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Abstract. With the rapid growth of the Internet of Things (IoT) and
increasing reliance on network-connected devices, IoT security, which
integrates components of hardware and cybersecurity, is more important
than ever. Hence, we must improve and expand training opportunities for
students in IoT security. Experiential learning is an essential component
of education for engineering and cybersecurity in particular. In this work,
we describe three comprehensive hands-on IoT security experiments built
using off-the-shelf development boards which can provide a low-cost and
accessible experiential learning opportunity for students in this area.
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1 Introduction

The Internet of Things (IoT) is an ongoing technology transition with the goal
of connecting the unconnected. IoT application domains are varied and diverse,
including transportation, healthcare, consumer electronics, public services, de-
fense, and more [7, 15, 16, 24]. These devices are regularly exposed to potential
attacks with significant economical losses and public safety risks [1, 19]. Due
to the cyberphysical nature of IoT devices, their security necessarily integrates
components of hardware and cybersecurity [5,26]. In particular, hardware secu-
rity has often been lacking in devices and overlooked by researchers in contrast
to software security [25].

To ensure that current and future IoT devices are secure from malicious
attacks, we must focus not only on changing development methodologies and
prioritizing security as a design metric, but also on addressing deficiencies in
training the next generation of IoT engineers [2, 22]. In particular, providing
students with interactive practical experiences to efficiently motivate and instill
long-term knowledge about IoT security [11]. To this end, we have developed and
contextualized several security course modules focusing on IoT security that
⋆ This material is based upon work supported by the National Science Foundation
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can be integrated into upper-level courses to provide students with hands-on,
experiential learning for IoT security topics.

In this paper, we describe three of these course modules which focus on a
wide range of side-channel analysis (SCA) attacks to identify vulnerabilities in
IoT devices. In particular, one performs a password checker, another performs a
symmetric key encryption (SKE), and another performs a public key encryption
(PKE). Students learn the motivation behind these cryptosystems, go through
the mathematics of one particular example for each (i.e., simple loop password
checker, AES, and RSA respectively), and gain an understanding for how naïve
implementations may be vulnerable to various SCA attacks. They then attempt
the attacks themselves (password or key recovery), integrate countermeasures
with the implementations, and show the efficacy of the countermeasures. These
modules, and others in the course, run on inexpensive, commercial/off-the-shelf
hardware, and use only open-source tools and languages in an effort to minimize
the barrier to entry / integration into existing courses at other universities.

The rest of the paper is organized as follows: Section 2 provides a background
on experiential learning, SCA Attacks, IoT security, and the basics for the course
modules that students learn. Section 3 describes each of the course modules,
student tasks, and expected learning outcomes. Section 4 provides key takeaways
from a pilot offering of the course in Fall 2021. Finally, Section 5 concludes with
future directions for the research.

2 Background

In this section, we provide a brief overview of experiential learning, which is
central to the curriculum design, and summarize the relevant IoT security topics
explored by students in these course modules.

2.1 Experiential Learning and Hardware Security

Broadly, experiential learning is the process of “learning by doing”. Integrating
experiential learning methods into course modules can benefit engineering educa-
tion by helping students connect theories and knowledge learned during lectures
to real world situations through hands-on experiences [8, 11, 17]. Therefore, the
theory is contextualized in IoT. Most models of experiential learning are based
on Kolb’s Experiential Learning Theory (ELT) [8], which operates by creating
knowledge through experience [14]. ELT can be modeled using Kolb’s Experien-
tial Learning Cycle, which has the following stages: 1) active experimentation,
concrete experience, reflective observation, and abstract conceptualization, after
which the steps are repeated until students attain the desired learning outcome.

These practices allow students to gain experience from real-world examples
and develop many skills, including critical thinking, research, meta-cognitive
thinking, epistemic cognition, scientific inquiry, engineering innovation and prob-
lem solving [8, 14]. Because hardware security vulnerabilities and their exploits
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are inherently complex – requiring background knowledge in areas such as cryp-
tography, statistics, and electrical circuits – experiential learning is well suited to
training students in IoT security [11]. A mostly theory-based course covering IoT
security is well suited to discussing topics such as supply chain security, testing
and verification, and intellectual property piracy. Students can mount attacks
using pre-recorded data, but without access to the original hardware, they can-
not actively experiment with different implementations and countermeasures,
reacquire data, form hypotheses, or reflect on their concrete experiences after
the experiment. Putting the experiment itself in context – in this case, IoT –
is also important to motivate students and connect the experiment to the real
world. In summary, access to a hardware platform is essential to perform these
experiments.

2.2 Side-Channel Analysis (SCA) Attacks

As computer hardware devices perform various computations, their physical
properties can be measured and used to identify what functions are being per-
formed and even the contents of the underlying data [23]. These physical prop-
erties are referred to as side-channel leakages, and come in many forms. For
example, as transistors switch on and off, the effects can be seen on the power
consumption on the chip, as well as in the electromagnetic and thermal emana-
tions measured externally.

Simple Power Analysis (SPA) Attacks: An SPA attack involves visual in-
spection of the power waveforms measured from the device during operation.
This can be accomplished by looking at peaks within the waveform at specific
locations. For example, a basic “if statement" may produce a higher spike when
its condition evaluates as true. Moreover, the time it takes to perform certain
operations can be used as a way to determine what the inputs are to the algo-
rithm [13].

Differential Power Analysis (DPA) Attacks: A DPA attack can exploit
data-dependent leakages, where the power consumption of a crucial operation is
dependent on the data inputs [12]. Essentially, the idea of DPA is that small
differences in power consumption can be measured for the same operation per-
formed across different inputs – one where a targeted bit in the result is a 1, and
the other a 0. This difference can be exploited to deduce the secret key during
operation.

Template-Matching Attack: To process more complex power traces, a sum
of absolute differences (SAD) template-matching approach may be used. If an
algorithm is repeating the same instructions, the power is expected to match very
closely between iterations (assuming that there are no countermeasures in place).
The attacker begins by defining a template signal with the region of interest in
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Algorithm 1: Naïve Password Checker v1.0
Input: input_pw: string with password given by the user to check
Output: Indicate access granted or not based on the input_pw

1 secret_pw ← "RealPassword"; /* Real password stored in the system */
2 wrong_pw ← False;
3 for i← 0 to Size(secret_pw)–1 do
4 if secret_pw[i] != input_pw[i] then
5 wrong_pw ← True;
6 break;

7
8 if wrong_pw then
9 Print("INCORRECT PASSWORD!");

10 else
11 Print("ACCESS GRANTED!");

the power trace. Then, sweep this template along every point in the signal under
attack, subtracting the two, taking the absolute value, and adding the result. If
the two regions match very closely, then its SAD output is close to 0. Otherwise,
the output will be higher [6]. In contrast to SPA, SAD template-matching allows
one to identify similarities between power traces within a moving window instead
of a sample-wise comparison (i.e., one power sample at a time).

2.3 IoT Security

Generally, an IoT system consists of edge sensors that send data to a central
unit for processing. The central unit uses software applications to process the
collected data for intelligent decision making. As an edge node cannot be phys-
ically protected or continuously monitored, it can be easily attacked [10]. For
this reason, edge sensors often rely on password checkers for user credentials and
access verification, SKE cryptosystems (e.g., AES) for secure communication
and data transfer, and PKE cryptosystems (e.g., RSA) for secure connections
and distribution of SKE keys. The attacker can gain access to the edge node
and interfere with the legitimate operation. For example, they can modify the
transmitted data. Typically, the transmitted data is encrypted. In these course
modules, students observe first-hand how vulnerable unprotected systems are.

Password Checkers: Periodically, edge nodes may be accessed by users and/or
administrators. However, a naïve password checker implementation may be ex-
ploited by an attacker through SCA. For example, a simple power analysis (SPA),
such as timing analysis, can be used to break a basic loop design in which the
input and secret password are compared character-by-character, and then break
as soon as it finds an incorrect character (Algorithm 1). The attacker can sim-
ply brute force each character at a time instead of the whole password at once.
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Algorithm 2: Naïve Password Checker v2.0 (w/Random Delay)
Input: input_pw: string with password given by the user to check
Output: Indicate access granted or not based on the input_pw

1 secret_pw ← "RealPassword"; /* Real password stored in the system */
2 wrong_pw ← False;
3 for i← 0 to Size(secret_pw)–1 do
4 if secret_pw[i] != input_pw[i] then
5 wrong_pw ← True;
6 break;

7
8 if wrong_pw then
9 /* Countermeasure Attempt: insert a random delay */

10 wait← Rand() %12345;
11 for delay ← 0 to wait do
12 ; /* Do Nothing */

13 Print("INCORRECT PASSWORD!");

14 else
15 Print("ACCESS GRANTED!");

This reduces the complexity from O(nm) to O(n ∗m), where n is the number of
possible valid characters that the password may have and m is the number of
characters in the secret password. Therefore, the designer should implement the
respective countermeasures to prevent similar security vulnerabilities.

However, identifying the appropriate countermeasure requires an understand-
ing of the trade-offs and threat model, including the access and capabilities of
the attacker. The countermeasure needs to be simple enough to not produce
high power, performance, and resources overheads, but not too unsophisticated
that it does not protect the system as desired. For instance, a random delay
could be inserted before letting the user know the password in an attempt to
confuse the attacker (Algorithm 2). However, the attacker can still identify rele-
vant power spikes (e.g., at the break statement) before the random delay begins.
Thus, designers need to be more vigilant to truly protect their system.

SKE and AES: Once the users have been verified safely and allowed access
to their systems, they may need to communicate and transfer confidential infor-
mation between them. However, since this access is typically facilitated through
public infrastructure, we need to encrypt the data to prevent data theft or ma-
nipulation. Hence, a symmetric key encryption (SKE) such as AES is used to
protect the content transferred. Just as before, for a given threat model, making
certain assumptions about the knowledge and capabilities of the attacker, the
implementation of the encryption may be broken, leading to key recovery [9,21].
Attacks such as differential or correlation power analysis (DPA or CPA) have
been successfully used against implementations of AES and other SKEs [3, 18].



6 M. A. Fernandes A. et al.

Algorithm 3: Square-and-Multiply (SAM)
Input: b: base
Input: m: modulo
Input: exp_bin: exponent represented as an array of n bits
Output: r: result from the modular exponentiation

1 r ← b;
2 i = n− 1;
3 while i > 0 do
4 r ← (r ∗ r) mod m;
5 if exp_bin[--i] == 1 then
6 r ← (r ∗ b) mod m;

7 return r;

For example, this issue may be present in the AES algorithm during the substi-
tution bytes (S-box) step, as we will demonstrate later in Section 3.3.

PKE and RSA: On the other hand, even if the SKE implementation has been
adequately hardened, these depend on a secret key that both edge nodes need
beforehand through a secure channel. However, these systems or users may be
too far away for them to transfer the key offline. Moreover, an SKE system
becomes less and less secure as more users require access (and the secret key).
Therefore, we also need to encrypt and communicate keys through efficient,
reliable, and secure mechanisms. Otherwise, an eavesdropper can decrypt the
ciphertext generated by the SKE, defeating any countermeasure implemented.
Currently, most IoTs uses PKEs to safely authenticate, generate, and distribute
the secret key for the respective SKE.

An example of PKE that students can learn is RSA. Mathematically, the
security of RSA is derived from the computational difficulty of factoring the
product of two large prime numbers. In a naïve implementation, an attacker can
exploit the fact that certain operations depend on the present value of a key bit
and can be observed from side channels [4]. Encrypting a plaintext p requires first
representing it as an integer, then computing the ciphertext as c = pe mod m,
where e is a public key exponent, and n is a public key modulo. To decrypt, the
plaintext is computed as p = cd mod m, where d = e−1 mod ϕ(m) and is kept
secret. The value of ϕ(m) (Euler’s totient function) depends on two large prime
factors of m, which is difficult to extract.

Alternatively, the secret key d may be detected using power SCA. Since the
RSA decryption involves modular exponentiation, which is commonly performed
using the square-and-multiply (SAM) algorithm (Algorithm 3) for resource-
constrained microcontrollers. This algorithm takes as arguments the base b,
modulus N , and exponent in binary exp_bin – which for each bit of the ex-
ponent, performs one or two operations. To begin with, the base b is copied into
a temporary variable r. If the current key bit is 0, r = (r ∗ r) mod N , and the
loop iterates to the next key bit. If the current key bit is 1, the same function
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r = (r ∗ r) mod N is performed, but then it is multiplied once more by the
original base value, r = (r ∗ b) mod N . Hence, the number of operations inside
the loop depends on the current key bit. The attacker can exploit this factor to
effectively read the secret key d from the power trace.

3 Description of Course Modules

In this section, we explain the general setups for the experiments and a descrip-
tion for each of the course modules provided to the students, including their
tasks and expected learning outcomes.

3.1 Hardware and Software Setup

The students are provided with a ChipWhisperer (CW) Nano [20]. This board
is small (about 60 x 30 x 3 mm) and powered by a micro-USB cable. The CW
Nano has two onboard processors, one that is controlled through a Python API
and Jupyter Notebooks, and a second victim microcontroller programmed in C.

The CW software is open-source and deployed as a virtual machine (VM)
image, which greatly simplifies deployment on students’ systems. The Python-
controlled CW acquisition board can be used as a kind of USB oscilloscope
which records the power consumed by the victim in real-time while it executes
various functions. The victim can be controlled using a serial protocol, which
allows students to write, flash, and execute different firmware on the victim.
Simultaneously, they can record, observe, analyze, and plot the results in real
time from within the Jupyter Notebook environment.

3.2 Password Checker Module

Module Description: In this course module, teams of students attack two im-
plementations of example naïve password checkers (Algorithms 1-2). Students
are given a training password to test, practice, and become familiar with Chip-
Whisperer and password checkers. Once the students gain sufficient experience
and implement a plausible attack, they will repeat the procedure with a secret
password. Students learn to perform SPA, perform power timing analysis attacks
on relevant spikes, and improve countermeasures.

Student Tasks: Students must complete the following tasks in this module:

1. Implement the training Password Checkers v1.0 and v2.0 (Algorithms 1-2)
in C and flash the compiled binary file to the victim.

2. Send sample input passwords (input_pw) to the victim with a varying num-
ber of correct characters and collect power traces.

3. Plot and analyze the average power trace (Pavg) as in Fig. 1(a).
4. Plot and analyze the power difference (Pdiff ) for the input passwords input_pw

with a varying number of correct characters as in Fig. 1(b).
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Fig. 1. Password Checker Module: Plots of example (a) average power traces for pass-
word inputs with 0,1,2 correct characters; and (b) power difference between 0 vs 0
correct (red) and 0 vs 1 correct (blue) characters.
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 2.3  Attacking the Full Password

Now that we can guess a single character, attacking the rest is easy. We just need to repeat the process in another loop, and up
new correct char. You should start with an empty string as your initial reference password to then find the first correct character.

For each time you find a new correct character:

print this correct character found,
save the respective trace in a list (trace_list),
and save the respective approximate positions where it first differs in another list (pos_list)

Once you found all the correct characters, then return

the complete "passwd_guess",
the "trace_list",
and the "pos_list"

After updating the below script and running it, you should see parts of the password printed out as each letter is found.

Note: There are 2 different (but similar) versions of the password checker: password_checker_v1 and password_checker_v2. Us
checker function: 'a' for v1 and 'b' for v2.

In [113]:

 2.3.1  Test code with training hex file: "training-CWNANO.hex"

 2.3.1.1  Test with Cmd='a'

Find the password with password_checker_v1

In [114]:

Plot all the traces stored in "trace_list" and annotate where each trace starts to differ (use "pos_list")

Char Found: U

Char Found: S

Char Found: F

Char Found: C

Char Found: S

Char Found: E

Password: USFCSE

Confirm USFCSE: ACCESS GRANTED

✔️  OK to continue!


def find_password(cmd='a'):
    # First, define and initialize any variable and lists needed.
    passwd_guess=""
    trace_list=[]
    pos_list=[]
    
    # Then, loop using the "find_letter" function to find the next correct character
    while True:
        # Loop step 1: Find the next correct character
        ch, trace, pos = find_letter(passwd_guess, cmd, char_list)
        
        # Loop step 2: Check if we did NOT found any correct character.
        # If so, then return your outputs here (you found the complete password).
        if (not ch):
            return passwd_guess, trace_list, pos_list
        
        # Loop step 3: Otherwise, print the character found.
        print("Char Found:", ch)
        
        # Loop step 4: update the passwd_guess, trace_list, and pos_list with
        # the new char, trace, and pos found, respectively.
        passwd_guess += ch
        trace_list.append(trace)
        pos_list.append(pos)

# Training.hex; Command='a'
cmd = 'a'
password, trace_list, pos_list = find_password(cmd)
print("Password:", password)
​
# Confirm password
print(f"Confirm {password}: ", end='')
check_password(password, cmd)
​
assert(password == "USFCSE")
print("✔️  OK to continue!")
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 2.3  Attacking the Full Password
 2.3.1  Test code with training hex file: "traini

2.3.1.1  Test with Cmd='a'
2.3.1.2  Test with Cmd='b'

 2.4  Now break the attack file with secret pass
 2.4.1  Test code with arrack hex file: "attack

2.4.1.1  Test with Cmd='a'
2.4.1.2  Test with Cmd='b'

3  Diconnect Scope/Target

(b)

Fig. 2. Password Checker Module: (a) Plot of example average power traces for re-
spective correct character found during the SPA attack. (b) Example confirmation and
attack output when finding the password for the training Naïve Password Checkers
v1.0 and v2.0.

5. Identify a relevant spike in Pdiff where it could indicate the end of the loop
or break statement.

6. Implement an SPA attack to find a single correct character. If given a pass-
word starting with i correct characters, then the algorithm should return the
i+ 1 correct character and plot the respective power trace as in Fig. 2(a).

7. Iterate the single-character SPA attack to find all the characters in the real
secret password.

8. Verify the recovered password (Fig. 2(b)).
9. Repeat these procedures for a secret password (secret_pw) stored in a given

binary firmware to flash to the victim.
10. Once successful, implement in C a working countermeasure on the password

checker v1.0 (Algorithm 1) that will defeat the SPA attack implemented
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Fig. 3. AES Module (Part A): Plots of example mean power difference at byte 0 be-
tween AES inputs (a) 0xFF vs 0x00; and (b) 0x0F vs 0x00.
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Fig. 4. AES Module (Part B): LSB output data from random sample inputs into an
AES S-Box model.

in previous steps. Flash the compiled binary file to the victim and test the
implemented SPA attack. Verify that the countermeasure thwarts the attack.

11. Report the findings, discuss the results, and draw meaningful conclusions.

Expected Learning Outcomes: By the end of the experiment, students will
become familiar with basic SCA, SPA, timing attacks, and respective counter-
measures in password checkers. They will gain a better understanding on the
related topics and importance through their experiences they gathered through
this module. This module should give them strong foundations for the following
modules on AES and RSA (Sections 3.3-3.4).

3.3 AES Module

Module Description: In this course module, students build on their knowledge
of SPA and experiment with more sophisticated SCA attacks on an implemen-
tation of AES. In particular, the students investigate the usage of DPA and
CPA on the AES S-box to gain an understanding of how the attacks work. The
students work through three Jupyter Notebooks (A-C) that have been modified
from existing experiments provided in the CW software suite [20].
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Fig. 5. AES Module (Part C): Plots of example absolute mean power difference between
0/1 AES S-Box LSB outputs for different key guesses on (a) the original AES; and (b)
the AES with additional internal random delay countermeasure.

Student Tasks: Students must complete the following tasks in this module:

1. Program the CW with the AES implementation from the provided library.
2. Work through notebook A to capture many traces at a time for two inputs

- 0xFF and 0x00.
3. Divide the traces into two groups, one for each input
4. Average the traces in each group to filter out noise from the measurements.
5. Compute the differential between the two traces, plot using matplotlib and

inspect the peak as in Fig. 3(a).
6. Repeat the same process but with inputs that have a HW difference of 4

(e.g., 0x0F and 0x00) and plot as in Fig. 3(b).
7. Work through notebook B to conceptualize the process of recovering a byte

of the AES key.
8. Complete the steps to build the foundation of the DPA attack on AES.
9. Plot the LSB of the results from random sample inputs to the AES S-Box

as in Fig. 4.
10. Work through notebook C to apply the attack from B to an actual hardware

implementation of AES.
11. Automate the attack over the entire AES key, plot a few example CPA

outputs as illustrated in Fig. 5(a), and compare the recovered results from
the hardware to the actual key as shown in Table 1.

12. Modify the provided implementation of the AES in C code to include a
random delay as a countermeasure to the attack.

13. Repeat the attack above, plot a few example CPA outputs as shown in
Fig. 5(b), and compare the recovered key with the actual key, the attack
should be thwarted by the countermeasure as given in Table 2.

14. Report the findings, discuss the results, and draw meaningful conclusions.
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Table 1. AES Module (Part C): Example of key recovered output and actual key
values for the original AES.

Key Hex Bytes Accuracy

Recovery Key [2B,7E,15,16,28,AE,D2,A6,AB,F7,15,88,09,CF,4F,3C] 16/16 Bytes
Actual Key [2B,7E,15,16,28,AE,D2,A6,AB,F7,15,88,09,CF,4F,3C] (100%)

Table 2. AES Module (Part C): Example of key recovered output and actual key
values for the AES with additional internal random delay countermeasure.

Key Hex Bytes Accuracy

Recovery Key [B3,A2,90,79,46,EF,9B,23,FA,5A,59,B7,7C,4D,A4,D2] 0/16 Bytes
Actual Key [2B,7E,15,16,28,AE,D2,A6,AB,F7,15,88,09,CF,4F,3C] (0%)

Expected Learning Outcomes: Through this experiment, the students gain
an understanding of the basics of the AES algorithm, and the S-box in particular.
They observe the leakage of the S-box, and learn to exploit it by using classic
DPA. Finally, they use this knowledge to mount the attack and reveal the whole
key.

3.4 RSA Module

Module Description: In this course module, teams of students attack an im-
plementation of the square-and-multiply (SAM) algorithm – a key component
of RSA that enables modular exponentiation – on a resource-constrained micro-
controller development board. Students are encouraged to apply critical thinking
to identify vulnerabilities in the design to extract the secret key through SCA
attacks. The module has a tutorial that introduces the topic and basic attack
setup, enabling students to familiarize themselves with the attack. In particular,
students learn about improving Signal-to-Noise Ratio (SNR), template-matching
attacks such as the sum of absolute differences (SAD), and their countermea-
sures.

Student Tasks: Students must complete the following tasks in this module:

1. Implement SAM in C and flash the compiled binary file to the victim.
2. Send sample exponent keys to the victim and collect power traces.
3. Plot and analyze the average power trace (Pavg) as in Fig. 6(a).
4. Identify a suitable portion of Pavg to serve as the template T for SAD.
5. Implement SAD to compare T against Pavg and plot results as in Fig. 6(b).
6. Determine a threshold for the SAM results to discern matches (values under

the threshold) as in Fig. 6(b) and collect this in a binary match vector Mbin.
7. Examine the spacing between each match and determine when the victim is

processing 1 or 0 key-bit, a larger space indicates a 1 key-bit (Fig. 6(b)).
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Fig. 6. RSA Module: Plots of example (a) average power trace and (b) SAD algorithm
output.

Table 3. RSA Module: Example key recovered output and actual key values from
Fig. 6(b).

Key Hex Binary Accuracy

Recovery Key 6C1A403A 0110110000011010010000000011101? 31/32 bits
Actual Key 6C1A403B 01101100000110100100000000111011 (96.9%)

8. Read off the key values from the plot and automate this process using Mbin.
9. Compare the recovered and actual keys (Table 3). Note that the SAD attack

is unable to get the LSB because there is no next match to compare to.
10. Report the findings, discuss the results, and draw meaningful conclusions.

Expected Learning Outcomes: By the end of the experiment, the students
will become familiar with complex SCA, template-matching attacks using SAD
on a SAM algorithm. The student will learn how the SAM algorithm works and
its potential security vulnerabilities on RSA for IoT devices. This module will
close many gaps in the students’ understanding on SCA and the importance of
hardware security design on IoT through hands-on experiences.

4 Results

Feedback from students in the Fall 2021 course was generally positive, based
on interactions with students during the semester. Some critical feedback of
the course stemmed from a lack of relevant and accessible resources for Python
development. Many of the students felt it was difficult to translate the high level
topics and requirements of the modules to producible Python code. To improve
upon this, we have developed more supplementary material to teach students
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relevant techniques in Python for analyzing raw binary, using data processing
tools such as Numpy and Matplotlib, interfacing with hardware, and reading
official documentation.

The students also fulfilled the expected learning outcomes outlined in the
prior section. The password checker module taught the students about the basics
of SCA and how different results from functions can cause measurable spikes in
power. The AES module reinforced their understanding of these concepts by
first having them compare the power consumption of AES with different inputs.
Then, the module guided them through preliminary steps for the attack to teach
them the unfamiliar concepts of DPA. After these two modules, the students were
much more familiar with the CW platform and had a strong basis to work from
for the following RSA module. In the RSA module, the students were provided
with less resources to start from than in the previous labs, so they had to rely
on the lessons and concepts learned earlier. Most students were able to derive
the correct RSA key, and analyses in their reports demonstrated a link between
their conceptual understanding of the attack and the successful outcomes of their
experiments. This was a common theme across all the experiments.

5 Conclusion

In this paper, we presented a comprehensive set of course modules that provide
students with hands-on, experiential learning with IoT security experiments. It
uses off-the-shelf, low-cost development boards and open-source tools to make in-
tegration into existing university courses feasible. These modules teach students
about SCA attacks to identify and exploit vulnerabilities in IoT devices for sim-
ple password checkers through SPA timing attacks, key recovery for AES encryp-
tion using DPA, and in RSA during the SAM algorithm using SAD template-
matching attacks. Students learn the motivation behind SKE and PKE, the
mathematics of SAM and RSA, and gain an understanding of how naïve im-
plementations may be vulnerable to SCA attacks. Through this, students gain
real-world experience and develop critical thinking, research, and engineering
problem solving skills. Furthermore, we will consider future incremental improve-
ments and other practical projects based on feedback from students.
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