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ABSTRACT 
Visualization supports exploratory data analysis (EDA), but EDA 
frequently presents spurious charts, which can mislead people into 
drawing unwarranted conclusions. We investigate interventions to 
prevent false discovery from visualized data. We evaluate whether 
eliciting analyst beliefs helps guard against the over-interpretation 
of noisy visualizations. In two experiments, we exposed partici-
pants to both spurious and ‘true’ scatterplots, and assessed their 
ability to infer data-generating models that underlie those sam-
ples. Participants who underwent prior belief elicitation made 21% 
more correct inferences along with 12% fewer false discoveries. 
This beneft was observed across a variety of sample characteristics, 
suggesting broad utility to the intervention. However, additional 
interventions to highlight counterevidence and sample uncertainty 
did not provide signifcant advantage. Our fndings suggest that 
lightweight, belief-driven interactions can yield a reliable, if mod-
erate, reduction in false discovery. This work also suggests future 
directions to improve visual inference and reduce bias. The data 
and materials for this paper are available at https://osf.io/52u6v/ 
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1 INTRODUCTION 
Interactive visualization systems are increasingly seen as essential 
tools in the data science ecosystem. A guiding philosophy behind 
the design of these tools is to facilitate analysis at the speed of 
sight [11]. Accordingly, visualization systems have been designed 
to allow quick and almost efortless exploration of data. A key im-
plicit metric for judging the utility of these systems is how quickly 
they allow users to slice and dice data [37], so as to generate as 
many insights as possible [44, 49]. This design philosophy is his-
torically appropriate when one considers the role of visualization 
in exploratory data analysis (EDA) [57]. Yet, it is clear that people 
use (or are encouraged to use) visualizations for more than just 
canonical EDA [56]. Commercial visualization systems like Tableau 
are marketed as tools to aid people in ‘forecasting’ and ‘decision-
making’. There is thus tacit acknowledgment that people will or 
should use these systems not just to assess a dataset at hand, but 
also to infer something more generalizable. Statistical inference 
from visualized data is indeed possible [9]. However, one should 
take care to account for various sources of uncertainty, includ-
ing how likely a visual pattern is to represent true efects versus 
accumulation of noise. Because data almost always represents a 
limited and potentially biased sample, it often presents spurious 
signals. The latter could manifest as persuasive visualizations when 
plotted. While some patterns (e.g., the correlation between shark 
attacks and tornadoes [60]) are easy to dismiss as chance, other 
spurious visualizations might lend a convincing, if ultimately false, 
interpretation. 

The issue of false discovery is heightened during interactive 
visual analysis. As data is iteratively sliced, diced, and plotted, the 
chance of surfacing a spurious pattern is increased due to the so-
called ‘multiple comparisons’ problem. Systems that prioritize quick 
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exploration could thus mislead observers into perceiving ‘insights’ 
from what might be noise. In one experiment, Zgraggen et al. found 
that up to 60% of insights generated through visual analysis are 
false [65]. The risk of false discovery is often controlled during 
formal statistical modeling, but few of these methods are appropri-
ate for an interactive analysis regime [9, 66]. Furthermore, there 
is limited empirical evaluation of how intuitive these techniques 
are, and whether human analysts can efectively leverage them to 
attain a reduction in false discovery. This gap takes urgency when 
one considers the possible role of interactive analytics systems in 
fueling a “replication crises” [26, 43]. 

An intervention that we explore in this work is inviting users to 
share their mental models and hypotheses with the system. This can 
be done by asking the viewer to ‘paint’ or otherwise visually specify 
a pattern they expect to see in a visualization before the actual data 
is revealed. Graphical belief elicitation has been investigated for 
its efect on viewer engagement [24, 32] and for promoting good 
analysis practices [36]. In addition to these benefts, we hypothesize 
that visual belief elicitation is a viable intervention for neutralizing 
(or at least reducing) the danger of spurious visualizations. The idea 
is that by nudging analysts to weigh their prior knowledge during 
the inference process, we help guard against extreme or otherwise 
spurious samples. Efectively, belief elicitation could prevent the 
analyst from overftting a noisy visualization. This in turn should 
reduce the false discovery rate (FDR). Or so we conjecture. 

We conducted two crowdsourced experiments to test the above 
hypothesis. Participants in our experiments saw scatterplots that 
were sampled from known linear models and were asked to articu-
late the true relationship underlying those samples. We controlled 
sample characteristics, including size and the sample’s congruence 
with the ground truth (i.e., whether the sample refected the real 
model or a spurious pattern). We fnd that eliciting participant’s 
beliefs before displaying a sample leads to better inference. Specif-
cally, those who underwent prior elicitation were 21% more likely 
to articulate the true model than those who just provided their 
updated belief after observing the sample. We also saw a roughly 
12% reduction in the rate of false discoveries for our intervention 
relative to the control. In a second experiment, we investigated 
additional interventions, aiming to reduce the potential for confr-
mation bias and to better communicate a sample’s predictive utility. 
Relative to the primary intervention, these additional encodings did 
not lead to any better or worse inference. Our fndings suggest that 
belief elicitation can be a broadly useful intervention to combat the 
problem of spurious discovery. If integrated into general-purpose 
visualization systems, the interactions we tested may help reduce 
the incidence of false discovery in visual analytics. Our fndings 
also suggest a need for future research into potential side efects 
to eliciting analyst beliefs, as well as techniques to help observers 
better contextualize sample robustness into their visual inference. 

2 BACKGROUND & RELATED WORK 
2.1 Graphical Inference and False Discovery 
Statistical inference allows for generalizing an observed (or as-
sumed) result from a sample to a population [39]. In null hypothesis 
signifcance testing (NHST), one typically tests the probability of 
encountering a sample that is as extreme as the observed result 

under a ‘null’ hypothesis. The null typically represents a lack of an 
interesting efect or relationship. By design, NHST admits a per-
centage of results that would be incorrectly declared as signifcant 
discoveries, when in reality they are due to chance. The percentage 
of false discoveries admitted, referred to as �-value, is customarily 
set to 5% in scientifc publications. While the chance of false dis-
covery will not exceed 5% in a single test, the probability is quickly 
infated as one conducts additional tests. For example, after just 10 
inferences, the probability of erroneously admitting at least one 
discovery is equal to 1 − (1 − �)10 = 1 − (0.95)10 ≈ 40%. This issue 
is known as the multiple comparisons problem [1] and is typically 
addressed in statistical modeling, for example, using Bonferroni 
correction or the Benjamini-Hochberg procedure [6]. 

There is an analogy between NHST and visual analysis. When 
one inspects a visualization, they are implicitly looking for some-
thing of interest [65]. Perhaps a non-zero correlation in a scatterplot, 
or a diference between two bars in a grouped bar chart. When one 
discovers a visualization of interest, it means that the visualization 
stands out in some unexpected way. This is similar to the NHST 
regime where one tests a dataset to see if it supports a hypothesis of 
interest against a null hypothesis [9]. From this analogy, it follows 
that one should account for the likelihood of obtaining a spurious 
visualization that is at least as extreme as the one being observed. 
Buja et al. proposed the ‘lineup’ protocol as a method to ensure a 
certain � threshold when making graphical inferences [9]. Their 
methods work by concealing a plot of the real data among a set of 
decoys that had been generated from a null model. A naive observer 
who is able to correctly identify the real plot provides statistical 
evidence of a diference between the true and the null generating 
processes. Majumder et al. validated this method with humans, fnd-
ing that observers can sometimes outperform statistical inference 
methods [41]. This work suggests that, given sufcient tools, people 
can make reliable inferences from visualizations and even beat a 
statistical machine under certain conditions. 

Endowing graphs with an inferential method like the lineup 
protocol serves to bridge the gulf between exploratory and con-
frmatory techniques [15, 41]. A potential challenge in using the 
lineup method in practice lies in fnding a credible null model. Real 
data can be complex, often embodying more structure than the as-
sumptions of a simple null distribution. For example, permutation 
procedures suggested by Buja et al. [10] are insufcient at modeling 
real-world phenomena such as spatial-auto correlation [3], leading 
to lineups in which the ‘answer’ is rather obvious. This could leave 
the analyst with a false sense of confdence. Moreover, there can 
be many plausible null hypotheses to test given a single dataset, 
making necessary multiple lineups. On the other hand, ignoring the 
risk of spurious visual patterns altogether can lead to a high num-
ber of false discoveries. Zgraggen et al. show that it is possible to 
conduct post-hoc correction for multiple comparisons after a visual 
analysis session [65]. However, their method currently requires a 
manual review of analyst interactions and eye gaze behaviors in 
order to account for the implicit visual tests performed. Zhao et al. 
propose a scheme in which the analyst decides where to ‘invest’ 
their � balance as they visually test multiple hypotheses [66]. Sav-
vides et al. propose splitting data to test interesting visual patterns 
for signifcance, or alternatively limiting the set of plausible hy-
potheses based on the analyst’s prior knowledge, thus retaining 
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statistical power [53]. They subsequently propose two methods to 
control the FDR for between- and within-view comparisons [54]. 
Although promising, these approaches are yet to be validated by 
human analysts for usability and/or efectiveness. 

2.2 Role of Prior Knowledge in Visualization 
Interpretation 

An alternative to the NHST framing is to consider the role of analyst 
beliefs in the inference process. People naturally draw upon their 
prior knowledge and existing models as they attempt to make sense 
of data [35], with existing frames tested and adapted to explain new 
observations [34]. Choi et al. suggest that the same is true in visual 
analysis; people appear to use visualizations to test and refne their 
models, more often than they seek to acquire new models from 
data [13]. Gelman formalizes this as a model-check process: the 
viewer compares the visualization to an imaginary dataset drawn 
from their own model, in efect checking the goodness-of-ft of 
the latter [20]. Hullman and Gelman argue that model checks gov-
ern both exploratory and confrmatory analyses [25]. Realizing the 
infuence of prior knowledge on visualization interpretation, de-
signers have experimented with interactions that enable readers to 
externalize and ‘paint’ their beliefs into charts [8]. Kim et al. found 
that this type of belief elicitation, when coupled with visual feed-
back on how well a viewer had guessed the data, can trigger better 
refection and recall [32]. They posit that a visualization viewer 
performs a Bayesian inference of sort to update their belief [31]. 
In narrative visualization, however, eliciting beliefs and providing 
visual feedback did not appear to signifcantly impact the subjective 
attitudes of respondents [24]. 

Techniques for eliciting beliefs are beginning to be systemati-
cally explored in the visualization and machine learning communi-
ties [17, 22, 40]. For example, Koonchanok et al. designed a visual-
ization tool with belief sketching afordances [36]. Participants who 
used that tool exhibited more normative analysis practices, such as 
declaring their hypotheses before peeking at the data. To stream-
line the process of hypothesis specifcation, Choi et al. developed a 
tool that allowed users to frame data expectations in natural lan-
guage, and accordingly receive (dis)confrmatory (i.e., model-check) 
visualizations [14]. Karduni et al. tested various uncertainty repre-
sentations (e.g., cones vs. lines) for how well they allowed viewers 
to externalize and update their models of bivariate correlation [28]. 
Specifying priors for visual analysis may be roughly analogous to 
pre-registration [46], whereby analysts are encouraged to record 
their hypotheses and analysis plans before approaching the data so 
as to dissuade p-hacking and HARKing [29, 47, 63]. Pre-registration 
is associated with increased reporting of null results [27], suggesting 
that it may alleviate the bias in favor of positive outcomes. Formal 
pre-registration, however, can be difcult [38, 45] and potentially 
too restrictive for visual analytics where fexibility is an important 
consideration. Our study explores whether visual (informal) belief 
elicitation may provide some of the benefts of pre-registration. 

This work investigates how people externalize beliefs and make 
visual inferences. Similar to earlier work, we employ linear, bivari-
ate models. However, rather than measuring people’s ability to 
perform optimal Bayesian update [28], we study their ability to 
qualitatively infer data-generating models from noisy samples. We 

specifcally focus on whether visualization viewers can evade false 
discovery after seeing spurious samples. In efect, we test whether 
visual belief elicitation is an efective intervention to prevent ana-
lysts from overftting noisy visualizations. 

3 RESEARCH QUESTIONS & METHODS 
Earlier work suggests that elicitation of prior beliefs can positively 
impact the visual analytic process [13, 36]. For instance, analysts 
appear to engage in more normative analysis practices, such as 
declaring hypotheses before the data is known. They also seem 
to adopt a more skeptical stance when given the opportunity to 
contrast their beliefs with data. These earlier results, however, were 
documented in exploratory studies. It is unclear if the behaviors 
above would actually lead to more reliable conclusions. Belief elic-
itation may indeed help address the issue of analysis reliability. 
Prompted to refect on their prior knowledge, analysts may become 
more discerning and potentially more able to discriminate real from 
implausible relationships. The analyst can then consciously modu-
late how much they learn from a noisy visualization. In efect, the 
act of externalizing one’s expectations about data may, in and of 
itself, be a good tactic to reduce overftting and, by extension, the 
chance of false discovery. We seek to test this central hypothesis in 
this work. Specifcally, we pose the following research questions: 

RQ1: Can belief elicitation improve the accuracy of inference 
induced from visualizations? We prompt observers to visually reg-
ister their ‘priors’ and expectations before revealing the data. Might 
this intervention lead to more accurate conclusions, particularly in 
the presence of noisy visualizations? 

RQ2: Does the efect of belief elicitation depend on the relia-
bility of the data sample at hand? A small dataset presents limited 
(and possibly biased) information about the ground truth. Con-
fronted with potentially unreliable or extreme data, the analyst’s 
prior knowledge could more strongly inform their inference, in 
efect reducing the impact of what could be a misleading sample. A 
potential side efect, however, is that belief elicitation could anchor 
analysts to their priors, even when provided with robust data that 
provides sufcient information about the ground truth. 

RQ3: Does highlighting a sample’s predictive uncertainty or its 
consistency with analyst beliefs afect the reliability of insights? 
These two interventions could provide additional cues for analysts 
to decide whether to trust the data and how much to weigh their 
prior knowledge when making an inference. 

We conducted two crowdsourced experiments to answer the 
above questions. Participants saw and judged datasets that had been 
sampled from known models. We engaged participants’ prior knowl-
edge via a graphical elicitation device. Specifcally, we prompted 
participants to predict the parameters of the data-generating model 
prior to exposing them to a (potentially noisy) sample. We then 
captured participant inferences as open-ended responses, which we 
subsequently coded for accuracy against the ground truth. Rather 
than testing participants’ ability to perform optimal Bayesian in-
ference [28, 31] (a task that is difcult for many [12, 55]), our goal 
is to capture participants’ qualitative understanding of the data 
generating process. We assess whether their interpretation is con-
sistent with the underlying statistical model. This approach ac-
knowledges that people often hope to develop qualitative insight 
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Suppose we have data on programmers working at tech 
companies in the US.

What is the relationship between a programmer’s 
income and the amount of free time they have?
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Figure 1: Our method for belief elicitation. A prompt sets the context (e.g., US tech workers). The participant is asked to 
predict the relationship between two variables (e.g., a programmer’s income and the amount of free time they have). This is 
achieved by adjusting the slope of a trendline (red) in a scatterplot. A slider allows the participant to adjust the uncertainty 
in the relationship, thus controlling the spread of observations around the trendline. A sample from the model (grey points) 
is displayed and continuously refreshed at 5Hz, thus allowing participants to see the implications of their model. The right 
scatterplot refects smaller uncertainty. 

from visualizations [52], as opposed to arriving at an infnitesimally 
accurate approximation of parameters. We supplement with a post-
hoc analysis of participants’ posterior beliefs to understand their 
belief-updating process. 

Another key feature of our study is controlling the rate of false-
positive and false-negative datasets (i.e., samples that wrongfully 
suggest the presence or lack of a relationship). This rate was con-
trolled on a per-participant basis and kept consistent with the model 
likelihood. We limit our study to linear models, which dictate a re-
lationship (or lack thereof) between two quantitative variables. We 
employ scatterplots for visualizing samples and for belief elicitation. 
We frst discuss the experimental apparatus. We then describe how 
we synthesized ground-truth models, and how we generated true 
and spurious visualizations from those models. 

3.1 Model and Prior Elicitation 
To elicit beliefs about linear relationships, we used a graphical 
device that allows observers to specify the direction and strength 
of the relationship. We frst display a prompt question about the 
relationship between two variables, � and �, and ask participants 
to adjust the slope of a trendline in a scatterplot to indicate the 
expected relationship. Additionally, participants adjust the expected 
uncertainty in the relationship using a slider (see Figure 1 for an 
illustration). In efect, a participant visually supplies two parameters 
(� and �) for the following linear model: 

�� = �0 + ��� + �� 
� ∼ N(�, �2) 
�0 ∼ N(0, �2)

� 

�� ∼ N(0, �� 
2) 

Where � ∈ (−1, 1) is the slope of the relationship as specifed 
by the trendline, and � ∈ (0, 1) is the uncertainty in the slope as 
specifed by a slider. �0 specifes an intercept for the regression line, 
centered around 0 with a fxed standard deviation of �� = 0.1 for all 
stimuli. �� is an additional residual term with a standard deviation 
fxed to �� = 0.5. To help participants grasp the implications of 
their belief, we update and sample the participant’s model through-
out the interaction. We display the sample in the scatterplot and 
continuously at 5Hz, showing a new set of points every 200 mil-
liseconds. This animated display, which amounts to a hypothetical 
outcome plot (HOP), allows participants to directly see expected 
observations as predicted from their belief. 

3.2 Seeding Ground Truth Models 
To test if belief elicitation helps participants make true discov-
eries, we devised questions to seed ground-truth models. These 
known models enable us to code participants’ qualitative inferences 
(specifcally, the implied bivariate relationship) for correctness. We 
started by formulating an initial set of 40 prompt questions, each 
concerning the relationship between two quantitative variables. 
The questions were designed to probe common knowledge: Half 
featured variables that were expected to show no relationship, while 
the other half were expected to exhibit either positive or negative 
correlation. Table 1 illustrates example questions. To empirically 
anchor the responses to those questions in common beliefs, we 
recruited 40 crowdworkers from Amazon Mechanical Turk. Each 
worker was tasked with providing their belief on all 40 questions 
using the elicitation device illustrated in Figure 1. In efect, every 
worker provided two model parameters (� and �) in response to 
each question. We averaged the parameters across all workers (sep-
arately for each question), thus yielding a crowd wisdom response 
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Table 1: Examples from the 16 prompt questions used as stimuli in our experiments. For each question, we collected a mean 
crowdsourced belief (������ ) and accordingly set the ground-truth model slope (�) to dictate positive, negative, or no bivariate 
relationship between the prompt variables. 

Correlation Question Crowd wisdom Ground truth 

Positive 

What is the relationship between the number of 
celebrity actors in a movie and the movie’s rating? 

������ = 0.40 
������ = 0.30 � = 0.5 

� = 0.29What is the relationship a singer’s social media 
followers and their music record sales? 

������ = 0.50 
������ = 0.25 

Negative 

What is the relationship between phone screen time 
and amount of sleep each night? 

������ = −0.28 
������ = 0.25 � = −0.5 

� = 0.29What is the relationship between the number 
of children in a family and the family’s savings? 

������ = −0.34 
������ = 0.28 

No relationship 

What is the relationship between income and 
the amount of free time a programmer has? 

������ = −0.08 
������ = 0.31 � = 0 

� = 0.29What is the relationship between salary 
and debt for an individual in the US? 

������ = −0.06 
������ = 0.29 

Large sample
n=40

Small congruent
n=9

Small incongruent
(spurious)

n=9

Ground truth
Positive correlation
(�휇=0.5, �휎=0.29)

No relationship
�휇=0, �휎=0.29

Figure 2: Examples of large (always congruent), small-congruent, and small-incongruent (i.e., spurious) samples. 

for every prompt. We subsequently used the mean slope to select a 
subset of 16 questions from the initial 40 to be used as stimuli in 
our experiments. Of those 16 questions, 8 questions demonstrated 
a crowd belief of no relationship between the prompt variables, 4 
suggested a positive relationship, and 4 a negative relationship. In 
other words, half the prompts dictated a ‘null’ ground truth while 
the other half specifed a correlation (either positive or negative). 
This prompt selection was based on the crowd wisdom. Specif-
ically, we considered questions with an average crowd slope of 
������ > 0.26 to refect a wisdom of positive correlation. Accord-
ingly, we set � in the ground truth model for those questions to 
0.5. Conversely, we considered a mean ������ < −0.26 to indi-
cate a negative relationship and accordingly set the corresponding 
ground-truth model to � = −0.5. We considered questions with 
an average slope of −0.12 < ������ < 0.12 to indicate a lack of 

expected relationship between the two variables (i.e., a null model), 
setting the ground-truth slope to zero. We found that, across all 
questions, workers ascribed very similar uncertainty levels to their 
belief (������ ). Therefore, for all ground truth models, we set � to 
0.29, the observed mean slope uncertainty. 

3.3 Controlling the Rate of Spurious 
Visualizations 

Participants in our study saw scatterplots sampled from the above 
ground-truth models and were tasked with inferring model char-
acteristics. We controlled two aspects of the sampling process: the 
sample size, which represented the number of observations (i.e., 
data points) in the visualization, and the congruence of the sample 
with the underlying ground truth. A sample that appears to show 
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Table 2: Characteristics of spurious (i.e., incongruent) samples seen in our simulations for the small and large sample sizes. 

Sample 
size (�) 

Percent spurious samples Mean spurious slope diference (Δ) 
� = 0 � = 0.5 � = 0 � = 0.5 

9 37.3% 37.2% 0.273 0.274 
40 7.1% 5.2% 0.215 0.206 
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Figure 3: Rate of spurious samples (for � = 0 models) in our 
simulation as a function of sample size. Arrows mark the 
rate for � = 9 (‘small’) and � = 40 (‘large’) sample sizes. 

positive correlation is congruent with a � = 0.5 model. Conversely, 
that same sample would be incongruent with a model that has � = 0 
(i.e., no correlation in the ground truth). By the law of large num-
bers, incongruent samples are far more likely to arise when the 
sample is small. We simulate this phenomenon by including three 
sample types as a factor: small-incongruent, small-congruent, and 
large (always congruent) samples. Figure 2 illustrates examples of 
each, as seen in our experiments. 

We sought to control the rate of incongruent samples such that 
all participants would encounter the same number of spurious visu-
alizations. To keep the latter consistent with the likelihood as per 
the ground truth, we conducted simulations measuring the rate of 
incongruent samples arising as a function of sample size. First, we 
took a model with � = 0 and � = 0.29 (i.e., a no-relationship, null 
model). We drew �-point random samples from the model, system-
atically varying � between 3 and 60 and generating 1000 samples 
for each � size. We ftted each sample to a linear model (of the for-
mulation described in §3.1) and compared the ftted slope (�� �� ) to 
the ground truth � using the absolute diference Δ = |� − �� �� |. We 
considered a cutof of Δ ≥ 0.175 to delineate ‘incongruent’ samples. 
That is, a sample would be considered incongruent (or spurious) if 
the slope of its linear ft is at least 0.175 away from the real data-
generating model. We chose this cutof to yield plausible spurious 
visualizations while also ensuring a sufcient chance for those sam-
ples to arise. Figure 3 illustrates the percentage of such samples 
in the simulation as a function of �. We then conducted a similar 
simulation for a � = 0.5 ground truth (i.e., positive correlation), 
using the same spurious-sample cutof of Δ ≥ 0.175. Based on simu-
lation results, we selected two sample sizes: a ‘small’ sample size of 
� = 9, which yields a spurious-sample rate of 37.3% for null models 
and 37.2% for positive (and negative) correlation ground truths. 
We adopted � = 40 as a ‘large’ size, for a spurious-sample rate of 
7.1% and 5.2%, respectively. Table 2 provides a breakdown of those 

rates. We use (approximately) the same rates in our experiments 
and control that rate on a per-subject basis. 

In addition to providing a sufcient number of incongruent sam-
ples, the parameters above ensure similar spurious-sample char-
acteristics in terms of how far those samples are from the ground 
truth, for both the null and correlation models (see Figure 2 for a 
visual illustration). For example, at � = 9, the diference between 
the ftted slope for spurious samples and the ground truth (i.e., 
average Δ) was 0.273 in the null vs. 0.274 in the correlation models 
(see Table 2). 

4 EXPERIMENT I 
In this experiment, we evaluate the impact of prior belief elicitation 
on inferences. We present participants with a question about the 
relationship between two variables, and elicit their belief about the 
nature of that relationship (using the graphical device described 
in §3.1). We then expose participants to a sample from the ground-
truth model, and present that sample side-by-side with their beliefs 
for analysis. Following exposure to the sample, we prompt partici-
pants to make an inference about the ‘true’ relationship, and ask 
them to adjust their prediction a second time. We compare this 
setup to a control condition that does not include elicitation prior 
to sample exposure. We score participants’ inferences by manually 
checking for consistency with the ground truth. Our primary metric 
is not whether participants can do Bayesian update, but whether 
their qualitative insight (captured in natural language) is compat-
ible with the underlying data-generating model. To that end, we 
compare the rate of false and correct inferences in both conditions. 

4.1 Hypotheses 
We developed three hypotheses: 

H1 — Eliciting prior beliefs will improve inference accuracy. 
Specifcally, we expect participants in the Prior Elicitation group 
to have a higher number of correct inferences compared to those 
in Control. The argument behind this hypothesis is that eliciting 
participants’ beliefs will nudge them to incorporate their prior 
beliefs in the inference, hence guarding against extreme, spurious 
samples. We would thus expect the intervention group to be more 
successful at discriminating true from spurious visualizations. 

H2 — The diference in accuracy between the two groups (Prior 
Elicitation vs. Control) will be more pronounced when the sample 
is small and incongruent with the ground truth. The latter presents 
a potentially higher likelihood of making an incorrect inference. 
We anticipate those whose beliefs are elicited prior to seeing such 
samples to draw on their priors, which serves to moderate the 
infuence of misleading visualizations. 

H3 — Participants who externalize their prior beliefs will be, 
on average, less trusting of samples relative to the Control. In 
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Figure 4: Illustration of the three steps that make up a trial. In the Prior Elicitation condition, participants frst read the prompt 
question and specifed their prior belief using a graphical elicitation device. In a second slide, they saw a sample from the 
ground truth visualized side-by-side with their belief. They provided their impression on whether they thought the sample was 
reliable. In the third and last step, the participant was asked to specify their belief once again, and respond to two open-ended 
prompts: to describe the true relationship and to comment on how the sample might have afected their belief. The Control 
condition followed a similar sequence with the exception that we did not elicit beliefs on the frst slide, and therefore only 
showed a sample on the second slide. 

particular, we expect small samples to be fagged as non-reliable 
more frequently in the former. 

4.2 Participants 
We recruited 80 participants (41 male and 39 female) from Amazon 
Mechanical Turk. Participants had a mean age of 34.7 years. We 
recruited workers who are US residents with a minimum task-
approval rate of 98%. Participants received a $5 compensation upon 
completing the experiment. Based on a pilot, we estimated the 
experiment to take 40 minutes on average. The study was approved 
by Indiana University’s institutional review board. 

4.3 Apparatus and Experimental Design 
The experiment was a between-subject design. Half the participants 
(40 individuals) were randomly assigned to the Prior Elicitation 
condition. The other half were assigned to the Control. Participants 
completed a total of 16 trials corresponding to the prompt questions 
developed in §3.2. Specifcally, a trial consisted of one question 
about the relationship between two variables (e.g., “What is the 
relationship between a movie’s running time and its total box ofce 
sales?”). Participants in the Prior Elicitation condition were frst 
asked to visually externalize their belief in response to the question. 
They did so by setting the slope of the trendline and adjusting the 
uncertainty slider (see Figure 1). Next, participants were presented 
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with a scatterplot containing a sample from the ground truth. The 
sample was displayed side-by-side with the belief model in one 
slide. The slide prompted the participant to compare the two and 
indicate whether they thought the sample was “reliable” or not. 
Lastly, after exposure to the sample, participants were asked to re-
specify their belief graphically about the relationship, after having 
been exposed to a sample. Additionally, they were asked to respond 
to two open-ended prompts: one to report on what they inferred 
about the “true relationship” and a second to describe how the 
sample afected their “prediction”. The sequence is illustrated in 
Figure 4. 

The Control condition consisted of a similar sequence although 
without prior elicitation. However, and consistent with the interven-
tion, we elicited participants’ beliefs in Control after exposure to 
the sample. This fnal elicitation step meant that the two conditions 
were largely comparable in their interactions, with an additional 
elicitation of priors in the intervention group. Post-sample (i.e., 
posterior) elicitation also gave participants in the Control an equal 
opportunity to refect when articulating their inference, though 
without the beneft of having predicted a priori. In both conditions, 
we manipulated the size and congruence of the visualized samples 
relative to the ground truth. Two of the 16 trials displayed large 
samples (� = 40 data points), with the remaining 14 showing small 
samples (� = 9). Of the small samples, 40% (6 trials) were selected to 
be incongruent with the underlying ground truth. This rate for spu-
rious visualizations was approximately consistent with the model 
likelihood after rounding for whole numbers (see Table 2). The 
remaining small samples (8 trials) were generated to be congruent 
with the ground truth. We purposefully overrepresented small sam-
ples in this experiment as we sought to simulate situations where 
false discovery is more likely. This in turn allows us to evaluate the 
impact of the intervention with higher statistical power. 

4.4 Procedure 
Participants frst saw a tutorial explaining the task and providing 
an overview of the interface. They were informed that their goal 
was to “predict and then report on the true relationship between 
quantitative attributes” (emphasis in the original prompt). Partic-
ipants were instructed on how to use the belief elicitation device 
using a short animation. We also informed participants that the data 
samples they would be viewing may be “noisy (especially when 
containing a few data points),” and that they would need to think 
about how reliable a sample might be. 

After the tutorial, participants completed the analyzed trials. The 
order of trials was randomized, with the exception that the two 
large-sample trials were always displayed as the frst and eighth 
stimuli (i.e., mid-experiment). We also randomly selected where (i.e., 
with which question) a participant would see the diferent sample 
confgurations. The one constraint to this randomization is that the 
small-incongruent samples would be equally represented under the 
null and correlation ground-truth models. Participants fnished the 
experiment by answering a brief demographic survey. To ensure 
participant engagement, we read all responses and excluded from 
the analysis those who provided irrelevant or incomprehensible 
responses on more than 25% of the trials. A response was deemed 

irrelevant if it did not reference the variables in question. We re-
cruited additional participants to replace those who were excluded 
until we reached our intended sample size of 80 individuals. 

4.5 Coding Inference Accuracy 
We manually coded the correctness of inferences. Recall that, for 
each trial, participants were asked to describe what they thought 
was the “true relationship” between the two variables depicted. 
We did not provide participants with a specifc template to follow. 
Instead, we let them express their inference as an open-ended text 
response. To score the accuracy of those responses, one coder (the 
frst author) coded the type of relationship implied by the partic-
ipant. Specifcally, we coded the latter as indicating one of three 
types of relationships: positive relationship, negative relationship, 
or no correlation. For instance, in a question about the relationship 
between cafeine consumption and height, responses indicating that 
“there is a negative correlation between height and cafeine,” or that 
“people who consumed a lot more cafeine tended to be shorter” were 
coded as inference of a negative correlation. On other other hand, 
participants who concluded that “cafeine consumption does not af-
fect the height” were coded as a no-relationship inference. We also 
coded responses that indirectly implied a relationship accordingly 
(e.g., “social media is key for sales promotion” as a positive correla-
tion). When the response implied a relationship but did not specify 
a direction, we referred to the elicited, post-sample (i.e., posterior) 
slope to determine the sign of the relationship. Lastly, we evaluated 
inferences of ‘slight’, ‘mild’, or ‘very weak’ relationships conserva-
tively, coding them as no-correlation. For example, “debt and salary 
are slightly connected” was recorded as implying a no-correlation 
inference. This choice was meant to give participants the beneft 
of the doubt, as there were more null ground-truth models in the 
experiment than negative or positive correlations. We measured 
coding reliability by having a second coder independently code 
approximately 5% of the responses. We computed Cohen’s kappa 
to assess inter-coder agreement. The resulting kappa coefcient 
was 0.896, indicating strong agreement between the coders [42]. 
To further reduce the potential for bias during the coding process, 
both coders were blinded to the experimental condition. 

Once coded, the implied direction of the relationship was com-
pared against the ground-truth slope (�). Recall that there were 
three possible values for � in our models: �=0.5 for a model of 
positive correlation, −0.5 for negative, and 0 for no relationship. If 
the coded response matched the ground truth, the inference was 
deemed correct. Otherwise, we deemed the inference incorrect. This 
method of scoring visualization insights against the data-generating 
models is similar in spirit to Zgraggen et al. [65]. A limitation to 
our coding scheme, however, is that it assumes a dichotomous in-
terpretation of inferences (i.e., ‘correct’ vs. ‘incorrect’), as opposed 
to capturing efect size estimates [16]. We decided to use a binary 
metric based on pilot data, which suggested that the majority of 
inferences would categorically imply the presence of a (negative or 
positive) relationship or the lack thereof. 

4.6 Results 
Participants completed the experiment in 53.4 minutes on average. 
There was no meaningful diference in completion time between 
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the two conditions (53.7 minutes with the intervention vs. 53.1 in 
Control, � (78) = .17, � = .86). Participants collectively provided 
1,280 inferences in total (half obtained under Prior Elicitation and 
half under Control). We excluded 28 responses (∼2% of total) that 
we were unable to code because they were nonsensical or did not 
respond to the prompt. We frst analyze the correctness of inferences 
and then assess participants’ trust in the samples shown. 

4.6.1 Inference Accuracy and False Discovery Rate. Using the coded 
inference accuracy, we ft the results to a logistic regression model. 
The model predicts the likelihood of a correct inference based on 
three fxed efects: the experimental condition (Prior Elicitation 
or Control), the sample type (large, small-congruent, or small-
incongruent), and the ground-truth model (positive, negative, or no 
correlation). We included interaction terms between the experimen-
tal condition and sample type as well as between the condition and 
ground-truth model type. Additionally, we included two random in-
tercepts to account for individual diferences between participants 
as well as diferences due to questions (recall that the experiment 
comprised 16 unique questions probing various topics). We test for 
signifcant efects using a likelihood-ratio test (relative to a reduced 
model) and report the associated �2 statistic. We also report � and 
p-values for pairwise post-hoc tests, adjusting for multiple compar-
isons using Tukey’s method. As an estimate of efect size, we report 
odds ratios and give the corresponding 95% confdence intervals. 

We found a signifcant main efect of the experimental condition 
(�2 (4) = 13.1, � < .05). The odds of correct inference were 2.01 
times higher (95% CI: 1.38—2.93) for participants who underwent 
belief elicitation before observing a sample (� = 3.63, � < .001). The 
intervention thus led to a higher likelihood of correctly classify-
ing the ground truth (54% chance, CI: 50.1—57.9% versus 44.5%, CI: 
40.6—48.4% in Control). The advantage amounted to 21.3% better 
inference for the intervention. In addition to omnibus accuracy, we 

compared the false discovery rate (FRD) in the two conditions. Recall 
that half the stimuli were based on a ground truth of no-relationship 
between the variables while the other half was grounded in a cor-
relation (either positive or negative). FDR is the proportion of ‘dis-
covered’ correlations that are unfounded in the true model. The 
FDR for the Prior Elicitation group was 47.2% compared to 53.5% in 
Control, which amounts to an 11.7% reduction in false discovery. 
Figure 5 illustrates the inference accuracy and FDR rates for the 
two conditions. 

We found a signifcant main efect of sample type (�2 (4) = 
20.39, � < .001). Participants had better odds of inferring the cor-
rect model when viewing a small-congruent versus an incongruent 
sample (odds ratio: 1.99, CI: 1.45—2.73, � = 4.28, � < .001). Other 
diferences between large versus small samples were not signif-
cant. Figure 6-right illustrates this relationship. We did not fnd 
evidence of interaction between the experimental condition and 
sample type (�2 (2) = 1.82, � = .4). Participants in the Prior Elicita-
tion group were consistently better than Control at inferring the 
true relationship, regardless of sample size or its congruence with 
the data-generating model. 

Lastly, we looked for diferences in how well participants re-
sponded to questions across the two ground-truth types (i.e., cor-
relation vs. no relationship). We found a signifcant main efect of 
ground truth (�2 (2) = 21.7, � < .001). Relative to a no-relationship 
baseline, trials with correlated variables were far more likely to 
elicit a correct inference (odds ratio: 11.47, CI: 5.58—23.6, � = 
6.62, � < .001). Figure 6-left illustrates this efect. There was no 
interaction between the experimental condition and model type 
(�2 (1) = 0.13, � = .72). Participants in the Prior Elicitation group 
were consistently better at recovering the ground truth regardless 
of whether the variables were correlated or not, even though the 
odds were much higher with true correlations. 

4.6.2 Posterior Beliefs and Belief Update (post-hoc analysis). In ad-
dition to our primary metric of inference accuracy, we also mea-
sured the alignment between participants’ posterior beliefs and the 
ground truth. This was computed by taking the absolute diference 
between the slope of the data-generating model (�) and the pos-
terior slope (recall that the latter was elicited graphically in both 
conditions). Figure 7-left compares the mean posterior distance for 
the two conditions under diferent sample types. Participants who 
underwent prior elicitation arrived at posteriors that aligned more 
closely with the ground truth (�2 (3) = 15.47, � < .01). Sample 
type also had a signifcant main efect (�2 (4) = 97.23, � < .001), 
although there was no evidence of an interaction with the experi-
mental condition (�2 (2) = 0.25, � = .885), suggesting consistently 
better belief alignment for the intervention group. Figure 7-right 
further illustrates this efect by plotting the change in belief-truth 
distance from the prior to the posterior (intervention group only). 
Although many participants appear to still have been misled by spu-
rious samples, prior elicitation appears to induce better posterior 
approximation across all sample confgurations. 

4.6.3 Perceived Sample Reliability. We modeled the likelihood of 
participants trusting a sample. Recall that, for each visualized sam-
ple, participants were asked whether they thought the sample was 
reliable. The main efect of the experimental condition was not 

https://1.45�2.73
https://1.38�2.93
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signifcant (�2 (4) = 8.39, � = .08). Participants in both conditions 
exhibited comparable levels of trust towards the samples shown 
to them. There was, however, a signifcant main efect of sample 
type (�2 (4) = 18.83, � < .001). Participants deemed large samples 
more trustworthy than small, incongruent samples (odds ratio: 1.99, 
95% CI: 1.23—3.21, � = 2.82, � < .05). Similarly, participants were 
also more likely to trust the small-congruent over the incongruent 
samples (odds ratio: 1.56, CI: 1.17—2.08, � = 3.03, � < .01). We also 
found a signifcant interaction between the experimental condition 
and sample type (�2 (2) = 6.82, � < .05). Compared to their coun-
terparts in Control, participants in the Prior Elicitation group were 
signifcantly more skeptical of large samples (odds ratio for trust: 
0.31, CI: 0.12—0.82, � = −2.36, � < .05). There was no evidence for 

the main efect of ground truth (�2 (2) = 2.78, � = .25), or for its 
interaction with the experimental condition (�2 (1) = 0.39, � = .53). 

4.7 Discussion 
The results show that eliciting analyst beliefs prior to them observ-
ing visualizations can improve inference. Participants in the Prior 
Elicitation group were approximately 21% better than Control at 
recovering the ground truth. Alongside the improved inference, 
we observed a moderate reduction (approximately 12%) in the rate 
of false discovery. Quantitative analysis of posterior beliefs rein-
forces this fnding: those who underwent the intervention ended 
up with beliefs that are signifcantly closer to the ground truth (see 
Figure 7-left). These results support H1. 

https://0.12�0.82
https://1.17�2.08
https://1.23�3.21
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Figure 8: The proportion of samples deemed reliable by participants. Error bars are 95% confdence intervals. 

As expected, participants made more errors when observing 
spurious (i.e., truth-incongruent) visualizations. They also made 
more false inferences when there was no relationship between the 
variables, refecting a potential bias to try to ‘discover’ something 
in the data, rather than reporting a null result. Yet, these efects 
manifested similarly in the two experimental conditions. Thus, 
while prior elicitation broadly improves inference across all sample 
types, there is no evidence that the intervention is especially useful 
as an implement against spurious visualizations. Instead, we found 
better accuracy across all levels of sample confguration and ground-
truth models. 

Lastly, comparing participants’ perceptions of sample reliability, 
there is weak, non-signifcant evidence (� = .08) that prior belief 
elicitation makes people more skeptical. Counterintuitively, this 
efect seems more pronounced, presenting as signifcant with large 
samples (see Figure 8-right). The results provide weak support to 
H3, although the increased skepticism towards the seemingly more 
robust (i.e., large-sample) visualizations is unexpected. It is possible 
that participants whose priors were elicited sufered anchoring 
efects, making them less trusting of even large samples when those 
turned unexpected evidence. Anecdotally, we came across responses 
that would suggest an anchoring efect in the Prior Elicitation group, 
leading participants to disregard robust evidence. For example, P-
2707 responded to seeing a large sample with “No, the sample didn’t 
match with my belief. And I think that the sample is wrong in some 
sense.” That said, this experiment was deliberately underpowered 
in the number of large samples it employed (under the assumption 
that smaller samples would pose a higher risk of false discovery). In 
a follow-up experiment, we employ a design with equal numbers 
of large- and small-sample stimuli. We also test interventions that 
could reduce confrmation bias. 

5 EXPERIMENT II 
Experiment 1 shows that externalizing priors could improve visual 
inference. But the results also raised concerns about a potential an-
choring efect or confrmation bias. Specifcally, visualizing beliefs 

side-by-side with samples may provide an ‘excuse’ for participants 
to reject incompatible data, or at least overweight their beliefs. In 
this experiment, we test two additional interventions to reduce the 
chance of such bias, by alerting participants to evidence that is 
incompatible with their beliefs. This is achieved by perceptually 
highlighting observations in a sample that are inconsistent with 
viewer expectation. Specifcally, we employ a salient color (red) to 
emphasize points in a scatterplot that deviate signifcantly from the 
expected linear model specifed by the observer. An observation 
is considered a signifcant deviation if it is located more than 3� 
away from the elicited trendline. Moreover, we consider another 
alternative intervention that features the uncertainty implied by the 
sample. Specifcally, we ft the sample to a linear model and visual-
ize the 95% prediction intervals of that model as shaded uncertainty 
bounds. Figure 9 illustrates the two interventions. 

The two interventions could aid observers in deciding how much 
to weigh their prior beliefs against potentially noisy samples. The 
Highlight condition cues the observer onto the amount of coun-
terevidence. A large sample that is incompatible with one’s expec-
tation is likely to pop out and invite more attention than a smaller 
one. The conspicuous highlight could also make it difcult for the 
observer to ignore unexpected evidence, especially if large. On the 
other hand, the Uncertainty condition encodes the sample’s useful-
ness in predicting future observations. Larger samples would exhibit 
smaller uncertainty bounds, which participants may interpret as 
an indicator of sample robustness. In both of these interventions, 
we elicit participant beliefs prior to and after exposing them to a 
sample (i.e., similar to the Prior Elicitation condition in Exp. 1). In 
addition to the two above interventions, we also include a third 
Baseline condition that is identical to the intervention in Exp. 1. 

5.1 Hypotheses 
We expected improved inference with the two new interventions. 
We also expected an increase in participants’ trust in the large 
samples: 
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Figure 9: Two additional interventions tested in Exp. 2: high-
lighting sample observations that deviate substantially from 
the observer’s prior (top), and encoding the sample’s predic-
tive uncertainty, defned as the 95% prediction interval of a 
linear ft to the sample. 

H4 — Participants will beneft from Highlighting evidence in-
consistent with their beliefs. Similarly, we expect benefts from 
explicitly visualizing a sample’s predictive Uncertainty. We antici-
pate both of these interventions to lead to better inference compared 
to participants in the baseline condition. 

H5 — Compared to Baseline, participants observing samples with 
Highlights or with Uncertainty annotations will be more trusting 
of large samples. 

5.2 Participants, Experimental Design, and 
Procedures 

We recruited 120 participants (48 males, 72 females; mean age of 
34.8 years) from Amazon Mechanical Turk. We recruited work-
ers who are US residents with a minimum task-approval rate of 
98%. Participants were compensated with a $5 payment. We used a 
between-subject design, with an equal number of participants (40) 
randomly assigned to each of the three conditions (Highlight, Un-
certainty, or Baseline). The experiment consisted of 16 trials. In each 
trial, participants responded to a prompt question and followed the 
same steps as in Exp. 1: frst visually providing their prior belief 
about the relationship between two variables, then observing a 
scatterplot sample, and lastly providing their open-ended inference 
and posterior belief (see Figure 4 for illustration of these steps). 
All participants in the experiment had to externalize their beliefs 
before and after observing a sample. For the two new interventions, 
the sample showed a highlight of data points deviating from the 
specifed prior or displayed uncertainty bounds depicting predictive 
intervals from a linear ft of the sample. 
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Figure 10: Inference accuracy in Exp. 2 by intervention (left) 
along with the corresponding false discovery rate. 

Unlike Exp. 1, we used an equal number of small and large 
samples in this experiment. Eight trials displayed large samples 
(� = 40 data points each) whereas eight showed small samples 
(� = 9). Of the 8 small-sample trials, 3 were incongruent with the 
ground truth, for a spurious sample rate of 37.5% (consistent with 
the model likelihood; see Table 2). Trial order was randomized. 
Additionally, we randomly assigned the large, small-congruent, and 
small-incongruent samples to the 16 unique questions. However, 
we balanced the incongruent samples such that each participant 
would encounter one spurious visualization with each of the three 
model types (positive, negative, no correlation). 

5.3 Results 
Participants completed the experiment in 58.7 minutes on average. 
They provided 1,920 responses in total. We coded inference accuracy 
(correct or incorrect) using the same coding procedure as in Exp. 1 
(see §4.5). We removed 34 responses (1.8%) which we were unable 
to code, leaving 1,886 responses in the analysis. 

5.3.1 Inference Accuracy. We ft the results to a logistic regression 
model to predict the correctness of inferences. The model includes 
three main factors: the experimental condition (Highlight, Uncer-
tainty, or Baseline), the sample type (large, small-congruent, and 
small-incongruent), and the ground-truth type (no relationship or 
correlation between the variables). We also included interaction 
terms to model variations in the latter two due to diferent experi-
mental conditions. Random intercepts for individual participants 
and questions were also included in the model, consistent with 
Exp. 1. Figure 10 illustrates the overall accuracy and false discovery 
rate for the three interventions. We did not fnd a signifcant main 
efect of the experimental condition (�2 (8) = 10.56, � = .23). The 
three conditions elicited comparable inferences in terms of accu-
racy. The false discovery rate was also consistent (44.6% to 46.7%) 
and comparable to that seen in Exp. 1 (47.2%). 

We found a signifcant main efect of ground-truth type (�2 (3) = 
22.57, � < .001). Trials with an underlying correlation were judged 
far more accurately compared to trials where the ground truth 
specifed no relationship between variables (odds ratio: 11.7, CI: 
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4.9—27.9, � = 5.55, � < .001). Figure 11-left illustrates this efect. 
The evidence of interaction between the experimental condition 
and ground truth was weak (�2 (2) = 5.08, � = .08). The Highlight 
intervention may be slightly better at preventing false discovery 
(odds ratio: 1.6, CI: 1.01—2.53) than the Uncertainty display when 
there is no true correlation, although this efect is not robust (� = 
2.01, � = .11). 

We found a signifcant main efect of sample type (�2 (6) = 
32.445, � < .001). Small, incongruent samples were less likely to 
elicit correct inferences compared to both large (odds ratio: 0.46, 
CI: 0.34—0.62, � = −4.99, � < .001) and small-congruent samples 
(0.44, CI: 0.32—0.62, � = 4.75, � < .001). This efect is illustrated in 
Figure 11-right. Large and small-congruent samples were judged 
with comparable accuracy (� = 0.26, � = .96). We did not fnd 
evidence of an interaction between the experimental condition and 
sample type (�2 (4) = 3.93, � = .42). Participants appear to perform 
similarly with all three interventions (Highlight, Uncertainty, and 
Baseline). Additional post-hoc analysis of posterior and prior beliefs 
can be found in the supplementary materials. 

5.3.2 Perceived Sample Reliability. We analyzed participants’ per-
ceptions of sample reliability (a binary response). Figure 12 il-
lustrates the proportion of samples deemed trustworthy. We did 
not fnd a signifcant main efect of the experimental condition 
(�2 (8) = 2.91, � = .94). There was a signifcant main efect of 
sample type (�2 (6) = 82.93, � < .001), with participants trusting 
large samples more than the small-incongruent (odds ratio: 3.22, 
CI: 2.41—4.29, � = 7.92, � < .001) and small-congruent samples 
(odds ratio: 2.39, CI: 1.87—3.07, � = 6.87, � < .001). But there was 
no evidence for this efect varied at all between the three condi-
tions (�2 (4) = 1.04, � = .9). We found no evidence of an efect for 
ground-truth type (�2 (3) = 4.59, � = .21) or for its interaction with 
the intervention (�2 (4) = 1.04, � = .9). 

5.4 Discussion 
Overall, we did not see the anticipated efects for highlighting 
counterevidence (i.e., observations inconsistent with the observer’s 
model), or for explicitly encoding the sample’s predictive uncer-
tainty. Inference accuracy across the three conditions was quite 
comparable. At best, any diference between the interventions is 
likely small and potentially limited to a specifc context. An example 
where such an efect might have presented is when the ground truth 
dictated no relationship. Here, highlighting counter observations 
could be slightly better at preventing false discovery than display-
ing an uncertainty representation (see Figure 11-left). This could 
be due to a difculty by participants in reading the uncertainty 
intervals which are often misinterpreted [4]. By comparison, it may 
be easier to comprehend a sample’s implication in the Highlight 
condition: an unexpected scatterplot presenting a larger number of 
counter-observations should invite more scrutiny, possibly causing 
the observer to be more apprehensive. That said, the efect is likely 
small (odds ratio: 1.01—2.53) and not statistically robust. The results 
do not provide support for H4. In terms of perceived sample relia-
bility, the rates were quite comparable in the three conditions. As 
expected, participants saw the large samples as signifcantly more 
trustworthy – an efect that held across all interventions. The lack 
of signifcant interaction suggests that perceived sample reliability 
is unafected by any of the additional interventions. The results 
thus do not provide support for H5 either. 

The null results in this experiment could be because the interven-
tions are, after all, largely similar. All three experimental conditions 
included prior and posterior elicitation, with the main diference 
being in how the sample was presented. It would appear that the 
latter has a marginal impact when weighed against the primary 
interaction (i.e., belief elicitation). Despite the lack of a robust ef-
fect, the experiment replicated much of the patterns observed in 

https://1.01�2.53
https://1.87�3.07
https://2.41�4.29
https://0.32�0.62
https://0.34�0.62
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Figure 12: Mean perceived sample reliability in Exp. 2 by ground truth (left) and sample type. Error bars are 95% CIs. 

Exp. 1. For example, participants in both experiments were more 
likely to infer the ground truth when the latter dictated correlation. 
Small, incongruent samples also elicited less accurate inferences in 
both experiments. Notably, this experiment included an equal num-
ber of small and large samples, with the latter perceived as more 
trustworthy by participants. The experiment thus lends additional 
validation to the fndings of Exp. 1 and to the general methodology. 

6 GENERAL DISCUSSION 
Exploratory data analysis (EDA) enables analysts to characterize 
useful patterns in a way that is not strictly limited by a formal 
model. However, in addition to surfacing true patterns, EDA can 
amplify noise. Analysts can sometimes overinterpret these spurious 
signals, causing them to see relationships that are not truly there, 
or that which might not generalize beyond the sample at hand. The 
fexibility aforded by modern visualization tools exacerbates this 
problem by encouraging a large number of visual tests or model 
checks [48, 65]. While multiple comparisons are often dealt with in 
formal statistics, few interventions have been proposed to control 
the false discovery rate in interactive analyses. 

6.1 Belief Elicitation Leads to Better Inference 
from Visualized Data 

One approach to guard against spurious signals is to activate view-
ers’ prior knowledge and nudge them to be critical of apparent 
patterns they encounter in visualizations. Earlier work shows that 
belief-driven interactions can indeed promote good visual analytic 
practices [36]. Our fndings suggest that these afordances also 
help people infer better models about the true state of the world. 
Participants whose beliefs were elicited prior to data exposure ar-
ticulated 21% more accurate inferences. They also made 12% fewer 
false discoveries. Interestingly, these benefts were not limited to 
responses made with noisy visualizations. Rather, participants who 
furnished their priors were consistently better at inferring the real 
data-generating process, from both reliable and spurious samples. 

We suspect two mechanisms behind the improved inference. 
First, activating one’s prior knowledge can encourage them to be 
more skeptical, particularly in the face of improbable data. Exp. 1 
provided weak evidence of increased skepticism among those whose 
priors were elicited. Though many were still misled by incongruent 
samples, participants in the intervention group seemed more adept 
at tempering the infuence of spurious visualizations, ultimately 
arriving at more accurate posteriors. A second possible explanation 
is that, by prompting observers to refect on what they know, we 
trigger deeper processing of data. Kim et al. suggest similarities 
between belief articulation and self-explanation, wherein a learner 
generates an explanation to themself as they attempt to make sense 
of new information [32]. Self-explanation often leads to better learn-
ing [51, 59] even when induced externally (e.g., by a teacher) [7]. 
Similar cognitive efects may unfold when observers are prompted 
to record their beliefs. The enhanced processing could improve 
one’s understanding of sample implications, which may in turn 
translate to better inference. That the advantage was observed in 
all sample confgurations supports this idea. We speculate both of 
the above-mentioned factors (data skepticism and enhanced pro-
cessing) come into play when analysts operationalize their prior 
knowledge during graphical inference. 

6.2 Confrmation Bias and the ‘Law of Small 
Numbers’ 

Belief elicitation appears to help reduce the chance of false dis-
covery, although the intervention could theoretically lead to an 
anchoring efect. We saw potential signs of this in Exp. 1. Specif-
cally, participants whose priors were elicited seemed less trusting of 
large samples. Moreover, even with the beneft of the intervention, 
large samples induced correct inference only 66% of the time — a 
lower rate than what might be expected from a normative analyst. 
This phenomenon may indicate a non-belief in the law of large num-
bers; people often underestimate the evidential signifcance of a 
large sample while overstating the importance of a small one [5, 58]. 
It may also refect confrmation bias, where an analyst persists with 



Visual Belief Elicitation Reduces the Incidence of False Discovery CHI ’23, April 23–28, 2023, Hamburg, Germany 

their belief despite strong evidence to the contrary. We investigated 
two additional interventions in Exp. 2, aiming to alleviate the above 
issue. We expected these interventions to increase the likelihood 
of correct inference, particularly from large samples. Instead, we 
found no reliable efects for highlighting counterevidence, nor for 
encoding a sample’s predictive uncertainty. The results suggest that 
the benefts of belief elicitation are decoupled from the manner in 
which the sample is represented, as long as the observer can still 
see the raw sample. 

6.3 Implications for Visualization Tools 
Our work suggests benefts for operationalizing analyst beliefs dur-
ing visual analysis. To our surprise, the advantage held across a 
variety of sample characteristics (i.e., large, small, and even spu-
rious samples). These results have important implications for the 
design of visualization tools. We consider the feasibility of broadly 
implementing this intervention and the potential impact it might 
generate. We also refect on future interaction designs for fostering 
trustworthy visual analytics. 

6.3.1 Intervention Feasibility and Potential Impact. While it might 
take additional efort to externalize one’s belief, our fndings sug-
gest that the overhead is small. Participants in the intervention 
and control conditions took similar times, indicating that graphi-
cal elicitation requires minimal added efort. Yet, the intervention 
yielded a tangible improvement in inference. Consequently, we 
might envision the intervention as a standard feature in visualiza-
tion tools. The minimally intrusive nature of the interaction also 
suggests that it would be embraced and utilized frequently by ana-
lysts. Although ‘required’ in our setup, belief elicitation can also 
be implemented as an optional feature. For example, in a system 
developed by Koonchanok et al., analysts can choose to paint their 
prior expectations into charts if they wish or, alternatively, forgo 
this interaction altogether in favor of immediately seeing data, as 
is the case in current visualization systems. [36]. Depending on the 
chart, the system could support a variety of elicitation techniques 
(e.g., a paintbrush to specify expected pointcloud density in scatter-
plots or multi-variate ribbons for parallel coordinates). Based on 
our fndings, we can anticipate the presence of these interactions 
to improve graphical inference. 

It is important to also investigate the potential side efects of such 
interventions. For example, eliciting beliefs could cause analysts to 
overly fxate on their existing hypotheses. This in turn may lead 
to unexpected patterns being missed. Research indeed suggests 
that while hypotheses provide useful constraints for sensemak-
ing [18, 33], they can also be a liability in that they limit one from 
considering unexpected data outside of their focus [64]. Similar dy-
namics might come into play with interactive visualizations: in one 
experiment, analysts who specifed their hypotheses entertained 
fewer visualizations in their EDA process and ultimately reported 
fewer observations [36]. Of course, fewer ‘insights’ might not be a 
bad thing, especially when such insights align more closely with the 
real data-generating processes. It is important, however, to consider 
other biases analysts may be subject to, such as structural incentives 
to increase discovery [21, 30]. This could still motivate questionable 
behaviors like p-hacking despite tool-level interventions [23]. 

6.3.2 Future Design Directions. Our work suggests future research 
avenues and design interventions for the visualization community 
to consider. One important goal is promoting balanced visual ana-
lytic workfows and practices. For example, tools can help analysts 
explicitly test their beliefs while also nudging them to explore pat-
terns that are outside the purview of their existing hypotheses. This 
can be done by augmenting recommender algorithms to consider 
analyst hypotheses [62], thereby allowing systems to respond with 
relevant plots as well as with other interesting visualization users 
might not otherwise see given their foci. Visual analytics tools may 
also be able to better predict intents by accounting for both user pri-
ors and their interaction histories. With this information, systems 
can nudge analysts to adopt a broader exploratory stance when 
called for, or conversely, steer them to be more hypothesis-centric. 
The appropriate balance between openness and directedness will 
depend on the context as well as the potential risks (e.g., of false 
discovery). To that end, augmenting metrics of analytic breadth 
and depth [19] to incorporate analyst knowledge may open up new 
ways for supporting varying analysis styles and needs. 

Visualization systems can also help users reason about data-
generating processes with simulated data drawn either from null [9] 
or prior models [25]. While there are successful examples here (most 
prominently the lineup protocol [10]), the design space remains 
underexplored. For example, in addition to showing users entire 
simulated datasets, we might present summaries of those simu-
lations, highlighting the portion of extreme visualizations given 
certain assumptions, or grouping simulation results by visual char-
acteristics (e.g., via scagnostics [61]). An analyst can inspect those 
summaries at a high level to understand the range of possible vi-
sualization outcomes, given an uncertain data-generating process. 
Similar ideas are already common in statistics (e.g., using boot-
strapping and prior/posterior predictive simulation). However, the 
potential analogs for these methods in visualization tools are yet to 
be fully explored. 

7 LIMITATIONS 
Although robust in design, there are limitations to our study that 
should be contextualized. First, our participants were recruited from 
Amazon Mechanical Turk. It is fair to assume that this sample does 
not represent professional data analysts. Evidence does suggest that 
even experienced analysts could beneft from belief-driven interac-
tions in visualization tools [36]. Still, given the crowdsourced nature 
of this study, the efects we found may not carry over, or at least 
present with similar magnitudes in seasoned visualization users, 
especially those who are trained in statistical inference. A second 
limitation is the controlled nature of the experiments; stimuli were 
presented in a predetermined order, with participants having no 
say over what visualizations to inspect. By comparison, real EDA is 
fuid with analysts typically deciding what projections to look at on 
the fy based on emergent data features and evolving goals [2, 50]. 
Future work could attempt to replicate our fndings in setups that 
allow for more naturalistic EDA. A related issue stems from the 
ground-truth models we developed, the parameters of which were 
also crowdsourced. Therefore, while much of the samples observed 
by participants were spurious (and hence misleadingly surprising), 
the underlying truth was consistent with the crowd wisdom. The 
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average participant may thus have had a reasonable chance of mak-
ing correct inferences by simply falling back to their intuition. To 
be fair, this advantage was present in all interventions tested. That 
said, it would be interesting to replicate our study using ground-
truth models that are inconsistent with crowd wisdom. Lastly, we 
based our study on simplifed linear models that dictate correla-
tions between two variables. This particular prompt format and 
the corresponding belief elicitation device were inspired by earlier 
studies [28]. Yet, this format presents a limited space of visual infer-
ences one can make. We also used a coding scheme that classifes 
inferences as either ‘correct’ or ‘incorrect’, in efect assuming a 
dichotomous interpretation of visualizations. Future work could 
also consider more expansive criteria for gauging inference quality, 
beyond the binary approach we used in this work. It would also be 
interesting to replicate our experiments with other kinds of models, 
and with other chart types and belief elicitation devices. 

8 CONCLUSION 
In the process of exploratory visual analysis, people sometimes 
draw inferences that are intended to generalize. Such inferences 
may be based on spurious visual patterns as opposed to true under-
lying efects or relationships. We explored interventions to combat 
the problem of spurious discovery in visual analytics. Specifcally, 
we investigated if eliciting and activating analyst working knowl-
edge can improve inference quality. Participants whose beliefs were 
elicited before observing samples made signifcantly more accurate 
inferences and exhibited a lower false discovery rate. The efect 
was robust when observing both true and spurious plots, suggest-
ing broad utility to the intervention. Additional interventions for 
visually highlighting counterevidence or sample uncertainty did 
not yield signifcant results over the baseline efect above. The 
fndings suggest that visual inference can be improved with rela-
tively lightweight interactions that can be easily incorporated into 
visualization systems. Such interventions could have concrete, if 
moderate, success in addressing the problem of false discovery. 
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