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ABSTRACT

Visualization supports exploratory data analysis (EDA), but EDA
frequently presents spurious charts, which can mislead people into
drawing unwarranted conclusions. We investigate interventions to
prevent false discovery from visualized data. We evaluate whether
eliciting analyst beliefs helps guard against the over-interpretation
of noisy visualizations. In two experiments, we exposed partici-
pants to both spurious and ‘true’ scatterplots, and assessed their
ability to infer data-generating models that underlie those sam-
ples. Participants who underwent prior belief elicitation made 21%
more correct inferences along with 12% fewer false discoveries.
This benefit was observed across a variety of sample characteristics,
suggesting broad utility to the intervention. However, additional
interventions to highlight counterevidence and sample uncertainty
did not provide significant advantage. Our findings suggest that
lightweight, belief-driven interactions can yield a reliable, if mod-
erate, reduction in false discovery. This work also suggests future
directions to improve visual inference and reduce bias. The data
and materials for this paper are available at https://osf.io/52u6v/
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1 INTRODUCTION

Interactive visualization systems are increasingly seen as essential
tools in the data science ecosystem. A guiding philosophy behind
the design of these tools is to facilitate analysis at the speed of
sight [11]. Accordingly, visualization systems have been designed
to allow quick and almost effortless exploration of data. A key im-
plicit metric for judging the utility of these systems is how quickly
they allow users to slice and dice data [37], so as to generate as
many insights as possible [44, 49]. This design philosophy is his-
torically appropriate when one considers the role of visualization
in exploratory data analysis (EDA) [57]. Yet, it is clear that people
use (or are encouraged to use) visualizations for more than just
canonical EDA [56]. Commercial visualization systems like Tableau
are marketed as tools to aid people in ‘forecasting’ and ‘decision-
making’. There is thus tacit acknowledgment that people will or
should use these systems not just to assess a dataset at hand, but
also to infer something more generalizable. Statistical inference
from visualized data is indeed possible [9]. However, one should
take care to account for various sources of uncertainty, includ-
ing how likely a visual pattern is to represent true effects versus
accumulation of noise. Because data almost always represents a
limited and potentially biased sample, it often presents spurious
signals. The latter could manifest as persuasive visualizations when
plotted. While some patterns (e.g., the correlation between shark
attacks and tornadoes [60]) are easy to dismiss as chance, other
spurious visualizations might lend a convincing, if ultimately false,
interpretation.

The issue of false discovery is heightened during interactive
visual analysis. As data is iteratively sliced, diced, and plotted, the
chance of surfacing a spurious pattern is increased due to the so-
called ‘multiple comparisons’ problem. Systems that prioritize quick
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exploration could thus mislead observers into perceiving ‘insights’
from what might be noise. In one experiment, Zgraggen et al. found
that up to 60% of insights generated through visual analysis are
false [65]. The risk of false discovery is often controlled during
formal statistical modeling, but few of these methods are appropri-
ate for an interactive analysis regime [9, 66]. Furthermore, there
is limited empirical evaluation of how intuitive these techniques
are, and whether human analysts can effectively leverage them to
attain a reduction in false discovery. This gap takes urgency when
one considers the possible role of interactive analytics systems in
fueling a “replication crises” [26, 43].

An intervention that we explore in this work is inviting users to
share their mental models and hypotheses with the system. This can
be done by asking the viewer to ‘paint’ or otherwise visually specify
a pattern they expect to see in a visualization before the actual data
is revealed. Graphical belief elicitation has been investigated for
its effect on viewer engagement [24, 32] and for promoting good
analysis practices [36]. In addition to these benefits, we hypothesize
that visual belief elicitation is a viable intervention for neutralizing
(or at least reducing) the danger of spurious visualizations. The idea
is that by nudging analysts to weigh their prior knowledge during
the inference process, we help guard against extreme or otherwise
spurious samples. Effectively, belief elicitation could prevent the
analyst from overfitting a noisy visualization. This in turn should
reduce the false discovery rate (FDR). Or so we conjecture.

We conducted two crowdsourced experiments to test the above
hypothesis. Participants in our experiments saw scatterplots that
were sampled from known linear models and were asked to articu-
late the true relationship underlying those samples. We controlled
sample characteristics, including size and the sample’s congruence
with the ground truth (i.e., whether the sample reflected the real
model or a spurious pattern). We find that eliciting participant’s
beliefs before displaying a sample leads to better inference. Specifi-
cally, those who underwent prior elicitation were 21% more likely
to articulate the true model than those who just provided their
updated belief after observing the sample. We also saw a roughly
12% reduction in the rate of false discoveries for our intervention
relative to the control. In a second experiment, we investigated
additional interventions, aiming to reduce the potential for confir-
mation bias and to better communicate a sample’s predictive utility.
Relative to the primary intervention, these additional encodings did
not lead to any better or worse inference. Our findings suggest that
belief elicitation can be a broadly useful intervention to combat the
problem of spurious discovery. If integrated into general-purpose
visualization systems, the interactions we tested may help reduce
the incidence of false discovery in visual analytics. Our findings
also suggest a need for future research into potential side effects
to eliciting analyst beliefs, as well as techniques to help observers
better contextualize sample robustness into their visual inference.

2 BACKGROUND & RELATED WORK

2.1 Graphical Inference and False Discovery

Statistical inference allows for generalizing an observed (or as-
sumed) result from a sample to a population [39]. In null hypothesis
significance testing (NHST), one typically tests the probability of
encountering a sample that is as extreme as the observed result
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under a ‘null’ hypothesis. The null typically represents a lack of an
interesting effect or relationship. By design, NHST admits a per-
centage of results that would be incorrectly declared as significant
discoveries, when in reality they are due to chance. The percentage
of false discoveries admitted, referred to as a-value, is customarily
set to 5% in scientific publications. While the chance of false dis-
covery will not exceed 5% in a single test, the probability is quickly
inflated as one conducts additional tests. For example, after just 10
inferences, the probability of erroneously admitting at least one
discovery is equal to 1 — (1 — )% = 1 = (0.95)10 ~ 40%. This issue
is known as the multiple comparisons problem [1] and is typically
addressed in statistical modeling, for example, using Bonferroni
correction or the Benjamini-Hochberg procedure [6].

There is an analogy between NHST and visual analysis. When
one inspects a visualization, they are implicitly looking for some-
thing of interest [65]. Perhaps a non-zero correlation in a scatterplot,
or a difference between two bars in a grouped bar chart. When one
discovers a visualization of interest, it means that the visualization
stands out in some unexpected way. This is similar to the NHST
regime where one tests a dataset to see if it supports a hypothesis of
interest against a null hypothesis [9]. From this analogy, it follows
that one should account for the likelihood of obtaining a spurious
visualization that is at least as extreme as the one being observed.
Buja et al. proposed the ‘lineup’ protocol as a method to ensure a
certain « threshold when making graphical inferences [9]. Their
methods work by concealing a plot of the real data among a set of
decoys that had been generated from a null model. A naive observer
who is able to correctly identify the real plot provides statistical
evidence of a difference between the true and the null generating
processes. Majumder et al. validated this method with humans, find-
ing that observers can sometimes outperform statistical inference
methods [41]. This work suggests that, given sufficient tools, people
can make reliable inferences from visualizations and even beat a
statistical machine under certain conditions.

Endowing graphs with an inferential method like the lineup
protocol serves to bridge the gulf between exploratory and con-
firmatory techniques [15, 41]. A potential challenge in using the
lineup method in practice lies in finding a credible null model. Real
data can be complex, often embodying more structure than the as-
sumptions of a simple null distribution. For example, permutation
procedures suggested by Buja et al. [10] are insufficient at modeling
real-world phenomena such as spatial-auto correlation [3], leading
to lineups in which the ‘answer’ is rather obvious. This could leave
the analyst with a false sense of confidence. Moreover, there can
be many plausible null hypotheses to test given a single dataset,
making necessary multiple lineups. On the other hand, ignoring the
risk of spurious visual patterns altogether can lead to a high num-
ber of false discoveries. Zgraggen et al. show that it is possible to
conduct post-hoc correction for multiple comparisons after a visual
analysis session [65]. However, their method currently requires a
manual review of analyst interactions and eye gaze behaviors in
order to account for the implicit visual tests performed. Zhao et al.
propose a scheme in which the analyst decides where to ‘invest’
their a balance as they visually test multiple hypotheses [66]. Sav-
vides et al. propose splitting data to test interesting visual patterns
for significance, or alternatively limiting the set of plausible hy-
potheses based on the analyst’s prior knowledge, thus retaining
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statistical power [53]. They subsequently propose two methods to
control the FDR for between- and within-view comparisons [54].
Although promising, these approaches are yet to be validated by
human analysts for usability and/or effectiveness.

2.2 Role of Prior Knowledge in Visualization
Interpretation

An alternative to the NHST framing is to consider the role of analyst
beliefs in the inference process. People naturally draw upon their
prior knowledge and existing models as they attempt to make sense
of data [35], with existing frames tested and adapted to explain new
observations [34]. Choi et al. suggest that the same is true in visual
analysis; people appear to use visualizations to test and refine their
models, more often than they seek to acquire new models from
data [13]. Gelman formalizes this as a model-check process: the
viewer compares the visualization to an imaginary dataset drawn
from their own model, in effect checking the goodness-of-fit of
the latter [20]. Hullman and Gelman argue that model checks gov-
ern both exploratory and confirmatory analyses [25]. Realizing the
influence of prior knowledge on visualization interpretation, de-
signers have experimented with interactions that enable readers to
externalize and ‘paint’ their beliefs into charts [8]. Kim et al. found
that this type of belief elicitation, when coupled with visual feed-
back on how well a viewer had guessed the data, can trigger better
reflection and recall [32]. They posit that a visualization viewer
performs a Bayesian inference of sort to update their belief [31].
In narrative visualization, however, eliciting beliefs and providing
visual feedback did not appear to significantly impact the subjective
attitudes of respondents [24].

Techniques for eliciting beliefs are beginning to be systemati-
cally explored in the visualization and machine learning communi-
ties [17, 22, 40]. For example, Koonchanok et al. designed a visual-
ization tool with belief sketching affordances [36]. Participants who
used that tool exhibited more normative analysis practices, such as
declaring their hypotheses before peeking at the data. To stream-
line the process of hypothesis specification, Choi et al. developed a
tool that allowed users to frame data expectations in natural lan-
guage, and accordingly receive (dis)confirmatory (i.e., model-check)
visualizations [14]. Karduni et al. tested various uncertainty repre-
sentations (e.g., cones vs. lines) for how well they allowed viewers
to externalize and update their models of bivariate correlation [28].
Specifying priors for visual analysis may be roughly analogous to
pre-registration [46], whereby analysts are encouraged to record
their hypotheses and analysis plans before approaching the data so
as to dissuade p-hacking and HARKing [29, 47, 63]. Pre-registration
is associated with increased reporting of null results [27], suggesting
that it may alleviate the bias in favor of positive outcomes. Formal
pre-registration, however, can be difficult [38, 45] and potentially
too restrictive for visual analytics where flexibility is an important
consideration. Our study explores whether visual (informal) belief
elicitation may provide some of the benefits of pre-registration.

This work investigates how people externalize beliefs and make
visual inferences. Similar to earlier work, we employ linear, bivari-
ate models. However, rather than measuring people’s ability to
perform optimal Bayesian update [28], we study their ability to
qualitatively infer data-generating models from noisy samples. We
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specifically focus on whether visualization viewers can evade false
discovery after seeing spurious samples. In effect, we test whether
visual belief elicitation is an effective intervention to prevent ana-
lysts from overfitting noisy visualizations.

3 RESEARCH QUESTIONS & METHODS

Earlier work suggests that elicitation of prior beliefs can positively
impact the visual analytic process [13, 36]. For instance, analysts
appear to engage in more normative analysis practices, such as
declaring hypotheses before the data is known. They also seem
to adopt a more skeptical stance when given the opportunity to
contrast their beliefs with data. These earlier results, however, were
documented in exploratory studies. It is unclear if the behaviors
above would actually lead to more reliable conclusions. Belief elic-
itation may indeed help address the issue of analysis reliability.
Prompted to reflect on their prior knowledge, analysts may become
more discerning and potentially more able to discriminate real from
implausible relationships. The analyst can then consciously modu-
late how much they learn from a noisy visualization. In effect, the
act of externalizing one’s expectations about data may, in and of
itself, be a good tactic to reduce overfitting and, by extension, the
chance of false discovery. We seek to test this central hypothesis in
this work. Specifically, we pose the following research questions:

RQ1: Can belief elicitation improve the accuracy of inference
induced from visualizations? We prompt observers to visually reg-
ister their ‘priors’ and expectations before revealing the data. Might
this intervention lead to more accurate conclusions, particularly in
the presence of noisy visualizations?

RQ2: Does the effect of belief elicitation depend on the relia-
bility of the data sample at hand? A small dataset presents limited
(and possibly biased) information about the ground truth. Con-
fronted with potentially unreliable or extreme data, the analyst’s
prior knowledge could more strongly inform their inference, in
effect reducing the impact of what could be a misleading sample. A
potential side effect, however, is that belief elicitation could anchor
analysts to their priors, even when provided with robust data that
provides sufficient information about the ground truth.

RQ3: Does highlighting a sample’s predictive uncertainty or its
consistency with analyst beliefs affect the reliability of insights?
These two interventions could provide additional cues for analysts
to decide whether to trust the data and how much to weigh their
prior knowledge when making an inference.

We conducted two crowdsourced experiments to answer the
above questions. Participants saw and judged datasets that had been
sampled from known models. We engaged participants’ prior knowl-
edge via a graphical elicitation device. Specifically, we prompted
participants to predict the parameters of the data-generating model
prior to exposing them to a (potentially noisy) sample. We then
captured participant inferences as open-ended responses, which we
subsequently coded for accuracy against the ground truth. Rather
than testing participants’ ability to perform optimal Bayesian in-
ference [28, 31] (a task that is difficult for many [12, 55]), our goal
is to capture participants’ qualitative understanding of the data
generating process. We assess whether their interpretation is con-
sistent with the underlying statistical model. This approach ac-
knowledges that people often hope to develop qualitative insight
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Suppose we have data on programmers working at tech

companies in the US.

What is the relationship between a programmer’s
income and the amount of free time they have?

Free time

lower highest
income income

How strong do you
think the relationship is?

[
) weak

R strong

Free time

lower highest
income income

Figure 1: Our method for belief elicitation. A prompt sets the context (e.g., US tech workers). The participant is asked to
predict the relationship between two variables (e.g., a programmer’s income and the amount of free time they have). This is
achieved by adjusting the slope of a trendline (red) in a scatterplot. A slider allows the participant to adjust the uncertainty
in the relationship, thus controlling the spread of observations around the trendline. A sample from the model (grey points)
is displayed and continuously refreshed at 5Hz, thus allowing participants to see the implications of their model. The right

scatterplot reflects smaller uncertainty.

from visualizations [52], as opposed to arriving at an infinitesimally
accurate approximation of parameters. We supplement with a post-
hoc analysis of participants’ posterior beliefs to understand their
belief-updating process.

Another key feature of our study is controlling the rate of false-
positive and false-negative datasets (i.e., samples that wrongfully
suggest the presence or lack of a relationship). This rate was con-
trolled on a per-participant basis and kept consistent with the model
likelihood. We limit our study to linear models, which dictate a re-
lationship (or lack thereof) between two quantitative variables. We
employ scatterplots for visualizing samples and for belief elicitation.
We first discuss the experimental apparatus. We then describe how
we synthesized ground-truth models, and how we generated true
and spurious visualizations from those models.

3.1 Model and Prior Elicitation

To elicit beliefs about linear relationships, we used a graphical
device that allows observers to specify the direction and strength
of the relationship. We first display a prompt question about the
relationship between two variables, x and y, and ask participants
to adjust the slope of a trendline in a scatterplot to indicate the
expected relationship. Additionally, participants adjust the expected
uncertainty in the relationship using a slider (see Figure 1 for an
illustration). In effect, a participant visually supplies two parameters
(¢ and o) for the following linear model:

yi = Po+ Pxi+ €
~N(uo®)
po ~ N(0,07)
€ ~ N (0, crg)

Where p € (-1, 1) is the slope of the relationship as specified
by the trendline, and o € (0, 1) is the uncertainty in the slope as
specified by a slider. ffy specifies an intercept for the regression line,
centered around 0 with a fixed standard deviation of ¢, = 0.1 for all
stimuli. ¢; is an additional residual term with a standard deviation
fixed to o, = 0.5. To help participants grasp the implications of
their belief, we update and sample the participant’s model through-
out the interaction. We display the sample in the scatterplot and
continuously at 5Hz, showing a new set of points every 200 mil-
liseconds. This animated display, which amounts to a hypothetical
outcome plot (HOP), allows participants to directly see expected
observations as predicted from their belief.

3.2 Seeding Ground Truth Models

To test if belief elicitation helps participants make true discov-
eries, we devised questions to seed ground-truth models. These
known models enable us to code participants’ qualitative inferences
(specifically, the implied bivariate relationship) for correctness. We
started by formulating an initial set of 40 prompt questions, each
concerning the relationship between two quantitative variables.
The questions were designed to probe common knowledge: Half
featured variables that were expected to show no relationship, while
the other half were expected to exhibit either positive or negative
correlation. Table 1 illustrates example questions. To empirically
anchor the responses to those questions in common beliefs, we
recruited 40 crowdworkers from Amazon Mechanical Turk. Each
worker was tasked with providing their belief on all 40 questions
using the elicitation device illustrated in Figure 1. In effect, every
worker provided two model parameters (1 and o) in response to
each question. We averaged the parameters across all workers (sep-
arately for each question), thus yielding a crowd wisdom response
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Table 1: Examples from the 16 prompt questions used as stimuli in our experiments. For each question, we collected a mean
crowdsourced belief (i,,,4) and accordingly set the ground-truth model slope (1) to dictate positive, negative, or no bivariate

relationship between the prompt variables.

Correlation [ Question

[ Crowd wisdom [ Ground truth

What is the relationship between the number of Herowd = 0.40

celebrity actors in a movie and the movie’s rating? Ocrowd = 0.30 ©n=205
Positive What is the relationship a singer’s social media Herowd = 0.50 0=0.29

followers and their music record sales? Ocrowd = 0.25

What is the relationship between phone screen time | p¢powq = —0.28

and amount of sleep each night? Ocrowd = 0.25 p=-0.5
Negative What is the relationship between the number Herowd = —0.34 0=0.29

of children in a family and the family’s savings? Ocrowd = 0.28

What is the relationship between income and Lerowd = —0.08

the amount of free time a programmer has? Ocrowd = 0.31 pu=0

No relationship [\, i the relationship between salary Herowd = —0.06 0=0.29
and debt for an individual in the US? Ocrowd = 0.29

Ground truth Small incongruent
Positive correlation Large sample Small congruent (spurious)
(u=0.5, 6=0.29) n=40 n=9 n=9
No relationship
u=0, 0=0.29 .

Figure 2: Examples of large (always congruent), small-congruent, and small-incongruent (i.e., spurious) samples.

for every prompt. We subsequently used the mean slope to select a
subset of 16 questions from the initial 40 to be used as stimuli in
our experiments. Of those 16 questions, 8 questions demonstrated
a crowd belief of no relationship between the prompt variables, 4
suggested a positive relationship, and 4 a negative relationship. In
other words, half the prompts dictated a ‘null’ ground truth while
the other half specified a correlation (either positive or negative).
This prompt selection was based on the crowd wisdom. Specif-
ically, we considered questions with an average crowd slope of
Herowd > 0.26 to reflect a wisdom of positive correlation. Accord-
ingly, we set y in the ground truth model for those questions to
0.5. Conversely, we considered a mean fi y9,g < —0.26 to indi-
cate a negative relationship and accordingly set the corresponding
ground-truth model to y = —0.5. We considered questions with
an average slope of —0.12 < gro4g < 0.12 to indicate a lack of

expected relationship between the two variables (i.e., a null model),
setting the ground-truth slope to zero. We found that, across all
questions, workers ascribed very similar uncertainty levels to their
belief (6¢o4yq). Therefore, for all ground truth models, we set o to
0.29, the observed mean slope uncertainty.

3.3 Controlling the Rate of Spurious
Visualizations

Participants in our study saw scatterplots sampled from the above
ground-truth models and were tasked with inferring model char-
acteristics. We controlled two aspects of the sampling process: the
sample size, which represented the number of observations (i.e.,
data points) in the visualization, and the congruence of the sample
with the underlying ground truth. A sample that appears to show
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Table 2: Characteristics of spurious (i.e., incongruent) samples seen in our simulations for the small and large sample sizes.

Sample | Percent spurious samples | Mean spurious slope difference (A)
size (n) p=0 | p=05 p=0 | n=05
9 37.3% 37.2% 0.273 0.274
40 7.1% 5.2% 0.215 0.206
c smaII rates. We use (approximately) the same rates in our experiments
5 and control that rate on a per-subject basis.
% c 40% In addition to providing a sufficient number of incongruent sam-
g % n=40 ples, the parameters above ensure similar spurious-sample char-
oS 20% (large) acteristics in terms of how far those samples are from the ground
3 % ““‘llllll L truth, for both the null and correlation models (see Figure 2 for a
g IIIIIIIIIIIIII Illllllllllllllllll-- visual illustration). For e.xample, at n = 9, the difference bethfen
& the fitted slope for spurious samples and the ground truth (i.e.,
40 60 average A) was 0.273 in the null vs. 0.274 in the correlation models
Sample size

Figure 3: Rate of spurious samples (for ; = 0 models) in our
simulation as a function of sample size. Arrows mark the
rate for n = 9 (‘small’) and n = 40 (‘large’) sample sizes.

positive correlation is congruent with a g = 0.5 model. Conversely,
that same sample would be incongruent with a model that has = 0
(i-e., no correlation in the ground truth). By the law of large num-
bers, incongruent samples are far more likely to arise when the
sample is small. We simulate this phenomenon by including three
sample types as a factor: small-incongruent, small-congruent, and
large (always congruent) samples. Figure 2 illustrates examples of
each, as seen in our experiments.

We sought to control the rate of incongruent samples such that
all participants would encounter the same number of spurious visu-
alizations. To keep the latter consistent with the likelihood as per
the ground truth, we conducted simulations measuring the rate of
incongruent samples arising as a function of sample size. First, we
took a model with y = 0 and o = 0.29 (i.e., a no-relationship, null
model). We drew n-point random samples from the model, system-
atically varying n between 3 and 60 and generating 1000 samples
for each n size. We fitted each sample to a linear model (of the for-
mulation described in §3.1) and compared the fitted slope (f;;) to
the ground truth y using the absolute difference A = |u — pg;;|. We
considered a cutoff of A > 0.175 to delineate ‘incongruent’ samples.
That is, a sample would be considered incongruent (or spurious) if
the slope of its linear fit is at least 0.175 away from the real data-
generating model. We chose this cutoff to yield plausible spurious
visualizations while also ensuring a sufficient chance for those sam-
ples to arise. Figure 3 illustrates the percentage of such samples
in the simulation as a function of n. We then conducted a similar
simulation for a g = 0.5 ground truth (i.e., positive correlation),
using the same spurious-sample cutoff of A > 0.175. Based on simu-
lation results, we selected two sample sizes: a ‘small’ sample size of
n =9, which yields a spurious-sample rate of 37.3% for null models
and 37.2% for positive (and negative) correlation ground truths.
We adopted n = 40 as a ‘large’ size, for a spurious-sample rate of
7.1% and 5.2%, respectively. Table 2 provides a breakdown of those

(see Table 2).

4 EXPERIMENTI

In this experiment, we evaluate the impact of prior belief elicitation
on inferences. We present participants with a question about the
relationship between two variables, and elicit their belief about the
nature of that relationship (using the graphical device described
in §3.1). We then expose participants to a sample from the ground-
truth model, and present that sample side-by-side with their beliefs
for analysis. Following exposure to the sample, we prompt partici-
pants to make an inference about the ‘true’ relationship, and ask
them to adjust their prediction a second time. We compare this
setup to a control condition that does not include elicitation prior
to sample exposure. We score participants’ inferences by manually
checking for consistency with the ground truth. Our primary metric
is not whether participants can do Bayesian update, but whether
their qualitative insight (captured in natural language) is compat-
ible with the underlying data-generating model. To that end, we
compare the rate of false and correct inferences in both conditions.

4.1 Hypotheses

We developed three hypotheses:

H1 — Eliciting prior beliefs will improve inference accuracy.
Specifically, we expect participants in the Prior Elicitation group
to have a higher number of correct inferences compared to those
in Control. The argument behind this hypothesis is that eliciting
participants’ beliefs will nudge them to incorporate their prior
beliefs in the inference, hence guarding against extreme, spurious
samples. We would thus expect the intervention group to be more
successful at discriminating true from spurious visualizations.

H2 — The difference in accuracy between the two groups (Prior
Elicitation vs. Control) will be more pronounced when the sample
is small and incongruent with the ground truth. The latter presents
a potentially higher likelihood of making an incorrect inference.
We anticipate those whose beliefs are elicited prior to seeing such
samples to draw on their priors, which serves to moderate the
influence of misleading visualizations.

H3 — Participants who externalize their prior beliefs will be,
on average, less trusting of samples relative to the Control. In
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Suppose we have data on movies in US theaters
What is the relationship between a movie's
running time and its total box office sales?
Suppose we have data on movies in US theaters
Promptand | &
riorpbelief § Q) How strong do you What is the relationship between a movie's Read
p & / think the relationship is? running time and its total box office sales? prompt
elicitation | © P
3 weak strong
o
1hour 3 hours
Running time
We collected a data sample of movies and plotted the .
relationship between running time and box office sales We collected a data sample of movies and plotted the
c dicti hth | relationship between running time and box office sales
ompare your prediction with the sample
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Compare Your prediction Sample | think the 2 | think th
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Figure 4: Illustration of the three steps that make up a trial. In the Prior Elicitation condition, participants first read the prompt
question and specified their prior belief using a graphical elicitation device. In a second slide, they saw a sample from the
ground truth visualized side-by-side with their belief. They provided their impression on whether they thought the sample was
reliable. In the third and last step, the participant was asked to specify their belief once again, and respond to two open-ended
prompts: to describe the true relationship and to comment on how the sample might have affected their belief. The Control
condition followed a similar sequence with the exception that we did not elicit beliefs on the first slide, and therefore only

showed a sample on the second slide.

particular, we expect small samples to be flagged as non-reliable
more frequently in the former.

4.2 Participants

We recruited 80 participants (41 male and 39 female) from Amazon
Mechanical Turk. Participants had a mean age of 34.7 years. We
recruited workers who are US residents with a minimum task-
approval rate of 98%. Participants received a $5 compensation upon
completing the experiment. Based on a pilot, we estimated the
experiment to take 40 minutes on average. The study was approved
by Indiana University’s institutional review board.

4.3 Apparatus and Experimental Design

The experiment was a between-subject design. Half the participants
(40 individuals) were randomly assigned to the Prior Elicitation
condition. The other half were assigned to the Control. Participants
completed a total of 16 trials corresponding to the prompt questions
developed in §3.2. Specifically, a trial consisted of one question
about the relationship between two variables (e.g., “What is the
relationship between a movie’s running time and its total box office
sales?”). Participants in the Prior Elicitation condition were first
asked to visually externalize their belief in response to the question.
They did so by setting the slope of the trendline and adjusting the
uncertainty slider (see Figure 1). Next, participants were presented
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with a scatterplot containing a sample from the ground truth. The
sample was displayed side-by-side with the belief model in one
slide. The slide prompted the participant to compare the two and
indicate whether they thought the sample was “reliable” or not.
Lastly, after exposure to the sample, participants were asked to re-
specify their belief graphically about the relationship, after having
been exposed to a sample. Additionally, they were asked to respond
to two open-ended prompts: one to report on what they inferred
about the “true relationship” and a second to describe how the
sample affected their “prediction”. The sequence is illustrated in
Figure 4.

The Control condition consisted of a similar sequence although
without prior elicitation. However, and consistent with the interven-
tion, we elicited participants’ beliefs in Control after exposure to
the sample. This final elicitation step meant that the two conditions
were largely comparable in their interactions, with an additional
elicitation of priors in the intervention group. Post-sample (i.e.,
posterior) elicitation also gave participants in the Control an equal
opportunity to reflect when articulating their inference, though
without the benefit of having predicted a priori. In both conditions,
we manipulated the size and congruence of the visualized samples
relative to the ground truth. Two of the 16 trials displayed large
samples (n = 40 data points), with the remaining 14 showing small
samples (n = 9). Of the small samples, 40% (6 trials) were selected to
be incongruent with the underlying ground truth. This rate for spu-
rious visualizations was approximately consistent with the model
likelihood after rounding for whole numbers (see Table 2). The
remaining small samples (8 trials) were generated to be congruent
with the ground truth. We purposefully overrepresented small sam-
ples in this experiment as we sought to simulate situations where
false discovery is more likely. This in turn allows us to evaluate the
impact of the intervention with higher statistical power.

4.4 Procedure

Participants first saw a tutorial explaining the task and providing
an overview of the interface. They were informed that their goal
was to “predict and then report on the true relationship between
quantitative attributes” (emphasis in the original prompt). Partic-
ipants were instructed on how to use the belief elicitation device
using a short animation. We also informed participants that the data
samples they would be viewing may be “noisy (especially when
containing a few data points),” and that they would need to think
about how reliable a sample might be.

After the tutorial, participants completed the analyzed trials. The
order of trials was randomized, with the exception that the two
large-sample trials were always displayed as the first and eighth
stimuli (i.e., mid-experiment). We also randomly selected where (i.e.,
with which question) a participant would see the different sample
configurations. The one constraint to this randomization is that the
small-incongruent samples would be equally represented under the
null and correlation ground-truth models. Participants finished the
experiment by answering a brief demographic survey. To ensure
participant engagement, we read all responses and excluded from
the analysis those who provided irrelevant or incomprehensible
responses on more than 25% of the trials. A response was deemed
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irrelevant if it did not reference the variables in question. We re-
cruited additional participants to replace those who were excluded
until we reached our intended sample size of 80 individuals.

4.5 Coding Inference Accuracy

We manually coded the correctness of inferences. Recall that, for
each trial, participants were asked to describe what they thought
was the “true relationship” between the two variables depicted.
We did not provide participants with a specific template to follow.
Instead, we let them express their inference as an open-ended text
response. To score the accuracy of those responses, one coder (the
first author) coded the type of relationship implied by the partic-
ipant. Specifically, we coded the latter as indicating one of three
types of relationships: positive relationship, negative relationship,
or no correlation. For instance, in a question about the relationship
between caffeine consumption and height, responses indicating that
“there is a negative correlation between height and caffeine,” or that
“people who consumed a lot more caffeine tended to be shorter” were
coded as inference of a negative correlation. On other other hand,
participants who concluded that “caffeine consumption does not af-
fect the height” were coded as a no-relationship inference. We also
coded responses that indirectly implied a relationship accordingly
(e.g., “social media is key for sales promotion” as a positive correla-
tion). When the response implied a relationship but did not specify
a direction, we referred to the elicited, post-sample (i.e., posterior)
slope to determine the sign of the relationship. Lastly, we evaluated
inferences of ‘slight’, ‘mild’, or ‘very weak’ relationships conserva-
tively, coding them as no-correlation. For example, “debt and salary
are slightly connected” was recorded as implying a no-correlation
inference. This choice was meant to give participants the benefit
of the doubt, as there were more null ground-truth models in the
experiment than negative or positive correlations. We measured
coding reliability by having a second coder independently code
approximately 5% of the responses. We computed Cohen’s kappa
to assess inter-coder agreement. The resulting kappa coefficient
was 0.896, indicating strong agreement between the coders [42].
To further reduce the potential for bias during the coding process,
both coders were blinded to the experimental condition.

Once coded, the implied direction of the relationship was com-
pared against the ground-truth slope (u). Recall that there were
three possible values for p in our models: p=0.5 for a model of
positive correlation, —0.5 for negative, and 0 for no relationship. If
the coded response matched the ground truth, the inference was
deemed correct. Otherwise, we deemed the inference incorrect. This
method of scoring visualization insights against the data-generating
models is similar in spirit to Zgraggen et al. [65]. A limitation to
our coding scheme, however, is that it assumes a dichotomous in-
terpretation of inferences (i.e., ‘correct’ vs. ‘incorrect’), as opposed
to capturing effect size estimates [16]. We decided to use a binary
metric based on pilot data, which suggested that the majority of
inferences would categorically imply the presence of a (negative or
positive) relationship or the lack thereof.

4.6 Results

Participants completed the experiment in 53.4 minutes on average.
There was no meaningful difference in completion time between
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Figure 5: Left: Proportion of inferences coded ‘correct’ by
experimental condition. Dots represent the accuracy for in-
dividual participants. Diamonds depict mean condition ac-
curacy (with 95% confidence intervals). Right: The overall
false discovery rate (FDR) by condition.

the two conditions (53.7 minutes with the intervention vs. 53.1 in
Control, t(78) = .17,p = .86). Participants collectively provided
1,280 inferences in total (half obtained under Prior Elicitation and
half under Control). We excluded 28 responses (~2% of total) that
we were unable to code because they were nonsensical or did not
respond to the prompt. We first analyze the correctness of inferences
and then assess participants’ trust in the samples shown.

4.6.1 Inference Accuracy and False Discovery Rate. Using the coded

inference accuracy, we fit the results to a logistic regression model.
The model predicts the likelihood of a correct inference based on
three fixed effects: the experimental condition (Prior Elicitation
or Control), the sample type (large, small-congruent, or small-
incongruent), and the ground-truth model (positive, negative, or no
correlation). We included interaction terms between the experimen-
tal condition and sample type as well as between the condition and
ground-truth model type. Additionally, we included two random in-
tercepts to account for individual differences between participants
as well as differences due to questions (recall that the experiment
comprised 16 unique questions probing various topics). We test for
significant effects using a likelihood-ratio test (relative to a reduced
model) and report the associated y? statistic. We also report Z and
p-values for pairwise post-hoc tests, adjusting for multiple compar-
isons using Tukey’s method. As an estimate of effect size, we report
odds ratios and give the corresponding 95% confidence intervals.
We found a significant main effect of the experimental condition
(¥?(4) = 13.1,p < .05). The odds of correct inference were 2.01
times higher (95% CI: 1.38—2.93) for participants who underwent
belief elicitation before observing a sample (Z = 3.63, p < .001). The
intervention thus led to a higher likelihood of correctly classify-
ing the ground truth (54% chance, CI: 50.1—57.9% versus 44.5%, CI:
40.6—48.4% in Control). The advantage amounted to 21.3% better
inference for the intervention. In addition to omnibus accuracy, we
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compared the false discovery rate (FRD) in the two conditions. Recall
that half the stimuli were based on a ground truth of no-relationship
between the variables while the other half was grounded in a cor-
relation (either positive or negative). FDR is the proportion of ‘dis-
covered’ correlations that are unfounded in the true model. The
FDR for the Prior Elicitation group was 47.2% compared to 53.5% in
Control, which amounts to an 11.7% reduction in false discovery.
Figure 5 illustrates the inference accuracy and FDR rates for the
two conditions.

We found a significant main effect of sample type (y?(4) =
20.39, p < .001). Participants had better odds of inferring the cor-
rect model when viewing a small-congruent versus an incongruent
sample (odds ratio: 1.99, CI: 1.45—2.73, Z = 4.28,p < .001). Other
differences between large versus small samples were not signifi-
cant. Figure 6-right illustrates this relationship. We did not find
evidence of interaction between the experimental condition and
sample type (y?(2) = 1.82, p = .4). Participants in the Prior Elicita-
tion group were consistently better than Control at inferring the
true relationship, regardless of sample size or its congruence with
the data-generating model.

Lastly, we looked for differences in how well participants re-
sponded to questions across the two ground-truth types (i.e., cor-
relation vs. no relationship). We found a significant main effect of
ground truth (y?(2) = 21.7, p < .001). Relative to a no-relationship
baseline, trials with correlated variables were far more likely to
elicit a correct inference (odds ratio: 11.47, CI: 5.58—23.6, Z =
6.62,p < .001). Figure 6-left illustrates this effect. There was no
interaction between the experimental condition and model type
(x?(1) = 0.13, p = .72). Participants in the Prior Elicitation group
were consistently better at recovering the ground truth regardless
of whether the variables were correlated or not, even though the
odds were much higher with true correlations.

4.6.2 Posterior Beliefs and Belief Update (post-hoc analysis). In ad-
dition to our primary metric of inference accuracy, we also mea-
sured the alignment between participants’ posterior beliefs and the

ground truth. This was computed by taking the absolute difference

between the slope of the data-generating model () and the pos-
terior slope (recall that the latter was elicited graphically in both

conditions). Figure 7-left compares the mean posterior distance for

the two conditions under different sample types. Participants who

underwent prior elicitation arrived at posteriors that aligned more

closely with the ground truth (y?(3) = 15.47,p < .01). Sample

type also had a significant main effect (y?(4) = 97.23,p < .001),

although there was no evidence of an interaction with the experi-
mental condition (y?(2) = 0.25, p = .885), suggesting consistently

better belief alignment for the intervention group. Figure 7-right

further illustrates this effect by plotting the change in belief-truth

distance from the prior to the posterior (intervention group only).
Although many participants appear to still have been misled by spu-
rious samples, prior elicitation appears to induce better posterior

approximation across all sample configurations.

4.6.3 Perceived Sample Reliability. We modeled the likelihood of
participants trusting a sample. Recall that, for each visualized sam-
ple, participants were asked whether they thought the sample was
reliable. The main effect of the experimental condition was not
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Small-incongruent samples elicited less
accurate inferences, irrespective of the
experimental condition
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Figure 6: Inference accuracy by ground truth (left) and sample type (right). Dots (jittered to reduce overlap) depict mean
accuracy for individual participants. Diamonds represent group means (+95% CI). Annotations are a summary of the significant

effects.
Alignment with
ground truth
Large E ——
sample |
E Prior
Small ' ——i Elicitation
congruent !
! Control
Small ! ——
incongruent |
(spurious) i
0.0 0.2 0.4 0.6

Distance between posterior
belief and ground truth

More alignment with Away from
ground truth  ground truth

A

Large
———

sample
Small
congruent

Small
incongruent
(spurious)

___{_“___________'___

-0.50 -0.25 0.00

Change in belief-truth distance after
sample exposure

Figure 7: Left: Mean unsigned distance between the data-generating model (1) and elicited posterior slope. Right: Change in
belief-ground truth distance from the prior to the posterior. Error bars represent 95% CIs. Note that the right chart is limited to
participants in the intervention (priors were not elicited in Control by design).

significant (y?(4) = 8.39, p = .08). Participants in both conditions
exhibited comparable levels of trust towards the samples shown
to them. There was, however, a significant main effect of sample
type (y?(4) = 18.83,p < .001). Participants deemed large samples
more trustworthy than small, incongruent samples (odds ratio: 1.99,
95% CI: 1.23—3.21, Z = 2.82, p < .05). Similarly, participants were
also more likely to trust the small-congruent over the incongruent
samples (odds ratio: 1.56, CI: 1.17—2.08, Z = 3.03, p < .01). We also
found a significant interaction between the experimental condition
and sample type (x%(2) = 6.82, p < .05). Compared to their coun-
terparts in Control, participants in the Prior Elicitation group were
significantly more skeptical of large samples (odds ratio for trust:
0.31, CL: 0.12—0.82, Z = —2.36, p < .05). There was no evidence for

the main effect of ground truth (y?(2) = 2.78,p = .25), or for its
interaction with the experimental condition (y?(1) = 0.39, p = .53).

4.7 Discussion

The results show that eliciting analyst beliefs prior to them observ-
ing visualizations can improve inference. Participants in the Prior
Elicitation group were approximately 21% better than Control at
recovering the ground truth. Alongside the improved inference,
we observed a moderate reduction (approximately 12%) in the rate
of false discovery. Quantitative analysis of posterior beliefs rein-
forces this finding: those who underwent the intervention ended
up with beliefs that are significantly closer to the ground truth (see
Figure 7-left). These results support H1.
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Figure 8: The proportion of samples deemed reliable by participants. Error bars are 95% confidence intervals.

As expected, participants made more errors when observing
spurious (i.e., truth-incongruent) visualizations. They also made
more false inferences when there was no relationship between the
variables, reflecting a potential bias to try to ‘discover’ something
in the data, rather than reporting a null result. Yet, these effects
manifested similarly in the two experimental conditions. Thus,
while prior elicitation broadly improves inference across all sample
types, there is no evidence that the intervention is especially useful
as an implement against spurious visualizations. Instead, we found
better accuracy across all levels of sample configuration and ground-
truth models.

Lastly, comparing participants’ perceptions of sample reliability,
there is weak, non-significant evidence (p = .08) that prior belief
elicitation makes people more skeptical. Counterintuitively, this
effect seems more pronounced, presenting as significant with large
samples (see Figure 8-right). The results provide weak support to
H3, although the increased skepticism towards the seemingly more
robust (i.e., large-sample) visualizations is unexpected. It is possible
that participants whose priors were elicited suffered anchoring
effects, making them less trusting of even large samples when those
turned unexpected evidence. Anecdotally, we came across responses
that would suggest an anchoring effect in the Prior Elicitation group,
leading participants to disregard robust evidence. For example, P-
2707 responded to seeing a large sample with “No, the sample didn’t
match with my belief. And I think that the sample is wrong in some
sense.” That said, this experiment was deliberately underpowered
in the number of large samples it employed (under the assumption
that smaller samples would pose a higher risk of false discovery). In
a follow-up experiment, we employ a design with equal numbers
of large- and small-sample stimuli. We also test interventions that
could reduce confirmation bias.

5 EXPERIMENT II

Experiment 1 shows that externalizing priors could improve visual
inference. But the results also raised concerns about a potential an-
choring effect or confirmation bias. Specifically, visualizing beliefs

side-by-side with samples may provide an ‘excuse’ for participants
to reject incompatible data, or at least overweight their beliefs. In
this experiment, we test two additional interventions to reduce the
chance of such bias, by alerting participants to evidence that is
incompatible with their beliefs. This is achieved by perceptually
highlighting observations in a sample that are inconsistent with
viewer expectation. Specifically, we employ a salient color (red) to
emphasize points in a scatterplot that deviate significantly from the
expected linear model specified by the observer. An observation
is considered a significant deviation if it is located more than 3o
away from the elicited trendline. Moreover, we consider another
alternative intervention that features the uncertainty implied by the
sample. Specifically, we fit the sample to a linear model and visual-
ize the 95% prediction intervals of that model as shaded uncertainty
bounds. Figure 9 illustrates the two interventions.

The two interventions could aid observers in deciding how much
to weigh their prior beliefs against potentially noisy samples. The
Highlight condition cues the observer onto the amount of coun-
terevidence. A large sample that is incompatible with one’s expec-
tation is likely to pop out and invite more attention than a smaller
one. The conspicuous highlight could also make it difficult for the
observer to ignore unexpected evidence, especially if large. On the
other hand, the Uncertainty condition encodes the sample’s useful-
ness in predicting future observations. Larger samples would exhibit
smaller uncertainty bounds, which participants may interpret as
an indicator of sample robustness. In both of these interventions,
we elicit participant beliefs prior to and after exposing them to a
sample (i.e., similar to the Prior Elicitation condition in Exp. 1). In
addition to the two above interventions, we also include a third
Baseline condition that is identical to the intervention in Exp. 1.

5.1 Hypotheses

We expected improved inference with the two new interventions.
We also expected an increase in participants’ trust in the large
samples:
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Figure 9: Two additional interventions tested in Exp. 2: high-
lighting sample observations that deviate substantially from
the observer’s prior (top), and encoding the sample’s predic-
tive uncertainty, defined as the 95% prediction interval of a
linear fit to the sample.

H4 — Participants will benefit from Highlighting evidence in-
consistent with their beliefs. Similarly, we expect benefits from
explicitly visualizing a sample’s predictive Uncertainty. We antici-
pate both of these interventions to lead to better inference compared
to participants in the baseline condition.

H5 — Compared to Baseline, participants observing samples with
Highlights or with Uncertainty annotations will be more trusting
of large samples.

5.2 Participants, Experimental Design, and
Procedures

We recruited 120 participants (48 males, 72 females; mean age of
34.8 years) from Amazon Mechanical Turk. We recruited work-
ers who are US residents with a minimum task-approval rate of
98%. Participants were compensated with a $5 payment. We used a
between-subject design, with an equal number of participants (40)
randomly assigned to each of the three conditions (Highlight, Un-
certainty, or Baseline). The experiment consisted of 16 trials. In each
trial, participants responded to a prompt question and followed the
same steps as in Exp. 1: first visually providing their prior belief
about the relationship between two variables, then observing a
scatterplot sample, and lastly providing their open-ended inference
and posterior belief (see Figure 4 for illustration of these steps).
All participants in the experiment had to externalize their beliefs
before and after observing a sample. For the two new interventions,
the sample showed a highlight of data points deviating from the
specified prior or displayed uncertainty bounds depicting predictive
intervals from a linear fit of the sample.
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Figure 10: Inference accuracy in Exp. 2 by intervention (left)
along with the corresponding false discovery rate.

Unlike Exp. 1, we used an equal number of small and large
samples in this experiment. Eight trials displayed large samples
(n = 40 data points each) whereas eight showed small samples
(n =9). Of the 8 small-sample trials, 3 were incongruent with the
ground truth, for a spurious sample rate of 37.5% (consistent with
the model likelihood; see Table 2). Trial order was randomized.
Additionally, we randomly assigned the large, small-congruent, and
small-incongruent samples to the 16 unique questions. However,
we balanced the incongruent samples such that each participant
would encounter one spurious visualization with each of the three
model types (positive, negative, no correlation).

5.3 Results

Participants completed the experiment in 58.7 minutes on average.
They provided 1,920 responses in total. We coded inference accuracy
(correct or incorrect) using the same coding procedure as in Exp. 1
(see §4.5). We removed 34 responses (1.8%) which we were unable
to code, leaving 1,886 responses in the analysis.

5.3.1 Inference Accuracy. We fit the results to a logistic regression
model to predict the correctness of inferences. The model includes
three main factors: the experimental condition (Highlight, Uncer-
tainty, or Baseline), the sample type (large, small-congruent, and
small-incongruent), and the ground-truth type (no relationship or
correlation between the variables). We also included interaction
terms to model variations in the latter two due to different experi-
mental conditions. Random intercepts for individual participants
and questions were also included in the model, consistent with
Exp. 1. Figure 10 illustrates the overall accuracy and false discovery
rate for the three interventions. We did not find a significant main
effect of the experimental condition (x2(8) = 10.56, p = .23). The
three conditions elicited comparable inferences in terms of accu-
racy. The false discovery rate was also consistent (44.6% to 46.7%)
and comparable to that seen in Exp. 1 (47.2%).

We found a significant main effect of ground-truth type (y%(3) =
22.57,p < .001). Trials with an underlying correlation were judged
far more accurately compared to trials where the ground truth
specified no relationship between variables (odds ratio: 11.7, CI:
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Small, incongruent samples elicited
overall less accurate inferences

<t

Highlight
Uncertainty

t M+

Baseline

Large Small Small
(congruent) congruent incongruent
Sample type

Figure 11: Inference accuracy in Exp. 2 by ground truth (left) and sample type. Points (representing rates for individual

participants) were jittered slightly to reduce overlap.

4.9—27.9, Z = 5.55,p < .001). Figure 11-left illustrates this effect.
The evidence of interaction between the experimental condition
and ground truth was weak (y?(2) = 5.08, p = .08). The Highlight
intervention may be slightly better at preventing false discovery
(odds ratio: 1.6, CI: 1.01—2.53) than the Uncertainty display when
there is no true correlation, although this effect is not robust (Z =
2.01,p = .11).

We found a significant main effect of sample type (y?(6) =
32.445,p < .001). Small, incongruent samples were less likely to
elicit correct inferences compared to both large (odds ratio: 0.46,
CI: 0.34—0.62, Z = —4.99, p < .001) and small-congruent samples
(0.44, CI: 0.32—0.62, Z = 4.75, p < .001). This effect is illustrated in
Figure 11-right. Large and small-congruent samples were judged
with comparable accuracy (Z = 0.26,p = .96). We did not find
evidence of an interaction between the experimental condition and
sample type (y%(4) = 3.93, p = .42). Participants appear to perform
similarly with all three interventions (Highlight, Uncertainty, and
Baseline). Additional post-hoc analysis of posterior and prior beliefs
can be found in the supplementary materials.

5.3.2  Perceived Sample Reliability. We analyzed participants’ per-

ceptions of sample reliability (a binary response). Figure 12 il-
lustrates the proportion of samples deemed trustworthy. We did
not find a significant main effect of the experimental condition
(¥*(8) = 2.91,p = .94). There was a significant main effect of
sample type (y2(6) = 82.93,p < .001), with participants trusting
large samples more than the small-incongruent (odds ratio: 3.22,
Cl: 2.41—4.29, Z = 7.92,p < .001) and small-congruent samples
(odds ratio: 2.39, CI: 1.87—3.07, Z = 6.87,p < .001). But there was
no evidence for this effect varied at all between the three condi-
tions (y?(4) = 1.04, p = .9). We found no evidence of an effect for
ground-truth type (y2(3) = 4.59, p = .21) or for its interaction with
the intervention (y?(4) = 1.04,p = .9).

5.4 Discussion

Overall, we did not see the anticipated effects for highlighting
counterevidence (i.e., observations inconsistent with the observer’s
model), or for explicitly encoding the sample’s predictive uncer-
tainty. Inference accuracy across the three conditions was quite
comparable. At best, any difference between the interventions is
likely small and potentially limited to a specific context. An example
where such an effect might have presented is when the ground truth
dictated no relationship. Here, highlighting counter observations
could be slightly better at preventing false discovery than display-
ing an uncertainty representation (see Figure 11-left). This could
be due to a difficulty by participants in reading the uncertainty
intervals which are often misinterpreted [4]. By comparison, it may
be easier to comprehend a sample’s implication in the Highlight
condition: an unexpected scatterplot presenting a larger number of
counter-observations should invite more scrutiny, possibly causing
the observer to be more apprehensive. That said, the effect is likely
small (odds ratio: 1.01—2.53) and not statistically robust. The results
do not provide support for H4. In terms of perceived sample relia-
bility, the rates were quite comparable in the three conditions. As
expected, participants saw the large samples as significantly more
trustworthy — an effect that held across all interventions. The lack
of significant interaction suggests that perceived sample reliability
is unaffected by any of the additional interventions. The results
thus do not provide support for H5 either.

The null results in this experiment could be because the interven-
tions are, after all, largely similar. All three experimental conditions
included prior and posterior elicitation, with the main difference
being in how the sample was presented. It would appear that the
latter has a marginal impact when weighed against the primary
interaction (i.e., belief elicitation). Despite the lack of a robust ef-
fect, the experiment replicated much of the patterns observed in
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Figure 12: Mean perceived sample reliability in Exp. 2 by ground truth (left) and sample type. Error bars are 95% Cls.

Exp. 1. For example, participants in both experiments were more
likely to infer the ground truth when the latter dictated correlation.
Small, incongruent samples also elicited less accurate inferences in
both experiments. Notably, this experiment included an equal num-
ber of small and large samples, with the latter perceived as more
trustworthy by participants. The experiment thus lends additional
validation to the findings of Exp. 1 and to the general methodology.

6 GENERAL DISCUSSION

Exploratory data analysis (EDA) enables analysts to characterize
useful patterns in a way that is not strictly limited by a formal
model. However, in addition to surfacing true patterns, EDA can
amplify noise. Analysts can sometimes overinterpret these spurious
signals, causing them to see relationships that are not truly there,
or that which might not generalize beyond the sample at hand. The
flexibility afforded by modern visualization tools exacerbates this
problem by encouraging a large number of visual tests or model
checks [48, 65]. While multiple comparisons are often dealt with in
formal statistics, few interventions have been proposed to control
the false discovery rate in interactive analyses.

6.1 Belief Elicitation Leads to Better Inference
from Visualized Data

One approach to guard against spurious signals is to activate view-
ers’ prior knowledge and nudge them to be critical of apparent
patterns they encounter in visualizations. Earlier work shows that
belief-driven interactions can indeed promote good visual analytic
practices [36]. Our findings suggest that these affordances also
help people infer better models about the true state of the world.
Participants whose beliefs were elicited prior to data exposure ar-
ticulated 21% more accurate inferences. They also made 12% fewer
false discoveries. Interestingly, these benefits were not limited to
responses made with noisy visualizations. Rather, participants who
furnished their priors were consistently better at inferring the real
data-generating process, from both reliable and spurious samples.

We suspect two mechanisms behind the improved inference.
First, activating one’s prior knowledge can encourage them to be
more skeptical, particularly in the face of improbable data. Exp. 1
provided weak evidence of increased skepticism among those whose
priors were elicited. Though many were still misled by incongruent
samples, participants in the intervention group seemed more adept
at tempering the influence of spurious visualizations, ultimately
arriving at more accurate posteriors. A second possible explanation
is that, by prompting observers to reflect on what they know, we
trigger deeper processing of data. Kim et al. suggest similarities
between belief articulation and self-explanation, wherein a learner
generates an explanation to themself as they attempt to make sense
of new information [32]. Self-explanation often leads to better learn-
ing [51, 59] even when induced externally (e.g., by a teacher) [7].
Similar cognitive effects may unfold when observers are prompted
to record their beliefs. The enhanced processing could improve
one’s understanding of sample implications, which may in turn
translate to better inference. That the advantage was observed in
all sample configurations supports this idea. We speculate both of
the above-mentioned factors (data skepticism and enhanced pro-
cessing) come into play when analysts operationalize their prior
knowledge during graphical inference.

6.2 Confirmation Bias and the ‘Law of Small
Numbers’

Belief elicitation appears to help reduce the chance of false dis-
covery, although the intervention could theoretically lead to an
anchoring effect. We saw potential signs of this in Exp. 1. Specifi-
cally, participants whose priors were elicited seemed less trusting of
large samples. Moreover, even with the benefit of the intervention,
large samples induced correct inference only 66% of the time — a
lower rate than what might be expected from a normative analyst.
This phenomenon may indicate a non-belief in the law of large num-
bers; people often underestimate the evidential significance of a
large sample while overstating the importance of a small one [5, 58].
It may also reflect confirmation bias, where an analyst persists with
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their belief despite strong evidence to the contrary. We investigated
two additional interventions in Exp. 2, aiming to alleviate the above
issue. We expected these interventions to increase the likelihood
of correct inference, particularly from large samples. Instead, we
found no reliable effects for highlighting counterevidence, nor for
encoding a sample’s predictive uncertainty. The results suggest that
the benefits of belief elicitation are decoupled from the manner in
which the sample is represented, as long as the observer can still
see the raw sample.

6.3 Implications for Visualization Tools

Our work suggests benefits for operationalizing analyst beliefs dur-
ing visual analysis. To our surprise, the advantage held across a
variety of sample characteristics (i.e., large, small, and even spu-
rious samples). These results have important implications for the
design of visualization tools. We consider the feasibility of broadly
implementing this intervention and the potential impact it might
generate. We also reflect on future interaction designs for fostering
trustworthy visual analytics.

6.3.1 Intervention Feasibility and Potential Impact. While it might
take additional effort to externalize one’s belief, our findings sug-
gest that the overhead is small. Participants in the intervention
and control conditions took similar times, indicating that graphi-
cal elicitation requires minimal added effort. Yet, the intervention
yielded a tangible improvement in inference. Consequently, we
might envision the intervention as a standard feature in visualiza-
tion tools. The minimally intrusive nature of the interaction also
suggests that it would be embraced and utilized frequently by ana-
lysts. Although ‘required’ in our setup, belief elicitation can also
be implemented as an optional feature. For example, in a system
developed by Koonchanok et al., analysts can choose to paint their
prior expectations into charts if they wish or, alternatively, forgo
this interaction altogether in favor of immediately seeing data, as
is the case in current visualization systems. [36]. Depending on the
chart, the system could support a variety of elicitation techniques
(e.g., a paintbrush to specify expected pointcloud density in scatter-
plots or multi-variate ribbons for parallel coordinates). Based on
our findings, we can anticipate the presence of these interactions
to improve graphical inference.

It is important to also investigate the potential side effects of such
interventions. For example, eliciting beliefs could cause analysts to
overly fixate on their existing hypotheses. This in turn may lead
to unexpected patterns being missed. Research indeed suggests
that while hypotheses provide useful constraints for sensemak-
ing [18, 33], they can also be a liability in that they limit one from
considering unexpected data outside of their focus [64]. Similar dy-
namics might come into play with interactive visualizations: in one
experiment, analysts who specified their hypotheses entertained
fewer visualizations in their EDA process and ultimately reported
fewer observations [36]. Of course, fewer ‘insights’ might not be a
bad thing, especially when such insights align more closely with the
real data-generating processes. It is important, however, to consider
other biases analysts may be subject to, such as structural incentives
to increase discovery [21, 30]. This could still motivate questionable
behaviors like p-hacking despite tool-level interventions [23].
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6.3.2  Future Design Directions. Our work suggests future research

avenues and design interventions for the visualization community
to consider. One important goal is promoting balanced visual ana-
lytic workflows and practices. For example, tools can help analysts
explicitly test their beliefs while also nudging them to explore pat-
terns that are outside the purview of their existing hypotheses. This
can be done by augmenting recommender algorithms to consider
analyst hypotheses [62], thereby allowing systems to respond with
relevant plots as well as with other interesting visualization users
might not otherwise see given their foci. Visual analytics tools may
also be able to better predict intents by accounting for both user pri-
ors and their interaction histories. With this information, systems
can nudge analysts to adopt a broader exploratory stance when
called for, or conversely, steer them to be more hypothesis-centric.
The appropriate balance between openness and directedness will
depend on the context as well as the potential risks (e.g., of false
discovery). To that end, augmenting metrics of analytic breadth
and depth [19] to incorporate analyst knowledge may open up new
ways for supporting varying analysis styles and needs.

Visualization systems can also help users reason about data-
generating processes with simulated data drawn either from null [9]
or prior models [25]. While there are successful examples here (most
prominently the lineup protocol [10]), the design space remains
underexplored. For example, in addition to showing users entire
simulated datasets, we might present summaries of those simu-
lations, highlighting the portion of extreme visualizations given
certain assumptions, or grouping simulation results by visual char-
acteristics (e.g., via scagnostics [61]). An analyst can inspect those
summaries at a high level to understand the range of possible vi-
sualization outcomes, given an uncertain data-generating process.
Similar ideas are already common in statistics (e.g., using boot-
strapping and prior/posterior predictive simulation). However, the
potential analogs for these methods in visualization tools are yet to
be fully explored.

7 LIMITATIONS

Although robust in design, there are limitations to our study that
should be contextualized. First, our participants were recruited from
Amazon Mechanical Turk. It is fair to assume that this sample does
not represent professional data analysts. Evidence does suggest that
even experienced analysts could benefit from belief-driven interac-
tions in visualization tools [36]. Still, given the crowdsourced nature
of this study, the effects we found may not carry over, or at least
present with similar magnitudes in seasoned visualization users,
especially those who are trained in statistical inference. A second
limitation is the controlled nature of the experiments; stimuli were
presented in a predetermined order, with participants having no
say over what visualizations to inspect. By comparison, real EDA is
fluid with analysts typically deciding what projections to look at on
the fly based on emergent data features and evolving goals [2, 50].
Future work could attempt to replicate our findings in setups that
allow for more naturalistic EDA. A related issue stems from the
ground-truth models we developed, the parameters of which were
also crowdsourced. Therefore, while much of the samples observed
by participants were spurious (and hence misleadingly surprising),
the underlying truth was consistent with the crowd wisdom. The
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average participant may thus have had a reasonable chance of mak-
ing correct inferences by simply falling back to their intuition. To
be fair, this advantage was present in all interventions tested. That
said, it would be interesting to replicate our study using ground-
truth models that are inconsistent with crowd wisdom. Lastly, we
based our study on simplified linear models that dictate correla-
tions between two variables. This particular prompt format and
the corresponding belief elicitation device were inspired by earlier
studies [28]. Yet, this format presents a limited space of visual infer-
ences one can make. We also used a coding scheme that classifies
inferences as either ‘correct’ or ‘incorrect’, in effect assuming a
dichotomous interpretation of visualizations. Future work could
also consider more expansive criteria for gauging inference quality,
beyond the binary approach we used in this work. It would also be
interesting to replicate our experiments with other kinds of models,
and with other chart types and belief elicitation devices.

8 CONCLUSION

In the process of exploratory visual analysis, people sometimes
draw inferences that are intended to generalize. Such inferences
may be based on spurious visual patterns as opposed to true under-
lying effects or relationships. We explored interventions to combat
the problem of spurious discovery in visual analytics. Specifically,
we investigated if eliciting and activating analyst working knowl-
edge can improve inference quality. Participants whose beliefs were
elicited before observing samples made significantly more accurate
inferences and exhibited a lower false discovery rate. The effect
was robust when observing both true and spurious plots, suggest-
ing broad utility to the intervention. Additional interventions for
visually highlighting counterevidence or sample uncertainty did
not yield significant results over the baseline effect above. The
findings suggest that visual inference can be improved with rela-
tively lightweight interactions that can be easily incorporated into
visualization systems. Such interventions could have concrete, if
moderate, success in addressing the problem of false discovery.
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