Improving Student Learning in Hardware Security:
Project Vision, Overview, and Experiences

Robert Karam, Srinivas Katkoori, Mehran Mozaffari-Kermani
University of South Florida, Tampa, FL, USA
{rkaram, katkoori, mehran2} @usf.edu

Abstract—Practical, hands-on experience is an essential com-
ponent of computer science and engineering education, especially
in the cybersecurity domain. In this project, we are investigating
techniques for improving student learning in such courses,
first by developing a new hands-on hardware security course,
then by testing the impact of gamification on student learning.
The experiments utilize only inexpensive, open-source or freely-
available software and hardware, and upon project completion,
the modules themselves will also be made freely available online.
Improving student learning in this critical area can have a wide-
spread positive societal impact as we encourage students to have
a security-first, secure-by-design mindset.

I. INTRODUCTION

Computers have become ingrained in nearly every aspect
of modern life. Security of these systems has understandably
been prioritized, with numerous national programs spurring
research and development activity over the past few decades
in cybersecurity. In turn, the rise in cybercrime has led to
an increased need for cybersecurity professionals; universities
have developed programs to meet that need through both tradi-
tional and online degree programs focusing on information and
network security. Meanwhile, hardware, which supports and
enables the processing required for more abstract systems, has
been traditionally viewed as inherently trustworthy. In recent
years, this perspective has shifted to one that rightly views
hardware as a potentially vulnerable computing foundation:
unless the security of the underlying hardware can be guar-
anteed, any software or networking applications built on that
platform would be equally vulnerable.

To this end, many academic programs have introduced some
form of hardware-oriented security curriculum. These courses
have much in common, and generally cover supply chain
security, testing and verification, hardware security primitives
such as physical one-way functions (e.g. PUFs) or true random
number generators (TRNGs), and invasive/semi-invasive/side-
channel attacks and countermeasures. At the University of
South Florida, we have previously offered hardware security
course and have received very positive feedback from students
about course material. However, much of the material is
theoretical, with little practical or hands-on work. Some as-
signments require the use of datasets containing premeasured
values from real hardware, and students are asked to analyze
the data, build ML models, or similar coding tasks.

This material is based upon work supported by the National Science
Foundation under Grant No. DGE-1954259. Contact: rkaram @usf.edu

Although these assignments served to ground some of the
more theoretical aspects of the course material, they did not
require any interaction with real hardware. Certainly, some
topics naturally lend themselves to more theoretical founda-
tions, such as supply chain security issues, while other topics
are not amenable for a laboratory course at most universities
due to their reliance on equipment that is costly, inaccessible,
or requires significant training to operate safely and properly.
Ensuring accessibility to the tools and materials required for
teaching these topics is critical; basing hardware security
education on inaccessible equipment can dramatically limit
the number of students receiving such training in universities
around the world. To enable not only our students, but
students at universities across the world to access hands-
on hardware security education, we developed a new course
covering topics that 1) require only “accessible” equipment,
broadly defined as equipment that is relatively inexpensive,
open-source, and easy to use and operate; and 2) provide an
opportunity to learn transferable hands-on hardware skills.

Education research is not simply about developing new
courses or integration of research into existing courses. Of
equal importance is researching the impact of pedagogy on
student learning outcomes (SLOs). Hence, we have not only
developed the new courses, we have developed a plan to
investigate the impact of gamification on a hardware labo-
ratory course. We hypothesized that game-based learning
in a laboratory setting can improve SLOs, including skills
such as proficiency with lab and measurement equipment
and software / computer aided design (CAD) toolflows, as
well as critical/creative thinking and brainstorming. To test
this hypothesis, we designed course modules that were also
amenable to team-based and collaborative learning through
gamification. While gamification has been investigated as a
tool to improve SLOs, to our knowledge it has not been studied
in the context of a hardware laboratory course.

Broadly, gamification refers to the introduction of game
mechanics or game-like features into non-game contexts [1].
Mechanics such as “race against the clock”, and mo-
tivators such as “leaderboards” with point/scoring sys-
tems or badges/trophies/awards for completing certain mile-
stones/tasks may be applied to hardware laboratory course
modules. We believe that if some labs include a form of com-
petition, students will be more likely to engage in the course,
which will in turn have a positive impact on student learning
of this complex subject area, and increased proficiency and
comfort in using the lab equipment. In this paper, we will

mm: 10+ 205 & 3052401509860 8705480

imﬂuhumht.m

I
|
|

b
| immn‘m&\

i

..............

CW Nano

Fig. 1. The Digilent Cmod S7 and NewAE ChipWhisperer Nano boards
selected for use in our hardware security laboratory course [2].

give a brief overview of the project, including a description
of the course modules, hardware/software platform, evaluation
plan, and preliminary results.

II. COURSE OVERVIEW
A. Description of Experiments

We designed nine hands-on experiments for this course.
Each lab involves the use of various tools, either software
only, hardware only, or a mix of both. The topics and related
software/hardware tools are listed in Table 1. This is suitable
for computer engineering, electrical engineering, and computer
science students as they gain exposure to many different
facets of secure hardware design, including FPGA develop-
ment, scripting languages like Python, and embedded software
development in C/C++. We utilize two development boards,
the Digilent Cmod S7 (FPGA) the ChipWhisperer (CW)
Nano (microcontroller with support for side channel analysis
experiments). Additional details on these boards are provided
in Section II-B. Each experiment consists of a guided in-class
portion designed to not only introduce students to the theory,
but also serve as a tutorial or walk-through for the related
experiment. Whenever possible, we aimed to have students
work together, including requiring teammates to exchange data
acquired from their own boards for analysis and evaluation.

B. Hardware and Software Platform

In order to maximize the impact of this course development
and education research, early in the project, we decided to use
hardware platforms and software tools that are open source
and/or freely available. We kept the following requirements
in mind while choosing the lab hardware:

e Low cost: is important as it will help in assembling
several lab kits at an affordable total cost so that each
student has a kit of their own; it is also helpful in
replacing broken hardware inexpensively

e Portability: 1deally, we would like the students to take
the hardware home so that they have the freedom to
work anywhere/anytime; further they can also bring to
the classroom as needed

e Open-source Software: readily available for free and
preferably maintained by the community will help in
keeping the cost low and provide support through com-
munity forums

Two hardware boards satisfied the above requirements,
namely, the Digilent Cmod S7 and the ChipWhisperer Nano
(see Fig. 1). Digilent board dimensions are 79 mm x 18 mm
x 18 mm. CW Nano’s dimensions are 60 mm x 30 mm x
3 mm. Each can be powered by the same micro USB cable,
is portable, and has very few external components. As these
boards are not used at the same time, the same cable can
be reused for both boards. CMod S7 can be programmed
by student version (free) of Xilinx Vivado (Linux/Windows).
A Linux based Virtual Machine (VM) can be used by Mac
users to run the software. ChipWhisperer software is deployed
as a VM image to simplify the software deployment for the
class. We used VirtualBox (free for Windows, Mac, and Linux
platforms) with no compatibility issues. VM deployment can
cut down the support time (in-person or remote) which oth-
erwise is significant if students were to install on their own.
ChipWhisperer required installation of Python with support
libraries, C compiler, bash shell, etc.

Digilent Cmod S7 has two (2) push buttons, four (4)
LEDs, one (1) RGB LED, and a (small) expansion header. If
additional user I/O is needed (say additional buttons/switches,
displays, etc.), then S7 is breadboardable. S7 has Xilinx
Spartan 7 FPGA with adequate logic block capacity needed for
the labs we have developed. Through micro USB students can
debug and observe the outputs from the mapped FPGA design
through a Python script and the pySerial library. This is very
convenient as it does not require memory initialization and
sampling with a logic analyzer or an oscilloscope. S7 board
supports labs 1, 3, and 7. Labs 1 and 3 cannot be simulated as
they require real-world variations (process variations) in the
hardware, while lab 7 can be simulated.

ChipWhisperer (CW) Nano houses two processors; one
of them can be programmed with Python API and Jupyter
notebooks and the other processor can be programmed with
C to emulate a victim. Dozens of practical experiments on
side-channel analysis can be developed on the CW board.
The main Python-controlled acquision board can emulate a
USB oscilloscope to record in real-time the victim’s power
consumption as the board executes various functions. The vic-
tim can be controlled with serial protocol so that the students
can write, flash, and run various functions while recording,
observing, analyzing, and plotting the results in real-time from
Jupyter notebook environment. CW supports labs 4, 5, 6,
and 8. For all labs, the students can analyze prior acquired
data without access to the hardware. However, to learn how to
use the hardware, troubleshoot and problem-solving on their
own is a key outcome. Further, simply providing students with
pre-recorded data will not allow students to make changes
(e.g., implement a countermeasure against an attack) to the
firmware and observe how the changes impact the power traces

TABLE I
OVERVIEW OF THE HARDWARE SECURITY LABORATORY EXPERIMENTS AND RELEVANT LANGUAGES / TOOLS.

Lab Name Tools and Components

1 Physical Unclonable Functions (PUFs) Implementation and Evaluation FPGA, Verilog, Python

2 Deep Learning and Modeling Attacks on Arbiter PUFs Python

3 Implementation and Evaluation of Pseudo- and True Randomness in Hardware FPGA, Verilog, Python

4 Introduction to Side Channel Analysis and Leakage Assessment ChipWhisperer, Python, C
5 Correlation Power Analysis Attack and Countermeasure for AES ChipWhisperer, Python, C
6 Timing Attacks and Countermeasures for Password Protected Embedded Systems ChipWhisperer, Python, C
7 Hardware Trojan Design and Countermeasures in a Soft CPU Verilog, RISC-V Assembly
8 Security for the Internet of Things: Attack and Countermeasure for RSA ChipWhisperer, Python, C
9 Post-Quantum Cryptographic Hardware and Embedded Systems Verilog

(and success of the original attack). This necessitates physical
access to the hardware by the students for data collection.

By relying solely on COTS components and open-source
hardware/software, we ensure that the results of this research
may be replicated at other universities at relatively little
cost, especially compared with multi-million dollar equipment
installations at other universities.

C. Challenges in Course Preparation

Development of the course modules required careful con-
sideration, not only to ensure full coverage of the topics for the
learning objectives, but also to ensure all students would be
able to run all of the required software. In particular, the FPGA
board requires software for programming the bitstream. The
complete Vivado package includes a device programmer, but
the installation is large (70+ GB is typical) and the software
may not run well on some student’s laptops. An alternative
standalone programmer such as Digilent Adept could be used,
but this is only released for Windows and Linux. For the
ChipWhisperer software, there is a complete software suite
including a Python installation, Jupyter notebooks, various
packages like numpy, matplotlib, other packages required for
running the CW experiments, as well as gcc for compiling ¢
programs, and drivers for communicating with the board. All
of these separate components can be installed individually on a
system, but to simplify the process for students, we assembled
a Linux-based virtual machine (Ubuntu) pre-configured with
all required software for programming the FPGA and configur-
ing/running the CW experiments. Each experiment was set up
as a Jupyter notebook. A “tutorial” portion of the experiment
walks students through the basic techniques. Code examples
are provided, and students can execute those samples, modify,
and observe the effect, e.g. changes in data output from
the FPGA or CW, or changes in power consumption from
the CW. This approache ensures all students have a solid
baseline knowledge of the techniques needed to successfully
attack/defend, or implement and evaluate the effectiveness of
their own attacks or countermeasures,

I[II. METHODOLOGY

The project aims are twofold: 1) course development and
2) hardware security education research. In this section, we
describe the education research component, which is presently
on-going at the time of publication. This consists of teaching

the class two ways - first, a more traditional lecture, with
some in-class activities/demonstrations of hardware attacks,
and second, a gamified version of the course. The experiment
is constructed as an ABAB study, such that the gamification
takes place in the “B” semesters. Two surveys, along with
tracking metrics like grade averages and skill development, are
used to assess the impact of gamification on student learning
objectives.

A. Hardware Skills Inventory

We begin by assessing the student’s skills with a survey
that collects demographic data, a self-assessment of computer
engineering-related skills, and information on students’ habits
with respect to video games - how frequently they play games,
and what kinds of games they play. The self-assessment
asks students to list which topics they have a background
in. This list includes the following topics: computer logic
design, FPGA / reconfigurable computing, hardware security,
software security / secure coding, network and information
security, computer architecture, cryptography / finite fields, re-
verse engineering (hardware), reverse engineering (software),
electronic circuit theory, transistors / nanoscale devices, and
side channel analysis attacks. Following this, students are
asked to rate their knowledge of, or comfort level using the
following: mixed signal / digital oscilloscopes, logic analyzers,
EM / current probes, multimeters, function generators, digital
power supplies, matlab, C/C++, Java / C, Python, machine
learning / Al, GPGPU, cryptography (theory), cryptography
(implementation), Arduino/Raspberry PI or other single board
computers, FPGAs, Verilog/VHDL, Synopsys or Cadence
EDA tools, SPICE / circuit simulation, soldering / hardware
prototyping, printed circuit board design, 3D modeling / 3D
printing, and Git or other version control systems. Students
are asked to rate their skills from 1 to 5, with 1 being no
knowledge of or experience in the topic, and 5 being an
expert on the topic. Finally, we collect data on student’s
extracurricular activities, whether or not they work on “side
projects” outside of regular classwork, particularly ones related
to computers/programming/hardware development. Examples
given include, but are not limited to, developing a smartphone
app or game, or building an Arduino-based device. We also
ask students about their video game habits, whether or not
they play games, how often, and what kinds.

In general, we expect that in the self assessment, students
will rate themselves as being more familiar with topics and

tools covered in the course in the second survey compared to
the first. We hypothesize that the amount this increases will
be higher in “B” semesters compared to “A” semesters due
to the differences in teaching methodology. Moreover, we are
interested to determine if a correlation exists between the rate
of improvement in the self-assessment in “B” semesters for
students who routinely play video games compared to those
that do not.

B. Plans for Gamification

Research on gamification in higher education is rela-
tively new, and coincides with the adoption and spread of
video games. Indeed, numerous studies have noted a sig-
nificant uptick in interest in gamification research in the
past decade [3]-[5]. Preliminary results on the impact of
gamification on learning have been generally mixed, with some
authors finding positive trends, negative trends, or no apparent
correlation. A recent meta-analysis by Hamari et al found a
generally positive relationship between course module gamifi-
cation and student engagement and learning, though they note
the level of impact depends heavily on the context in which
it is applied, as well as on the users themselves [3]. Borges
et al further classified the extant literature on gamification
and classified studies into those seeking to improve students’
mastery of certain technical skills, challenge students with
difficult problems, increase engagement, improve learning,
cause behavioral change, or increase socialization [4], but no
consensus was found on the result of these diverse studies.

Gamification has been investigated in a number of contexts
related to computing, including introductory computer pro-
gramming classes [6], IT compliance training [7], and cyber-
security competitions [8], among many others. One specific
area that has received significant attention is in employing
gamification to encourage students to engage in a “skills” type
lab course, where students learn to use new lab equipment.
The majority of literature on gamification in this context
focuses on science lab courses, such as microbiology labs or
similar [9]-[11]. Drace argues that one reason instructors of
such courses have sought alternative pedagogical techniques
is that, in a traditional classroom setting, a “skills” course
may be perceived by students as a “task list” of unrelated
assignments they must complete for a grade [10], and that
alternative methods may provide a more coherent framework
for increasing student engagement.

Our plan for gamification in this hardware security course
generally involves adding some form of competition, either
between student teams, or for individual students against a
clock. When competing against other student teams, groups
will practice an attack, implement a countermeasure, then
attempt to mount an attack on another group’s secured im-
plementation. Beyond this, we plan to have a leaderboard in
which individual teams will be ranked based on their ability to
break another implementation. For example, if a lab involves
a side channel power analysis attack, and Team A is able to
extract an encryption key from the secured implementation
using 5000 power traces, while Team B is able to do so with
only 3000 power traces, then Team A will be listed in 2nd

place, and Team B will be listed in Ist. The ranking will not
impact the student’s grade for that lab, and therefore displaying
the ranking does not violate any privacy regulations. Rather
than competing against each other, some labs may include a
race against the clock, where students will need to complete
various tasks / reach particular milestones within a set time. A
backstory may be provided for some labs, putting the student
in the position of an agent working to decode an important
message or similar. We plan to add the same game mechanics
to the labs in each gamified semester to ensure consistency.

IV. PRELIMINARY RESULTS

To date, the course has been offered twice, in Fall 2021 and
again in Fall 2022. The first time it was offered, we considered
this a trial run of the course content. This initial offering
was further complicated by the fact that it was taught in a
hybrid fashion, synchronously online and in-person due to the
COVID-19 pandemic; our approach to this hyflex laboratory
course was previously documented in the literature [2]. Hence,
the first “A” semester was in Fall 2022. To date, we have
collected preliminary survey information from 42 students
taking the course. Student demographic information can be
summarized as follows:

o The student population is comprised of 62% seniors, 29%

masters, 5% juniors, and 5% PhD students.

o The majority of undergraduate and masters students are
pursuing a degree in computer engineering (62%). Most
other students are pursuing a degree in computer science
(26%). The remaining masters students are studying
electrical engineering.

o About 80% of the students identify as male, and 20% as
female.

o GPAs are fairly evenly distributed, with about 22% re-
porting a GPA between 3.75-4.00, 3.50-3.74, 3.25-3.49,
and 3.00-3.24. About 10% of students report a GPA of
below 3.00.

For the hardware skills inventory, we have the following

initial observations:

¢ Most students listed familiarity with computer architec-
ture and computer logic design (about 85%). Both of
these are required courses for undergraduates.

« 1in 3 students reported familiarity with hardware security
and FPGAs. There is a FPGA elective which some stu-
dents may have taken. Students who have taken computer
system design would also be familiar with FPGAs. At
least some students would have been familiar with FPGA
basics from their logic design course, though this is
inconsistent and depends on the instructor.

e 1 in 4 students were familiar with cryptography, while
20% were familiar with electronic circuits and transistors.
There is a cryptographic hardware elective which some
students may have taken prior to this. However, we would
have expected more students to be familiar with electronic
circuits, as this is also a required course for computer
engineering students.

o Very few students (15% or less) reported being familiar
with network / information security topics (besides cryp-
tography, which was listed separately), software security

(12%), software or hardware reverse engineering (10%
and 5%, respectively), or side channel analysis (10%).
There is a software security / secure coding course avail-
able, but given the relatively low number of computer
science students in the course, many may not have taken
it before. The remaining topics are not offered in other
elective courses.

Self-assessment data from the hardware skills inventory is
summarized in Figure 2. Programming languages like C/C++
and Java, and more recently Python, are covered in core
classes. Some students learn Verilog/VHDL if they have taken
the FPGA elective, or else once they take the computer
system design course, often in their senior year. Students
are increasingly using Git in core programming classes. It
is therefore expected that these are among the topics with
which students felt they were very comfortable. Certain other
topics and tools are generally not covered (e.g. GPGPU, PCB
design, 3D modeling, etc.), and hence we do not anticipate
these to increase. Since Python, C, and Verilog are utilized in
the course, we anticipate these will increase. We also expect
to see an increase in hardware tools such as multimeter,
power supply, FPGA, function generator, and oscilloscope,
since these tools are used in the course. More survey data
is anticipated in the near future.

V. CONCLUSION

We presented an overview of an ongoing education project
that implements an innovative hands-on classroom course
to teach hardware security concepts. The innovation lies in
gamifying the student projects with the hypothesis that such
gamification will improve the student learning due to its
engaging nature. In order to test the hypothesis, the course is
taught in two ways, namely, a traditional way and the gamified
way. The course will be taught several times in an ABAB
manner with gamified labs in “B” semesters. In Fall 2022
(at the time of writing this paper), the course is being taught
in the traditional way. Data collection consists of analyzing
student performance and survey responses. The initial self-
assessment survey has some interesting findings such as most
of the class considers themselves as proficient in high-level
languages, but far less so in hardware topics like FPGA and
embedded systems. The project emphasizes the use of low-
cost open-source hardware and software as it makes the course
more easily reproducible at other institutions. One of the major
challenges faced so far was to prepare a VM image that
runs diverse open source software packages in a cohesive and
stable manner. To the best of our knowledge, this is the first
time gamification has been used as an intervention to improve
student learning in hardware security education.

REFERENCES

[1] D. D. Burkey, M. D. D. Anastasio, and A. Suresh, “Improving student
attitudes toward the capstone laboratory course using gamification,” Age,
vol. 23, p. 1, 2013.

[2] R. A. Karam, S. Katkoori, and M. M. Kermani, ‘“Work-in-progress:
Hyflex hands-on hardware security education during covid-19,” in 2022
IEEE World Engineering Education Conference (EDUNINE). 1EEE,
2022, pp. 1-4.

Self-Assessment Data

C/C++

Java / CH#

Python

Verilog / VHDL

Git / Version Control
Multimeter

Digital Power Supply
SPICE / Circuit Simulation
Arduino / Raspberry Pi
FPGA/CPLD

Hardware Prototyping
Machine Learning / Al
Function Generator
Synopsys or Cadence EDA
Mixed-Signal Oscilloscope
Cryptography (Theory)
Logic Analyzer
Matlab/Simulink

3D Modeling / 3D Printing
Printed Circuit Board Design
EM / Current Probe
Cryptography (Hardware)
GPGPU

[uny

2 3 4 5
Expertise (1 = none, 5 = expert)

Fig. 2. Mean and standard deviation for the hardware skills inventory.

[3] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work?-a
literature review of empirical studies on gamification.” in HICSS, vol. 14,
no. 2014, 2014, pp. 3025-3034.

[4] S. de Sousa Borges, V. H. Durelli, H. M. Reis, and S. Isotani, “A system-
atic mapping on gamification applied to education,” in Proceedings of
the 29th annual ACM symposium on applied computing. ACM, 2014,
pp. 216-222.

[5] D. Dicheva, C. Dichev, G. Agre, and G. Angelova, “Gamification in
education: A systematic mapping study,” Educational Technology &
Society, vol. 18, no. 3, pp. 75-88, 2015.

[6] F. Panagiotis, M. Theodoros, R. Leinfellner, and R. Yasmine, “Climb-
ing up the leaderboard: An empirical study of applying gamification
techniques to a computer programming class,” Electronic Journal of e-
learning, vol. 14, no. 2, pp. 94-110, 2016.

[71 R. J. Baxter, D. K. Holderness Jr, and D. A. Wood, “Applying basic

gamification techniques to it compliance training: Evidence from the

lab and field,” Journal of information systems, vol. 30, no. 3, pp. 119-

133, 2015.

G. Fink, D. Best, D. Manz, V. Popovsky, and B. Endicott-Popovsky,

“Gamification for measuring cyber security situational awareness,” in

International Conference on Augmented Cognition. Springer, 2013,

pp- 656-665.

[9]1 K. Fleischman and E. Ariel, “Gamification in science education: Gamify-

ing learning of microscopic processes in the laboratory,” Contemporary

Educational Technology, vol. 7, no. 2, pp. 138-159, 2016.

K. Drace, “Gamification of the laboratory experience to encourage

student engagement,” Journal of Microbiology & Biology Education:

JMBE, vol. 14, no. 2, p. 273, 2013.

M. T. Bonde, G. Makransky, J. Wandall, M. V. Larsen, M. Morsing,

H. Jarmer, and M. O. Sommer, “Improving biotech education through

gamified laboratory simulations,” Nature biotechnology, vol. 32, no. 7,

p. 694, 2014.

[8

[t

(10]

(11]

