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Abstract

We propose a globally convergent numerical method to compute solutions to a general class
of quasi-linear PDEs with both Neumann and Dirichlet boundary conditions. Combining
the quasi-reversibility method and a suitable Carleman weight function, we define a map of
which fixed point is the solution to the PDE under consideration. To find this fixed point,
we define a recursive sequence with an arbitrary initial term using the same manner as in
the proof of the contraction principle. Applying a Carleman estimate, we show that the
sequence above converges to the desired solution. On the other hand, we also show that our
method delivers reliable solutions even when the given data are noisy. Numerical examples
are presented.

Keywords Numerical methods - Carleman estimate - Boundary value problems -
Quasilinear elliptic equations - Inverse problems
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1 Introduction

E:t §2 be an open and bounded domain in RY, d > 2, with a smooth boundary. Let F :
2 xR x| R? — R be a real-valued function in the class C2. Let A be a matrix-valued
function 2 — R?*4 satisfying

1. Aisin the class C?(£2, R?*9);
2. A is symmetric; i.e., AT = A;
3. There are positive constants Aj and A; such that

AE]? < AX)E - & < AgJE|* forallx € 2, e RY.
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Consider the over-determined boundary value problem

Div(AX)Vu(x)) + F(x, u(x), Vu(x)) =0, x € £2,
ux) = f(x, X €08, (1.1)
AX)Vu(x) - v(x) = g(x), X € 052,

where f and g are two given functions, which are the noisy measurements in some applied
contexts; e.g., see the inverse problem in Section 2. The main aim of this paper is to develop
a numerical method to solve the following problem.

Problem 1.1 Let f* and g* be the noiseless versions of f and g respectively. Assume that
problem

Div(AX)Vu*(x)) + F(x, u*(x), Vu*(x)) =0, x € £2,
u*(x) = f*(x), X €992, (1.2)
AX)Vu*(x) - v(x) = g*(x), X €082

has a unique solution u#*. Given the noisy data f and g, compute an approximation of u*.

In the statement of Problem 1.1, we request both Dirichlet and Neumann boundary data.
In the theory of PDEs, one of these data might be sufficient to determine the solution
uniquely. Hence, Problem 1.1 is over-determined. Our study accepts this redundant weak-
ness because we solve Problem 1.1 for the needs of inverse problems. The application in
inverse problems is explained as follows. Recently, we numerically solved several inverse
problems by a unified framework, see, e.g., [23-25, 32, 36, 45, 54, 59, 64]. This framework
has two steps.

In Step 1, we introduce a change of variable to reduce the given inverse problem to a
system of quasi-linear PDEs with Cauchy boundary data.

In Step 2, we solve the over-determined system obtained in Step 1. The computed
solution yields the solution to the inverse problem under consideration.

The goal of Problem 1.1 is to address Step 2 above. That is how to solve a system of
quasi-linear elliptic equations with Dirichlet and Neumann data. For convincing purposes,
we solve an inverse source problem for a nonlinear model in Section 2. This serves as
an example of reducing a challenging nonlinear inverse problem to a system of PDEs of
which this kind of over-determined data is available. We also cite to [32, 44] for using this
framework to solve the inverse scattering problem in the time domain with experimental
data. For simplicity, we solve a single equation rather than solving a system of quasi-linear
elliptic PDEs with Cauchy boundary data. This simplification does not weaken the paper
because our analysis and numerical implementation can be directly extended for systems of
quasi-linear equations.

As mentioned in the paragraph above, in the theory of PDEs, one might need only one
boundary condition to determine the solution to (1.1). However, this might not be true in
some specific circumstances. For example, the equation y”(t) + 72y(t) = 0,1 € (0, 1),
with y(0) = y(1) = 0 has infinitely many solutions y(t) = C sin(rrt), C € R. We cite
to [13, 15, 57] for more examples in which quasi-linear elliptic PDEs, with one bound-
ary condition, have multiple solutions. To avoid the case of multiple solutions, we impose
into (1.1) two boundary conditions, see Remark 3.3 in which we prove that (1.1) with two
boundary conditions has at most one solution. Therefore, our drawback when requiring
over-determined data might be acceptable. On the other hand, up to the author’s knowledge,
a numerical method to solve quasi-linear elliptic PDE with only one boundary condition is
not yet developed unless more information about the solutions is known.
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Since (1.1) involves both Dirichlet and Neumann conditions, (1.1) might not have a solu-
tion; especially, when the measured data f and g contain significant noise. Computing the
solution to (1.1) might be impossible. In this case, we understand the solution to (1.1) as the
limit of a sequence obtained by iteratively solving linear least squares optimization prob-
lems. Assuming that (1.1) with noiseless data has a unique smooth solution u* and given
noisy data, we will rigorously prove that this sequence approximates u*. This approximation
is crucial in applications when noiseless data is not available.

Our proposed numerical method to solve quasi-linear elliptic equations with Cauchy data
in this paper has two crucial features: fast and global. By “fast”, we mean that the method
converges at the exponential rate with respect to the number of iterations. By “global”, we
mean that our method does not require a good initial guess of the true solution to the problem
under consideration. Both features are the crucial strengths of this paper since it is well-
known that the widely used optimization-based methods for solving nonlinear equations are
local and time-consuming.

In the statement of Problem 1.1, we have imposed a condition about the existence and
uniqueness of bounded solutions to (1.1), with f and g replaced by f™* and g* respectively.
This condition can be interpreted as follows. Our target is to provide a new tool to solve
nonlinear inverse problems using the framework mentioned above. In these applications,
the solution u represents some physical quantities related to heat distribution or wave prop-
agation; see Section 2 for an example. So, when the measured data f and g are perfectly
noiseless, (1.1) has a solution that is such a physical quantity. So, the existence is clear
from the physical point of view. The uniqueness is due to the presence of both Dirichlet and
Neumann conditions, see Remark 3.3.

Problem 1.1 is exciting and challenging partly because our target is to compute u* when
the noisy data f and g are given while the corresponding noiseless ones f* and g* are
unknown. A natural approach to compute the solution to (1.1) is to minimize a least squares
functional. A typical example of such a functional is

w> J(u) = / IDiV(A(X) Vie(x)) + F (x, u(x), Vu(x))|*dx+a regularization term (1.3)
[%)

subject to the boundary conditions in (1.1). One takes the minimizer of the functional J in
(1.3) as a solution to Problem 1.1. This approach is based on optimization. It has three main
drawbacks:

1. J might be nonconvex. It might have multiple local minimizers. Therefore, a good
initial guess of the true solution u* is required.

2. The computational cost is expensive.

3. Itis not clear that the minimizer is an approximation of u*.

Recently, we have developed the convexification method, see [46], and the Carleman
weighted linearization method, see [48], to solve Problem 1.1.

e The key point of the convexification method is to include suitable Carleman weight func-
tions into the formulation of the mismatch functional J. By using Carleman estimates, one
can prove that the new mismatch functional is strictly convex. One also can prove that the
unique minimizer is a good approximation of u*. Hence, drawbacks 1 and 3 can be over-
come. The convexification method was first introduced in [30] and then was developed
intensively. We refer the reader to [5, 25-28, 31-35, 46] for some important works in this
area and their applications to solving a variety kinds of inverse problems. However, the
computation due to the convexification method is time-consuming.
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e We have introduced in [48] another method, also based on Carleman estimates, to solve
Problem 1.1. The method in [48] is inspired by Carleman estimates and linearization similar
to the Newton method. We have shown in [48] that the combination of Carleman estimates
and linearization allows us to compute u* quickly without requesting a good initial guess.
The Carleman-Newton method was successfully used to solve a nonlinear inverse problem
in [1] and to compute numerical solutions to Hamilton-Jacobi equations in [48].

The contribution of this paper is to introduce another globally convergent numerical
method based on a Carleman estimate and the classical contraction principle. More pre-
cisely, our approach is first to define a map @ such that the desired solution is the fixed
point of this map. The construction of @ combines the Carleman weight function and the
quasi-reversibility method to solve over-determined linear PDEs (see [42] for the original
work for the quasi-reversibility method). Using a suitable Carleman estimate, we rigorously
prove that @ is a contraction map. This leads to a numerical method to solve Problem 1.1.
We simply approximate the desired solution by u, = ®@"(up) where @" = P o @ ---0 @
(n times) and ug is an arbitrary function. The main theorems in this paper confirm that our
function @ is a contraction map and that the sequence {u,},>0 above converges to the true
solution. Imposing some technical assumptions, we will prove that the stability with respect
to the noise contained in the given data is of the Lipschitz type. We also refer to [6, 7, 45]
for similar works for the case when the data has no noise and refer to [44, 55] for the proof
of a similar result for hyperbolic equations. The strengths of our new approach include the
fact that

1. It does not require a good initial guess;
2. Itis quite general in the sense that no special structure is imposed on the nonlinearity F’;
3. The convergence rate is O(6") where 6 € (0, 1) and n is the number of iterations.

The paper is organized as follows. In Section 2, we present an inverse source problem
that motivates the study of Problem 1.1. In Section 3, we introduce the contraction map @,
which plays the key role in solving Problem 1.1. In Section 4, we show that the fixed point
of @ is an approximation of the solution to Problem 1.1. We investigate the behavior of this
approximation as the noise in the boundary data tends to 0. Section 5 is for the numerical
study. Section 6 is for some concluding remarks.

2 AnInverse Source Problem for Nonlinear Hyperbolic Equations

In this section, we provide an example from which Problem 1.1 arises. Let T > 0 represent
the final time and G : R? x R x R? — R be a smooth function. Consider the wave function
w : RY x (0, T) — R satisfying the following initial value problem

w (X, 1) = Aw(x, 1) + G(x, w(x, 1), Vw(x, 1)), x e R4, t € (0, T)
w(x, 0) = p(x), x € RY, 2.1)
w(x,0) =0, x € RY,

Here, p(x) is a source term that generates the wave. The nonlinear inverse source problem
we are interested in is formulated as follows.

Problem 2.1 (Inverse Source Problem for hyperbolic equations) Assume that p is com-
pactly supported in a smooth and bounded domain £2. Compute the source function p(x),
x € §2, from the measurements of

fix, 1) =wx,t) and fo(x,1) =dw(X,?) 2.2)
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forallx € 082,71 € [0, T].

Problem 2.1 can be considered the nonlinear version of the thermo/photo-acoustics
tomography problem arising from bio-medical imaging. The experiment leading to this
problem is as follows, see [40, 41, 60]. One sends non-ionizing laser pulses or microwaves
to a biological tissue under inspection (for instance, a woman’s breast in mammography).
Some energy will be absorbed and converted into heat, causing a thermal expansion and
a subsequence ultrasonic wave propagating in space. The ultrasonic pressures on a sur-
face around the tissue are measured. Finding some initial information about the pressures
from these measurements yields the structure inside this tissue. Most works in the field of
thermo/photo-acoustics tomography address the problem when the governing hyperbolic
equation is linear, while the study for nonlinear cases is very limited [55]. We list here some
widely used methods for the linear models. In the case when the waves propagate in the
free space, one can find explicit reconstruction formulas in [14, 16, 50, 58], the time rever-
sal method [19, 20, 22, 65, 66], the quasi-reversibility method [12, 47], and the iterative
methods [21, 61, 62]. The publications above study thermo/photo-acoustics tomography for
simple models for non-damping and isotropic media. The reader can find publications about
thermo/photo-acoustics tomography for more complicated model involving a damping term
or attenuation term [2—4, 10, 17, 18, 38, 39, 49]. In this section, we propose another method
based on our solver of Problem 1.1.

Let {¥,},>1 be the orthonormal basis of L? (0, T') originally introduced in [29] and define

T
wy(X) = / wX, H¥,()dt forn>1,xe€ £2. 2.3)
0
In computation, we can approximate
00 N
w0 =Y W)W (1) X Y w,y ()P () (24)
n=1 n=1

for a suitable cut-off number N € N. Then, due to the governing equation in (2.1), the
vector Wy = (wy, wa, ..., wy) “approximately” satisfies

N N N N
D w, (0% (1) =Y Aw, (W (1) + G (x D WO (), Y Vi ()%, (r)) 2.5)
n=1 i=1 n=1

n=1

forallx € 2 andt € (0, T). Foreachm € {1, ..., N}, we multiply ¥,,(¢) to both sides of
(2.5) and then integrate the resulting equation. We obtain

N T
> wa(x) f W ()W, (1)dt
n=1 0

N
= Z Awy (X)W (1) Wy () dt

n=1

T N N
+ / G (x D wa X (1), Y Vw0, (t)) W, (1)d1 (2.6)
0

n=1 n=1

for all x € £2. Denote

W(x) = (wi(X), wa(x), ..., wy(x)T,
S = (Smn)z,”zl s

G(x, Wx), VW) = (g1(x, W(X), VW (X)), ..., gn(x, W(x), VW (X)),

%hm.“ @ Springer
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where ,
Smn :/ U ()W (1)dt
0

and

T N N
gm(x, W(x), VW (x)) = f G (x D wa (W (1), Zan(X)an(t)) W, (1)dt
0

n=1 n=1

for all x € £2. It follows from (2.6) that
AW () + Fx, W(x), VW(x)) =0 forallx € £2, 2.7)

where
Fx, W(x), VW(x) = G(x, W(x), VW (x)) — SW(x).
Boundary conditions for the vector-valued function W can be computed from the given

boundary data in the statement of Problem 2.1. It follows from (2.2) and (2.3) that for all
X €082

T N
W) = fx) = ( | now, (r)dr) 2.8)
0 n=1
and
T N
WWx) =gx) = ( /0 L(x, t)%(t)dt> : 2.9
n=1
Remark 2.1 Computing a function W = WM = (w{"™ ... w{™)T from (2.7), (2.8)

and (2.9) is the goal of Problem 1.1. This partly shows the significance of the study in this
paper.

Having W™ in hand, due to (2.4), we can evaluate the source term p via

N
P =Y w, ()%, (0) (2.10)
n=1

for all x € £2. Since solving inverse problems is out of the scope of this paper, we will
present the details about this method for Problem 2.1 and some numerical results in a near
future publication.

Remark 2.2 Our technique to “transfer” an inverse problem to the problem of computing
the solution to a system of quasilinear PDEs relies on the truncation in (2.4). This truncation
might make (2.7) not exact. It is extremely challenging to study the behavior of (2.7) as
N — oo. In our papers using this truncation technique, see, e.g., [23-25, 32, 36, 45, 54, 59,
64], the approximation (2.4) is only verified numerically. The rigorous study of this issue is
still open.

Remark 2.3 An advantage of solving inverse problems with the truncation technique in
(2.4) is that we drop all high-frequency components of the solutions and hence the given
boundary data. This helps the data to be less sensitive to noise. We mean that cutting off
the series in (2.4) might serve as a regularization for the inverse problems, making the
inverse problems less ill-posed. This observation somewhat interprets our success in solving
ill-posed inverse problems by “approximately transferring” them to the well-posed prob-
lem (1.1), see [23-25, 32, 36, 45, 54, 59, 64]. In those publications, we have obtained

$ ’ (zi m'a
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out-of-expectation numerical results using the truncation (2.4) from highly noisy simulated
and experimental data.

3 The Carleman Contraction Principle

In this section, we establish a Carleman contraction method to solve quasi-linear PDEs.
The main tool that guarantees the success of our method is a Carleman estimate. Carleman
estimates are great tools in the study of PDEs. They were first used to prove the unique
continuation principle, see, e.g., [11, 63]. The use of Carleman estimates quickly became a
powerful tool in many areas of PDEs, especially in both theoretical and numerical methods
for inverse problems, see, e.g., [8, 9, 23, 25, 33, 36, 47, 53]. Carleman estimates were used
in cloaking [52] and in the area of computing solution to Hamilton-Jacobi equations [37,
48]. We recall a useful Carleman estimate which is important for us in the proof of the main
theorem in this paper. Let X be a point in R \ §2 such that r(x) = |x — xg| > 1 for all
x € £2. For each 8 > 0, define

np(x) = rP(x) = [x — X()|7ﬂ forall x € 2.

We have the following lemma.

Lemma 3.1 (Carleman estimate) There exist positive constants o depending only on Xo,
2, A, and d such that for all function v € C?>(§2) satisfying

v(x) =0,v(x) =0 forallx € 952,

the following estimate holds true

/ 2™ | Div(AVv)|2dx
2

> cx/ e2*“ﬂ<">|vl)(x)|2dx+cx3/ M 1y (x))? dx (3.1)
2 2

forall B > By and A > Xg. Here, Ao = Lo(X0, 2, A,d, B) and C = C(xp, 2, A,d,B) >0
depend only on the listed parameters.

Lemma 3.1 is a direct consequence of [52, Lemma 5]. We refer the reader to [48, Lemma
2.1] for details of the proof. An alternative way to obtain (3.1), with another Carleman
weight function, is to apply the Carleman estimate in [43, Chapter 4, Section 1, Lemma
3] for general parabolic operators. The arguments to obtain (3.1) using [43, Chapter 4,
Section 1, Lemma 3] are similar to that in [47, Section 3] with the Laplacian replaced by the
operator Div(AV-). We especially draw the reader’s attention to different forms of Carleman
estimates for all three kinds of differential operators (elliptic, parabolic, and hyperbolic)
and their applications in inverse problems and computational mathematics [8, 9, 33, 53]. It
is worth mentioning that some Carleman estimates hold true for all functions v satisfying
v|ae = 0 and d,v|r = 0 where I" is a part of 952, see, e.g., [37, 56]. These Carleman
estimates can be used to solve quasilinear elliptic PDEs given the data on only a part of 952.

We are now in the position to establish the Carleman contraction principle for Problem
1.1. We temporarily consider the case when the nonlinearity F is Lipschitz continuous with
respect to the second and third variables; i.e., there is a constant Cr depending on F such
that

|F(x,s1,p1) — F(X, 52, p)| = Cr(|s1 — 52| + [p1 — P2D) (3.2

o @ Springer
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for all s1, s> € R and p;, p, € R?. The Lipschitz continuity will be relaxed later by using
a truncation technique; see Remark 5.2. Let p > [d/2] + 2 be an integer such that H” (£2)
can be continuously embedded into Cz(ﬁ). We assume that the true solution u* of (1.2)
belongs to H”(£2). Fix B > Bp and Ao as in Lemma 3.1 such that Carleman estimate (3.1)
holds true for all . > Ag. Let H be the set of admissible solutions

H={peHR): ¢lae=f AVp -ve =g}. (3.3)
Assume that H # (). Define @ : H — H as

@ (1) = argmin J, (@),
peH

where
. 2
Ju(p) = / Y Div(AX) V(X)) + F(x, u(x), Vux)|"dx + €llpllypg (34
2
forall u € HP(£2), where € > 0 is the regularization parameter.

Remark 3.1 (The well-definedness of @) It is not hard to verify that the functional J, has
a unique minimizer @ (u) € H for all function u € H. Using the compact embedding
theorem from HP(§2) to H?(£2), together with the trace theory, one can verify that H is
weakly closed in H?(£2) and J, is weakly lower semicontinuous on H. The presence of
the regularization term implies that J,, is coercive in the sense that lim - 0o Ju(¢) = oo.
Therefore, by a standard argument in analysis, we can conclude that J, has a minimizer.
The uniqueness of the minimizer is due to the strict convexity of J,,.

In practice, given u € H, we solve the linear least square problem to compute @ (u).
This is because the map ¢ +— Div(A(X)Vo(x)) + F(X, u(x), Vu(x)) is affine with respect
to ¢. We can use many packages for this purpose. In computation, we use the optimization
package with the command “Isqlin” of MATLAB to minimize J,, and then obtain @ (u).

Remark 3.2 (The Carleman quasi-reversibility method) Fix a function u € H. Let ¢ =
@ (u). Since ¢ is in H and it minimizes J,, roughly speaking, the function ¢ “almost”
solved.

Div(AX)Ve(x)) + F(x, u(x), Vu(x)) =0, x € £2,

o(x) = f(x), X €02, (3.5)

AX)Vo(x) - v(x) = g(x), X € 052.

Due to the presence of the regularization term € ||¢ ||%1 p(2) We call ¢ the regularized solution
to (3.5). The method to compute the regularized solution to the linear (3.5) by minimizing
J,, is named the Carleman quasi-reversibility method. This name is suggested by the pres-
ence of the Carleman weight function in the formula of J, and by the quasi-reversibility
method to solve linear PDEs with Cauchy data. See [42] for the original work on the
quasi-reversibility method.

Fore > 0, 8 > Bp and A > Ag, define the norm

/2
l@lle.pr = ( fg e”ﬂﬂ|¢|2+|w|2dx) + 5 lellar).

The contraction behavior of @ is confirmed by the following theorem and its conse-
quence mentioned in Corollary 3.1.
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Theorem 3.1 There is a number C depending only on xqg, §2, A, B and d such that

Cr
@ @W) — PW)llepn < allu = Ve (3.6)

forallu,v € HP(£2).

Corollary 3.1 Choose A > 1 such that 0 = ,/ % € (0, 1). It follows from (3.6) @ is a
contraction map with respect to the norm || - |l¢ g, ..

Proof of Theorem 3.1 Define the set of test functions
Ho={p € H?(R2) : ¢lse =0, AVg - v]yo = 0}. (3.7
Recall the admissible set of solutions H defined in (3.3). Take two arbitrary functions u
and vin H. Let u; = @ (u) and v; = @ (v). Since u; is the minimizer of J, in H, by the
variational principle, we have for all 4 € Hy
(ezwﬁ(x) [div(A(x)Vu1 (X)) + F(x, u(x), Vu(x))], diV(A(x)Vh(x))>L2(Q)
+e(ur (%), h(X) 4y o) = 0. (3.8)

Similarly, for all 2 € Hy,

<62Mtﬂ(x) [div(A(X)Vv1 x)) + F(x, v(x), Vv(x))], diV(A(x)Vh(x))>L2(Q)

+e(vi®), h®) yp () = O- (3.9
Combining (3.8) and (3.9), using the inequality 2ab < a® + b* and taking the test function
h=u; — v € Hy,

we have
%/ge2wﬂ|div(A(x)Vh(x))|2dx+e||h||§,,,(9)
< % /Q M| F(x, u(x), Vu(x))) — F(x, v(x), Vo(x)))|*dx. (3.10)
Using (3.2) and (3.10), we have
%/Qez’wﬁ|diV(A(x)Vh(x))|2dx+6||h||%{,,(_(2)
< %CF /9 ez)‘“f’(|u(x) —v(X)| + |Vu(x) — Vv(x)|)2dx. (3.11)
Note that 1|3 = 0 and AVhA - v|3 = 0. We apply the Carleman estimate (3.1) for & to get

/ P18 ™ |div(AVh)|2dx
2

> Ch / P | Vh(x) |2 dx + CA3 / ™ h(x) % dx, (3.12)
2 2
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where C = C(xo, 2, A,d, B) > 0 depends only on the listed parameters. Combining
(3.11) and (3.12), we have

Ca [ R+ € [ AR dx-+ el
2 2

< CF/ 8 (Ju(x) — v(x)| + |Vu(x) — Vv(x)|)2dx.
2
Therefore,
€
/ e2kMﬂ(X)|Vu1(x) — vv1(x)|2 dx + |uy(x) — UI(X)|2 dax + X”ul — Ul||12qp(9)
2

Cr . c
< ra [/Q o2 A (Ju(x) — v(x) >+ |Vu(x) — Vv(x)lz)dx + X||u — u||%,p<9)] ) (3.13)

We have proved (3.6). O
Remark 3.3 In the introduction section, we have mentioned that we request both Dirichlet
and Neumann boundary conditions to avoid the case when the PDE in (1.1) has multiple

solutions. This fact can be proved using a similar argument in the proof of Theorem 3.1.

Indeed, assume that (1.1) has two solutions u#; and u;. Then,

<ezw<x> [div(A(X)Vu1(x) + F(x, u1(x), Vui(x))], diV(A(x)Vh(x)))Lz(Q) =0, (3.14)
and
<e2“w<"> [div(AX) Vua (%)) + F (%, u2(x), Vz(x))]. div(A(x)Vh(x)))Lz(Q) =0. (3.15)

Using the test function 2 = u; — uy € Hp, we can deduce from (3.14) and (3.15) that

/ ™| div(A(X)VA(X)|2dx
2

= — f 2B (F(x, u1 (%), Vi (%) — F(x, u2(x), Via (x)))div(A(X) VA(X)dx
2

IA

%/ PO | F(x, 11 (x), Vg (X)) — F(x, u2(x), Vur (x))[*dx
2

1
+3 f P8 M|div(A(X) VR ()| dx.
2
Using this and (3.2), we obtain
/ 218 |div(A(x) VA(X)|2dx < Cp / D (|h(x) > + [VA|?)dx.
2 2
Using Carleman estimate (3.1), we obtain an analog of (3.13), read as
o)
/ AN (|hx) 1 + VA dx < —F/ 18X (1) 1> + |VA[?)dx.
2 Ch Q

Choosing A >> 1 such that $£ € (0, 1), we have & = 0 or uy = u>.
Corollary 3.1 guarantees that when A is sufficiently large, the “fixed-point” like sequence

{un}n>0 C H defined as

{“0 €4, (3.16)

Uy = Pp—1) n > 1,

£ springer -
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converges to a function ¥ € H with respect to the norm | - |l¢ g,5.. A question arises if &
approximates u*. An affirmative answer will be given in the next section.

4 The Convergence of the Carleman Contraction Method

Recall that f and g are the noisy versions of the boundary data f* and g*, respectively. Let
8 > 0 be the noise level. By noise, we mean that we assume

inf {llellgr2) : e € E} <3, 4.1)

where E = {e € HP(£2) : elpo = f—f*, AVe-v|so = g—g*}. Note that E is nonempty
because g — u* € E. Due to (4.1), there exists a function ¢ € E such that

llellmr2) < 26. 4.2)
By the continuous embedding from H? (£2) to C 2(£2), we have
lell 2y = C6. 4.3)

Remark 4.1 The existence of the “error” function e satisfying (4.2) and (4.3) implies that
the differences f — f* and g — g* are traces of smooth functions on 9£2. That means the
noise must be smooth, which might not be realistic. This smoothness condition is significant
for proving the convergence theorem; see Theorem 4.1. In practice, one can smooth out the
data by many existing methods, e.g., by using the well-known spline curves or the Tikhonov
regularization approach. However, we can relax this step in the numerical study. That means
our method is stronger than what we can prove. In our numerical study, we do not have
to smooth out the noisy data. We directly compute the desired numerical solutions to (1.1)
from the given raw, noisy data

f=f*(+drand) and g = g*(1+ §rand),

where rand is a function taking uniformly distributed random numbers in the range [—1, 1].
We have the theorem.

Theorem 4.1 Fix 8 > Bo. Recall hy as in Lemma 3.1. Let . > Ao be such that (3.1) holds
true and the number 0 in Corollary 3.1 is in (0, 1). Let {u,},>1 C H be the sequence
defined in (3.16). The following statements hold.

1. The sequence {u, },>1 converges in to a function u € H with respect to the norm | - ||¢ g,
2. Let u* be the solution to (1.1). Then,

_ c .
7 —u*12 g < ;[ f 1 |div(A®) VeI + le(x)
Q
HYe(P Jdx + elleld ) + ellurn e | 44)
where C is a positive constant depending only on M, F, Xo, §2, A, B and d.

Estimate (4.4) is interesting in the sense that it, together with (4.2), guarantees that u
tends to u* as the noise level § and the regularization parameter € tends to 0. If e = 0(52),
the convergence rate is Lipschitz. In Theorem 4.1, we assume the existence of u*. The case
of non-existence is not addressed in this paper.
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Proof of Theorem 4.1 The first part of the theorem is well-known. We only prove the second
part of the theorem. We employ the notation Hy defined in (3.7). Fix n > 1, since u,, is the

minimizer of J,,, , in H, forall ~ € Hy,
(X1 O [divA Vi () + F &, tty-1 (), Vity-1 ()]

div(A(x)Vh(x))>L2(m + e(un (x), h(x)>Hp(9) =0

Since u* satisfies (1.1),

<ezw<’<> [div(A® Vu* (%) + Fx, 1*(x), Vu* (x)], div(A(x)Vh(x)))Lz(m

n e<u*(x), h(x)> - €<u*(x), h(x))

HP(2) HP(2)

Combining (4.5) and (4.6), we have
(ezw“’ [div(AX)V (1 (X) — ¥ (%)) + F (X, p—1(X), Vity—1 (X))

— F(x, u*(x), Vu* (%)]. div(A(x)Vh(x))>L2(m + €lun () — "), h(x)>Hp(m

= —elu*®), h > .
e<u 00.h),
Recall that e is the function satisfying (4.2) and (4.3). Using the test function
hp=u, —u*—eecHy, oru,—u*=h,+e
in (4.7), we have
(240 S [div (A V (12 (0) + €(®0) + F X, tty-1 (%), Vity—1 (%))
_ * * :
F e (0, Vi ()] div( A Vin() el e, ),
= —€(u* ), hu ()

HP(2)

It follows from (4.9) and the inequality 2|ab| < 4a* + b* /4 that
[ i AV (0) P+ el
2
<C / P H™|div(A(x) Ve(x))|2dx
2

+C[ PHEOF (X, 111 (X), Vitn—1 (X)) — F(x, u*(x), Vu*(x) | dx
2

+Cellel o) + Cellu* 1 Fpq)-

Using (3.2), we can estimate the second integral on the right-hand side of (4.10) as

/ PN F (X, 14,1 (X), Vit 1 (X)) — F(x, u*(x), Vu*(x))| dx
2

< € [ @0 0 = W + 1V -1 00 = )
2
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Combining (4.10) and (4.11), we get

[ 1AV ) P+ el
2
<C f 8™ |div(A(x) Ve(x))|*dx

2

4 [ 00 [,y =t QO + 19 0,100 = ()
2

+Ceéllellyp () + Cellu* Ip () (4.12)

Applying the Carleman estimate (3.1) for the function 4, we obtain

/ P 18™) Div(AVh,) [>dx
2

> Ca / M|k, (x)|? dx 4 CA3 / M B, (%)) dx. (4.13)
Q Q
Combining (4.12) and (4.13) and recalling A >> 1, we have

i / 20|V (x) 2 dx + [ Py 01 dx ]
o 2
< C/ 2180 | div(A(x) Ve(x)) |*dx

2

+C/ ezwﬂo‘)[lunq(x) —u* X+ |V (up—1(x) — u*(X))|2]dX
2

+CellellFipin) + Cellu* 1 Fpq)- (4.14)

Let n — oo and recall that {u, },>0 strongly converges to u in Hj, g. Due to (4.8), we have
fe)
<c f 28X | div(A(x) Ve (x))|2dx
o)

+C f 0] [i(x) = w ) + V@0 - u*(x)[ |dx
2

+Cellel gy + Cellu* 13 (o) (4.15)

Estimate (4.4) is a direct consequence of (4.15) and the inequality (a — b)? > %az -t O

Remark 4.2 Above, we assume that (1.1) has a unique solution. As a result, Problem 1.1 is
well-posed. When solving a well-posed problem, one might not need a regularization term.
In contrast, our technique requires a regularization term, see (3.4). Its presence is for our
convenience in showing that J,, in (3.4) is coercive. The coercivity is crucial in proving that
J, has a minimizer. Relaxing the regularization term might be possible. However, we still
need it in this paper for simplicity.

5 Numerical Study

We consider the case d = 2 and A the identity matrix for simplicity. The computational
domain £2 is chosen to be (—1, 1)2. We solve (1.1) by the finite difference method. That

<on
S 9 /Vi
<
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means we compute the values of the solution u* on the grid

G={(i=—1+G—Ddx,yj=—1+( —Ddy): 1 <i,j <N},

where dy = ﬁ and N is a large integer. In our numerical study, N = 150.

Theorems 3.1 and 4.1 guarantee that u,, see (3.16) with n sufficiently large, is an
approximation of u*. This suggests a procedure to compute u*. This procedure is written in
Algorithm 1.

1: Choose a regularization parameter € and a threshold number «y > 0.
2: Setn = 0. Choose an arbitrary initial solution ug € H.

3: Compute u, 41 = P (u,) by minimizing J,,, in H

4 4f lupt1 — unll 2@y > Ko then

5: Replace n by n + 1.

6: Go back to Step 3.

7: else

8: Set the computed solution ucomp = Up+1-

9: end if

Algorithm 1 The procedure to compute the numerical solution to (1.1).

The numerical scheme in Algorithm 1 to solve quasi-linear PDEs with Cauchy boundary
data was used when we numerically studied a coefficient inverse problem in [54]. In [54],
we only observed the convergence numerically. The rigorous proof of the convergence was
missing. The convergence of this scheme was partly proved in [45] and [51]. By “partly”, we
mean that we only prove that the scheme delivers a numerical solution in a small neighbor-
hood of the true solution. However, the convergence of the sequence {u,},>0 to a function
u is not guaranteed. There might be the case when the sequence {u,};2, has two subse-
quences converging to two different functions. The new point in the current paper is that
this is the first time we can define a contraction mapping to guarantee that the divergence
above cannot happen.

We manually choose € and k¢ in Step 1 by a trial and error process. That means we take
a reference test in which we know the true solution. Then, we choose ¢ and k( such that
Algorithm 1 delivers acceptable numerical solution with noiseless data, i.e., § = 0. Then,
we use these parameters for all other tests and noise levels 6. The reference test is test 1
below. In all of our numerical results, ¢ = 107° and x = 1073. The Carleman weight
function used in this section is e**~%1 ™" with = 3,x9 = (0,9) and 8 = 10.

Remark 5.1 The parameters are chosen manually as follows. We take a reference test (Test
1 below) in which we already know the true solution. We then vary these parameters so that
the computed solution matches the true one. Then, we use these parameters for all other
tests. In the process of choosing these artificial parameters, we observe that if eHx—xo "
is too large (for example in the case A > 1), the computation is not stable. The computer
cannot compute the solution since it might treat some large numbers as co. In contrast, if we
choose X and f such that %017 does not “numerically” blow up, the computed solutions
are satisfactory.
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Remark 5.2 In Theorems 3.1 and 4.1, we need to impose the Lipschitz continuity of the
nonlinearity F. This assumption is essential in proving the convergence of the sequence
{un}n>0. When F is not Lipschitz, we can employ the truncation technique. Assume that we
know in advance that the true solution u™* satisfying ||u*|| -1 @ <M for some large number
M. Define

1, (s> + 1p»H? < M,
xm(X, s, p) =1 €, 1), M<(sI*>+pH? <2M, 5.1
0, (s)? + pIH1? > 2M,

and Fyy = xp F. It is obvious that u* satisfies the problem

Div(A(x)Vu(x)) + Fy(x, u(x), Vu(x)) =0, x € £2,
ux) = f*(x), X €08, (5.2)
AX)Vu(x) - v(x) = g*(x), X € 052.

Then, we can compute u* using Algorithm 1 for (5.2).

In Step 2 of Algorithm 1, we need to choose a function u( in H. A natural way to compute
such a function is to solve the linear problem, obtained by removing from (1.1) the non-
linearity F, by the Carleman quasi-reversibility method, see Remark 3.2. We do not present
the numerical implementation to solve linear PDEs using the Carleman quasi-reversibility
method in this paper. The reader can find the details about this in [45, 54, 59].

In Step 3, we minimize J,,, in H. Similarly to the discussion in Remark 3.2, the obtained
minimizer u, 4 is actually the regularized solution to

Aup1(X) + F(X, up(x), Vup(x)) =0, x € 82,
Up+1(x) = f(x), X € 042,
Bttn+1(X) = g(X), X €0R.
The details in implementation to compute the regularized solution u,4; were presented in
[45, 54, 59], in which we employ the optimization package already built in MATLAB. We
do not repeat it here. We next display our numerical examples.
Test 1. In this test, we compute the solution to

Au(x) + u(x) ++/|Vul2+1— [— 27?2 sin(z(x + y))

+ sin(w(x +y)) + \/n2 cos(m(x +y) +1]=0 (5.3)

for all x = (x, y) € 2. The boundary data are given by
u(x) = sin(zw(x + y))(1 4 drandy), 5.4
oyu(x) = m(cos(mw(x + y)), cos(w(x + y))) - v(1 4 Srandy) 5.5)

for all x = (x, y) € 382, where § > 0 is the noise level and rand;, i = 1, 2, is the function
taking uniformly distributed random numbers in the rank [—1, 1]. The true solution to (5.3),
(5.4) and (5.5) when § = 0 is u*(x) = sin(r (x 4 y)) for all x = (x, y) € §2. The graphs of
the true and computed solution and the relative L error in the computation are displayed
in Fig. 1.

It is evident from Fig. 1 that the numerical solutions to (5.3), (5.4) and (5.5) are computed
with a good accuracy. The relative errors in the computation are in Table 1. On the other
hand, one can observe from Fig. 1f that our method converges fast after only four iterations.

Test 2. We consider a more complicated test with the nonlinearity F(x, s, p) grows as
O(] p|2) as p — oo and is not convex with respect to p. We solve the equation

Au(x)+uy —ul — [ —2+2x — 16y*] =0 (5.6)

%hm.“ @ Springer



L.H. Nguyen

Table 1 Test 1. The relative

errors in computation Noise level lu* — u"P|| Lo () llu* — umPll 20y
§=0% 23024 x 1074 1.2581 x 10~
§=2% 0.0200 0.0061
§=5% 0.0491 0.0153
5§ =10% 0.0996 0.0331

forall x = (x, y) € £2. The boundary data are given by

(x% = 2y*)(1 + Srand,), (5.7)
(2x, —4y) - v(1 + érandy) (5.8)

u(x)
dyu(X)

for all x = (x, y) € 052, where § > 0 is the noise level and rand;, i = 1, 2, is the function
taking uniformly distributed random numbers in the rank [—1, 1]. The true solution to (5.6),
(5.7) and (5.8) when § = 0 is u*(x) = x> — 2y? for all x = (x, y) € £2. The graphs of the
true and computed solution and the relative L error in the computation are displayed in
Fig. 2.

Even though this test is challenging, Algorithm 1 delivers out-of-expectation numerical
solutions. The relative errors in the computation are in Table 2. On the other hand, one can
observe from Fig. 2f that our method converges fast after only seven iterations. The number
of iterations in this test is greater than that in Test 1, probably because the nonlinearity F in
this test grows faster at | p| — oo.

<1074

2

1

n ‘a
1 05 [ 05 1

1

05

0

-05

-1

(b) The computed solution (¢) The relative error
u when § = 0% AUl hen 5 = 0%
lu*[Loo ()

0 05

(d) The computed solution (¢e) The relative error (f) The difference ||up4+1 —

u when § = 10% ]l hen § = 10% unl|poo(02)
lu* oo ()

Fig.1 Test 1. The graphs of the true and computed solution to (5.3), (5.4) and (5.5) with noiseless and noisy
boundary data
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Fig.2 Test 2. The graphs of the true and computed solution to (5.6), (5.7), and (5.8) with noiseless and noisy
boundary data

Test 3. In this test, we try the efficiency of the algorithm when the nonlinearity F is not
smooth. We solve the equation

Aux) + luxX)| — luy®)| + 47 (7> + y?) sin(r(x* + y?)) — cos(m (x* + y%)))
— 27 (|x cos(rw (x* + )| — |y cos(m (x> +y*)]) = 0 (5.9)
for all x = (x, y) € £2. The boundary data are given by

u(x) = sin(r (x> + y*)(1 + & randy), (5.10)
dyu(x) = 27 (x cos(m (x> + y?)), ycos(m (x> + y?))) - v(1 + S randy)  (5.11)

for all x = (x, y) € 052, where § > 0 is the noise level and rand;, i = 1, 2, is the function
taking uniformly distributed random numbers in the rank [—1, 1]. The true solution to (5.9),
(5.10) and (5.11) when § = 0 is u*(x) = sin(w(x? + y?)) for all x = (x, y) € £2. The
graphs of the true and computed solution and the relative L* error in the computation are
displayed in Fig. 3.

Even though this test is challenging, Algorithm 1 delivers out-of-expectation numeri-
cal solutions. The relative errors are compatible with the noise, which can be found in

Table 2 Test 2. The relative

errors in computation Noise level lu* — u"P| Lo () lu* — u"P| 2
5=0% 1.3727 x 10~ 1.3134 x 10~
§=2% 0.0198 0.0130
§=75% 0.0702 0.0694
5=10% 0.1760 0.1721
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Fig. 3 Test 3. The graphs of the true and computed solution to (5.9), (5.10) and (5.11) with noiseless and
noisy boundary data

Table 3. On the other hand, one can observe from Fig. 3f that our method converges fast.
The stopping criterion meets after only four iterations.

Test 4. We now test a more interesting problem when the nonlinearity F (X, s, p) grows
at the quadratic rate in s and is discontinuous with respect to p. Let

2 _ P2 if P2 30
s e e < 5
Gx,s,p) = { 0 otherwise

forallx € 2, s € R, p = (p1, p2) € R%. We numerically solve the equation

Au(x) + G(x, u(x), Vu(x)) — [( sin(4mx — 27 y?) + y)2 _ g dmycostma=2my)+1] _
(5.12)
for all x = (x, y) € £2. The boundary data are given by

u(x) = (sin(dnx —27y%) + y)(1 + drandy), (5.13)
dou(x) = 4 (cos@mx — 2my?), —ycos(dmx —2xy?) + 1) - v(1 + S randy)  (5.14)

for all x = (x,y) € 052, where § > 0 is the noise level and rand;, i = 1,2, is the
function taking uniformly distributed random numbers in the rank [—1, 1]. The true solution

Table 3 Test 3. The relative

errors in computation Noise level lu* — uMP|| Lo () lu* — u"P| 2
§ =0% 0.0026 0.0018
8§ =2% 0.0200 0.0062
8 =5% 0.0509 0.0168
8 =10% 0.0983 0.0332
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Fig. 4 Test 4. The graphs of the true and computed solution to (5.12), (5.13) and (5.14) with noiseless and
noisy boundary data

to (5.12), (5.13) and (5.14) when § = 0 is u™(x) = sin(4mx —27Ty2) +yforallx = (x,y) €
§2. The graphs of the true and computed solution and the absolute error in the computation
are displayed in Fig. 4.

Even when (5.12) involves a term that is not continuous with respect to uy, Algorithm
1 delivers acceptable numerical solutions. The relative errors in the computation are in
Table 4. On the other hand, one can observe from Fig. 4f that our method converges fast.
The stopping criterion meets after only ten iterations.

Remark 5.3 We use a Macbook Pro 6-Core Intel Core i7 (2.6 GHz) to compute the numer-
ical solutions above. The computational time for Tests 1, 2, 3, and 4 are about 5s 7 s, 5's,
and 10 s, respectively. The computational cost is not expensive.

Remark 5.4 In the theory and in the problem setting, we assume that an upper bound of
||u*||C1(§), namely M, is known in order to use the cut-off technique in (5.1). However,
in the numerical implementation, this assumption is not used. This means that we relax
the conditions required in the theoretical part. On the other hand, the numerical method in
Algorithm 1 can deliver reliable solutions even when the nonlinearity is not smooth (see
Test 3) and is not continuous (see Test 4). In conclusion, the proposed method might be
stronger than what we can rigorously prove.

Table4 Test 4. The relative

errors in computation Noise level llu* — uMP| Lo () lu* — u"P| 2
8 =0% 0.0066 0.0055
8§ =2% 0.0184 0.0104
8 =5% 0.0496 0.0179
8 =10% 0904 0.0325
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6 Concluding Remarks

We have solved the problem of computing solutions to quasi-linear PDEs. Although this
problem is nonlinear, we do not require a good initial guess of the true solution. We first
define an operator @ such that the true solution to the given quasilinear PDE is the fixed
point of @. We construct a recursive sequence {u,},>0 whose initial term u( can be taken
arbitrary and the nth term u,, = @ (u,,—1). We next apply a Carleman estimate to prove the
convergence of this sequence. Moreover, we have proved that the stability of our method
with respect to noise is of the Lipschitz type. This Lipschitz stability is guaranteed under an
unrealistic assumption that the noise must be smooth; i.e., the traces of functions in H?(£2).
This is one of the weaknesses of our convergence theorem. Although the analysis for the
case when the noise is not smooth is missing, our numerical results are out of expectation.
Another weakness of this paper is the requirement for both Dirichlet and Neumann bound-
ary data. Our method is not applicable in the case of one of these boundary conditions being
given. However, this weakness can be acceptable since solving PDEs with the knowledge of
both Dirichlet and Neumann data arise from a very important field of applied mathematics:
Inverse Problems.
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