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Abstract—Year after year, computing systems continue to grow
in complexity at an exponential rate. While this can have far-
ranging positive impacts on society, it has become extremely
difficult to ensure the security of these systems in the field.
Hardware security - in conjunction with more traditional cy-
bersecurity topics like software and network security - is critical
for designing secure systems. Moving forward, hardware security
education must ensure the next generation of engineers have
the knowledge and tools to address this growing challenge. A
good foundation in hardware security draws on concepts from
several different fields, including fundamental hardware design
principles, signal processing and statistics, and even machine
learning for modeling complex physical processes. It can be
difficult to convey the material in a manageable way, even to
advanced undergraduate students. In this paper, we describe how
we have leveraged Python, and its rich ecosystem of open-source
libraries, and scaffolding with Jupyter notebooks, to bridge the
gap between theory and implementation of hardware security
topics, helping students learn through experience.

I. INTRODUCTION

Computers are pervasive in almost every aspect of modern
life, and ensuring their security is of paramount importance.
This need has led to an increase in research and development
in cybersecurity through national programs. As a result, the
demand for cybersecurity professionals has risen, with univer-
sities offering traditional and online degree programs allowing
students to specialize in software, information, and network
security. In the past, hardware was thought to be inherently
trustworthy; however, this view has changed in recent years,
and the security of the underlying hardware is now considered
crucial to ensuring the security of applications built upon it.

As a motivational example of the pervasive nature of
computers and the associated security issues, we can consider
the Internet of Things (IoT). This is an ongoing technology
transition with the goal of connecting the unconnected. And
so, network-facing sensors, controllers, and actuators are em-
bedded in varied and diverse domains, such as transportation,
healthcare, consumer electronics, public services, defense, and
more [1]–[4]. These devices have long in-field lifetimes and
are network-facing, occasionally receiving firmware updates,
and routinely communicating with cloud services. As such,
these devices are regularly exposed to potential attacks with
significant economic losses and public safety risks [5], [6].
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Due to the cyber-physical nature of IoT devices, their security
necessarily integrates components of hardware and cybersecu-
rity [7], [8]. In particular, hardware security has often been
lacking in devices and overlooked by researchers in contrast
to software security [9].

To improve security assurance in all devices going forward,
it is important to prioritize security as a design metric, while
considering the potential threats and impact of an attack, if
one is ultimately successful. But beyond that, it is necessary
to address deficiencies in training the next generation of
computer scientists and engineers [10], [11] - not only those
who will play active roles in security assessment, but also
those doing the initial design and development. Therefore,
hardware security education should be more easily accessible
to all students, and should be taught in a manner leveraging
evidence-based pedagogical techniques to improve student
learning in this area. Using hands-on, experiential learning,
for example, enables students not only to learn the theory
of what makes a system secure against a given attack, but
also to practice the attack itself, implement a countermeasure,
understand the metrics used to assess efficacy, and reflect on
the impact of their work.

We have been working towards developing an introductory
hands-on hardware security course that predominantly uses
Python for coding tasks. The use of Python as a language for
instruction has been linked to increased motivation and better
student learning outcomes when compared to Java [12], due
to its ease of use and deployment on different platforms. Tools
such as Jupyter notebooks aid in scaffolding efforts. Course
development and subsequent education research was funded
by the National Science Foundation, and has resulted in the
implementation of 10 hands-on hardware security experiments
and associated course materials. All experiments involve hard-
ware in some way - either through direct communication with
development boards, through measurement of physical prop-
erties of the hardware, or through post-experiment analysis of
data that students collected themselves in prior experiments.
All experiments use Python and Jupyter notebooks designed
to walk students through attacks and implementation of coun-
termeasures, compartmentalize different aspects of the code,
and encourage unit tests in subsequent cells, enabling students
to check the efficacy of their attack or countermeasure as they
progress through the experiments.



In this paper, we describe three example uses of Python
and Jupyter notebooks in our course, along with relevant
background on the hardware security topics themselves: 1)
communication with hardware peripherals; 2) modeling of
physical unclonable functions with neural networks; and 3)
analysis of random number generators with a highly-optimized
custom implementation of the NIST test suite in Python. More-
over, we provide relevant technical details on the development,
optimization, and deployment strategy we used to help ensure
a good course experience for the students.

II. COURSE MODULE BACKGROUND

In this section, we provide background information on the
hardware security primitives discussed in this paper, and their
context in computer security and usage in the lab experiments.

A. Physical Unclonable Functions and Neural Networks

The first course module deals with physical unclonable
functions, or PUFs. In semiconductor manufacturing, “process
variation” refers to the fact that the individual transistors that
make up integrated circuits (ICs) all have slightly different
functional parameters due to tiny, uncontrollable differences
in physical attributes. A difference in the dimensions (length,
width, layer thickness, etc.) can impact functional properties,
such as how long it takes the transistor to switch from on to
off or off to on. Transistors are arranged in different ways
to implement different logic functions (NAND gates, NOR
gates, etc.) and that switching time manifests as propagation
delay - the time it takes to see an output change after one
or more input signals change. Typically, the variations among
individual components will not be very significant, and on
the whole, most of the ICs produced from the same design
will end up having the same overall behavior, within some
acceptable tolerance. However, some circuits can actually be
designed to amplify the effect of these tiny variations so that
they can be more easily measured. In turn, we can use this
principle to create a signature that is unique to that circuit, like
a digital fingerprint. Because these variations are too small to
be intentional, it is physically impossible to perfectly copy
them into another IC. This is the basis for PUFs, which are
one of the basic “building blocks” or “security primitives” that
are used in hardware security [13].

There are many different types of PUFs [14]–[16], and the
particular one we introduce to students in the first experiment
is the Arbiter PUF (APUF) [17], [18]. An APUF, shown
in Figure 1, is a circuit consisting of two “racing paths”
- a “top” path, and “bottom” path - that pass through a
series of stages. At each stage, a multiplexor (MUX) can
potentially swap the top and bottom paths, depending on the
value of a challenge bit. Different paths can be selected with
the application of different challenge bits. Each path will
be comprised of different transistors, and hence, have very
slightly different delay characteristics.

The quality of a PUF can be evaluated in two main ways:
first, its reproducibility, and second, its uniqueness [13]. A
PUF with good reproducibility will output the same value (0
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Fig. 1: Example Arbiter PUF with n stages (0 to n − 1).
Challenge bits C0 through Cn − 1 control whether or not the
top and bottom paths swap at a particular stage. A single pulse
travels through the circuit, experiences different delays through
each stage. Ultimately, the arbiter will record either a 0 or 1,
depending on which signal arrived first.

or 1) for the same challenge consistently on the same chip. On
the other hand, if you take the same PUF design on a different
chip, a PUF with good uniqueness will output a 0 or 1 with
close to 50% probability, which would in no way be related
to the output on the original chip.

Both of these properties - reproducibility and uniqueness -
can be easily measured using the Hamming distance metric.
The output for the same challenge on the same chip should
have a HD close to 0% - meaning it is highly reproducible.
This is also known as the intra-chip Hamming distance. The
output for the same challenge on two different chips with
the same PUF design should have a HD close to 50%. This
is also known as the inter-chip Hamming distance. A strong
PUF should, at the very least, have good reproducibility and
uniqueness. Students explore and evaluate these properties
in the first experiment, directly interfacing with an FPGA
to acquire PUF responses, and processing them offline in
Python. In the next experiment, students learn that while a
PUF may be considered good by these standards, and while it
may be physically impossible to reproduce exactly on another
device, its behavior may be modeled accurately using machine
learning approaches.

Because of their excellence in recognizing patterns and
learning features from highly complex data, ML-based ap-
proaches are well-suited to modeling attacks on PUFs. Some
of the most commonly used algorithms in literature include
Logistic Regression (LR), Support Vector Machines (SVMs),
Evolution Strategies (ES), and DNNs [15], [16], [20]–[23].
Consequently, this has motivated hardware security researchers
to devise enhanced PUF architectures that are resistant to
such attacks [17], [24], [25]. In a sense, research efforts to
engineer commercially usable PUFs must include some sort
of countermeasure to mitigate threats of ML-based attacks,
lest they be doomed to impracticality.

In the second experiment, students are tasked with using
ML/AI to model a PUF. PUFs can be modeled using many
different ML approaches, including Logistic Regression (LR),



TABLE I: All statistical tests recommended by the NIST Statistical Test Suite [19].

No. Test Name No. Test Name
1 Frequency (monobit) 9 Maurer’s ”Universal Statistical” Test
2 Frequency within a block 10 Linear Complexity
3 Runs Test 11 Serial test
4 Longest run of 1s in a block 12 Approximate Entropy
5 Binary Matrix rank 13 Cumulative Sums
6 Discrete Fourier Transform (Spectral) 14 Random Excursions
7 Non-overlapping template matching 15 Random Excursions variant
8 Overlapping template matching -
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Fig. 2: (a) Diagram of simple neuron, where output is a func-
tion of the inputs and their respective weights. (b) Diagram
of DNN showing the general architecture involving an input
layer, multiple hidden layers of various sizes and a final output
layer with a neuron for each class.

Support Vector Machines (SVMs), Evolution Strategies (ES),
and Artificial Neural Networks (ANNs) [15], [16], [20]–
[23]. Inspired by biology, ANNs are designed to mimic the
behavior of the brain, in that “decisions” are made by an
interconnected network of artificial neurons which loosely
mimic the functionality of neurons in a brain. As shown in
Figure 2(a), each neuron has one or more inputs – which
can be from either raw data or a previous neuron – with
a weight multiplied by each input and a single bias term
added. The final value is then input to an activation function,
which determines the neuron’s final output. One of the most
commonly used models in practice is a deep neural network
(DNN) which has several layers of neurons between the inputs
and outputs. An example of a DNN is shown in Figure 2(b).
For this task, a simpler ANN network was used, though it does
require some data preprocessing to succeed. Specific details
on the preprocessing and ANN implementation are provided
in Section III-B.

B. True Random Number Generators

The third experiment deals with randomness in hardware.
Random number generation is a critical component of many
aspects of computing, and especially within security domains.
For instance, random number generators (RNG) are often
used to generate random sequences of bits for cryptographic
systems. Not all RNGs are of the same quality, especially for
crypto applications, and there are important distinctions when
assessing the suitability of a RNG for security applications.

First, RNGs can be categorized into a few different
classes; namely, pseudo-random number generators (PRNGs),
cryptographically secure pseudo-random number generators
(CSPRNGs) and true random number generators (TRNGs).
PRNGs typically use an algorithm to generate a sequence of
random numbers. An example of a PRNG could be a linear
feedback shift register (LFSR) which produces a (repeated)
sequence of states that comprise the random bitstream. Con-
sequently, they are not suitable for cryptographic applications,
however enhancements may be made to make them suitable
for cryptographic applications (i.e. CSPRNGs). True random
number generators TRNGs are dubbed truly random because
they generate random numbers by harnessing the inherent
randomness of certain physical phenomena, rather than purely
algorithmically. For example, thermal noise, clock jitter, atmo-
spheric readings and even quantum interactions [26]–[30].
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Fig. 3: Traditional structure of a TRNG. Consists of a physical
source of entropy (randomness), a mechanism for harvesting
that entropy, and a post-processing step to digitize the data
from the harvesting mechanism which produces the final
random binary data.

In general, a good TRNG consists of a few critical compo-
nents [31]. First, the entropy source is the physical phenomena
to be harnessed for generation and should be aperiodic and un-
predictable. Second, the harvesting mechanism is the method
the TRNG uses to perform the extraction of entropy from the
source. The harvester should be designed in such a way that
it does not disturb the process itself while collecting as much
information as possible. Finally, depending on the nature of
the entropy source and harvester, a post-processing step may
be necessary to mask imperfections or provide tolerance to
faults and tampering. A diagram of a general TRNG structure
is provided in Figure 3. For certification, the TRNG should
be subjected to a number of intense statistical tests to evaluate
the randomness of its output. The NIST statistical test suite is
one of the most widely used test suites for this purpose [19].



As seen in Table I, the NIST test suite consists of 15
statistical tests designed to test different features of binary
sequences. In what follows we provide a brief description
of each test: 1) Frequency (monobit) test focuses on the
proportion of 0s to 1s in the entire sequence, 2) Frequency
test within a block tests the proportion of ones within M-
bit blocks, 3) Runs test focuses on the total number of
runs of identical bits within the sequence, 4) Longest run
of 1s in a block tests for the longest run of 1s within M-
bit blocks, 5) Binary Matrix rank test focuses on the rank of
disjoint (32 × 32) sub-matrices of the sequence, 6) Discrete
Fourier Transform (Spectral) test focuses on the peaks in the
DFT of the sequence and detects periodic features, 7) Non-
overlapping template matching test computes the number of
non-overlapping occurrences of a supplied bit template pattern,
8) Overlapping template matching test is similar to the non-
overlapping template test, but the matches are allowed to
overlap through the sequence, 9) Maurer’s “Universal Sta-
tistical” test focuses on the number of bits between matching
patterns in the sequence - essentially detecting whether the
sequence can be compressed without information loss, 10)
Linear Complexity test divides the sequence into N M-bit
blocks and computes the linear complexity of each block,
11) Serial test focuses on the frequency of all overlapping
m-bit patterns in the sequence, 12) Approximate Entropy test
compares the frequency of overlapping blocks for block sizes
of m and m+1, 13) Cumulative Sums test computes the
cumulative sum of the adjusted sequence mapped from 0, 1
to −1, 1 and examines the maximal excursion from 0 of the
random walk of the cumulative sums , 14) Random excursions
test computes the same cumulative sum metric but focuses on
the number of cycles having exactly K visits in the random
walk between a range of (-4, +4), and 15) Random Excursions
variant test which is similar to the Random Excursions test
except within a range of (-9, +9).

C. Student Resources and Learning Methods

In general, all experiments have a detailed instruction man-
ual with (i) sufficient information about the importance and
background of the topic(s) being addressed, (ii) a step-by-
step guide for the student to follow with examples, and (iii)
a clear list of all the deliverables the students are expected
to submit. Furthermore. A template Jupyter notebook is also
provided for each experiment. We leverage the modular design
of Jupyter, these notebooks contain a series of tasks, each with
the following resource elements:

1) A text heading to help students to find each task under
the table of contents generated by Jupyter Notebook.

2) A text markdown cell explaining the task.
3) Example codes with which students can practice and

gain experience.
4) An empty python function for the student to place their

code in and encourage students to write their code in a
modular fashion.

5) Test bench codes for the students to run and verify their
solution themselves. These test benches verify a variety

of potential inputs and outputs that may be encountered
by the function written by the student.

All these elements are detailed, concise, complete, and
easy for the students to understand, helping them to meet
the expected outcomes. However, some experiments will have
similar tasks in which they can reuse their implementation with
minor modifications. Hence, the subsequent repeating tasks
have fewer resources and fewer details. For instance, the first
activity provides highly detailed examples and explanations on
how to connect to the FPGAs, but the subsequent experiment
will only have a heading with a brief description of the task.
It is expected for the students to use their prior experience and
reuse their code to solve the new challenges. This procedure
uses a combination of scaffolding learning and experiential
learning. Scaffolding is the process of “learning with assis-
tance”. Providing students with sufficient resources and guid-
ance in order to enhance their motivational engagement and
educational outcomes [32]–[34]. While experiential learning
is the process of “learning by doing”. Supplying students
with the opportunity to work with the code and hardware
directly, along with sufficient examples and test scripts can
help ensure a prolonged and expanded knowledge foundation
[35]–[38]. Thus, integrating both learning methods into the
course modules can benefit engineering and computer science
education by helping them connect knowledge learned through
the lectures and guides (i.e., scaffolds) to real-world example
challenges through hands-on experiences.

III. IMPLEMENTATION DETAILS

In this section, we describe the ways in which Python is
used in the PHS course to bridge the gaps between hardware
security concepts and the associated fields applied within them,
including hardware peripheral communication, modeling of
PUFs, and evaluation of TRNGs.

A. Communication with Hardware Peripherals

Several experiments in this course require the gathering
of data from hardware peripherals (e.g., FPGAs) for offline
analysis. The Python library Pyserial provides a convenient
wrapper around a serial port on a PC that implements the
universal asynchronous receive and transmit (UART) protocol
for serial communication. It implements a buffer interface so
that data can be stored in real-time from the hardware device,
and retrieved from the buffer. For example, on a Windows
machine, the interface to a particular serial port connected to
a device running at a baudrate of 9600 can be declared in
Python using the syntax:

Listing 1: Usage of Pyserial for communicating with hardware.
import serial

interface = serial.Serial( ' COM6 ' , 9600)

# Example of read / write using the interface
interface.write(bytearray.fromhex(0xC0FFEE))

bytesRead = interface.read all()



Usage of Pyserial is important for several of the labs. For
the PUF modeling lab, the students are required to program
an FPGA with an implementation of an Arbiter PUF (Fig 1)
and then obtain challenge-response-pairs (CRPs) from the
FPGA. For the TRNG lab, the students have to program the
FPGA with two separate TRNG implementations and gather
10 million bits from each and evaluate their quality using a
Python implementation of the NIST test suite. In both cases,
the Pyserial library enables the communication with these
hardware modules.

B. Neural Network PUF Modeling

Before considering the use of an ANN to model the PUF
behavior, formalization of the problem and PUF functionality
is required. The input to the PUF is an n-bit challenge
C ∈ {0, 1}n. The delay difference at the end of the cascaded
switches between the upper and lower paths ∆c determines
the response r of the PUF as:

r =

{
1 if∆c < 0

0 otherwise
(1)

A negative ∆c means the top signal arrived first, so a 1
is stored in the DFF, while a positive ∆c means the bottom
arrived first, latching a 0. Essentially, the ANN needs to model
∆c to model the PUF output. Each MUX stage adds some
delay σ0/1, for switching/not switching, and the C controls the
switching between top and bottom stages. While C controls
the switching, it does not directly relate to the delay properties
of the circuit - however, the parity vector

−→
Φ of C does. The

parity vector is a vector of -1/1 values that indicate when the
internal pathing of the PUF flips. The parity vector and ∆c

can be calculated as:

−→
Φ =

n−1∏
j=0

(1− 2C[j])

∆c =
−→
W ×

−→
Φ

(2)

where
−→
W is the weight vector, which encapsulates the delay

line properties. With the set of CRPs,
−→
Φ can be calculated for

every C, and weights in the ANN can approximate
−→
W , and

thus, the PUF responses can be modeled.
For the APUF given to the students, a simple ANN with a

single neuron is used for modeling. For ease of implementation
and use, the code leverages Tensorflow [39] for training and
testing of the ANN. The students are provided a wrapper for
the Tensorflow model, which contains functions for training
and testing the network on different portions of the data set.
Tensorflow can easily leverage a GPU for training and testing
of the ANN model, or vectorized instructions in the CPU if
they are available.

C. Python Implementation of NIST Test Suite

The original test suite provided by NIST is written in C [19],
and provides an interface for running the tests in various con-
figurations. Their implementation has the benefits of efficiency

Listing 1 Python code for frequency within block test in the
NIST test suite.
import numpy as np
import scipy.special as ss

def frequency_within_block_test(file, M=128):
# load raw bytes
rbytes = np.fromfile(file, dtype=np.uint8)

# unpack bits into Numpy array
bits = np.unpackbits(rbytes)
nBlocks = bits.size // M

# reshape binary into blocks of size M
# compute frequency of bits in all blocks
blocks = bits.reshape(nBlocks,M)
ps = np.sum(blocks, axis=1) / M

# compute test statistic
chisq = np.sum(4 * M * ((ps - 0.5) ** 2))
p = ss.gammaincc((nBlocks/2), chisq/2)
success = (p >= 0.01)

return [p, success]

from being in a compiled language, but can be difficult for
students to use effectively. Running C programs on a Windows
machine (which is common among students) requires setting
up and using a Windows-based compilation and debugging
toolkit such as MinGW. This creates unnecessary setup steps
that do not help the student understand the assigned problem.

Python can be an alternative to overcome these issues.
However, Python is an interpreted language, and thus is not
nearly as fast as a compiled language like C/C++. Since the
NIST tests are very computationally intensive, implementing
them in Python can be difficult. To implement the tests
efficiently, the popular Python libraries Numpy and Scipy will
do the heavy lifting for data processing. Numpy and Scipy
are both highly optimized data analysis libraries with backend
implementations written in low-level languages like C and
Fortran. Numpy has many built-in functions that are very
useful for implementing the tests.

First, the input bitstream B can be loaded as a uint8
Numpy array. Many of the NIST tests involve splitting B
into blocks and computing some metrics over those blocks.
Numpy’s functions trivialize this by enabling the reshaping and
restructuring of the underlying data, and computing metrics
along a given axis of that data. For example, consider the
simplified code snippet in Listing 1 for the frequency within
blocks test.

The fromfile function is used to read a raw byte file into an
array with the given data type - np.uint8 is used so that the
data can be manipulated more easily. The default block size
M for this test is 128, so the data is reshaped so that each
block has 128 bits, then the sum function is used to compute
the sum along that axis of the data. The variable props stores
the sum of all set bits in every block in a (nBlocks × 1)
array. Numpy also supports performing arithmetic and bitwise



Listing 2 Berlekamp-Massey [40] algorithm to find shortest
LFSR of subsequence, vectorized using Numpy.
def vectorized_berlekamp_massey(blocks):

n = len(blocks)

# allocate polynomial coefficients
Dc = Db = blocks
L = np.zeros(n, dtype=np.uint16)
M = 500

# evaluate each bit of the LFSR
for i in range(M):

# compute discrepancy
d = (Dc & 1).astype(bool)
Dc = Dc >> 1
mask = L <= i / 2
T = Dc[d & mask]

# update the appropriate coefficients
Dc[d] ˆ= (˜Db[d] & (2**(M-i + 1) - 1))
L[d & mask] = i + 1 - L[d & mask]
Db[d & mask] = T

return L

operations to every element in the array at once, using similar
syntax that is used for traditional Python integer variables -
as is done to the props variable. This is useful for other tests
that involve more complicated computations to perform along
blocks of the data, like the binary matrix rank test and the
linear complexity test.

In particular, the linear complexity test is the most com-
putationally intensive test in the NIST test suite. It computes
the smallest LFSR that can generate a M -length subsequence
of B, with M = 500 by default. This is done by using
the Berlekamp-Massey algorithm [40], which takes a total of
M iterations to compute the linear complexity of a binary
sequence. By leveraging the built-in bitwise operations and
other high-performance Numpy array slicing techniques, the
Berlekamp-Massey algorithm can be vectorized in a highly
efficient manner as shown in Listing 2.

Essentially, B is reshaped into an (N ×M) array, and the
linear complexity is computed on every block in parallel. The
Berlekamp-Massey algorithm is computationally intensive -
involving a loop with M iterations, with multiple if statements.
Since the algorithm is vectorized, the if statements can be
eliminated by performing bitwise operations on all elements
at once, and using masking to modify only certain blocks in
the array when appropriate.

IV. TECHNICAL OUTCOMES

When developing this course, we aimed to make the focus
on learning about hardware security, rather than learning
to program in Python. Python was chosen in part because
students already have taken an introductory programming
course in Python, because there are many data processing
libraries readily available, it is cross-platform, and relatively
easy to use. Hence, one important metric is the “usability”
of the provided code in each module; whether or not the
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Fig. 4: Runtime of training an ANN with different amounts
of the training data.

provided libraries are easy or intuitive to use, and whether
or not the experiments can be run in a reasonable time on
students’ laptops. The latter is especially important; buggy
or slow code can be frustrating, and when initially learning
these topics, students will likely make errors and need to
re-run the analysis. Besides summative assessment results,
we also looked at changes in pre- and post-survey responses
from students regarding the perceived difficulty of the labs,
their familiarity with Python, and familiarity with the relevant
tools/platforms and hardware security concepts.

A. Runtime Results

To evaluate the runtime performance of the presented lab
components, we ran tests on a laptop with an Intel i7-6600U
processor and 16GB of RAM, which is comparable to the
specifications of a laptop that a student may have.

1) Neural Network Training: The machine that the lab
software was tested on does not have a GPU. The i7 CPU does
however support AVX instructions, so, training does not take a
considerable amount of time. The APUF given to the student
has 16 stages of MUXes, and thus a 16-bit challenge vector.
The ANN used to model the APUF has an input layer with a
single neuron, and an output layer with a hyperbolic tangent
activation function. The model is trained for 100 epochs using
a batch size of 500. The students are given a file containing
50,000 challenges that they send to the FPGA via a serial
connection, and then gather responses from the PUF. They are
tasked to train the ANN on subsets of the CRPs to see how
many CRPs are needed to get a decent accuracy. Runtimes
for training the ANN on the i7 machine with larger and larger
data subsets is shown in Figure 4.

2) NIST Test Suite: There have been a number of improve-
ments made to the original NIST test suite, so, to give our
implementation a fair comparison, we compare with a highly
optimized C-based version of the test suite 1. As shown in
Figure 5, our Python implementation is able to outperform

1Compared NIST STS GitHub repository https://github.com/arcetri/sts.

https://github.com/arcetri/sts
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Fig. 5: Runtime comparison of our Python implementation and
an improved C-based implementation of the NIST statistical
test suite for different bitstreams.

the improved C implementation of the tests 2. Moreover, the
C implementation was not able to complete the tests for 1
billion bits of data, while the Python implementation was.

The NIST code that was provided to the students also
includes various input handling and pre-processing code to
make the interface easier to use. The interface for the C-based
tests is not as straightforward and may be difficult for a student
to use. The Python implementation is highly optimized, well
suited to systems with lower-end processors and limited RAM
availability, and easy to work with in the Jupyter Notebook
interface that the class is deployed in. In the TRNG lab, the
students are given two TRNG designs to program their FPGA.
They are required to gather 10 million bits of data and evaluate
the quality of the TRNGs using the provided NIST test suite.

B. Survey Results

Surveys were conducted at the start and end of the semester.
A total of 37 students completed both the pre- and post-survey.
Among other questions (e.g. demographics), students were
asked to rate their knowledge of, or familiarity with certain
topics, which we called the “Hardware Skills Inventory”. This
inventory included the following topics: mixed signal/digital
oscilloscopes, logic analyzers, EM / current probes, multi-
meters, function generators, digital power supplies, Matlab,
C/C++, Java/C#, Python, machine learning / AI, GPGPU,
cryptography (theory), cryptography (implementation), Ar-
duino/Raspberry PI or other single board computers, FPGAs,
Verilog/VHDL, Synopsys or Cadence EDA tools, SPICE /
circuit simulation, soldering / hardware prototyping, printed
circuit board design, 3D modeling / 3D printing, and Git or
other version control systems. Students are asked to rate their
skills from 1 to 5, with 1 being no knowledge of or experience
in the topic, and 5 being an expert on the topic. Only a fraction
of these topics are covered in the class.

We hypothesized that students in the class would rate their
knowledge of or familiarity with those topics we covered

2GitHub repository for our optimized Python NIST STS https://github.com/
BrooksOlney/TRNG-Test-Suite.
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Fig. 6: Comparison showing the student’s average self assess-
ment of each topic in the Hardware Skills Inventory. Topics
marked with an asterisk indicate a statistically significant
improvement (p < 0.05).

as being significantly higher by the end of the semester.
These topics include cryptography (theory), cryptography
(implementation), FPGAs, and ML/AI. Figure 6 shows the
baseline results from the pre-survey compared to the post-
survey results at the end of the semester. We observed a
statistically significant increase (T-test, p < 0.05) for cryp-
tography (implementation), FPGAs, and ML/AI. While there
were many topics in which students reported an increase in
their knowledge, we could neither attribute these increases to
the course, as they were not covered, nor were the increases
significant given our sample size. While there was a slight
increase for Python, it was not significant. Students came into
the class feeling confident in their Python skills. In contrast,
the main topics - cryptography (implementation), FPGAs, and
ML/AI, increased significantly. This survey helps to confirm
efficacy of the course modules, and importantly, serves as a
baseline for future experiments in pedagogy which are planned
in future semesters.

V. CONCLUSION

In this paper, we have presented three examples of how
Python and Jupyter notebook can be leveraged for an intro-
ductory hands-on hardware security course. We have focused
our effort on ensuring proper scaffolding throughout the course
using Jupyter notebooks, as well as the usability of our custom
libraries through efficient implementation and ease of use.

https://github.com/BrooksOlney/TRNG-Test-Suite
https://github.com/BrooksOlney/TRNG-Test-Suite
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