Work-in-Progress: HyFlex Hands-On Hardware
Security Education During COVID-19

Robert A. Karam
Dept. of Comp. Sci. and Eng.
University of South Florida

Tampa, Florida, USA

Abstract—Practical, hands-on hardware experience is an es-
sential component of computer engineering education. Due to
the COVID-19 pandemic, courses with laboratory components
such as Computer Logic Design or FPGA Design were subject
to interruption from sudden changes in course modality. While
simulators can cover some aspects of laboratory work, they
cannot fully replace the hands-on experience students receive
working with and debugging hardware. For hardware security
in particular, experimenting with attacks and countermeasures
on real hardware is vital. In this paper, we describe our approach
to designing a practical, hands-on hardware security course that
is suitable for HyFlex delivery. We have developed a total of
nine experiments utilizing two inexpensive, portable, and self-
contained development boards which generally obviate the need
for bench equipment. We discuss the trade-offs inherent in the
course and experiment design, as well as issues relating to
deployment and support for the required design software.

Index Terms—hardware security education, hyflex, computer
engineering, hardware laboratory

I. INTRODUCTION

The COVID-19 pandemic has caused significant disruption
to education at all levels and in every discipline [1], requiring
institutes of higher education to rapidly identify and implement
alternatives course modalities [2]. In computer engineering
education, courses with hands-on or practical laboratory com-
ponents were no exception, with laboratory sections often
facing additional challenges beyond those encountered in
lecture. In a typical semester, in courses such as Computer
Logic Design, FPGA Design, Computer System Design, or
Embedded Systems Design, students may need to physically
build and test circuits on breadboards, implement and interact
with designs on Field Programmable Gate Arrays (FPGAs), or
work with embedded systems and components (e.g. sensors,
actuators, microcontrollers). While students may be required
to purchase individual lab kits for the course, they generally
would not have access to their own laboratory equipment such
as oscilloscopes, power supplies, or function generators at
home. Hence, alternative instructional methods are required.

Gamage et al note that online delivery of experiments
can meet some, but not all high level aims of experimental
work in engineering curricula [3]. SPICE-based simulators
with interactive front-ends can emulate the assembly of logic

This material is based upon work supported by the National Science
Foundation under Grant No. DGE-1954259. Contact: rkaram@usf.edu

Srinivas Katkoori
Dept. of Comp. Sci. and Eng.
University of South Florida

Tampa, Florida, USA

Mehran Mozaffari Kermani
Dept. of Comp. Sci. and Eng.
University of South Florida
Tampa, Florida, USA

circuits, including the selection of discrete components and
breadboard wiring. However, real-world measurement and
implementation issues — noise, grounding, interference, and
parasitic capacitance, and especially for circuits operating in
the 10s of MHz range — are only really observed under non-
ideal, real-world conditions. Meanwhile, FPGA or Computer
System Design courses can at least focus on the use of the
electronic design automation (EDA) software and simulators,
but without access to individual development boards, students
are not able to actually map synthesized designs to the FPGA
and interact through pushbuttons, LEDs, or other peripheral
components. Moreover, there are important differences in the
design of hardware for simulation and for physical implemen-
tation, including register initialization and pin mapping.

In the Fall of 2019, we began developing an upper level
(senior / graduate) hands-on hardware security “laboratory
course” - a lecture course with interspersed hands-on activities
using real hardware. Students were expected to work in teams
of two and follow along in real-time with the instructor’s
demonstration using the hardware at their lab station, follow-
ing the experiential learning cycle. Contrary to courses with
discrete lecture and lab sections, this approach would allow
for real-time integration of lecture-based theory with guided
practical application and reflection / discussion among student
groups. Several assignments consisting of additional hands-
on experiments were also designed to complement the in-
class activities. All activities and assignments were designed
assuming students would be in class, at lab stations with
suitable bench equipment and shared development boards for
teams of two students, and have access to the equipment later
on to complete assignments. Ultimately it became apparent
that this course design would not be appropriate during the
COVID-19 pandemic, and so we made a number of changes
which would allow us to offer the course in a synchronous
HyFlex modality, or completely remotely if needed.

In this work-in-progress paper, we describe the basic re-
quirements and trade-offs for modifying this course to be
suitable for HyFlex or remote delivery. In particular, we de-
scribe the restructuring of experiments, selection of hardware,
and considerations for software tools necessary for enabling
greater flexibility in course delivery. While the focus of this
course was on hardware security, the same concepts can be
applied to other hands-on labs.

978-1-6654-8336-0/22/$31.00 ©2022 IEEE

TABLE I
OVERVIEW OF THE HARDWARE SECURITY LABORATORY EXPERIMENTS AND RELEVANT LANGUAGES / TOOLS.

Lab Name Tools and Components

1 Physical Unclonable Functions (PUFs) Implementation and Evaluation FPGA, Verilog, Python

2 Deep Learning and Modeling Attacks on Arbiter PUFs Python

3 Implementation and Evaluation of Pseudo- and True Randomness in Hardware FPGA, Verilog, Python

4 Introduction to Side Channel Analysis and Leakage Assessment ChipWhisperer, Python, C
5 Correlation Power Analysis Attack and Countermeasure for AES ChipWhisperer, Python, C
6 Timing Attacks and Countermeasures for Password Protected Embedded Systems ChipWhisperer, Python, C
7 Hardware Trojan Design and Countermeasures in a Soft CPU Verilog, RISC-V Assembly
8 Security for the Internet of Things: Attack and Countermeasure for RSA ChipWhisperer, Python, C
9 Post-Quantum Cryptographic Hardware and Embedded Systems Verilog

II. BACKGROUND

Hardware security is a rapidly growing field which views
the security of a computer system as starting with the hard-
ware on which all other applications and networks are built.
Hence, hardware is the “root of trust”. Numerous hardware-
based attacks and countermeasures have been described in
the literature in the past two decades, including physical
and side channel analysis (SCA) attacks, intellectual property
piracy, hardware Trojan insertion, and others. More recently,
courses which cover fundamentals of hardware security and
trust have been introduced into the undergraduate curriculum
at a number of universities. These courses generally cover sup-
ply chain security, testing and verification, hardware security
primitives including Physical Unclonable Functions and True
Random Number Generators (TRNGs), and invasive/semi-
invasive/side-channel attacks and countermeasures from a the-
oretical perspective. We have previously offered hardware
security course and have received very positive feedback from
students about course material. However, much of the material
is theoretical, with little practical or hands-on work. Some as-
signments require the use of datasets containing pre-measured
values from real hardware, and students are asked to analyze
the data, build machine learning models, or similar coding
tasks. However, using pre-recorded datasets without access
to the original hardware from which the data was gathered
means that students cannot actively experiment with different
implementations and countermeasures, reacquire data, and test
the impact. Students cannot hypothesize about these effects,
nor can they reflect on the concrete experience after ex-
perimenting. These are integral components of experiential
learning [4], and are vital to a hands-on lab. While simulation
may work to some degree in more general courses, in hardware
security, working with real hardware is imperative. Simplified
mathematical models cannot fully encapsulate real-world vari-
ations that are leveraged for hardware security primitives like
physical one-way functions or true random number generators.
For SCA, pre-recorded data only give students one dimension
for analysis; they can evaluate and compare results from differ-
ent implementations, but they cannot experiment themselves to
see how changes to the design impact the information leakage,
nor how different countermeasures manifest themselves in the
side channel recordings. This motivated us to re-design our
lab to be more amenable to a HyFlex or remote delivery.

III. DESIGN FOR A HYFLEX LAB

A total of nine hands-on experiments were designed for
this course, which are listed in Table I. These experiments
give students an opportunity to explore a wide range of topics
related to hardware security, including implementations of
PUFs and TRNGs in hardware, deep learning / modeling
attacks on hardware, SCA and power / timing attacks, security
in hardware / software interfaces, as well as advanced topics
in post-quantum cryptographic hardware. Each lab involves
the use of various tools, either software only, hardware only,
or a mix of both. This is suitable for computer science and
engineering students as they gain exposure to many different
facets of hardware and software, including embedded soft-
ware (C/C++), high level scripting (Python), hardware design
(Verilog), and implementation on FPGAs (Xilinx Vivado).
Ultimately we decided on a set of two development boards
- one for FPGA called the Digilent Cmod S7, and one for
SCA called the ChipWhisperer (CW) Nano. More details on
these boards are provided in Section III-B. In particular, we
needed to ensure that the boards were self-sufficient, and did
not need any external hardware for measurement and test so
that all experiments could be carried out at home, just as easily
as on campus. This helps ensure alignment between students
who are attending in-person and those who are attending from
home, which is an important aspect of a hyflex course [5].

A. Description of Experiments

Each experiment consists of a guided in-class portion that
not only introduces students to the theory, but also serves as a
tutorial / walk-through for the related experiment. Whenever
possible, we aimed to have students work together, including
requiring teammates to exchange data acquired from their
own boards as part of the data analysis and evaluation. The
following is a brief summary of two of the experiments which
particularly highlight the importance of working with real
hardware, as well as situations where the lab topic and design
requires direct collaboration between teammates.

1) Lab #1: Implementation and Evaluation of Physical
Unclonable Functions: Physical Unclonable Functions (PUFs)
are circuits that leverage nanoscale process variations during
circuit fabrication that lead to minute differences in circuit
structure. Because these variations cannot be controlled to such
a fine degree, signatures extracted from these variations are

{mmlO 0 B0 O E) 0 AR)

eLhﬂLUtJMﬁﬂ’ﬂLIHNHMUMMJJHJJHIJIHMLU

Cmod S7

CW Nano

Fig. 1. The Digilent Cmod S7 and NewAE ChipWhisperer Nano boards used
in the hardware security lab. The small size and free-to-use or open-source
tools made these attractive for the hyflex course.

physically unclonable, and may be used as a chip identifier or
for authentication [6]. In this experiment, students are provided
with multiple FPGA configuration files (bitstreams) which
they can program into their respective boards. The bitstreams
given to each student are identical, but when programmed into
their own FPGAs, the nanoscale variations result in different
outputs for the same input. Students are also provided a file
of sample inputs, called challenges, and must write a script in
Python that sends the challenges to the FPGA, and reads back
a response string. Due to the nature of PUFs, it is expected
that each student will read back a different response for each
challenge. Hence, it is vital that each student have their own
physical hardware for data acquisition.

For the analysis, students will need to compute two metrics
which correspond to the uniqueness and reliability of the PUF
circuit - uniqueness is measured by how different the responses
are for the same challenge on different boards, while the
reliability is measured by how similar the response is to the
same challenge on the same board if it is sent repeatedly.
To compute the uniqueness, students must swap response
sets with their partner, who independently acquire their own
response set from their own board to evaluate reliability.
Teams can make use of pair programming [7], either in-person,
or using a platform with screen sharing such as Microsoft
Teams. In future labs, students will again work in teams to try
and “attack” their implementations using machine learning to
model and the PUFs mapped on their respective FPGAs [8].

2) Lab #6: Timing Attacks and Countermeasures for Pass-
word Protected Embedded Systems: In this experiment, stu-
dents will develop a system to break a simple password check-
ing application in an embedded system, using the CW Nano
board. Two firmware files implementing a password checking
routine will be provided — one that has no countermeasures
against side channel analysis, and one that does. For the
unprotected file, students will not only know the password, but
also will be able to view and modify the source code. In this
routine, one character is checked at a time, and the function
immediately returns upon finding a mismatch between the

entered password and the correct password. This serves as
a “practice” file on which students will mount various timing
attacks. Initially they will use a clock function in Python to
determine if there is a measurable difference between, for
example, having 2 of 6 characters correct, versus having 5 of
6 characters correct. Students will have to implement a simple
countermeasure, introducing a random delay before returning,
to prevent this attack. Next, students will measure the power
consumption during the password checking routing using the
CW Nano as an oscilloscope. Patterns in the power consump-
tion which indicate the processor is performing a comparison
between characters will be clearly visible: when only n
characters are correct, students will see n unique peaks in
the power trace. This is true even for the first countermeasure
they implement. They will need to then implement a second
countermeasure against this attack by modifying the code to
continue performing the comparison, even if a mismatch is
detected. Once complete, students can then move on to the
the attack phase and work together using pair programming
to find the password for the second, protected file. Because the
power consumption will depend on the instructions executing
within the processor, it is vital that students have access to
physical hardware for performing this experiment.

B. Hardware and Software Selection

Since it was not feasible to have all students in the lab
at the same time, teaming up to work in close proximity on
the same devices, we decided to redesign and re-implement
certain aspects of the course to enable HyFlex course delivery.
In particular, each student would need their own board(s) for
the course and the experiments. This required careful selection
of devices which met the following criteria:

o Board(s) should be relatively inexpensive, not only for
initial acquisition of the hardware, but also in case a
replacement is needed

o Board(s) should be small / portable with minimal periph-
eral components, as students would need to either take
them to class regularly (if face-to-face) or take them home

e Software should be free and/or open source to avoid
licensing issues, and it should be easy to install and run
on student’s computers

We identified two suitable boards for this course with
software that met these criteria: the Digilent Cmod S7 and
the ChipWhisperer (CW) Nano. Both boards are small - the
Cmod S7 is about 79 x 18 x 18 mm, and the CW Nano is
about 60 x 30 x 3 mm. Both boards are powered by a micro-
USB cable, which doubles as a programming interface for the
board. Hence, they are both portable, have minimal external
components (no power supplies / separate power cables), and
both can use the same micro-USB cable. Since no lab requires
both boards to be programmed simultaneously, only one cable
is needed. The software for both is freely available. For the
Cmod S7, it can be programmed by the free version of
Xilinx Vivado, which is available for Windows and Linux.
Mac users can freely use a Linux-based virtual machine to
run the software as well. The CW software is deployed as a

virtual machine image which greatly simplifies deployment on
student’s systems. VirtualBox is freely available for Windows,
Mac, and Linux systems, so there are no compatibility issues.
Since the CW software requires an installation of Python with
various libraries, a C compiler, bash scripting support, etc.,
deployment as a VM also addresses potential configuration
issues and cuts down on the required support time (potentially
remote) diagnosing problems unique to one student’s setup.
The Cmod S7 has limited I/O, including two pushbuttons,
four LEDs, one RGB LED, and a small expansion header.
It is, however, breadboardable, and so additional user 1/O,
e.g. extra switches, buttons, displays, etc. can be integrated.
The board contains a Xilinx Spartan 7 FPGA with sufficient
logic resources for all of the labs. The micro-USB connection
allows for communicating with designs via USB Serial, which
is an integral component of multiple labs and allows students
to interrogate and read outputs from the mapped hardware
through a simple Python script and the pySerial library, rather
than rely on memory initialization files and recording outputs
mapped to top-level pins using a logic analyzer or oscillo-
scope. This board supports labs 1, 3, and 7. Note that labs 1
and 3 cannot be simulated, as they exploit real-world variations
in the hardware, whereas lab 7 can be run in simulation.
Meanwhile, the CW Nano has two onboard processors,
one which can be controlled via a Python API and Jupyter
notebooks, and a second ‘““victim” microcontroller which can
be programmed in C. Dozens of practical experiments related
to side channel analysis can be arranged using this board. The
main Python-controlled acquisition board can be used as a
kind of USB oscilloscope which records the power consumed
by the victim in real time, as it executes various functions.
The victim can be controlled using a straightforward serial
protocol, which allows students to write, flash, and execute
various functions on the victim, while recording, observing,
analyzing, and plotting the results in real-time from within
the Jupyter notebook environment. This board supports labs
4,5, 6, and 8. Note that, for all labs, it is possible to analyze
previously-acquired data without requiring students to access
the hardware. However, learning to use the equipment and
troubleshoot / problem solve on their own is a key outcome.
Moreover, simply providing students with pre-recorded data
does not enable them to make changes (e.g. implement a
countermeasure against the attack) to the firmware and observe
how that impacts the resulting power consumption trace (and
success of the original attack). Hence, students must have
physical access to their own hardware for data collection.

IV. FUTURE WORK

This course was offered for the first time in Fall 2021. The
course was open to undergraduate computer science and com-
puter engineering majors, and was cross-listed as a graduate
course. A total of three surveys are planned - a pre-survey,
mid-term survey, and post-survey. The surveys will include
a question asking students to self-report their own familiar-
ity with various tools and topics in Computer Science and
Engineering, including 1) mixed-signal / digital oscilloscopes,

2) logic analyzers, 3) EM / current probes, 4) multimeters,
5) function generators, 6) digital power supplies, 7) Matlab,
8) C/C++, 9) Java/C#, 10) Python, 11) Machine Learning /
Artificial Intelligence, 12) GPGPU, 13) Cryptography (The-
ory), 14) Cryptography (Implementation), 15) Microcontroller
/ Embedded Development, 16) FPGA, 17) Verilog / VHDL,
18) EDA, 19) circuit simulation, 20) hardware prototyping,
21) PCB design, 22) 3D modeling, and 23) Git. Some of
these topics are extensively covered in class, while others to
a lesser degree or not at all. We expect those topics which are
covered in more detail, especially those that were covered in
multiple experiments and in-class activities, will demonstrate
the greatest increase in self-reported improvement over the
course of the semester. In general, we hope to improve our
understanding of how the students’ perceptions of their own
knowledge and expertise in a given topic area or with a
particular tool varies throughout the semester and compares
with assessment grades. This study is expected to run for a
total of four semesters, through the spring of 2023.

V. CONCLUSION

In this paper, we have described our experience in redesign-
ing a hands-on hardware lab for HyFlex course delivery. Two
development boards were selected which cover the full range
of experiments as well as in-class activities. This approach
ensures students can benefit from experiential learning associ-
ated with working with physical hardware, which is especially
important for a course focused on hardware security where
simulation is not a viable alternative. Labs require students
to work together, either in the programming itself, or both
programming and sharing of independently acquired results
as part of overall data analysis. In future work we will report
on the effectiveness of this hyflex lab using student survey
responses, assessment scores, and other metrics.

REFERENCES

[1] L. Mishra, T. Gupta, and A. Shree, “Online teaching-learning in higher
education during lockdown period of covid-19 pandemic,” International
Journal of Educational Research Open, vol. 1, p. 100012, 2020.

[2] V. J. Garcia-Morales, A. Garrido-Moreno, and R. Martin-Rojas, “The
transformation of higher education after the covid disruption: Emerging
challenges in an online learning scenario,” Frontiers in Psychology,
vol. 12, p. 196, 2021.

[3] K. A. Gamage, D. 1. Wijesuriya, S. Y. Ekanayake, A. E. Rennie,
C. G. Lambert, and N. Gunawardhana, “Online delivery of teaching and
laboratory practices: continuity of university programmes during covid-19
pandemic,” Education Sciences, vol. 10, no. 10, p. 291, 2020.

[4] D. A. Kolb, Experiential learning: Experience as the source of learning

and development. FT press, 2014.

S. Binnewies and Z. Wang, “Challenges of student equity and engage-

ment in a hyflex course,” in Blended learning designs in STEM higher

education. Springer, 2019, pp. 209-230.

[6] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in 2007 44th ACM/IEEE Design
Automation Conference. 1EEE, 2007, pp. 9-14.

[7]1 L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, “Strength-
ening the case for pair programming,” IEEE software, vol. 17, no. 4, pp.
19-25, 2000.

[8] U. Riihrmair, F. Sehnke, J. Solter, G. Dror, S. Devadas, and J. Schmidhu-
ber, “Modeling attacks on physical unclonable functions,” in Proceedings
of the 17th ACM conference on Computer and communications security.
ACM, 2010, pp. 237-249.

[5

—_

