)

+ in Br(x0) \subset B2

and

b0  - a0 \leq \epsilon r

for some \epsilon \leq \=\epsilon , then

(xn + a1)
+ \leq w(x) \leq (xn + b1)

+ in Br\eta (x0)

with

a0 \leq a1 \leq b1 \leq b0, b1  - a1 \leq (1 - c)\epsilon r,

and 0 < c < 1 universal.

Before giving the proof we deduce an important consequence.
If w satisfies (5.3) with, say r = 1, then we can apply the Harnack inequality

repeatedly and obtain

(xn + am)+ \leq w(x) \leq (xn + bm)+ in B\eta m(x0)

with

bm  - am \leq (1 - c)m\epsilon 

for all m's such that

(1 - c)m\eta  - m\epsilon \leq \=\epsilon .

This implies that for all such m's, the oscillation of the function

\~w\epsilon (x) =
w(x) - xn

\epsilon 
in B+

2 (w) \cup F (w)

in B\rho (x0), \rho = \eta m, is less than (1  - c)m = \eta \gamma m = \rho \gamma . Thus, the following corollary
holds.
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668 DANIELA DE SILVA AND OVIDIU SAVIN

Corollary 5.2. Let w be as in Theorem 5.1 satisfying (5.3) for r = 1. Then in
B1(x0), \~w\epsilon has a H\"older modulus of continuity at x0, outside the ball of radius \epsilon /\=\epsilon ,
i.e., for all x \in B1(x0) with | x - x0| \geq \epsilon /\=\epsilon 

| \~w\epsilon (x) - \~w\epsilon (x0)| \leq C| x - x0| \gamma .

The proof of the Harnack inequality relies on the following lemma.

Lemma 5.3. Let w be a viscosity solution to (1.8) in B1 which satisfies

(xn + 2\epsilon )+ \geq w(x) \geq x+n in B1.

There exist universal constants \=\epsilon , \eta > 0 such that if at \=x =
1

5
en

(5.4) w(\=x) \geq (\=xn + \epsilon )+, \epsilon \leq \=\epsilon ,

then

(5.5) w(x) \geq (xn + c\epsilon )+ in B\eta 

for some 0 < c < 1 universal. Analogously, if

(xn  - 2\epsilon )+ \leq w(x) \leq x+n in B1

and
w(\=x) \leq (\=xn  - \epsilon )+,

then
w(x) \leq (xn  - c\epsilon )+ in B\eta .

Proof. We prove the first statement. The second one follows from a similar argu-
ment.

First set

\~w :=
w  - xn

\epsilon 
defined only in B+

2 (w) \cup F (w),

and

\scrC l := B\prime 
3/4 \times 

\biggl\{ 
l

2
< xn <

1

2

\biggr\} 
\subset B+

1 (w)

with l small, universal, to be made precise later. Using that h(en) = 0 and w is
bounded below in \scrC l, we have

| \Delta \~w| = 1

\epsilon 
| \Delta w| = 1

\epsilon w
| h(en + \epsilon \nabla \~w)| \leq C(l)| \nabla \~w| in \scrC l \cap \{ | \nabla \~w| \leq c\epsilon  - 1\} .

This means that a sufficiently large dilation of \~w satisfies the hypotheses of Lemma
3.8 and we conclude that | \nabla \~w| \leq C(l) in the interior of \scrC l. Since

| \Delta \~w| \leq C(l)| \nabla \~w| and \~w \geq 0, \~w(\=x) \geq 1,

we can apply the Harnack inequality and obtain

\~w \geq c(l) in Tl := B\prime 
1/2 \times \{ xn = l\} ,

that is,

(5.6) w \geq xn + \epsilon c(l) on Tl.
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Now, let \omega be the unit normal to \Gamma at en pointing towards Rn \setminus \=D, which in view
of (1.6) satisfies \omega n \geq \delta . Set

Q(x) :=  - 
\bigm| \bigm| \bigm| \bigm| x\prime  - \omega \prime 

\omega n
xn

\bigm| \bigm| \bigm| \bigm| 2 +Ax2n + xn

with A > (n - 1) + \delta  - 2 universal and define (c = c(l))

\Psi t := xn + \epsilon c(Q+ t), t \in R.

Then for t = t < 0 depending on \delta ,

\Psi t < xn \leq w

on the region \scrC \epsilon := \=B\prime 
1/2 \times \{  - 2\epsilon \leq xn \leq l\} . Let \=t be the largest t such that

\Psi \=t \leq w on \scrC \epsilon ,

and let \~x \in \scrC \epsilon such that
\Psi \=t(\~x) = w(\~x).

We show that \=t \geq 1
8 . Indeed if \=t < 1

8 , then for \epsilon , l small universal, we can guarantee
that

\Psi \=t < 0 \leq w on B\prime 
1/2 \times \{ xn =  - 2\epsilon \} , \Psi \=t < xn + \epsilon c \leq w on Tl,

and
\Psi \=t < xn \leq w on \{ | x\prime | = 1/2\} \times \{  - 2\epsilon \leq xn \leq l\} .

We conclude that \~x \in \scrC +
\epsilon (\Psi \=t) \cup F (\Psi \=t). On the other hand, we argue that \Psi \=t is a

strict subsolution to the interior equation, and w satisfies the free boundary condition,
hence no touching can occur in \scrC +

\epsilon (\Psi \=t)\cup F (\Psi \=t), as long as \nabla \Psi \=t \not \in D. This leads to a
contradiction.

To show our claim for \Psi +
\=t we check that for \epsilon small,

\Delta \Psi \=t = \epsilon c\Delta Q > 0,

which follows by our choice of A. We are left to prove that \nabla \Psi \=t \not \in D. Since

\nabla \Psi \=t = en + \epsilon c\nabla Q,

and \omega is perpendicular to \Gamma at en, it is enough to show that

\omega \cdot \nabla Q > 0.

A quick computation gives that for \epsilon small,

\omega \cdot \nabla Q = 2A\omega nxn + \omega n > 0 in \scrC \epsilon .

Thus,

w \geq xn + \epsilon c

\biggl( 
Q+

1

8

\biggr) 
, on \scrC \epsilon ,

and for \eta small universal,

Q \geq  - 1

16
on B\eta .

This concludes our proof.
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We can now prove our Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality, we can assume that x0 = 0, r =
1. First notice that, for \epsilon small, if a0 <  - 1/5 then B1/10(0) belongs to the zero phase
of w, and the conclusion is trivial. Thus we only need to distinguish two cases.

If a0 > 1/5, then B1/5 \subset \{ w > 0\} and

0 \leq v :=
w  - (xn + a0)

\epsilon 
\leq 1

satisfies (see proof of Lemma 5.3)

| \Delta v| \leq C| \nabla v| in B1/5.

Therefore, the claim is deduced from the standard Harnack inequality for v.
If | a0| < 1/5, we set

v(x) := w(x - a0en), x \in B4/5.

Then, v satisfies the assumptions of Lemma 5.3, and the desired conclusion follows.

6. Improvement of flatness. In this section we prove our main improvement
of flatness proposition, from which Theorem 1.5 follows by standard arguments. The
universal constants in this section depend on the dimension n, the C1 norm of \partial D,
the constant \delta in (1.5),(1.6), and the C1 norm of h in a neighborhood of \partial D.

Proposition 6.1. Let w be a viscosity solution to (1.8) in B1. There exist \epsilon 0, r >
0 universal, such that if w is \epsilon -flat, i.e.,

(6.1) (f(en)xn  - \epsilon )+ \leq w(x) \leq (f(en)xn + \epsilon )+ in B1, \epsilon \leq \epsilon 0,

with 0 \in F (w), then

(6.2)
\Bigl( 
f(\nu )x \cdot \nu  - \epsilon 

2
r
\Bigr) +

\leq w(x) \leq 
\Bigl( 
f(\nu )x \cdot \nu + \epsilon 

2
r
\Bigr) +

in Br

with | \nu | = 1, and | f(\nu )\nu  - f(en)en| \leq C\epsilon for C > 0 universal.

Proof of Theorem 1.5. By iterating Proposition 6.1, we obtain

(6.3) (f(\nu k)x \cdot \nu  - \epsilon krk)
+ \leq w(x) \leq (f(\nu k)x \cdot \nu k + \epsilon krk)

+ in Brk

with | \nu k| = 1, and | f(\nu k)\nu k  - f(\nu k - 1)\nu k - 1| \leq C\epsilon k for C > 0 universal,

\epsilon k := 2 - k\epsilon , rk := rk, k \geq 1.

This implies that the free boundary is pointwise C1,\alpha at the origin. The same argu-
ment can be repeated at all free boundary points in B1/2, and the conclusion follows
(see for example [CC]).

Proof of Proposition 6.1. Without loss of generality, we assume that f(en) = 1.
Let r be fixed small (to be made precise later.) Assume by contradiction that

there exist a sequence \epsilon k \rightarrow 0 and a sequence of domains Dk (and corresponding fk),
functions hk (satisfying the same assumptions as f, h with the same bounds), and
solutions wk satisfying (6.1) but not the conclusion (6.2). Since hk, Dk, fk have a
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uniformly bounded C1 norm, and \nabla hk,\nabla fk have a uniformly bounded modulus of
continuity, up to extracting a subsequence,

hk \rightarrow h\ast , Dk \rightarrow D\ast , fk \rightarrow f\ast 

uniformly on compacts, with h\ast defined only in a neighborhood of \partial D\ast . The limits
are also C1 with

\nabla hk \rightarrow \nabla h\ast , \nabla fk \rightarrow \nabla f\ast 

uniformly on compacts.
Step 1. Let

\~wk :=
wk  - xn

\epsilon k
in \Omega k := B+

1 (wk) \cup F (uk).

Then, by (6.1)

(6.4)  - 1 \leq \~wk \leq 1 in \Omega k

and, moreover, F (wk) converges to B1 \cap \{ xn = 0\} in the Hausdorff distance.
By Corollary 5.2, and the Ascoli--Arzela theorem, it follows that as \epsilon k \rightarrow 0, the

graphs of the \~wk's over B1/2 \cap \Omega k converge (up to a subsequence) in the Hausdorff

distance to the graph of a H\"older continuous function \~w on B+
1/2.

Step 2. We wish to show that \~w is a viscosity solution to the linearized problem

(6.5)

\left\{   \Delta \~w + v \cdot \nabla \~w

xn
= 0 in B+

1/2,

\~w\omega = 0 on B1/2 \cap \{ xn = 0\} ,

where
v :=  - \nabla h\ast (en) = | \nabla h\ast (en)| \omega ,

and \omega is the outer unit normal to D\ast at en. For the precise definition of a viscosity
solution to (6.5) we refer to section 7, where the problem above is analyzed and the
necessary properties which will be used later on in this proof, are established.

Since \~wk satisfies

\Delta \~wk =
1

\epsilon k

hk(en + \epsilon k\nabla \~wk) - hk(en)

xn + \epsilon k \~wk
in \Omega k

and \nabla hk \rightarrow \nabla h\ast , Proposition 2.9 in [CC] implies that \~w satisfies the equation in the
interior.

We only need to verify the free boundary condition. Following the notation in
subsection 7.2 we set

s = vn

and notice that in our case

(6.6) C \geq s \geq 0, \omega n \geq \delta .

In view of (6.4), the case s \geq 1 is trivial. Consider the case s < 1 and assume by
contradiction that there exists a test function

A

\bigm| \bigm| \bigm| \bigm| x\prime  - \omega \prime xn
\omega n

 - \=x\prime 
\bigm| \bigm| \bigm| \bigm| 2 +B + px1 - s

n , A,B \in R, \=x\prime \in Rn - 1,

D
ow

nl
oa

de
d 

04
/2

0/
23

 to
 1

28
.5

9.
22

2.
10

7 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

672 DANIELA DE SILVA AND OVIDIU SAVIN

with
p < 0,

which touches \~w by above at \=x \in \{ xn = 0\} . Notice that since s \geq 0 we can replace
the test function above with

\phi := A

\bigm| \bigm| \bigm| \bigm| x\prime  - \omega \prime xn
\omega n

 - \=x\prime 
\bigm| \bigm| \bigm| \bigm| 2 +B  - C(A)x2n +

p

2
xn

which still touches \~w strictly from above at \=x (in a small neighborhood) and has the
property that (for C(A) appropriately chosen),

\Delta \phi < 0.

Then, the convergence of the \~wk's to \~w implies that there exist points in B1/2\cap \Omega k

with xk \rightarrow \=x and constants ck \rightarrow 0 such that

\phi (xk) + ck = \~wk(xk)

and (\scrN a small neighborhood of xk)

\~wk < \phi + ck in \scrN \setminus \{ xk\} .

Equivalently,
wk(xk) = (xk)n + \epsilon k\phi k(xk)

and
wk < xn + \epsilon k(\phi + ck) in \scrN \setminus \{ xk\} .

Call
\Phi k := xn + \epsilon k(\phi + ck).

In order to reach a contradiction it suffices to show that \Phi + is a strict supersolution
to our problem. Indeed (see (5.1)),

\Delta \Phi k = \epsilon k\Delta \phi < 0,

and it remains to prove that

(6.7) \nabla \Phi k(x) \in Dk for x near xk.

Notice that
\nabla \Phi k = en + \epsilon k\nabla \phi ,

and using the convergence of Dk to D\ast it suffices to check that

\omega \cdot \nabla \phi < 0

in a neighborhood of \=x. It is easily verified that

\omega \cdot \nabla \psi =  - 2C(A)xn\omega n +
p

2
\omega n,

and the conclusion follows since p < 0, \omega n > 0.
Step 3. The limit function \~w solves (6.5) and \~w(0) = 0 since 0 \in F (wk). According

to Theorem 7.11 and recalling (6.6) we find that \~w satisfies the pointwise C1,\mu estimate
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(7.20) with universal constants. Thus, by the convergence of the \~wk, we conclude that

| \~wk(x) - a \cdot x| \leq C1r
1+\mu in Br \cap \Omega k

with
| a| \leq C0, a \cdot \omega = 0,

with C0, C1, \mu universal. Hence for r small enough universal,

(6.8) xn + \epsilon ka \cdot x - \epsilon k
r

4
\leq wk(x) \leq xn + \epsilon ka \cdot x+ \epsilon k

r

4
in Br \cap \Omega k.

Since
a \cdot \omega = 0, | a| \leq C0, \Gamma \ast \in C1, \Gamma k \rightarrow \Gamma \ast 

we can write
en + \epsilon ka = \sigma k\nu k, | \nu k| = 1,

with
| \sigma k  - fk(\nu k)| \leq \epsilon k

r

4
, fk(\nu k)\nu k \in \Gamma k,

as long as \epsilon is small enough. Thus, (6.8) gives

(fk(\nu k)x \cdot \nu k  - \epsilon kr/2)
+ \leq wk(x) \leq (fk(\nu k)x \cdot \nu k + r\epsilon k/2)

+ in Br,

and we reach a contradiction.

7. The linearized problem. In this section we study the linearized problem
associated with the free boundary problem (1.8). This is a Neumann type problem in
the upper half-ball, governed by the the degenerate equation

\Delta \varphi + v \cdot \nabla \varphi 
xn

= 0

for some constant vector v \in Rn. We develop the viscosity theory for such a problem.
We use the following notation:

B+
r := Br \cap \{ xn \geq 0\} 

and
B\prime 

r = Br \cap \{ xn = 0\} 
denotes a ball in Rn - 1. Points in Rn are sometimes denoted by x = (x\prime , xn) with
x\prime \in Rn - 1.

7.1. The normalized linear problem. After an affine deformation, we reduce
to the case when v is parallel to en, and the operator is given by a general constant
coefficients linear operator.

Let A = (aij)i,j be uniformly elliptic with ellipticity constants 0 < \lambda \leq \Lambda ,
ann = 1, and let s >  - 1.

Definition 7.1. We say that \varphi is a viscosity subsolution in B+
1 to

(7.1)

\left\{     
\scrL s\varphi :=

\sum 
ij aij\varphi ij + s

\varphi n

xn
= 0 in B1 \cap \{ xn > 0\} ,

\varphi s := limt\rightarrow 0
\varphi (x\prime 0, t) - \varphi (x\prime 0, 0)

t1 - s
= 0 on B\prime 

1

if it is continuous in B+
1 , \scrL s\varphi \geq 0 in B1 \cap \{ xn > 0\} in the viscosity sense, and \varphi 

satisfies the boundary condition in the following sense:
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674 DANIELA DE SILVA AND OVIDIU SAVIN

i. if s \geq 1, then \varphi is uniformly bounded in B+
1 ;

ii. if s < 1, then \varphi is continuous in B+
1 and it cannot be touched from above at

a point x0 \in B\prime 
1 by a test function

\phi := A| x\prime  - y\prime 0| 2 +B + px1 - s
n , A,B \in R, y\prime 0 \in Rn - 1,

with
p < 0.

Similarly we can define the notion of viscosity supersolution and viscosity solution
to (7.1).

The main result in this section is the following theorem. From now on,

\delta  - 1 \geq s \geq  - 1 + \delta ,

and universal constants depend on n, \delta , \lambda ,\Lambda .

Theorem 7.2. Let \varphi be a viscosity solution to (7.1) with | \varphi | \leq 1 in B+
1 . Then

\varphi \in C1,\mu (B+
1/2) with a universal bound on the C1,\mu norm. In particular, \varphi satisfies

for any x0 \in B\prime 
1/2,

(7.2) | \varphi (x) - \varphi (x0) - a\prime \cdot (x\prime  - x\prime 0)| \leq C| x - x0| 1+\mu , | a\prime | \leq C,

for C > 0, 0 < \mu < 1 universal, and a vector a\prime \in Rn - 1 depending on x0.

First we need to prove a H\"older regularity result.

Theorem 7.3. Let \varphi be a viscosity solution to (7.1) with | \varphi | \leq 1 in B+
1 . Then

\varphi \in C\alpha (B+
1/2) with a universal bound on the C\alpha norm.

The theorem above immediately follows from the next lemma.

Lemma 7.4. Let \varphi be a viscosity solution to (7.1) with | \varphi | \leq 1 in B+
1 . Assume

that

(7.3) \varphi 

\biggl( 
1

2
en

\biggr) 
> 0.

Then, there exists a universal constant c > 0 such that

\varphi \geq  - 1 + c on B+
1/2.

Proof. From the Harnack inequality, and assumption (7.3), we get that for l > 0
small,

(7.4) \varphi + 1 \geq c(l) on \{ | x\prime | \leq 3/4\} \times \{ xn = l\} .

We consider first the case when s < 1. Let (c := c(l))

(7.5) w := c

\biggl( 
 - | x\prime | 2 +Ax2n +

1

32
x1 - s
n

\biggr) 
, A > \Lambda 

(n - 1)

\delta 
.

It is easy to verify that w is a strict subsolution to the interior equation in (7.1) in
B1 \cap \{ xn > 0\} . Moreover, if l is chosen sufficiently small (depending on A),

(7.6) w \leq  - 1

2
c on

\biggl\{ 
| x| \prime = 3

4

\biggr\} 
\times \{ 0 \leq xn \leq l\} ,
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(7.7) w \leq 1

2
c on \{ | x\prime | \leq 3/4\} \times \{ xn = l\} .

Now, let
wt := w + t, t \geq  - T,

with T large enough so that wT < \varphi + 1 in \scrC := \{ | x\prime | \leq 3/4\} \times \{ 0 \leq xn \leq l\} . Let \=t
be the largest t such that wt \leq \varphi + 1 on \scrC and let \=x be the first contact point. We
wish to show that \=t \geq c

2 . Indeed, if that is the case then

w +
c

2
\leq \varphi + 1 on \scrC .

The desired claim then would follow since

w +
c

2
\geq c

4
on \{ | x\prime | \leq 1/2\} \times \{ 0 \leq xn \leq l\} .

We are left with the proof that \=t \geq c
2 . Indeed if \=t < c

2 , then in view of (7.4), (7.6),
(7.7), the first contact point for w + \=t cannot occur on \{ | x| \prime = 3

4\} \times \{ 0 \leq xn \leq l\} or
on \{ | x\prime | \leq 3/4\} \times \{ xn = l\} . On the other hand, the first contact point cannot occur
either on \{ xn = 0\} (because of the free boundary condition), or in the interior of \scrC 
(because w + \=t is a strict subsolution to the interior equation). We have reached a
contradiction, hence the desired claim holds.

If s \geq 1, we set

w\epsilon = c( - | x\prime | 2 +Ax2n  - \epsilon x1 - s
n ), s \not = 1,

w\epsilon = c( - | x\prime | 2 +Ax2n + \epsilon lnxn), s = 1,

with

A > \Lambda 
n - 1

2

and \epsilon > 0. We choose d(\epsilon ) > 0 so that

w\epsilon \leq  - c
2

if xn \leq d(\epsilon ), d(\epsilon ) \rightarrow 0 as \epsilon \rightarrow 0.

Then it is easy to check that for l small,

w\epsilon \leq 
c

2
on \{ | x\prime | \leq 3/4\} \times \{ xn = l\} ,

w\epsilon \leq  - c
2

on

\biggl\{ 
| x| \prime = 3

4

\biggr\} 
\times \{ 0 \leq xn \leq l\} .

Since \scrL sw\epsilon > 0, we conclude that

w\epsilon +
c

2
\leq \varphi + 1 in \{ | x\prime | \leq 3/4\} \times \{ d(\epsilon ) \leq xn \leq l\} .

By letting \epsilon \rightarrow 0,we obtain the desired estimate.

One key ingredient in the proof of Theorem 7.2 is the next proposition, from
which the subsequent corollary immediately follows . We postpone its proof till the
end of the section.

Proposition 7.5. Let \varphi ,\psi be subsolutions (resp., supersolutions) to (7.1). Then
\varphi + \psi is a subsolution (resp., supersolution) to (7.1).
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676 DANIELA DE SILVA AND OVIDIU SAVIN

Corollary 7.6. Let \varphi be a viscosity solution to (7.1) then for any unit vector e\prime 

in the x\prime direction,
\varphi (x+ \epsilon e\prime ) - \varphi (x)

\epsilon 

is a viscosity solution to (7.1).

Combining Corollary 7.6 with the H\"older regularity of viscosity solutions, we
obtain by standard techniques [CC] the following result.

Theorem 7.7. Let \varphi be a viscosity solution to (7.1) with | \varphi | \leq 1 in B+
1 . Then

for some \mu \in (0, 1) universal, \varphi \in Ck,\mu in the x\prime direction in B+
3/4, for all k \geq 1, with

Ck,\mu norm bounded by a universal constant (depending on k).

We are now ready to provide the proof of our main theorem.

Proof of Theorem 7.2. We rewrite the interior equation in (7.1) as

\varphi nn + s
\varphi n

xn
= g(x) + h(x)

with
g(x) :=  - 

\sum 
i,j \not =n

aij\varphi ij , h(x) :=  - 
\sum 
i\not =n

ain\varphi in.

By Theorem 7.7, the function g(x\prime , xn) is smooth in the x\prime -direction and, in particular,
it is uniformly bounded on 0 \leq xn \leq 1/2. Similarly, by interior estimates and Theorem
7.3, we conclude that for some 0 < \alpha < 1,

| h(x\prime , xn)| \leq Cx\alpha  - 1
n in B+

1/2.

Thus, for each fixed x\prime \in B\prime 
1/2, we are led to consider the ODE

u\prime \prime + s
u\prime 

t
= f(t), t \in [0, 1/2],

with

(7.8) | f(t)| \leq C(1 + t\alpha  - 1).

The general solution is given by

u(t) = c1t
1 - s + c2 + \=u(t) for s \not = 1

and
u(t) = c1 ln t+ c2 + \=u(t) for s = 1,

with \=u(t) a particular solution. It is easy to check that since f satisfies (7.8), we can
choose a particular solution \=u that satisfies,

| \=u| \leq Ct1+\alpha .

In conclusion
| \varphi (x\prime , xn) - c1(x

\prime )x1 - s
n  - c2(x

\prime )| \leq Cx1+\alpha 
n .

Using the smoothness of \varphi in the x\prime direction together with the free boundary
condition, we conclude that c1 \equiv 0, c2(x

\prime ) = \varphi (x\prime , 0), and (7.2) holds.
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In order to prove Proposition 7.5 we also need the following expansion lemma.

Lemma 7.8 (expansion at regular points). Let s < 1 and let \varphi \in C(B+
1 ) be a

viscosity supersolution to (7.1) in B+
1 . Assume that \varphi (x\prime , 0) is C1,1 at 0 in the x\prime -

direction. If \~\varphi is a solution to \scrL s \~\varphi = 0 in B1 \cap \{ xn > 0\} with \~\varphi = \varphi on \partial B+
1 , then,

\~\varphi s(0) is well defined and
\~\varphi s(0) \leq 0.

Proof. Without loss of generality, we can assume that \~\varphi (0, 0) = 0,\nabla x\prime \~\varphi (0, 0) = 0.
Since \~\varphi (x\prime , 0) is C1,1 at 0, in a neighborhood of 0 we have that for some large constant
C > 0,

 - C| x\prime | 2 \leq \~\varphi (x\prime , 0) \leq C| x\prime | 2.

We define (k \geq 0)

pk := sup\{ p : \~\varphi \geq  - 2C| x\prime | 2 +Ax2n + px1 - s
n in B+

2 - k\} ,

mk := inf\{ m : \~\varphi \leq 2C| x\prime | 2  - Ax2n +mx1 - s
n in B+

2 - k\} 

with A > 0 chosen so that

\scrL s( - 2C| x\prime | 2 +Ax2n) = 0.

Notice that \{ pk\} k is an increasing sequence, while \{ mk\} k is decreasing. Thus,

\=p = sup pk, \=m := infmk,

are well defined.
We wish to show that

(7.9) \=p = \=m \in ( - \infty ,+\infty ),

from which our claims will follow immediately.
First, set

w =  - 2C| x\prime | 2 +Ax2n  - Mx1 - s
n

with A as above, and M > 0 large so that

w \leq \~\varphi on \partial B+
1 .

Thus, w \leq \~\varphi in B+
1 and \{ pk\} k is bounded below. Similarly, \{ mk\} k is bounded above.

In order to obtain (7.9),we prove by induction that there exist sequences \{ \=pk\} , \{ \=mk\} 
with \=pk \leq pk and \=mk \geq mk such that

(7.10) mk  - pk \leq \=mk  - \=pk = C0(1 - c0)
k

with c0 > 0 universal to be specified later, and C0 chosen universal so that the
statement holds for k = 0. Towards this aim let \mu := \=mk - \=pk

2 and assume (7.10) holds
for k \geq 1. If

(7.11) \~\varphi 
\Bigl( r
2
en

\Bigr) 
\geq (\=pk + \mu )

\Bigl( r
2

\Bigr) 1 - s

, r = 2 - k,

then we claim that

(7.12) pk+1 \geq \=pk + c1\mu .

D
ow

nl
oa

de
d 

04
/2

0/
23

 to
 1

28
.5

9.
22

2.
10

7 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

678 DANIELA DE SILVA AND OVIDIU SAVIN

Similarly, if

(7.13) \~\varphi 
\Bigl( r
2
en

\Bigr) 
\leq ( \=mk  - \mu )

\Bigl( r
2

\Bigr) 1 - s

, r = 2 - k,

then

(7.14) mk+1 \leq \=mk  - c1\mu .

Thus assuming (7.10) holds for k \geq 1 with c0 = c1/2, if (7.11) is satisfied, we can
choose \=pk+1 = \=pk + c1\mu and \=mk+1 = \=mk, otherwise we choose \=pk+1 = \=pk and \=mk+1 =
\=mk  - c1\mu .

To conclude our proof, let us assume that (7.11) hold and let us show that (7.12)
follows.

Call
vk :=  - 2C| x\prime | 2 +Ax2n + \=pkx

1 - s
n

and
uk(x) := r - 1+s( \~\varphi  - vk)(rx), x \in B1.

Then,
\scrL suk = 0, uk \geq 0 in B1 \cap \{ xn > 0\} ,

and

uk

\biggl( 
1

2
en

\biggr) 
\geq \mu  - A

\Bigl( r
2

\Bigr) s+1

\geq \mu 

2
,

where in the last inequality we used that by the induction hypothesis

\mu = C0(1 - c0)
k = C0r

\alpha 

for some small \alpha , and C0, c0 can be chosen possibly larger and smaller respectively
(recall that s+ 1 > \delta ). By a standard barrier argument (see proof of Lemma 7.4) we
conclude that

uk \geq c1\mu x
1 - s
n in B+

1/2,

and the desired claim follows.

Remark 7.9. The existence of the replacement

\~\varphi \in C2(B1 \cap \{ xn > 0\} ) \cup C(B+
1 )

can be achieved via Perron's method. Using the barrier functions \pm w in the proof
above, one can guarantee the continuity up to the boundary.

We conclude this section with the proof of Proposition 7.5. First, let us introduce
the following regularizations. Given a continuous function \varphi in B+

1 , we define for
\epsilon > 0 the upper \epsilon -envelope in the x\prime direction,

\varphi \epsilon (y\prime , yn) = sup
x\in B+

\rho \cap \{ xn=yn\} 

\biggl\{ 
\varphi (x\prime , yn) - 

1

\epsilon 
| x\prime  - y\prime | 2

\biggr\} 
, y = (y\prime , yn) \in B+

\rho .

The proof of the following facts is standard (see [CC]):
(1) \varphi \epsilon \in C(B+

\rho ) and \varphi \epsilon \rightarrow \varphi uniformly in B+
\rho as \epsilon \rightarrow 0.

(2) \varphi \epsilon is C1,1 in the x\prime -direction from below in B+
\rho . Thus, \varphi \epsilon is pointwise second

order differentiable in the x\prime -direction at almost every point in B+
\rho .
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(3) If \varphi is a viscosity subsolution to (7.1) in B+
1 and r < \rho , then for \epsilon \leq \epsilon 0 (\epsilon 0

depending on \varphi , \rho , r) \varphi \epsilon is a viscosity subsolution to (7.1) in B+
r . This fact follows from

the obvious remark that the maximum of solutions of (7.1) is a viscosity subsolution.
Analogously we can define \varphi \epsilon , the lower \epsilon -envelope of u in the x\prime -direction which

enjoys the corresponding properties.
We are now ready to prove our main proposition.

Proof of Proposition 7.5. In view of property (1) above, it is enough to show that

v := \varphi \epsilon + \psi \epsilon 

is a subsolution to (7.1) on B+
1 . The case s \geq 1 is trivial, and the interior property is

standard. We only need to check the boundary condition when s < 1.
Assume by contradiction that there exists A > 0 so that

\phi := A| x\prime | 2 + px1 - s
n

touches v from above, say at 0, and p < 0. Then \varphi \epsilon , \psi \epsilon are C1,1 at zero in the x\prime -
direction. This follows from the fact that \varphi \epsilon , \psi \epsilon are C1,1 from below (see property
(2)) and their sum is C1,1 from above at the origin. According to Lemma 7.8, we can
consider their replacements \~\varphi \epsilon , \~\psi \epsilon . Thus \phi will touch \~\varphi \epsilon + \~\psi \epsilon from above at zero and

\~\varphi \epsilon 
s(0) +

\~\psi \epsilon 
s(0) \geq 0,

a contradiction.

7.2. The linear problem. We now discuss the general case. Let \omega \in Sn and
v := \lambda \omega with \lambda \in R. Denote

s := v \cdot en
and assume that for \delta > 0,

(7.15) \delta  - 1 \geq s \geq  - 1 + \delta , \omega n \geq \delta .

Definition 7.10. We say that \varphi is a viscosity subsolution to

(7.16)

\left\{     
\Delta \varphi + v \cdot \nabla \varphi 

xn
= 0 in B1 \cap \{ xn > 0\} ,

\varphi \omega := limt\rightarrow 0
\varphi (x0 + t\omega ) - \varphi (x0)

t1 - s
= 0 on B\prime 

1

if it is continuous in B+
2 , it is a subsolution to the equation in B1 \cap \{ xn > 0\} in the

viscosity sense, and
i. if s \geq 1, then \varphi is uniformly bounded in B+

1 ;
ii. if s < 1, then \varphi is continuous in B+

1 and it cannot be touched from above at
a point x0 \in B\prime 

1 by a test function

\phi := A

\bigm| \bigm| \bigm| \bigm| x\prime  - \omega \prime 

\omega n
xn  - y\prime 0

\bigm| \bigm| \bigm| \bigm| 2 +B + px1 - s
n , A,B \in R, y\prime 0 \in Rn - 1,

with

p < 0.
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We remark that, after performing the following domain variation,

(7.17) \~\varphi (x\prime , xn) = \varphi 

\biggl( 
x\prime +

\omega \prime xn
\omega n

, xn

\biggr) 
the function \~\varphi satisfies the equation

(7.18)
\sum 
i,j \not =n

dij \~\varphi ij +
\sum 
i\not =n

bi \~\varphi in + \~\varphi nn + s
\~\varphi n

xn
= 0 in B+

c ,

where

(7.19) dij =
\omega i\omega j

\omega 2
n

, bi = 2
\omega i

\omega n
.

In particular, in view of (7.15), (7.18) is uniformly elliptic with ellipticity constants
depending only on \delta . It is also easy to see that \~\varphi satisfies the free boundary condition
\~\varphi s = 0 on B\prime 

c. Thus, the next result follows from Theorem 7.2. Here constants
depending on n, \delta , are called universal.

Theorem 7.11. Let \varphi be a viscosity solution to (7.1) with | \varphi | \leq 1 in B+
1 . Then

\varphi \in C1,\mu (B+
1/2) with a universal bound on the C1,\mu norm. In particular, \varphi satisfies,

for any x0 \in B\prime 
1/2,

(7.20) | \varphi (x) - \varphi (x0) - a \cdot (x - x0)| \leq C| x - x0| 1+\mu , | a| \leq C,

with C > 0, 0 < \mu < 1 universal, and a vector a \in Rn - 1 depending on x0, with

a \cdot \omega = 0.
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