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Abstract

We propose a globally convergent numerical method to compute solutions to a general class

of quasi-linear PDEs with both Neumann and Dirichlet boundary conditions. Combining

the quasi-reversibility method and a suitable Carleman weight function, we define a map of

which fixed point is the solution to the PDE under consideration. To find this fixed point,

we define a recursive sequence with an arbitrary initial term using the same manner as in

the proof of the contraction principle. Applying a Carleman estimate, we show that the

sequence above converges to the desired solution. On the other hand, we also show that our

method delivers reliable solutions even when the given data are noisy. Numerical examples

are presented.

Keywords Numerical methods · Carleman estimate · Boundary value problems ·

Quasilinear elliptic equations · Inverse problems

Mathematics Subject Classification (2010) 35J62 · 35N25 · 65N12

1 Introduction

Let Ω be an open and bounded domain in R
d , d ≥ 2, with a smooth boundary. Let F :

Ω × R × R
d → R be a real-valued function in the class C2. Let A be a matrix-valued

function Ω → R
d×d satisfying

1. A is in the class C2(Ω,Rd×d);

2. A is symmetric; i.e., AT = A;

3. There are positive constants Λ1 and Λ2 such that

Λ1|ξ |2 ≤ A(x)ξ · ξ ≤ Λ2|ξ |2 for all x ∈ Ω, ξ ∈ R
d .

� Loc H. Nguyen

loc.nguyen@uncc.edu

1 Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte,

NC, 28223, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s40306-023-00500-w&domain=pdf
mailto: loc.nguyen@uncc.edu


L.H. Nguyen

Consider the over-determined boundary value problem
⎧

⎨

⎩

Div(A(x)∇u(x)) + F(x, u(x),∇u(x)) = 0, x ∈ Ω,

u(x) = f (x), x ∈ ∂Ω,

A(x)∇u(x) · ν(x) = g(x), x ∈ ∂Ω,

(1.1)

where f and g are two given functions, which are the noisy measurements in some applied

contexts; e.g., see the inverse problem in Section 2. The main aim of this paper is to develop

a numerical method to solve the following problem.

Problem 1.1 Let f ∗ and g∗ be the noiseless versions of f and g respectively. Assume that

problem
⎧

⎨

⎩

Div(A(x)∇u∗(x)) + F(x, u∗(x),∇u∗(x)) = 0, x ∈ Ω,

u∗(x) = f ∗(x), x ∈ ∂Ω,

A(x)∇u∗(x) · ν(x) = g∗(x), x ∈ ∂Ω

(1.2)

has a unique solution u∗. Given the noisy data f and g, compute an approximation of u∗.

In the statement of Problem 1.1, we request both Dirichlet and Neumann boundary data.

In the theory of PDEs, one of these data might be sufficient to determine the solution

uniquely. Hence, Problem 1.1 is over-determined. Our study accepts this redundant weak-

ness because we solve Problem 1.1 for the needs of inverse problems. The application in

inverse problems is explained as follows. Recently, we numerically solved several inverse

problems by a unified framework, see, e.g., [23–25, 32, 36, 45, 54, 59, 64]. This framework

has two steps.

In Step 1, we introduce a change of variable to reduce the given inverse problem to a

system of quasi-linear PDEs with Cauchy boundary data.

In Step 2, we solve the over-determined system obtained in Step 1. The computed

solution yields the solution to the inverse problem under consideration.

The goal of Problem 1.1 is to address Step 2 above. That is how to solve a system of

quasi-linear elliptic equations with Dirichlet and Neumann data. For convincing purposes,

we solve an inverse source problem for a nonlinear model in Section 2. This serves as

an example of reducing a challenging nonlinear inverse problem to a system of PDEs of

which this kind of over-determined data is available. We also cite to [32, 44] for using this

framework to solve the inverse scattering problem in the time domain with experimental

data. For simplicity, we solve a single equation rather than solving a system of quasi-linear

elliptic PDEs with Cauchy boundary data. This simplification does not weaken the paper

because our analysis and numerical implementation can be directly extended for systems of

quasi-linear equations.

As mentioned in the paragraph above, in the theory of PDEs, one might need only one

boundary condition to determine the solution to (1.1). However, this might not be true in

some specific circumstances. For example, the equation y′′(t) + π2y(t) = 0, t ∈ (0, 1),

with y(0) = y(1) = 0 has infinitely many solutions y(t) = C sin(πt), C ∈ R. We cite

to [13, 15, 57] for more examples in which quasi-linear elliptic PDEs, with one bound-

ary condition, have multiple solutions. To avoid the case of multiple solutions, we impose

into (1.1) two boundary conditions, see Remark 3.3 in which we prove that (1.1) with two

boundary conditions has at most one solution. Therefore, our drawback when requiring

over-determined data might be acceptable. On the other hand, up to the author’s knowledge,

a numerical method to solve quasi-linear elliptic PDE with only one boundary condition is

not yet developed unless more information about the solutions is known.
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Since (1.1) involves both Dirichlet and Neumann conditions, (1.1) might not have a solu-

tion; especially, when the measured data f and g contain significant noise. Computing the

solution to (1.1) might be impossible. In this case, we understand the solution to (1.1) as the

limit of a sequence obtained by iteratively solving linear least squares optimization prob-

lems. Assuming that (1.1) with noiseless data has a unique smooth solution u∗ and given

noisy data, we will rigorously prove that this sequence approximates u∗. This approximation

is crucial in applications when noiseless data is not available.

Our proposed numerical method to solve quasi-linear elliptic equations with Cauchy data

in this paper has two crucial features: fast and global. By “fast”, we mean that the method

converges at the exponential rate with respect to the number of iterations. By “global”, we

mean that our method does not require a good initial guess of the true solution to the problem

under consideration. Both features are the crucial strengths of this paper since it is well-

known that the widely used optimization-based methods for solving nonlinear equations are

local and time-consuming.

In the statement of Problem 1.1, we have imposed a condition about the existence and

uniqueness of bounded solutions to (1.1), with f and g replaced by f ∗ and g∗ respectively.

This condition can be interpreted as follows. Our target is to provide a new tool to solve

nonlinear inverse problems using the framework mentioned above. In these applications,

the solution u represents some physical quantities related to heat distribution or wave prop-

agation; see Section 2 for an example. So, when the measured data f and g are perfectly

noiseless, (1.1) has a solution that is such a physical quantity. So, the existence is clear

from the physical point of view. The uniqueness is due to the presence of both Dirichlet and

Neumann conditions, see Remark 3.3.

Problem 1.1 is exciting and challenging partly because our target is to compute u∗ when

the noisy data f and g are given while the corresponding noiseless ones f ∗ and g∗ are

unknown. A natural approach to compute the solution to (1.1) is to minimize a least squares

functional. A typical example of such a functional is

u 	→ J (u) =

∫

Ω

∣

∣Div(A(x)∇u(x))+F(x, u(x),∇u(x))
∣

∣

2
dx+a regularization term (1.3)

subject to the boundary conditions in (1.1). One takes the minimizer of the functional J in

(1.3) as a solution to Problem 1.1. This approach is based on optimization. It has three main

drawbacks:

1. J might be nonconvex. It might have multiple local minimizers. Therefore, a good

initial guess of the true solution u∗ is required.

2. The computational cost is expensive.

3. It is not clear that the minimizer is an approximation of u∗.

Recently, we have developed the convexification method, see [46], and the Carleman

weighted linearization method, see [48], to solve Problem 1.1.

• The key point of the convexification method is to include suitable Carleman weight func-

tions into the formulation of the mismatch functional J . By using Carleman estimates, one

can prove that the new mismatch functional is strictly convex. One also can prove that the

unique minimizer is a good approximation of u∗. Hence, drawbacks 1 and 3 can be over-

come. The convexification method was first introduced in [30] and then was developed

intensively. We refer the reader to [5, 25–28, 31–35, 46] for some important works in this

area and their applications to solving a variety kinds of inverse problems. However, the

computation due to the convexification method is time-consuming.
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• We have introduced in [48] another method, also based on Carleman estimates, to solve

Problem 1.1. The method in [48] is inspired by Carleman estimates and linearization similar

to the Newton method. We have shown in [48] that the combination of Carleman estimates

and linearization allows us to compute u∗ quickly without requesting a good initial guess.

The Carleman-Newton method was successfully used to solve a nonlinear inverse problem

in [1] and to compute numerical solutions to Hamilton-Jacobi equations in [48].

The contribution of this paper is to introduce another globally convergent numerical

method based on a Carleman estimate and the classical contraction principle. More pre-

cisely, our approach is first to define a map Φ such that the desired solution is the fixed

point of this map. The construction of Φ combines the Carleman weight function and the

quasi-reversibility method to solve over-determined linear PDEs (see [42] for the original

work for the quasi-reversibility method). Using a suitable Carleman estimate, we rigorously

prove that Φ is a contraction map. This leads to a numerical method to solve Problem 1.1.

We simply approximate the desired solution by un = Φn(u0) where Φn = Φ ◦ Φ · · · ◦ Φ

(n times) and u0 is an arbitrary function. The main theorems in this paper confirm that our

function Φ is a contraction map and that the sequence {un}n≥0 above converges to the true

solution. Imposing some technical assumptions, we will prove that the stability with respect

to the noise contained in the given data is of the Lipschitz type. We also refer to [6, 7, 45]

for similar works for the case when the data has no noise and refer to [44, 55] for the proof

of a similar result for hyperbolic equations. The strengths of our new approach include the

fact that

1. It does not require a good initial guess;

2. It is quite general in the sense that no special structure is imposed on the nonlinearity F ;

3. The convergence rate is O(θn) where θ ∈ (0, 1) and n is the number of iterations.

The paper is organized as follows. In Section 2, we present an inverse source problem

that motivates the study of Problem 1.1. In Section 3, we introduce the contraction map Φ,

which plays the key role in solving Problem 1.1. In Section 4, we show that the fixed point

of Φ is an approximation of the solution to Problem 1.1. We investigate the behavior of this

approximation as the noise in the boundary data tends to 0. Section 5 is for the numerical

study. Section 6 is for some concluding remarks.

2 An Inverse Source Problem for Nonlinear Hyperbolic Equations

In this section, we provide an example from which Problem 1.1 arises. Let T > 0 represent

the final time and G : Rd ×R×R
d → R be a smooth function. Consider the wave function

w : Rd × (0, T ) → R satisfying the following initial value problem
⎧

⎨

⎩

wt t (x, t) = 
w(x, t) + G(x, w(x, t), ∇w(x, t)), x ∈ R
d , t ∈ (0, T )

w(x, 0) = p(x), x ∈ R
d ,

wt (x, 0) = 0, x ∈ R
d .

(2.1)

Here, p(x) is a source term that generates the wave. The nonlinear inverse source problem

we are interested in is formulated as follows.

Problem 2.1 (Inverse Source Problem for hyperbolic equations) Assume that p is com-

pactly supported in a smooth and bounded domain Ω . Compute the source function p(x),

x ∈ Ω , from the measurements of

f1(x, t) = w(x, t) and f2(x, t) = ∂νw(x, t) (2.2)
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for all x ∈ ∂Ω , t ∈ [0, T ].

Problem 2.1 can be considered the nonlinear version of the thermo/photo-acoustics

tomography problem arising from bio-medical imaging. The experiment leading to this

problem is as follows, see [40, 41, 60]. One sends non-ionizing laser pulses or microwaves

to a biological tissue under inspection (for instance, a woman’s breast in mammography).

Some energy will be absorbed and converted into heat, causing a thermal expansion and

a subsequence ultrasonic wave propagating in space. The ultrasonic pressures on a sur-

face around the tissue are measured. Finding some initial information about the pressures

from these measurements yields the structure inside this tissue. Most works in the field of

thermo/photo-acoustics tomography address the problem when the governing hyperbolic

equation is linear, while the study for nonlinear cases is very limited [55]. We list here some

widely used methods for the linear models. In the case when the waves propagate in the

free space, one can find explicit reconstruction formulas in [14, 16, 50, 58], the time rever-

sal method [19, 20, 22, 65, 66], the quasi-reversibility method [12, 47], and the iterative

methods [21, 61, 62]. The publications above study thermo/photo-acoustics tomography for

simple models for non-damping and isotropic media. The reader can find publications about

thermo/photo-acoustics tomography for more complicated model involving a damping term

or attenuation term [2–4, 10, 17, 18, 38, 39, 49]. In this section, we propose another method

based on our solver of Problem 1.1.

Let {Ψn}n≥1 be the orthonormal basis of L2(0, T ) originally introduced in [29] and define

wn(x) =

∫ T

0

w(x, t)Ψn(t) dt for n ≥ 1, x ∈ Ω . (2.3)

In computation, we can approximate

w(x, t) =

∞
∑

n=1

wn(x)Ψn(t) ≈

N
∑

n=1

wn(x)Ψn(t) (2.4)

for a suitable cut-off number N ∈ N. Then, due to the governing equation in (2.1), the

vector WN = (w1, w2, . . . , wN ) “approximately” satisfies

N
∑

n=1

wn(x)Ψ ′′
n (t) =

N
∑

n=1


wn(x)Ψn(t) + G

(

x,

N
∑

i=1

wn(x)Ψn(t),

N
∑

n=1

∇wi(x)Ψn(t)

)

(2.5)

for all x ∈ Ω and t ∈ (0, T ). For each m ∈ {1, . . . , N}, we multiply Ψm(t) to both sides of

(2.5) and then integrate the resulting equation. We obtain
N

∑

n=1

wn(x)

∫ T

0

Ψ ′′
n (t)Ψm(t)dt

=

N
∑

n=1


wn(x)Ψn(t)Ψm(t)dt

+

∫ T

0

G

(

x,

N
∑

n=1

wn(x)Ψn(t),

N
∑

n=1

∇wn(x)Ψn(t)

)

Ψm(t)dt (2.6)

for all x ∈ Ω . Denote

W(x) = (w1(x), w2(x), . . . , wN (x))T,

S = (smn)
N
m,n=1,

G(x,W(x),∇W(x)) = (g1(x,W(x),∇W(x)), . . . , gN (x,W(x),∇W(x)))T,
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where

smn =

∫ T

0

Ψ ′′
n (t)Ψm(t)dt

and

gm(x,W(x),∇W(x)) =

∫ T

0

G

(

x,

N
∑

n=1

wn(x)Ψn(t),

N
∑

n=1

∇wn(x)Ψn(t)

)

Ψm(t)dt

for all x ∈ Ω . It follows from (2.6) that


W(x) + F(x,W(x),∇W(x)) = 0 for all x ∈ Ω, (2.7)

where

F(x,W(x),∇W(x)) = G(x,W(x),∇W(x)) − SW(x).

Boundary conditions for the vector-valued function W can be computed from the given

boundary data in the statement of Problem 2.1. It follows from (2.2) and (2.3) that for all

x ∈ ∂Ω

W(x) = f(x) =

(∫ T

0

f1(x, t)Ψn(t)dt

)N

n=1

(2.8)

and

∂νW(x) = g(x) =

(∫ T

0

f2(x, t)Ψn(t)dt

)N

n=1

. (2.9)

Remark 2.1 Computing a function W = W comp = (w
comp

1 , . . . , w
comp
N )T from (2.7), (2.8)

and (2.9) is the goal of Problem 1.1. This partly shows the significance of the study in this

paper.

Having W comp in hand, due to (2.4), we can evaluate the source term p via

p(x) =

N
∑

n=1

w
comp
n (x)Ψn(0) (2.10)

for all x ∈ Ω . Since solving inverse problems is out of the scope of this paper, we will

present the details about this method for Problem 2.1 and some numerical results in a near

future publication.

Remark 2.2 Our technique to “transfer” an inverse problem to the problem of computing

the solution to a system of quasilinear PDEs relies on the truncation in (2.4). This truncation

might make (2.7) not exact. It is extremely challenging to study the behavior of (2.7) as

N → ∞. In our papers using this truncation technique, see, e.g., [23–25, 32, 36, 45, 54, 59,

64], the approximation (2.4) is only verified numerically. The rigorous study of this issue is

still open.

Remark 2.3 An advantage of solving inverse problems with the truncation technique in

(2.4) is that we drop all high-frequency components of the solutions and hence the given

boundary data. This helps the data to be less sensitive to noise. We mean that cutting off

the series in (2.4) might serve as a regularization for the inverse problems, making the

inverse problems less ill-posed. This observation somewhat interprets our success in solving

ill-posed inverse problems by “approximately transferring” them to the well-posed prob-

lem (1.1), see [23–25, 32, 36, 45, 54, 59, 64]. In those publications, we have obtained
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out-of-expectation numerical results using the truncation (2.4) from highly noisy simulated

and experimental data.

3 The Carleman Contraction Principle

In this section, we establish a Carleman contraction method to solve quasi-linear PDEs.

The main tool that guarantees the success of our method is a Carleman estimate. Carleman

estimates are great tools in the study of PDEs. They were first used to prove the unique

continuation principle, see, e.g., [11, 63]. The use of Carleman estimates quickly became a

powerful tool in many areas of PDEs, especially in both theoretical and numerical methods

for inverse problems, see, e.g., [8, 9, 23, 25, 33, 36, 47, 53]. Carleman estimates were used

in cloaking [52] and in the area of computing solution to Hamilton-Jacobi equations [37,

48]. We recall a useful Carleman estimate which is important for us in the proof of the main

theorem in this paper. Let x0 be a point in R
d \ Ω such that r(x) = |x − x0| > 1 for all

x ∈ Ω . For each β > 0, define

μβ(x) = r−β(x) = |x − x0|
−β for all x ∈ Ω .

We have the following lemma.

Lemma 3.1 (Carleman estimate) There exist positive constants β0 depending only on x0,

Ω , Λ, and d such that for all function v ∈ C2(Ω) satisfying

v(x) = ∂νv(x) = 0 for all x ∈ ∂Ω,

the following estimate holds true
∫

Ω

e2λμβ (x)|Div(A∇v)|2dx

≥ Cλ

∫

Ω

e2λμβ (x)|∇v(x)|2 dx + Cλ3

∫

Ω

e2λμβ (x)|v(x)|2 dx (3.1)

for all β ≥ β0 and λ ≥ λ0. Here, λ0 = λ0(x0, Ω, A, d, β) and C = C(x0, Ω, A, d, β) > 0

depend only on the listed parameters.

Lemma 3.1 is a direct consequence of [52, Lemma 5]. We refer the reader to [48, Lemma

2.1] for details of the proof. An alternative way to obtain (3.1), with another Carleman

weight function, is to apply the Carleman estimate in [43, Chapter 4, Section 1, Lemma

3] for general parabolic operators. The arguments to obtain (3.1) using [43, Chapter 4,

Section 1, Lemma 3] are similar to that in [47, Section 3] with the Laplacian replaced by the

operator Div(A∇·). We especially draw the reader’s attention to different forms of Carleman

estimates for all three kinds of differential operators (elliptic, parabolic, and hyperbolic)

and their applications in inverse problems and computational mathematics [8, 9, 33, 53]. It

is worth mentioning that some Carleman estimates hold true for all functions v satisfying

v|∂Ω = 0 and ∂νv|� = 0 where � is a part of ∂Ω , see, e.g., [37, 56]. These Carleman

estimates can be used to solve quasilinear elliptic PDEs given the data on only a part of ∂Ω .

We are now in the position to establish the Carleman contraction principle for Problem

1.1. We temporarily consider the case when the nonlinearity F is Lipschitz continuous with

respect to the second and third variables; i.e., there is a constant CF depending on F such

that

|F(x, s1, p1) − F(x, s2, p2)| ≤ CF (|s1 − s2| + |p1 − p2|) (3.2)
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for all s1, s2 ∈ R and p1, p2 ∈ R
d . The Lipschitz continuity will be relaxed later by using

a truncation technique; see Remark 5.2. Let p > 
d/2� + 2 be an integer such that Hp(Ω)

can be continuously embedded into C2(Ω). We assume that the true solution u∗ of (1.2)

belongs to Hp(Ω). Fix β ≥ β0 and λ0 as in Lemma 3.1 such that Carleman estimate (3.1)

holds true for all λ > λ0. Let H be the set of admissible solutions

H =
{

ϕ ∈ Hp(Ω) : ϕ|∂Ω = f,A∇ϕ · ν|∂Ω = g
}

. (3.3)

Assume that H �= ∅. Define Φ : H → H as

Φ(u) = arg min
ϕ∈H

Ju(ϕ),

where

Ju(ϕ) =

∫

Ω

e2λμβ (x)
∣

∣Div(A(x)∇ϕ(x)) + F(x, u(x),∇u(x))
∣

∣

2
dx + ε‖ϕ‖2

Hp(Ω) (3.4)

for all u ∈ Hp(Ω), where ε > 0 is the regularization parameter.

Remark 3.1 (The well-definedness of Φ) It is not hard to verify that the functional Ju has

a unique minimizer Φ(u) ∈ H for all function u ∈ H . Using the compact embedding

theorem from Hp(Ω) to H 2(Ω), together with the trace theory, one can verify that H is

weakly closed in Hp(Ω) and Ju is weakly lower semicontinuous on H . The presence of

the regularization term implies that Jϕ is coercive in the sense that lim‖ϕ‖→∞ Ju(ϕ) = ∞.

Therefore, by a standard argument in analysis, we can conclude that Ju has a minimizer.

The uniqueness of the minimizer is due to the strict convexity of Ju.

In practice, given u ∈ H , we solve the linear least square problem to compute Φ(u).

This is because the map ϕ 	→ Div(A(x)∇ϕ(x)) + F(x, u(x),∇u(x)) is affine with respect

to ϕ. We can use many packages for this purpose. In computation, we use the optimization

package with the command “lsqlin” of MATLAB to minimize Ju and then obtain Φ(u).

Remark 3.2 (The Carleman quasi-reversibility method) Fix a function u ∈ H . Let ϕ =

Φ(u). Since ϕ is in H and it minimizes Ju, roughly speaking, the function ϕ “almost”

solved.
⎧

⎨

⎩

Div(A(x)∇ϕ(x)) + F(x, u(x),∇u(x)) = 0, x ∈ Ω,

ϕ(x) = f (x), x ∈ ∂Ω,

A(x)∇ϕ(x) · ν(x) = g(x), x ∈ ∂Ω .

(3.5)

Due to the presence of the regularization term ε‖ϕ‖2
Hp(Ω)

, we call ϕ the regularized solution

to (3.5). The method to compute the regularized solution to the linear (3.5) by minimizing

Ju is named the Carleman quasi-reversibility method. This name is suggested by the pres-

ence of the Carleman weight function in the formula of Ju and by the quasi-reversibility

method to solve linear PDEs with Cauchy data. See [42] for the original work on the

quasi-reversibility method.

For ε > 0, β > β0 and λ > λ0, define the norm

‖ϕ‖ε,β,λ =

(∫

Ω

e2λμβ |ϕ|2 + |∇ϕ|2dx

)1/2

+
ε

λ
‖ϕ‖Hp(Ω).

The contraction behavior of Φ is confirmed by the following theorem and its conse-

quence mentioned in Corollary 3.1.
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Theorem 3.1 There is a number C depending only on x0, Ω, Λ, β and d such that

‖Φ(u) − Φ(v)‖ε,β,λ ≤

√

CF

Cλ
‖u − v‖ε,β,λ (3.6)

for all u, v ∈ Hp(Ω).

Corollary 3.1 Choose λ � 1 such that θ =

√

CF

Cλ
∈ (0, 1). It follows from (3.6) Φ is a

contraction map with respect to the norm ‖ · ‖ε,β,λ.

Proof of Theorem 3.1 Define the set of test functions

H0 =
{

ϕ ∈ Hp(Ω) : ϕ|∂Ω = 0, A∇ϕ · ν|∂Ω = 0
}

. (3.7)

Recall the admissible set of solutions H defined in (3.3). Take two arbitrary functions u

and v in H . Let u1 = Φ(u) and v1 = Φ(v). Since u1 is the minimizer of Ju in H , by the

variational principle, we have for all h ∈ H0

〈

e2λμβ (x)
[

div(A(x)∇u1(x)) + F(x, u(x),∇u(x))
]

, div(A(x)∇h(x))
〉

L2(Ω)

+ε
〈

u1(x), h(x)
〉

Hp(Ω)
= 0. (3.8)

Similarly, for all h ∈ H0,

〈

e2λμβ (x)
[

div(A(x)∇v1(x)) + F(x, v(x),∇v(x))
]

, div(A(x)∇h(x))
〉

L2(Ω)

+ε
〈

v1(x), h(x)
〉

Hp(Ω)
= 0. (3.9)

Combining (3.8) and (3.9), using the inequality 2ab ≤ a2 + b2 and taking the test function

h = u1 − v1 ∈ H0,

we have

1

2

∫

Ω

e2λμβ |div(A(x)∇h(x))|2dx + ε‖h‖2
Hp(Ω)

≤
1

2

∫

Ω

e2λμβ |F(x, u(x),∇u(x))) − F(x, v(x),∇v(x)))|2dx. (3.10)

Using (3.2) and (3.10), we have

1

2

∫

Ω

e2λμβ |div(A(x)∇h(x))|2dx + ε‖h‖2
Hp(Ω)

≤
1

2
CF

∫

Ω

e2λμβ
(

|u(x) − v(x)| + |∇u(x) − ∇v(x)|
)2

dx. (3.11)

Note that h|∂Ω = 0 and A∇h · ν|∂Ω = 0. We apply the Carleman estimate (3.1) for h to get

∫

Ω

e2λμβ (x)|div(A∇h)|2dx

≥ Cλ

∫

Ω

e2λμβ (x)|∇h(x)|2 dx + Cλ3

∫

Ω

e2λμβ (x)|h(x)|2 dx, (3.12)
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where C = C(x0, Ω, Λ, d, β) > 0 depends only on the listed parameters. Combining

(3.11) and (3.12), we have

Cλ

∫

Ω

e2λμβ (x)|∇h(x)|2 dx + Cλ3

∫

Ω

e2λμβ (x)|h(x)|2 dx + ε‖h‖2
Hp(Ω)

≤ CF

∫

Ω

e2λμβ
(

|u(x) − v(x)| + |∇u(x) − ∇v(x)|
)2

dx.

Therefore,
∫

Ω

e2λμβ (x)|∇u1(x) − ∇v1(x)|2 dx + |u1(x) − v1(x)|2 dx +
ε

λ
‖u1 − v1‖

2
Hp(Ω)

≤
CF

Cλ

[∫

Ω

e2λμβ
(

|u(x) − v(x)|2 + |∇u(x) − ∇v(x)|2
)

dx +
ε

λ
‖u − v‖2

Hp(Ω)

]

. (3.13)

We have proved (3.6).

Remark 3.3 In the introduction section, we have mentioned that we request both Dirichlet

and Neumann boundary conditions to avoid the case when the PDE in (1.1) has multiple

solutions. This fact can be proved using a similar argument in the proof of Theorem 3.1.

Indeed, assume that (1.1) has two solutions u1 and u2. Then,
〈

e2λμβ (x)
[

div(A(x)∇u1(x)) + F(x, u1(x),∇u1(x))
]

, div(A(x)∇h(x))
〉

L2(Ω)
= 0, (3.14)

and
〈

e2λμβ (x)
[

div(A(x)∇u2(x)) + F(x, u2(x),∇u2(x))
]

, div(A(x)∇h(x))
〉

L2(Ω)
= 0. (3.15)

Using the test function h = u1 − u2 ∈ H0, we can deduce from (3.14) and (3.15) that
∫

Ω

e2λμβ (x)|div(A(x)∇h(x)|2dx

= −

∫

Ω

e2λμβ (x)
(

F(x, u1(x),∇u1(x)) − F(x, u2(x),∇u2(x))
)

div(A(x)∇h(x)dx

≤
1

2

∫

Ω

e2λμβ (x)
∣

∣F(x, u1(x),∇u1(x)) − F(x, u2(x),∇u2(x))
∣

∣

2
dx

+
1

2

∫

Ω

e2λμβ (x)
∣

∣div(A(x)∇h(x)
∣

∣

2
dx.

Using this and (3.2), we obtain
∫

Ω

e2λμβ (x)|div(A(x)∇h(x)|2dx ≤ CF

∫

Ω

e2λμβ (x)
(

|h(x)|2 + |∇h|2
)

dx.

Using Carleman estimate (3.1), we obtain an analog of (3.13), read as
∫

Ω

e2λμβ (x)
(

|h(x)|2 + |∇h|2
)

dx ≤
CF

Cλ

∫

Ω

e2λμβ (x)
(

|h(x)|2 + |∇h|2
)

dx.

Choosing λ � 1 such that CF

Cλ
∈ (0, 1), we have h = 0 or u1 = u2.

Corollary 3.1 guarantees that when λ is sufficiently large, the “fixed-point” like sequence

{un}n≥0 ⊂ H defined as
{

u0 ∈ H,

un = Φ(un−1) n ≥ 1,
(3.16)
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converges to a function u ∈ H with respect to the norm ‖ · ‖ε,β,λ. A question arises if u

approximates u∗. An affirmative answer will be given in the next section.

4 The Convergence of the Carleman ContractionMethod

Recall that f and g are the noisy versions of the boundary data f ∗ and g∗, respectively. Let

δ > 0 be the noise level. By noise, we mean that we assume

inf
{

‖e‖Hp(Ω) : e ∈ E
}

< δ, (4.1)

where E = {e ∈ Hp(Ω) : e|∂Ω = f −f ∗, A∇e ·ν|∂Ω = g−g∗}. Note that E is nonempty

because u0 − u∗ ∈ E. Due to (4.1), there exists a function e ∈ E such that

‖e‖Hp(Ω) < 2δ. (4.2)

By the continuous embedding from Hp(Ω) to C2(Ω), we have

‖e‖C2(Ω) ≤ Cδ. (4.3)

Remark 4.1 The existence of the “error” function e satisfying (4.2) and (4.3) implies that

the differences f − f ∗ and g − g∗ are traces of smooth functions on ∂Ω . That means the

noise must be smooth, which might not be realistic. This smoothness condition is significant

for proving the convergence theorem; see Theorem 4.1. In practice, one can smooth out the

data by many existing methods, e.g., by using the well-known spline curves or the Tikhonov

regularization approach. However, we can relax this step in the numerical study. That means

our method is stronger than what we can prove. In our numerical study, we do not have

to smooth out the noisy data. We directly compute the desired numerical solutions to (1.1)

from the given raw, noisy data

f = f ∗(1 + δrand) and g = g∗(1 + δ rand),

where rand is a function taking uniformly distributed random numbers in the range [−1, 1].

We have the theorem.

Theorem 4.1 Fix β ≥ β0. Recall λ0 as in Lemma 3.1. Let λ ≥ λ0 be such that (3.1) holds

true and the number θ in Corollary 3.1 is in (0, 1). Let {un}n≥1 ⊂ H be the sequence

defined in (3.16). The following statements hold.

1. The sequence {un}n≥1 converges in to a function u ∈ H with respect to the norm ‖·‖ε,β,λ.

2. Let u∗ be the solution to (1.1). Then,

‖u − u∗‖2
ε,β,λ ≤

C

λ

[

∫

Ω

e2λμβ (x)
[

|div(A(x)∇e(x))|2 + |e(x)|2

+|∇e(x)|2
]

dx + ε‖e‖2
Hp(Ω) + ε‖u∗‖2

Hp(Ω)

]

, (4.4)

where C is a positive constant depending only on M , F , x0, Ω , A, β and d .

Estimate (4.4) is interesting in the sense that it, together with (4.2), guarantees that u

tends to u∗ as the noise level δ and the regularization parameter ε tends to 0. If ε = O(δ2),

the convergence rate is Lipschitz. In Theorem 4.1, we assume the existence of u∗. The case

of non-existence is not addressed in this paper.
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Proof of Theorem 4.1 The first part of the theorem is well-known. We only prove the second

part of the theorem. We employ the notation H0 defined in (3.7). Fix n ≥ 1, since un is the

minimizer of Jun−1
in H , for all h ∈ H0,

〈

e2λμβ (x)
[

div(A(x)∇un(x)) + F(x, un−1(x),∇un−1(x))
]

,

div(A(x)∇h(x))
〉

L2(Ω)
+ ε

〈

un(x), h(x)
〉

Hp(Ω)
= 0. (4.5)

Since u∗ satisfies (1.1),

〈

e2λμβ (x)
[

div(A(x)∇u∗(x)) + F(x, u∗(x),∇u∗(x))
]

, div(A(x)∇h(x))
〉

L2(Ω)

+ ε
〈

u∗(x), h(x)
〉

Hp(Ω)
= ε

〈

u∗(x), h(x)
〉

Hp(Ω)
. (4.6)

Combining (4.5) and (4.6), we have

〈

e2λμβ (x)
[

div(A(x)∇(un(x) − u∗(x))) + F(x, un−1(x),∇un−1(x))

− F(x, u∗(x),∇u∗(x))
]

, div(A(x)∇h(x))
〉

L2(Ω)
+ ε

〈

un(x) − u∗(x), h(x)
〉

Hp(Ω)

= −ε
〈

u∗(x), h(x)
〉

Hp(Ω)
. (4.7)

Recall that e is the function satisfying (4.2) and (4.3). Using the test function

hn = un − u∗ − e ∈ H0, or un − u∗ = hn + e (4.8)

in (4.7), we have

〈

e2λμβ (x)
[

div(A(x)∇(hn(x) + e(x)) + F(x, un−1(x),∇un−1(x))

− F(x, u∗(x),∇u∗(x))
]

, div(A(x)∇hn(x))
〉

L2(Ω)
+ ε

〈

hn(x) + e(x), hn(x)
〉

Hp(Ω)

= −ε
〈

u∗(x), hn(x)
〉

Hp(Ω)
. (4.9)

It follows from (4.9) and the inequality 2|ab| ≤ 4a2 + b2/4 that

∫

Ω

e2λμβ (x)|div(A(x)∇hn(x))|2dx + ε‖hn‖
2
Hp(Ω)

≤ C

∫

Ω

e2λμβ (x)|div(A(x)∇e(x))|2dx

+C

∫

Ω

e2λμβ (x)|F(x, un−1(x),∇un−1(x)) − F(x, u∗(x),∇u∗(x))
∣

∣

2
dx

+Cε‖e‖2
Hp(Ω) + Cε‖u∗‖2

Hp(Ω). (4.10)

Using (3.2), we can estimate the second integral on the right-hand side of (4.10) as

∫

Ω

e2λμβ (x)|F(x, un−1(x),∇un−1(x)) − F(x, u∗(x),∇u∗(x))
∣

∣

2
dx

≤ C

∫

Ω

e2λμβ (x)
[

|un−1(x) − u∗(x)|2 + |∇(un−1(x) − u∗(x))|2
]

dx. (4.11)
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Combining (4.10) and (4.11), we get
∫

Ω

e2λμβ (x)|div(A(x)∇hn(x))|2dx + ε‖hn‖
2
Hp(Ω)

≤ C

∫

Ω

e2λμβ (x)|div(A(x)∇e(x))|2dx

+C

∫

Ω

e2λμβ (x)
[

|un−1(x) − u∗(x)|2 + |∇(un−1(x) − u∗(x))|2
]

dx

+Cε‖e‖2
Hp(Ω) + Cε‖u∗‖2

Hp(Ω). (4.12)

Applying the Carleman estimate (3.1) for the function hn, we obtain
∫

Ω

e2λμβ (x)|Div(A∇hn)|
2dx

≥ Cλ

∫

Ω

e2λμβ (x)|∇hn(x)|2 dx + Cλ3

∫

Ω

e2λμβ (x)|hn(x)|2 dx. (4.13)

Combining (4.12) and (4.13) and recalling λ � 1, we have

λ
[

∫

Ω

e2λμβ (x)|∇hn(x)|2 dx +

∫

Ω

e2λμβ (x)|hn(x)|2 dx
]

≤ C

∫

Ω

e2λμβ (x)|div(A(x)∇e(x))|2dx

+C

∫

Ω

e2λμβ (x)
[

|un−1(x) − u∗(x)|2 + |∇(un−1(x) − u∗(x))|2
]

dx

+Cε‖e‖2
Hp(Ω) + Cε‖u∗‖2

Hp(Ω). (4.14)

Let n → ∞ and recall that {un}n≥0 strongly converges to u in Hλ,β . Due to (4.8), we have

λ
[

∫

Ω

e2λμβ (x)
(

|∇(u(x) − u∗(x) − e(x))|2 + |u(x) − u∗(x) − e(x)|2
)

dx
]

≤ C

∫

Ω

e2λμβ (x)|div(A(x)∇e(x))|2dx

+C

∫

Ω

e2λμβ (x)
[

|u(x) − u∗(x)|2 + |∇(u(x) − u∗(x))|2
]

dx

+Cε‖e‖2
Hp(Ω) + Cε‖u∗‖2

Hp(Ω). (4.15)

Estimate (4.4) is a direct consequence of (4.15) and the inequality (a−b)2 ≥ 1
2
a2 −b2.

Remark 4.2 Above, we assume that (1.1) has a unique solution. As a result, Problem 1.1 is

well-posed. When solving a well-posed problem, one might not need a regularization term.

In contrast, our technique requires a regularization term, see (3.4). Its presence is for our

convenience in showing that Ju in (3.4) is coercive. The coercivity is crucial in proving that

Ju has a minimizer. Relaxing the regularization term might be possible. However, we still

need it in this paper for simplicity.

5 Numerical Study

We consider the case d = 2 and A the identity matrix for simplicity. The computational

domain Ω is chosen to be (−1, 1)2. We solve (1.1) by the finite difference method. That
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means we compute the values of the solution u∗ on the grid

G =
{

(xi = −1 + (i − 1)dx, yj = −1 + (j − 1)dx) : 1 ≤ i, j ≤ N
}

,

where dx = 2
N−1

and N is a large integer. In our numerical study, N = 150.

Theorems 3.1 and 4.1 guarantee that un, see (3.16) with n sufficiently large, is an

approximation of u∗. This suggests a procedure to compute u∗. This procedure is written in

Algorithm 1.

Algorithm 1 The procedure to compute the numerical solution to (1.1).

The numerical scheme in Algorithm 1 to solve quasi-linear PDEs with Cauchy boundary

data was used when we numerically studied a coefficient inverse problem in [54]. In [54],

we only observed the convergence numerically. The rigorous proof of the convergence was

missing. The convergence of this scheme was partly proved in [45] and [51]. By “partly”, we

mean that we only prove that the scheme delivers a numerical solution in a small neighbor-

hood of the true solution. However, the convergence of the sequence {un}n≥0 to a function

u is not guaranteed. There might be the case when the sequence {un}
∞
n=0 has two subse-

quences converging to two different functions. The new point in the current paper is that

this is the first time we can define a contraction mapping to guarantee that the divergence

above cannot happen.

We manually choose ε and κ0 in Step 1 by a trial and error process. That means we take

a reference test in which we know the true solution. Then, we choose ε and κ0 such that

Algorithm 1 delivers acceptable numerical solution with noiseless data, i.e., δ = 0. Then,

we use these parameters for all other tests and noise levels δ. The reference test is test 1

below. In all of our numerical results, ε = 10−6 and κ = 10−3. The Carleman weight

function used in this section is eλ|x−x0|
−β

with λ = 3, x0 = (0, 9) and β = 10.

Remark 5.1 The parameters are chosen manually as follows. We take a reference test (Test

1 below) in which we already know the true solution. We then vary these parameters so that

the computed solution matches the true one. Then, we use these parameters for all other

tests. In the process of choosing these artificial parameters, we observe that if eλ|x−x0|
−β

is too large (for example in the case λ � 1), the computation is not stable. The computer

cannot compute the solution since it might treat some large numbers as ∞. In contrast, if we

choose λ and β such that eλ|x−x0|
−β

does not “numerically” blow up, the computed solutions

are satisfactory.
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Remark 5.2 In Theorems 3.1 and 4.1, we need to impose the Lipschitz continuity of the

nonlinearity F . This assumption is essential in proving the convergence of the sequence

{un}n≥0. When F is not Lipschitz, we can employ the truncation technique. Assume that we

know in advance that the true solution u∗ satisfying ‖u∗‖C1(Ω) < M for some large number

M . Define

χM (x, s, p) =

⎧

⎨

⎩

1, (|s|2 + |p|2)1/2 ≤ M,

∈ (0, 1), M < (|s|2 + |p|2)1/2 < 2M,

0, (|s|2 + |p|2)1/2 ≥ 2M,

(5.1)

and FM = χMF . It is obvious that u∗ satisfies the problem
⎧

⎨

⎩

Div(A(x)∇u(x)) + FM (x, u(x),∇u(x)) = 0, x ∈ Ω,

u(x) = f ∗(x), x ∈ ∂Ω,

A(x)∇u(x) · ν(x) = g∗(x), x ∈ ∂Ω .

(5.2)

Then, we can compute u∗ using Algorithm 1 for (5.2).

In Step 2 of Algorithm 1, we need to choose a function u0 in H . A natural way to compute

such a function is to solve the linear problem, obtained by removing from (1.1) the non-

linearity F , by the Carleman quasi-reversibility method, see Remark 3.2. We do not present

the numerical implementation to solve linear PDEs using the Carleman quasi-reversibility

method in this paper. The reader can find the details about this in [45, 54, 59].

In Step 3, we minimize Jun in H . Similarly to the discussion in Remark 3.2, the obtained

minimizer un+1 is actually the regularized solution to
⎧

⎨

⎩


un+1(x) + F(x, un(x),∇un(x)) = 0, x ∈ Ω,

un+1(x) = f (x), x ∈ ∂Ω,

∂νun+1(x) = g(x), x ∈ ∂Ω .

The details in implementation to compute the regularized solution un+1 were presented in

[45, 54, 59], in which we employ the optimization package already built in MATLAB. We

do not repeat it here. We next display our numerical examples.

Test 1. In this test, we compute the solution to


u(x) + u(x) +

√

|∇u|2 + 1 −
[

− 2π2 sin(π(x + y))

+ sin(π(x + y)) +

√

π2 cos(π(x + y)) + 1
]

= 0 (5.3)

for all x = (x, y) ∈ Ω . The boundary data are given by

u(x) = sin(π(x + y))(1 + δrand1), (5.4)

∂νu(x) = π(cos(π(x + y)), cos(π(x + y))) · ν(1 + δrand2) (5.5)

for all x = (x, y) ∈ ∂Ω , where δ > 0 is the noise level and randi , i = 1, 2, is the function

taking uniformly distributed random numbers in the rank [−1, 1]. The true solution to (5.3),

(5.4) and (5.5) when δ = 0 is u∗(x) = sin(π(x + y)) for all x = (x, y) ∈ Ω . The graphs of

the true and computed solution and the relative L∞ error in the computation are displayed

in Fig. 1.

It is evident from Fig. 1 that the numerical solutions to (5.3), (5.4) and (5.5) are computed

with a good accuracy. The relative errors in the computation are in Table 1. On the other

hand, one can observe from Fig. 1f that our method converges fast after only four iterations.

Test 2. We consider a more complicated test with the nonlinearity F(x, s, p) grows as

O(|p|2) as p → ∞ and is not convex with respect to p. We solve the equation


u(x) + ux − u2
y −

[

− 2 + 2x − 16y2
]

= 0 (5.6)
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Table 1 Test 1. The relative

errors in computation Noise level ‖u∗ − ucomp‖L∞(Ω) ‖u∗ − ucomp‖L2(Ω)

δ = 0% 2.3024 × 10−4 1.2581 × 10−4

δ = 2% 0.0200 0.0061

δ = 5% 0.0491 0.0153

δ = 10% 0.0996 0.0331

for all x = (x, y) ∈ Ω . The boundary data are given by

u(x) = (x2 − 2y2)(1 + δrand1), (5.7)

∂νu(x) = (2x,−4y) · ν(1 + δrand2) (5.8)

for all x = (x, y) ∈ ∂Ω , where δ > 0 is the noise level and randi , i = 1, 2, is the function

taking uniformly distributed random numbers in the rank [−1, 1]. The true solution to (5.6),

(5.7) and (5.8) when δ = 0 is u∗(x) = x2 − 2y2 for all x = (x, y) ∈ Ω . The graphs of the

true and computed solution and the relative L∞ error in the computation are displayed in

Fig. 2.

Even though this test is challenging, Algorithm 1 delivers out-of-expectation numerical

solutions. The relative errors in the computation are in Table 2. On the other hand, one can

observe from Fig. 2f that our method converges fast after only seven iterations. The number

of iterations in this test is greater than that in Test 1, probably because the nonlinearity F in

this test grows faster at |p| → ∞.

Fig. 1 Test 1. The graphs of the true and computed solution to (5.3), (5.4) and (5.5) with noiseless and noisy

boundary data
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Fig. 2 Test 2. The graphs of the true and computed solution to (5.6), (5.7), and (5.8) with noiseless and noisy

boundary data

Test 3. In this test, we try the efficiency of the algorithm when the nonlinearity F is not

smooth. We solve the equation


u(x) + |ux(x)| − |uy(x)| + 4π
(

π(x2 + y2) sin(π(x2 + y2)) − cos(π(x2 + y2))
)

− 2π
(

|x cos(π(x2+y2))|−|y cos(π(x2+y2))|
)

= 0 (5.9)

for all x = (x, y) ∈ Ω . The boundary data are given by

u(x) = sin(π(x2 + y2))(1 + δ rand1), (5.10)

∂νu(x) = 2π(x cos(π(x2 + y2)), y cos(π(x2 + y2))) · ν(1 + δ rand2) (5.11)

for all x = (x, y) ∈ ∂Ω , where δ > 0 is the noise level and randi , i = 1, 2, is the function

taking uniformly distributed random numbers in the rank [−1, 1]. The true solution to (5.9),

(5.10) and (5.11) when δ = 0 is u∗(x) = sin(π(x2 + y2)) for all x = (x, y) ∈ Ω . The

graphs of the true and computed solution and the relative L∞ error in the computation are

displayed in Fig. 3.

Even though this test is challenging, Algorithm 1 delivers out-of-expectation numeri-

cal solutions. The relative errors are compatible with the noise, which can be found in

Table 2 Test 2. The relative

errors in computation Noise level ‖u∗ − ucomp‖L∞(Ω) ‖u∗ − ucomp‖L2(Ω)

δ = 0% 1.3727 × 10−4 1.3134 × 10−4

δ = 2% 0.0198 0.0130

δ = 5% 0.0702 0.0694

δ = 10% 0.1760 0.1721
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Fig. 3 Test 3. The graphs of the true and computed solution to (5.9), (5.10) and (5.11) with noiseless and

noisy boundary data

Table 3. On the other hand, one can observe from Fig. 3f that our method converges fast.

The stopping criterion meets after only four iterations.

Test 4. We now test a more interesting problem when the nonlinearity F(x, s, p) grows

at the quadratic rate in s and is discontinuous with respect to p. Let

G(x, s, p) =

{

s2 − ep2 if ep2 < 30,

0 otherwise

for all x ∈ Ω, s ∈ R, p = (p1, p2) ∈ R
2. We numerically solve the equation


u(x) + G(x, u(x),∇u(x)) −
[

(

sin(4πx − 2πy2) + y
)2

− e−4πy cos(4πx−2πy2)+1
]

= 0

(5.12)

for all x = (x, y) ∈ Ω . The boundary data are given by

u(x) =
(

sin(4πx − 2πy2) + y
)

(1 + δrand1), (5.13)

∂νu(x) = 4π
(

cos(4πx − 2πy2),−y cos(4πx − 2πy2) + 1
)

· ν(1 + δ rand2) (5.14)

for all x = (x, y) ∈ ∂Ω , where δ > 0 is the noise level and randi , i = 1, 2, is the

function taking uniformly distributed random numbers in the rank [−1, 1]. The true solution

Table 3 Test 3. The relative

errors in computation Noise level ‖u∗ − ucomp‖L∞(Ω) ‖u∗ − ucomp‖L2(Ω)

δ = 0% 0.0026 0.0018

δ = 2% 0.0200 0.0062

δ = 5% 0.0509 0.0168

δ = 10% 0.0983 0.0332
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Fig. 4 Test 4. The graphs of the true and computed solution to (5.12), (5.13) and (5.14) with noiseless and

noisy boundary data

to (5.12), (5.13) and (5.14) when δ = 0 is u∗(x) = sin(4πx−2πy2)+y for all x = (x, y) ∈

Ω . The graphs of the true and computed solution and the absolute error in the computation

are displayed in Fig. 4.

Even when (5.12) involves a term that is not continuous with respect to uy , Algorithm

1 delivers acceptable numerical solutions. The relative errors in the computation are in

Table 4. On the other hand, one can observe from Fig. 4f that our method converges fast.

The stopping criterion meets after only ten iterations.

Remark 5.3 We use a Macbook Pro 6-Core Intel Core i7 (2.6 GHz) to compute the numer-

ical solutions above. The computational time for Tests 1, 2, 3, and 4 are about 5 s 7 s, 5 s,

and 10 s, respectively. The computational cost is not expensive.

Remark 5.4 In the theory and in the problem setting, we assume that an upper bound of

‖u∗‖C1(�), namely M , is known in order to use the cut-off technique in (5.1). However,

in the numerical implementation, this assumption is not used. This means that we relax

the conditions required in the theoretical part. On the other hand, the numerical method in

Algorithm 1 can deliver reliable solutions even when the nonlinearity is not smooth (see

Test 3) and is not continuous (see Test 4). In conclusion, the proposed method might be

stronger than what we can rigorously prove.

Table 4 Test 4. The relative

errors in computation Noise level ‖u∗ − ucomp‖L∞(Ω) ‖u∗ − ucomp‖L2(Ω)

δ = 0% 0.0066 0.0055

δ = 2% 0.0184 0.0104

δ = 5% 0.0496 0.0179

δ = 10% 0904 0.0325
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6 Concluding Remarks

We have solved the problem of computing solutions to quasi-linear PDEs. Although this

problem is nonlinear, we do not require a good initial guess of the true solution. We first

define an operator Φ such that the true solution to the given quasilinear PDE is the fixed

point of Φ. We construct a recursive sequence {un}n≥0 whose initial term u0 can be taken

arbitrary and the nth term un = Φ(un−1). We next apply a Carleman estimate to prove the

convergence of this sequence. Moreover, we have proved that the stability of our method

with respect to noise is of the Lipschitz type. This Lipschitz stability is guaranteed under an

unrealistic assumption that the noise must be smooth; i.e., the traces of functions in Hp(Ω).

This is one of the weaknesses of our convergence theorem. Although the analysis for the

case when the noise is not smooth is missing, our numerical results are out of expectation.

Another weakness of this paper is the requirement for both Dirichlet and Neumann bound-

ary data. Our method is not applicable in the case of one of these boundary conditions being

given. However, this weakness can be acceptable since solving PDEs with the knowledge of

both Dirichlet and Neumann data arise from a very important field of applied mathematics:

Inverse Problems.
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