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ABSTRACT: We present the first implementation of spin−orbit
coupling effects in fully internally contracted second-order
quasidegenerate N-electron valence perturbation theory (SO-QD-
NEVPT2). The SO-QDNEVPT2 approach enables the computations
of ground- and excited-state energies and oscillator strengths
combining the description of static electron correlation with an
efficient treatment of dynamic correlation and spin−orbit coupling.
In addition to SO-QDNEVPT2 with the full description of one- and
two-body spin−orbit interactions at the level of two-component
Breit−Pauli Hamiltonian, our implementation also features a
simplified approach that takes advantage of spin−orbit mean-field
approximation (SOMF-QDNEVPT2). The accuracy of these
methods is tested for the group 14 and 16 hydrides, 3d and 4d transition metal ions, and two actinide dioxides (neptunyl and
plutonyl dications). The zero-field splittings of group 14 and 16 molecules computed using SO-QDNEVPT2 and SOMF-
QDNEVPT2 are in good agreement with the available experimental data. For the 3d transition metal ions, the SO-QDNEVPT2
method is significantly more accurate than SOMF-QDNEVPT2, while no substantial difference in the performance of two methods
is observed for the 4d ions. Finally, we demonstrate that for the actinide dioxides the results of SO-QDNEVPT2 and SOMF-
QDNEVPT2 are in good agreement with the data from previous theoretical studies of these systems. Overall, our results
demonstrate that SO-QDNEVPT2 and SOMF-QDNEVPT2 are promising multireference methods for treating spin−orbit coupling
with a relatively low computational cost.

1. INTRODUCTION
Relativistic effects play a major role in how molecules and
materials interact with light. Among different types of
relativistic interactions, spin−orbit coupling is of particular
importance, giving rise to a variety of experimentally observed
phenomena, such as zero-field splitting, intersystem crossing,
and magnetism.1 Spin−orbit coupling becomes increasingly
significant in the ground and low-lying excited states of
elements starting with the 4th row of the periodic table and has
a profound influence on the electronic structure of compounds
with heavier elements (>5th row).2,3 For the lighter elements,
spin−orbit coupling is important in the core-level excited states
that can be accessed by the excitations with X-ray radiation.4−9

Detailed understanding of spin−orbit-coupled states re-
quires insights from accurate relativistic electronic structure
calculations. However, incorporating spin−orbit coupling into
the simulations of light−matter interactions introduces new
challenges for electronic structure theories. These challenges
include using a more complicated relativistic Hamiltonian,
treating the coupling between electronic and positronic states

in the Dirac equation, and employing large (uncontracted or
reparametrized) basis sets.10−12 For this reason, relativistic
electronic structure methods13−36 have a higher computational
cost than their nonrelativistic counterparts, which limits their
applications to smaller chemical systems. In practical
calculations, the description of spin−orbit coupling must be
combined with an accurate treatment of electron−electron
interactions, ranging from static electron correlation in valence
molecular orbitals to dynamic correlation of inner-shell and
core electrons.
An attractive approach for treating electron correlation in

molecules is quasidegenerate second-order N-electron valence
perturbation theory (QDNEVPT2).37,38 QDNEVPT2 is an

Received: November 11, 2022
Revised: December 16, 2022
Published: January 4, 2023

Articlepubs.acs.org/JPCA

© 2023 American Chemical Society
546

https://doi.org/10.1021/acs.jpca.2c07952
J. Phys. Chem. A 2023, 127, 546−559

D
ow

nl
oa

de
d 

vi
a 

O
H

IO
 S

TA
TE

 U
N

IV
 o

n 
Ja

nu
ar

y 
19

, 2
02

3 
at

 1
3:

53
:5

1 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rajat+Majumder"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexander+Yu.+Sokolov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.2c07952&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c07952?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c07952?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c07952?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c07952?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.2c07952?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpcafh/127/2?ref=pdf
https://pubs.acs.org/toc/jpcafh/127/2?ref=pdf
https://pubs.acs.org/toc/jpcafh/127/2?ref=pdf
https://pubs.acs.org/toc/jpcafh/127/2?ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpca.2c07952?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf


intruder-free multistate, multireference perturbation theory
which enables an accurate treatment of static and dynamic
correlation in nearly degenerate electronic states with a
relatively low computational cost. Several implementations of
QDNEVPT2 that are different in the degree of internal
contraction in multireference wavefunctions have been
developed, namely: (i) strongly contracted (sc-QDNEV-
PT2),38 (ii) partially or fully internally contracted (pc-
QDNEVPT2),38−40 and (iii) uncontracted (uc-QDNEV-
PT2).41 Out of these three variants, only sc-QDNEVPT2 has
been extended to incorporate spin−orbit coupling effects and
calculate zero-field splitting parameters42 within the formalism
of spin−orbit mean-field (SOMF) approximation.43,44 In
addition, spin−orbit coupling has been implemented in
strongly and fully internally contracted state-specific
NEVPT2 (sc- and pc-NEVPT2).25,45−49 Although these
methods have been applied to a variety of chemical
systems,47−51 strong contraction in sc-QDNEVPT2 introduces
significant errors in correlation energy and violates orbital
invariance, leading to numerical instabilities in the evaluation
of excited-state properties and optimization of molecular
geometries.39,52−54 Meanwhile, the state-specific sc- and pc-
NEVPT2 methods do not correctly describe the interaction
between nearly degenerate electronic states, which is
particularly important when spin−orbit coupling is taken into
account.
Here, we present the first implementation of pc-QDNEV-

PT2 that combines a computationally efficient description of
spin−orbit coupling and electron correlation in the ground and
excited electronic states. Compared to earlier work, our
implementation of pc-QDNEVPT2 has a number of important
advantages: (i) it avoids the orbital invariance problems
inherent in sc-QDNEVPT2 and correctly treats the interaction
between nearly degenerate spin−orbit-coupled electronic
states that is missing in state-specific theories; (ii) it enables
the calculations with and without the SOMF approximation,
thus allowing us to quantify its errors; (iii) it does not require
calculating the four-particle reduced density matrices, signifi-
cantly lowering the computational cost; (iv) it preserves the
degeneracy of electronic states that could otherwise be lost
when introducing internal contraction; and (v) it allows to
calculate excited-state and transition properties, such as
oscillator strengths.
This paper is organized as follows. First, we briefly review

the theoretical background behind pc-QDNEVPT2 and
describe its formulation that incorporates spin−orbit coupling
(Section 2). Next, having discussed the details of our
implementation and computations (Sections 3 and 4), we
use pc-QDNEVPT2 to calculate the zero-field splitting in
group 14 and 16 hydrides, the spin−orbit coupling constants
of 3d and 4d transition metal ions, and the excited-state
energies of neptunyl and plutonyl oxides (NpO2

2+ and PuO2
2+,

Section 5). We summarize all findings of this work and outline
directions for future developments in Section 6.

2. THEORY
2.1. Overview of N-Electron Valence Perturbation

Theory. Let us consider an N-electron system described by a
nonrelativistic Hamiltonian . Introducing a finite basis of
spin-orbitals {ψp}, the Hamiltonian can be expressed, in
second quantization, as

= +† † †h a a v a a a a
1
4pq

p
q

p q
pqrs

pq
rs

p q s r
(1)

where hpq and vpqrs are the one-electron and antisymmetrized
two-electron integrals. The operators ap† and ap create or
annihilate a particle, respectively, in a spin-orbital ψp. To
describe electron correlation in this system, we partition all
spin-orbitals into three subsets, namely: core (doubly
occupied) with indices i, j, k, l; active (usually, frontier) with
indices u, v, w, x, y, z; and external (unoccupied) with indices a,
b, c, d.
In N-electron valence perturbation theory (NEVPT),37,55,56

the correlation in active orbitals is described by constructing a
complete active-space (CAS) wavefunction57−61 |ΨI

(0)⟩ for the
Ith electronic state of interest. The electron correlation in
remaining orbitals (core and external) is incorporated
perturbatively by partitioning the Hamiltonian into two
contributions: the zeroth-order Dyall Hamiltonian,62

= + + +† †C a a a a
i

i i i
a

a a a
(0)

active
(2)

and the perturbation operator,

=
(0)

(3)

The Dyall Hamiltonian
(0)

depends on the core (ϵi) and
external (ϵa) eigenvalues of the generalized Fock matrix,

= + = | |†f h v a a,p
q

p
q

rs
pr
qs

s
r

p
q

I p q I
(4)

the constant term,

= +C h v f1
2i

i
i

ij
ij
ij

i
i
i

(5)

and all one- and two-electron terms of the full Hamiltonian in
the active space,

= + +† † †
i
k
jjjjjj

y
{
zzzzzzh v a a v a a a a1

4xy
x
y

i
xi
yi

x y
wxyz

xy
zw

x y w zactive
(6)

Expanding the energy of the Ith state EI = | |I I with
respect to the perturbation and truncating the expansion at
second order, we obtain the correlation energy of fully
uncontracted second-order N-electron valence perturbation
theory (uc-NEVPT2):

=

| |

†

†

E
E

1
I I

I

I

I I

(2) (0)

(0) (0)
(0)

(0) (1) (7)

Eq 7 can be evaluated exactly, but requires expanding the first-
order wavefunction |ΨI

(1)⟩ in a very large set of determinants
that comprise the first-order interacting space. As a result,
calculating the uc-NEVPT2 correlation energy is computa-
tionally very expensive, although special numerical techniques
have been developed to lower the computational cost.41,53,63,64

Instead, in most calculations, the first-order wavefunction
|ΨI

(1)⟩ in eq 7 is approximated in the contracted form,
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| | |t O tI I I I I
(1) (1) (0) (1)

(8)

where |ΦμI⟩ are many-particle basis functions called perturbers
that are formed by acting the one- and two-electron excitation
operators on the zeroth-order wavefunction |ΨI

(0)⟩ (e.g.,
= ax†ai, ax†ay†ajai, aa†ab†axai, ...).
Two contraction schemes have been developed, namely: (i)

strongly contracted NEVPT2 (sc-NEVPT2) where only one
perturber function is employed for each unique class of
excitation operators ,37,55,56 and (ii) fully internally contracted
NEVPT2 (also known as partially contracted NEVPT2, pc-
NEVPT2) where multiple perturbers are used for each
excitation class. While the strong contraction approximation
simplifies the NEVPT2 implementation, it introduces non-
negligible errors in the correlation energy53,54,64 and suffers
from the lack of orbital invariance with respect to the rotations
within inactive orbital subspaces, which leads to the numerical
instabilities in the evaluation of analytic gradients and
properties.39,52 For this reason, in this work we will only
consider the pc-NEVPT2 variant and will refer to it as
NEVPT2 henceforth.
An attractive feature of NEVPT2 is the ability to avoid the

intruder-state problems common in multireference theo-
ries37,65,66 by including the two-electron interaction term in

the definition of zeroth-order Hamiltonian
(0)

(eq 6).
Although the conventional (state-specific) NEVPT2 approach
can be applied to ground and excited electronic states, it does
not properly treat the interaction between states when they are
very close to each other in energy, leading to the incorrect
description of potential energy surfaces at conical intersections,
avoided crossings, and in chemical systems with high density of
states. A powerful approach to solve this problem is to employ
the quasidegenerate formulation of NEVPT2 (QDNEVPT2),
which is described in Section 2.2.
2.2. Quasidegenerate N-Electron Valence Perturba-

tion Theory. In QDNEVPT2,38 the energies of electronic
states are computed by diagonalizing the matrix of effective
Hamiltonian,

=Y YEeff (9)

which accounts for the coupling between model states |ΨI
(0)⟩

after their perturbation (so-called “diagonalize−perturb−
diagonalize” approach).67,68 The original QDNEVPT2 method
formulated by Angeli et al.38 employs a non-Hermitian
effective Hamiltonian matrix eff with elements

| | = + | |

+ | |

EI J I IJ I J

I J

(0)
eff

(0) (0) (0) (0)

(0) (1)
(10)

In eq 10, the first-order wavefunctions |ΨI
(1)⟩ are approximated

by eq 8, where the contraction coefficients tμI(1) are computed
independently for each model state |ΨI

(0)⟩ with energy EI
(0)

obtained from a state-averaged CASSCF calculation (SA-
CASSCF).37,38,55,67

An alternative formulation of QDNEVPT2 can be obtained
from the Kirtman−Certain−Hirschfelder form of the canonical
Van Vleck perturbation theory68−71 where a Hermitian
effective Hamiltonian is used:

| | = + | |

+ | | + | |

E
1
2

1
2

I J I IJ I J

I J I J

(0)
eff

(0) (0) (0) (0)

(0) (1) (1) (0)

(11)

Eq 11 was employed by Sharma et al. in the implementation of
uc-QDNEVPT2 with matrix product states41 and can be seen
as a symmetrized version of eq 10. In practice, diagonalizing
the effective Hamiltonians defined in eqs 10 and 11 yields very
similar electronic energies that differ by less than 10−5Eh. For
this reason, in this work we will employ the symmetric
formulation of QDNEVPT2, which simplifies the evaluation of
excited-state properties and oscillator strengths.
For a fixed number of active orbitals, the computational cost

of QDNEVPT2 scales as M( )5 with the size of one-electron
basis set (M). However, evaluating the matrix elements in eq
11 and the contraction coefficients tμI(1) in eq 8 requires
computing the three-particle transition reduced matrices (3-

TRDM, | |† † †a a a a a aI u v w x y z J
(0) (0) , I > J) and the four-particle

state-specific reduced density matrices (4-RDM,

| |† † † †a a a a a a a aI u v w x x w v u I
(0) (0) ) in the active space with the

computational cost scaling as N N N( )det states
2

act
6 and

N N N( )det states act
8 , respectively, where Ndet is the number of

Slater determinants in the complete active space, Nstates is the
number of model states |ΨI

(0)⟩, and Nact is the number of active
orbitals.

2.3. Incorporating Spin−Orbit Coupling in QDNEV-
PT2. To incorporate spin−orbit coupling into the QDNEV-
PT2 simulations of excited states, the effective nonrelativistic
Hamiltonian in eq 11 must be augmented with the terms that
describe the interaction between electronic spin and orbital
angular momentum. These contributions can be derived by
starting with the one-electron four-component Dirac Hamil-
tonian,10,12 incorporating two-electron interactions, and
introducing approximations that transform the resulting
Hamiltonian to a two-component form.24,30,32,72,73 Depending
on how the transformation from four-component to two-
component Hamiltonian is performed, different two-compo-
nent spin−orbit Hamiltonians have been formu-
lated.11−14,17−20,23,24,30

In this work, we employ the Breit−Pauli (BP) Hamil-
tonian,10,74−76 which can be expressed as

= +BP BP
SF

BP
SO

(12)

where BP
SF

and BP
SO

are the spin-free and spin−orbit

contributions, respectively. The BP
SF

term incorporates
important scalar relativistic effects into the one-electron kinetic
energy and electron nuclear attraction, which can be easily
included by modifying the one-electron integrals in the
CASSCF and QDNEVPT2 calculations. We will discuss the
treatment of scalar relativistic effects in Section 3 and instead,
here, will focus on the spin−orbit contribution to the BP
Hamiltonian,
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= ·

+ [ + ]·

i
k
jjjjjj

y

{
zzzzzzz

h i s i

g i j g i j s i

( ) ( )

2 ( , ) ( , ) ( )

i

i j

BP
SO

,soo ,sso
(13)

where ĥξ(i)·sξ̂(i) (ξ = x, y, z) is the one-electron spin−orbit
operator of electron i,

=
[ × ]

h i
c

Z i

r

r p
( )

1
2

( )

A

A iA

iA
2 3

(14)

while ĝξ,soo(i, j)·sξ̂(i) and ĝξ,sso(i, j)·sξ̂(i) are the so-called “spin−
other orbit” and “spin−same orbit” two-electron terms,
respectively:

=
[ × ]

g i j
c

j

r

r p
( , )

1
2

( )ij

ij
,soo 2 3

(15)

=
[ × ]

g i j
c

i

r

r p
( , )

1
2

( )ji

ij
,sso 2 3

(16)

In eqs 13−16, ZA denotes the nuclear charge on nucleus A, rij
and riA are the relative coordinates of electron i with respect to
electron j and nucleus A, respectively, p̂(i) is the momentum
operator of electron i, and sξ̂(i) is the ξ-component of the spin
operator.
The spin−orbit BP Hamiltonian in eq 13 can be expressed

in the second-quantized form:

= + [ + ]
i

k
jjjjjjj

y

{

zzzzzzzz
h D g g D2

pq
pq pq

pqrs
pqrs pqrs pqrsBP

SO ,soo ,sso

(17)

where D̂pq
ξ and D̂pqrs

ξ are the one- and two-electron spin
excitation operators,

= +† †D a a a a
1
2

( )pq
x

p q p q (18)
.

= † †D
i

a a a a
2

( )pq
y

p q p q (19)

= † †D a a a a
1
2

( )pq
z

p q p q (20)

= +† †D a D a a D apqrs r pq s r pq s (21)

while hpqξ , gpqrsξ,soo, and gpqrsξ,sso are the one- and two-electron
integrals calculated in the spatial molecular orbital basis (ϕp):

= | |h h(1) (1) (1)pq p q (22)

= | |g g(1) (2) (1,2) (1) (2)pqrs p r q s
,soo

,soo (23)

= | |g g(1) (2) (1,2) (1) (2)pqrs p r q s
,sso

,sso (24)

The spin−other orbit and spin−same orbit two-electron
integrals in eqs 23 and 24 are related to each other via a
permutation: gpqrsξ,soo = grspqξ,sso ≡ gpqrsξ . Thus, using the Hamiltonian
in eq 17 requires calculating only one set of these spin−orbit
two-electron integrals.

Treating BP
SO

as a perturbation to the nonrelativistic
Hamiltonian (eq 1), we modify the QDNEVPT2 effective
Hamiltonian as follows:

| | = + | + |

+ | | + | |

E
1
2

1
2

I J I IJ I J

I J I J

(0)
eff
SO (0) (0) (0)

BP
SO (0)

(0) (1) (1) (0)

(25)

Diagonalizing eff
SO in eq 25 incorporates the spin−orbit

coupling effects up to the first order in perturbation theory and
will be referred to as the SO-QDNEVPT2 approach.

2.4. Spin−Orbit Mean-Field Approximation in SO-
QDNEVPT2. Including the spin−orbit term in eq 25 does not
increase the computational scaling of QDNEVPT2 with the
system size, but requires an expensive calculation and storage
of all spin−orbit two-electron integrals, gpqrsξ . Since the one- and
two-electron terms in the BP Hamiltonian (eq 13) have
opposite signs, neglecting the gpqrsξ contributions can lead to a
significant overestimation of spin−orbit coupling energies.
Alternatively, incorporating the spin−orbit coupling effects can
be simplified by invoking the spin−orbit mean-field approx-
imation (SOMF),43,44 which describes the two-electron spin−
orbit interactions in a way analogous to the mean-field
treatment of electronic repulsion in Hartree−Fock theory. The
SOMF approximation has been used to incorporate spin−orbit
coupling in a variety of electronic structure theories with a
wide range of applications.3,33,36,43,77−79

Within the SOMF approximation, the spin−orbit BP
Hamiltonian (eq 17) can be expressed as an effective one-
electron operator,

= F D
pq

pq pqBP
SOMF

(26)

with matrix elements

= + +F h g g g(
3
2

3
2

)pq pq
rs

r
s

rspq prsq qrsp
(27)

where Γr
s = γrαsα + γrβsβ is the spinless one-particle reduced density

matrix calculated with respect to the SA-CASSCF wave-

function. Replacing BP
SO

in eq 25 with BP
SOMF

defines the
SOMF-approximated QDNEVPT2 effective Hamiltonian,

| | =

+ | + | + | |

+ | |

E
1
2

1
2

I J I IJ

I J I J

I J

(0)
eff
SOMF (0) (0)

(0)
BP
SOMF (0) (0) (1)

(1) (0)
(28)

which we will abbreviate as SOMF-QDNEVPT2.

3. IMPLEMENTATION
We implemented the SO-QDNEVPT2 and SOMF-QDNEV-
PT2 methods in PRISM, which is a Python program for excited-
state and spectroscopic simulations that is being developed in
our group. The PRISM code is interfaced with the PYSCF
software package80 to obtain the one- and two-electron
integrals, as well as the SA-CASSCF molecular orbitals and
model state wavefunctions. Here, we provide additional details
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regarding the SO-QDNEVPT2 and SOMF-QDNEVPT2
implementations developed in this work.
3.1. Treating Scalar Relativistic Effects. As discussed in

Section 2.3, describing spin−orbit coupling must be accom-
panied by a treatment of spin-free (scalar) relativistic effects,
which can be incorporated variationally by modifying the one-
electron integrals in the SA-CASSCF and QDNEVPT2
calculations. Although the scalar relativistic effects can be

treated using the spin-free part of the BP Hamiltonian ( BP
SF

in
eq 12), in our implementation of SO-QDNEVPT2 and
SOMF-QDNEVPT2 we employ the spin-free exact two-
component (X2C) Hamiltonian,24,26−29 which offers a more
rigorous treatment of scalar relativistic effects with a minor
increase in computational cost. This approach has been
successfully used in other implementations utilizing approx-
imate two-component spin−orbit Hamiltonians.78,81,82

3.2. Avoiding the Calculation of 4-RDM. As mentioned
in Section 2.2, to evaluate the contraction coefficients tμI(1) of
the first-order QDNEVPT2 wavefunctions (eq 8), one must
calculate and store 4-RDM, which is prohibitively expensive for
large active spaces. In our implementation of SO-QDNEVPT2
and SOMF-QDNEVPT2, we avoid computing 4-RDM
without introducing any approximations using the approach
developed in ref 83. This allows us to greatly reduce disk and
memory storage while lowering the computational scaling of
our implementation to N N N( )det states

2
act
6 with the number of

active orbitals Nact.
3.3. Preserving the Degeneracy of Internally Con-

tracted States. The internal contraction approximation
employed in QDNEVPT2 can result in small errors violating
the degeneracy of spin−orbit-coupled states in open-shell
systems with high symmetry (e.g., isolated atoms, linear
molecules, etc.). These errors originate from using the
multipartitioning technique67 in QDNEVPT2 where the
contraction coefficients tμI(1) in eq 8 are determined
independently for each model state |ΨI

(0)⟩. If two or more
SA-CASSCF model states |ΨI

(0)⟩ have the same energies, small
differences in internal contraction for each of these states can
result in lifting of their degeneracy at the QDNEVPT2 level of
theory. These errors also emerge in the SO-QDNEVPT2
calculations breaking the degeneracy of spin−orbit-coupled
states. To prevent this, for each set of Ndeg degenerate SA-
CASSCF model states |ΨI

(0)⟩ we compute tμI(1) with respect to a
state-averaged model wavefunction,

| = |
N

1

I
I

(0)

deg

deg
(0)

(29)

where the summation is restricted to model states |ΨI
(0)⟩ with

the same energy EI
(0). Note that state-averaging in eq 29 is used

only for evaluating tμI(1) (i.e., describing dynamical correlation)
and not for computing the matrix elements of effective
Hamiltonian. As demonstrated in the Supporting Information,
using this approach makes it possible to fully restore the
degeneracy of spin−orbit-coupled states while taking advant-
age of internal contraction without affecting the accuracy of
SO-QDNEVPT2 and SOMF-QDNEVPT2.
3.4. Calculating Oscillator Strengths. Our implementa-

tion of SO-QDNEVPT2 and SOMF-QDNEVPT2 is also
capable of computing oscillator strengths according to the
following equation:

= | * |f E E Y Y
2
3

( )if f i
pqIJ

pq If pq
IJ

Ji
osc 2

(30)

where pq
IJ is the spinless 1-TRDM computed with respect to

the model states |ΨI
(0)⟩ and |ΨJ

(0)⟩, μpq
ξ are the dipole moment

integrals calculated in the spatial molecular orbital basis, while
Ek and YJk are the eigenvalues and eigenvectors of SO-
QDNEVPT2 or SOMF-QDNEVPT2 effective Hamiltonian for
the initial (k = i) and final (k = f) electronic states.

4. COMPUTATIONAL DETAILS
We benchmarked the SO-QDNEVPT2 and SOMF-QDNEV-
PT2 methods for a variety of atoms and small molecules,
namely: (i) group 14 hydrides (GeH and SnH, Section 5.1);
(ii) group 16 hydrides (from OH to TeH, Section 5.2); (iii) 3d
and 4d transition metal ions with the 2+ charge (Section 5.3);
and (iv) actinyl oxide ions (NpO2

2+ and PuO2
2+, Section 5.4).

In Section 5.1, we study the spin−orbit splitting in the 2Π
ground electronic states of GeH and SnH and its dependence
on the parameters of SA-CASSCF calculations, such as the
active space size, number of CASCI states, and weights used
for state-averaging. All calculations of GeH and SnH were
performed using the all-electron X2C-TZVPall-2c basis set.84

We considered two different active spaces: 5 electrons in 5
active orbitals (5e, 5o) and 15 electrons in 10 active orbitals
(15e, 10o). The (5e, 5o) active space included two σ, two π,
and one σ* orbitals. The (15e, 10o) active space incorporated
an additional five d orbitals (3d for GeH or 4d for SnH). Since
2Π is spatially doubly degenerate, the SA-CASSCF calculations
were performed by averaging over the two lowest-energy
states. Experimental bond lengths of 1.5880 Å for GeH and
1.7815 Å for SnH were used in all calculations.85

For the group 16 hydrides (Section 5.2), we investigate the
dependence of 2Π ground-state spin−orbit splitting on the
basis set. In this study, we use the Dunning’s correlation
consistent basis sets86−89 cc-pVXZ (X = T, Q, 5), fully
uncontracted cc-pVXZ (unc-cc-pVXZ), and the ANO-RCC
basis developed by Roos et al.90,91 For TeH, the DK3 variants
of the cc-pVXZ basis sets were used for the Te atom (cc-
pVXZ-DK3, X = T, Q).92 The active space was comprised of
two σ, two π, and one σ* molecular orbitals (7e, 5o). As for
the group 14 hydrides, two CASCI states were averaged in SA-
CASSCF. All computations were carried out using the
experimental bond lengths:93−95rOH = 0.96966 Å, rSH =
1.3409 Å, rSeH = 1.4643 Å, and rTeH = 1.65587 Å.
In Section 5.3, we use our implementation of SO-

QDNEVPT2 and SOMF-QDNEVPT2 to study the spin−
orbit coupling in the ground and excited electronic states of 3d
and 4d transition metal ions with the 2+ charge. The active
spaces of 3d metal ions included: 3d and 4d orbitals for V2+,
Cr2+, and Co2+; 3d, 4d, and 4s orbitals for Ti2+, Fe2+, Ni2+, and
Cu2+; and 3d, 4d, 4s, and 4p orbitals for Sc2+. For the 4d metal
ions, we used the same active spaces as for the 3d ions within
each group of periodic table, but with the principal quantum
number of each active orbital increased by one. All calculations
of 3d and 4d metal ions used the Sapporo-TZP96 basis set. The
SA-CASSCF calculations were performed by averaging over
several electronic states, as described in the Supporting
Information.
Finally, in Section 5.4, we present the results of SO-

QDNEVPT2 and SOMF-QDNEVPT2 calculations for linear
NpO2

2+ and PuO2
2+ using the ANO-RCC-VTZP basis. The
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structural parameters were obtained from refs 97 and 98: rNpO
= 1.70 Å and rPuO = 1.682 Å. We employed the (7e, 10o)
active space for NpO2

2+ and (8e, 10o) active space for PuO2
2+

(see Supporting Information for details). The SA-CASSCF
calculations were performed by averaging over 25 and 26
CASCI states for NpO2

2+ and PuO2
2+, respectively.

5. RESULTS
5.1. Spin−Orbit Coupling in Group 14 Hydrides and

Its Dependence on the Parameters of SA-CASSCF
Calculations. We begin by investigating the accuracy of
SO-QDNEVPT2 and SOMF-QDNEVPT2 for predicting the
energy of spin−orbit zero-field splitting (ZFS) in the 2Π
ground states of GeH and SnH. Table 1 shows the ZFS

calculated using the (5e, 5o) active space with the two spatial
components of 2Π state averaged in SA-CASSCF for each
molecule. The results of SO-QDNEVPT2 and SOMF-
QDNEVPT2 with the first-order BP perturbative treatment
of spin−orbit coupling are compared to the data from
variational two-component X2C-MRPT2 calculations per-
formed using the same basis set and molecular geometries by
Lu et al.99Table 1 also includes the SO-QDNEVPT2 and
SOMF-QDNEVPT2 oscillator strengths and the available
experimental data for comparison.93

For both molecules, the ZFS computed using SO-QDNEV-
PT2 and SOMF-QDNEVPT2 differ by only 0.1 cm−1,
suggesting that the SOMF approximation is very accurate in
these systems. For GeH, the QDNEVPT2 methods are in a
close agreement with the experiment underestimating ZFS by
∼22 cm−1 (2.5% error). Larger errors (8.9%) are observed for
SnH, where the QDNEVPT2 methods overestimate ZFS by
∼194 cm−1. As expected, the oscillator strength of 2Π1/2 →
2Π3/2 transition increases with the increasing magnitude of
spin−orbit coupling from GeH to SnH. The X2C-MRPT2
method shows the smallest errors relative to experiment (<20
cm−1, 0.8%), suggesting that the variational X2C treatment of
spin−orbit coupling is important for very accurate predictions
of ZFS in SnH.100

We now analyze how the ground-state ZFS of GeH and SnH
computed using SOMF-QDNEVPT2 depend on the param-
eters of SA-CASSCF calculations, namely: (1) the size of active
space, (2) the number of CASCI states included in SA-
CASSCF and QDNEVPT2 model space, and (3) the weights
used in state-averaging. Figure 1(a) and (b) shows the

variation in 2Π ZFS of GeH (a) and SnH (b) calculated by
increasing the number of CASCI states (Nstates) from 2 to 30
with identical state-averaging weights for two active spaces:
(5e, 5o) and (15e, 10o). Similar trends are observed for both
molecules. As Nstates increases from 2 to 6, the computed ZFS
decreases sharply by 7−10%. Upon addition of four more
CASCI states (Nstates = 10), ZFS increases by ∼3−5%. Further
increasing Nstates from 10 to 30 results in a slow increase of ZFS
to a value that is just 2−3% lower than the ZFS for Nstates = 2.
However, up to Nstates = 30, the dependence of ZFS on the
number of CASCI states does not level off. In contrast to
strong dependence on Nstates, the computed ZFS does not
change significantly with increasing active space in most
calculations, except for GeH with Nstates = 3.
To assess the dependence of ZFS on state-averaging weights,

we performed the SOMF-QDNEVPT2 calculations by
assigning the 2Π ground state a weight of 50% and distributing
the other 50% weight equally among the remaining CASCI
states. The ZFS calculated using this approach are shown in
Figure 1(c) and (d) for GeH and SnH, respectively. Except for
Nstates = 3, the results of these calculations are very close to the
SOMF-QDNEVPT2 calculations with equal weights for all
CASCI states (Figure 1(a) and (b)).
Overall, our results suggest that the ZFS calculated using

SO-QDNEVPT2 and SOMF-QDNEVPT2 are more sensitive
to the number of CASCI states included in SA-CASSCF and
QDNEVPT2 than the state-averaging weights assigned to the
individual states. While the calculations of ZFS in GeH and
SnH have shown weak active-space dependence, we expect
that the size of active space may be an important parameter for
other systems where the electron correlation effects are more
significant.

5.2. Spin−Orbit Coupling in Group 16 Hydrides and
Its Basis Set Dependence. We now turn our attention to
group 16 hydrides (OH, SH, SeH, and TeH), which are
commonly used for the benchmark of electronic structure
theories incorporating relativistic effects.33,36,44,100 In this
section, our focus is to investigate the dependence of ZFS in
the ground 2Π state of these systems on the choice of one-
electron basis set. Our study employs three Dunning’s
correlation consistent basis sets87,101 cc-pVXZ (X = T, Q, 5),
fully uncontracted cc-pVXZ (unc-cc-pVXZ), and the ANO-
RCC basis developed by Roos et al.90,91 For the Te atom in
TeH, we use the DK3 variants of cc-pVXZ basis sets (cc-
pVXZ-DK3, X = T, Q).92

Table 2 compares the 2Π ZFS and oscillator strengths
computed using SO-QDNEVPT2 and SOMF-QDNEVPT2
with the data from the RAS(SD)-1SF method36 and
experiments.93−95 For each molecule and basis set, the results
of SO-QDNEVPT2 and SOMF-QDNEVPT2 are within 2
cm−1 of each other, demonstrating the high accuracy of SOMF
approximation. For OH and SH, the simulated ZFS and
oscillator strengths show weak basis set dependence. In this
case, the ZFS calculated using the five-zeta correlation
consistent basis sets (cc-pV5Z and unc-cc-pV5Z) and the
ANO-RCC basis set optimized for the calculations with
relativistic Hamiltonians agree within 2 cm−1 of each other and
deviate by less than 21 cm−1 from the experiment.
A different situation is observed for SeH where the changes

in ZFS and oscillator strengths accelerate with the increasing
cardinal number X in cc-pVXZ, suggesting that the results
computed using the contracted correlation consistent basis sets
that are not optimized for calculations incorporating relativistic

Table 1. Spin−Orbit Zero-Field Splitting (cm−1) in the 2Π
Ground States of GeH and SnH Computed Using SO-
QDNEVPT2 and SOMF-QDNEVPT2 with the (5e, 5o)
Active Space Averaging over Both Spatial Components of
2Π in SA-CASSCFa

Molecule
SO-

QDNEVPT2
SOMF-

QDNEVPT2
X2C-

MRPT299 Experiment93

GeH 869.9 870.0 898.6 892.5
(0.0119) (0.0119)

SnH 2372.9 2373.0 2197.5 2178.9
(0.0435) (0.0435)

aResults are compared to the variational two-component calculations
using X2C-MRPT299 and available experimental data.93 Oscillator
strengths computed using SO-QDNEVPT2 and SOMF-QDNEVPT2
are given in parentheses.
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effects are far from the basis set limit. This is further supported
by the results computed using unc-cc-pVXZ, which show
significantly larger ZFS (by ∼200 cm−1) and much weaker
dependence on the cardinal number X. The ZFS computed
using unc-cc-pV5Z (1767 cm−1) is in a close agreement with
the ZFS from ANO-RCC (1773 cm−1) and experiment (1763
cm−1). Similar basis set dependence of ZFS is observed in the
RAS(SD)-1SF data calculated by Meitei et al.36 For TeH,
using the cc-pVXZ-DK3 basis sets (X = T and Q) recontracted
for relativistic calculations yields the ZFS values (4295 and
4290 cm−1) that are similar to the ZFS computed with ANO-
RCC (4284 cm−1), which overestimates the experimental
spin−orbit splitting by 468 cm−1 (12.2% error).
For all group 16 molecules, the ZFS computed using SO-

QDNEVPT2 and SOMF-QDNEVPT2 are in much closer
agreement with the experimental data than RAS(SD)-1SF.
This difference in performance of these methods can be
attributed to the importance of dynamical electron correlation
that is largely missing in RAS(SD)-1SF, but is incorporated in
QDNEVPT2 up to the second order in multireference
perturbation theory.
5.3. Ground- and Excited-State Spin−Orbit Coupling

in 3d and 4d Transition Metal Ions. To assess the

performance of SO-QDNEVPT2 and SOMF-QDNEVPT2 for
transition metal systems, we calculated ZFS in the ground and
excited states of 3d and 4d metal ions with the 2+ charge
(M2+). We consider all M2+ ions with electronic configurations
nd1 to nd9 except nd5, which does not show spin−orbit
coupling in the ground 6S state. In the weak LS-coupling
regime, the energy levels of spin−orbit-coupled states EJ can be
expressed as follows:109

= + [ + + + ]E E J J L L S S
1
2

( 1) ( 1) ( 1)J LS (31)

where ELS is the energy of electronic term with quantum
numbers L and S that does not incorporate spin−orbit
coupling, J is the quantum number of total angular momentum,
and λ is the spin−orbit coupling constant (SOCC), which is
related to the energy spacing between two levels:

=E E JJ J 1 (32)

Since EJ increases with increasing J for nd1 to nd4 and decreases
with increasing J for nd6 to nd9, λ can take either positive or
negative values. In practice, the SOCC calculated using eq 32
for a particular electronic term show dependence on J and have
different values for different pairs of energy levels EJ and EJ−1.

Figure 1. Spin−orbit zero-field splitting in the 2Π ground states of GeH (plots a and c) and SnH (plots b and d) computed using SOMF-
QDNEVPT2 as the number of CASCI states included in SA-CASSCF and QDNEVPT2 increases. Results are shown for two active spaces: (5e, 5o)
and (15e, 10o). In plots a and b, all CASCI states were assigned identical weights in state-averaging. In plots c and d, the weight of 2Π ground state
was fixed at 50%, while the other states were assigned identical weights.
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To quantify ZFS in M2+ using a single parameter, we compute
the total SOCC,

=
J

J
(33)

where λJ is obtained using eq 32.
Figure 2 shows the total SOCC (Λ) calculated using the

QDNEVPT2 methods and experimental data for the ground
electronic terms of 3d and 4d transition metal ions,
respectively. In each row of periodic table, the magnitude of
Λ increases with increasing nuclear charge. For the 3d metal
ions, the SO-QDNEVPT2 and SOMF-QDNEVPT2 results
show significant differences (Figure 2(a) and (b)). The best
agreement with the experiment108 is shown by SO-QDNEV-
PT2 that predicts Λ with errors of 3.1% or less. The SOMF-
QDNEVPT2 method yields larger Λ overestimating the
experimental SOCC by up to 11.5%. The most noticeable
errors of SOMF approximation are observed in the middle of
3d transition metal row (V2+, Cr2+, Fe2+, and Co2+), indicating
that the two-electron spin−orbit interactions neglected in
SOMF are important for these metal ions. In contrast to the 3d
ions, for the 4d transition metal row SO-QDNEVPT2 and
SOMF-QDNEVPT2 predict very similar SOCC that differ by
less than 10 cm−1 (<1%) from each other (Figure 2(c) and
(d)). When compared to the experimental data, the errors of
QDNEVPT2 methods in 4d SOCC do not exceed 6.7%. The
higher accuracy of SOMF approximation in the 4d metal ions
may be attributed to the greater radial extent of 4d orbitals

compared to that in 3d orbitals leading to a reduced
contribution from two-electron spin−orbit coupling effects.
Figure 3 shows the SO-QDNEVPT2 and SOMF-QDNEV-

PT2 errors in total SOCC for the selected excited electronic
terms of 3d and 4d metal ions. In these calculations, we
excluded Ru2+, which exhibited convergence problems when
excited electronic states were included in SA-CASSCF. As in
Figure 2, SOMF-QDNEVPT2 shows significantly larger
SOMF errors in the excited-state Λ of 3d metal ions compared
to those of 4d ions (Figure 3(a) and (b)). These errors of
SOMF approximation become particularly noticeable for the
ions with two (or more) electrons or holes in the d-shell (Ti to
Ni) where they contribute up to 25% of the total SOMF-
QDNEVPT2 error in SOCC. For the excited states of 4d metal
ions, the SOMF approximation is once again very accurate,
resulting in similar SOCC computed using SO-QDNEVPT2
and SOMF-QDNEVPT2 (Figure 3(c) and (d)). Overall, the
best agreement with experimental data is demonstrated by SO-
QDNEVPT2 that is significantly more accurate than SOMF-
QDNEVPT2 for the 3d metals ions.

5.4. Low-Lying Electronic States of NpO2
2+ and

PuO2
2+. Finally, to test the limits of SO-QDNEVPT2 and

SOMF-QDNEVPT2 applicability, we use these methods to
compute the low-lying electronic states of two actinide
dioxides, neptunyl(VI) (NpO2

2+) and plutonyl(VI) (PuO2
2+)

dications, which present major challenges for theories that
employ perturbative treatment of spin−orbit cou-
pling.78,97,98,110,111

Table 2. Spin−Orbit Zero-Field Splitting (cm−1) in the 2Π Ground States of Group 16 Hydrides Computed Using SO-
QDNEVPT2 and SOMF-QDNEVPT2 with the (7e, 5o) Active Space Averaging over Both Spatial Components of 2Π in SA-
CASSCFa

Molecule Basis set SO-QDNEVPT2 SOMF-QDNEVPT2 RAS(SD)-1SF36 Experiment93−95

OH cc-pVTZ 137.0 (0.0003) 135.8 (0.0003) 134.4
cc-pVQZ 139.3 (0.0003) 138.2 (0.0003) 137.4
cc-pV5Z 140.9 (0.0003) 139.7 (0.0003) 139.0
unc-cc-pVTZ 137.3 (0.0003) 136.2 (0.0003) 135.3
unc-cc-pVQZ 139.6 (0.0003) 138.5 (0.0003) 137.6
unc-cc-pV5Z 141.1 (0.0003) 139.9 (0.0003) 139.1
ANO-RCC 141.1 (0.0003) 139.9 (0.0003) 134.9 139

SH cc-pVTZ 350.0 (0.0025) 349.8 (0.0025) 360.7
cc-pVQZ 349.3 (0.0025) 349.0 (0.0025) 362.1
cc-pV5Z 354.7 (0.0026) 354.5 (0.0026) 392.7
unc-cc-pVTZ 355.3 (0.0026) 355.1 (0.0026) 384.0
unc-cc-pVQZ 356.3 (0.0026) 356.1 (0.0026) 387.8
unc-cc-pV5Z 356.4 (0.0026) 356.2 (0.0026) 390.0
ANO-RCC 356.0 (0.0027) 355.8 (0.0027) 354.3 377

SeH cc-pVTZ 1544.1 (0.0149) 1544.0 (0.0149) 1603.0
cc-pVQZ 1542.5 (0.0151) 1542.4 (0.0151) 1634.1
cc-pV5Z 1585.1 (0.0155) 1584.9 (0.0155) 1711.6
unc-cc-pVTZ 1761.5 (0.0172) 1761.4 (0.0171) 1718.5
unc-cc-pVQZ 1765.9 (0.0173) 1765.8 (0.0173) 1729.6
unc-cc-pV5Z 1766.9 (0.0174) 1766.7 (0.0174)
ANO-RCC 1773.1 (0.0175) 1773.0 (0.0175) 1828.2 1763

TeH cc-pVTZ-DK3 4294.6 (0.0593) 4294.5 (0.0593)
cc-pVQZ-DK3 4290.3 (0.0595) 4290.2 (0.0595)
ANO-RCC 4284.1 (0.0596) 4284.0 (0.0596) 4602.3 3816

aResults are compared to the calculations using RAS(SD)-1SF method36 and available experimental data.93−95 Oscillator strengths computed using
SO-QDNEVPT2 and SOMF-QDNEVPT2 are given in parentheses.
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In NpO2
2+, the spin−orbit coupling mixes the 2Φu and 2Δu

electronic terms originating from 5f1 configuration, which gives
rise to the 2Φ5/2u, 2Δ3/2u, 2Φ7/2u, and 2Δ5/2u electronic states.
The relative energies of these states computed using SO-
QDNEVPT2 and SOMF-QDNEVPT2 are presented in Table
3. For comparison, we also show the results from the CASPT2-
SO study by Gendron et al. that employs the perturbative
treatment of spin−orbit coupling using the Douglas−Kroll−
Hess (DKH) Hamiltonian98 and from the variational
implementation of spin−orbit semistochastic heat bath
configuration interaction (SO-SHCI) by Mussard et al.
employing the two-component X2C Hamiltonian.78 All
excitation energies reported in Table 3 were calculated using
the same molecular geometry and the ANO-RCC-VTZP basis
set (180 molecular orbitals), with the exception of SO-SHCI
calculations where ANO-RCC-VTZP was modified by
including eight additional basis functions as described in
Table 3 (188 molecular orbitals). Since the SO-SHCI
calculations achieved the highest level of electron correlation
and spin−orbit coupling treatment in the (17e, 143o) active
space, we consider their results as the theoretical best estimate
of excitation energies in NpO2

2+. We note, however, that the
SO-SHCI study did not incorporate dynamical correlation for

the 90 electrons outside the active space, which was accounted
for in the SO-QDNEVPT2, SOMF-QDNEVPT2, and
CASPT2-SO calculations.
The best agreement with SO-SHCI in Table 3 is shown by

SO-QDNEVPT2 and SOMF-QDNEVPT2, which predict the
2Δ3/2u, 2Φ7/2u, and 2Δ5/2u excitation energies with the mean
absolute error (MAE) of ∼529 cm−1. Due to the one-electron
character of all excitations in NpO2

2+, the errors introduced by
the SOMF approximation are less than 2 cm−1. The CASPT2-
SO method exhibits larger errors for the 2Δ3/2u and 2Δ5/2u
states and MAE of 703 cm−1 relative to SO-SHCI. Table 4
demonstrates that both types of multireference perturbation
theories predict similar composition of spin−orbit-coupled
electronic states, estimating the mixing between 2Φu and 2Δu
for J = 5/2 of ∼11−12%.
The excited-state energies of PuO2

2+ computed using SO-
QDNEVPT2, SOMF-QDNEVPT2, and CASPT2-SO98 are
shown in Table 5. Due to the 5f 2 configuration of Pu, the
energy level diagram of PuO2

2+ is much more complicated than
that of NpO2

2+ with several electronic terms mixing with each
other upon incorporating the spin−orbit coupling effects. The
SO-QDNEVPT2 and CASPT2-SO calculations show similar
results. Both methods predict the same ordering of electronic

Figure 2. Total spin−orbit coupling constants (cm−1) calculated for the ground electronic terms of 3d (a, b) and 4d (c, d) transition metal ions
(M2+) using SO- and SOMF-QDNEVPT2 in comparison to experimental data.102−108
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states with excitation energies differing by less than 500 cm−1.
As shown in Table 6, SO-QDNEVPT2 and CASPT2-SO also
agree in the assignments of each state, predicting the

contributions from each electronic term within 5% of each
other. Introducing the SOMF approximation changes the

Figure 3. Total spin−orbit coupling constants (cm−1) calculated for the excited electronic terms of 3d (a, b) and 4d (c, d) transition metal ions
(M2+) using SO- and SOMF-QDNEVPT2 relative to experimental data.102−108

Table 3. Excited-State Energies (in cm−1) of NpO2
2+

Computed Using Four Methods, Relative to the 2Φ5/2u
Ground Statea

Electronic
state

SOMF-
QDNEVPT2

SO-
QDNEVPT2

CASPT2-
SO98

SO-
SHCIb

2Φ5/2u 0.0 0.0 0.0 0.0
2Δ3/2u 3549.2 3550.7 3107 3857
2Φ7/2u 8000.4 8001.1 8080 8675
2Δ5/2u 9470.4 9470.2 9313 10077

aThe QDNEVPT2 and CASPT2-SO98 methods employed the (7e,
10o) active space and the ANO-RCC-VTZP basis set. In the SO-
SHCI calculations,78 the (17e, 143o) active space was used. bThe SO-
SHCI excitation energies from ref 78 used a modified ANO-RCC-
VTZP basis set with the 5s4p2d1f contraction for the oxygen atoms.

Table 4. Contributions (in %) to the Spin−Orbit-Coupled
Electronic States of NpO2

2+ Computed Using SO-
QDNEVPT2 and CASPT2-SO98 Methods

Electronic state SO-QDNEVPT2 CASPT2-SO98

2Φ5/2u 89.1 2Φu + 10.6 2Δu 88 2Φu + 12 2Δu
2Δ3/2u 98.5 2Δu + 1.4 2Πu 98 2Δu + 2 2Πu
2Φ7/2u 99.8 2Φu 100 2Φu
2Δ5/2u 89.4 2Δu + 10.5 2Φu 89 2Δu + 11 2Φu

Table 5. Excited-State Energies (in cm−1) of PuO2
2+

Computed Using Three Methods and the ANO-RCC-VTZP
Basis Set, Relative to the 4g Ground Statea

Electronic state SOMF-QDNEVPT2 SO-QDNEVPT2 CASPT2-SO98

4g 0.0 0.0 0.0
0g+ 2924.9 2922.3 3132
1g 5176.5 5169.0 5464
5g 7197.2 7186.9 7238
0g− 10679.0 10673.7 11171
1g 11393.1 11375.0 11682

aThe QDNEVPT2 and CASPT2-SO98 methods employed the (8e,
10o) active space.

Table 6. Contributions (in %) to the Spin−Orbit-Coupled
Electronic States of PuO2

2+ Computed Using SO-
QDNEVPT2 and CASPT2-SO98 Methods

Electronic
state SO-QDNEVPT2 CASPT2-SO98

4g 95.4 3Hg + 3.8 1Γg 98 3Hg + 2 1Γg

0g+ 53.4 3Σg
− + 30.7 3Πg + 14.0 1Σg

+ 54 3Σg
− + 26 3Πg + 17 1Σg

+

1g 52.6 3Πg + 25.9 3Σg
− + 18.8 1Πg 49 3Πg + 26 3Σg + 23 1Πg

5g 98.8 3Hg 99 3Hg

0g− 99.9 3Πg 100 3Πg

1g 69.9 3Σg
− + 19.4 1Πg + 8.5 3Πg 70 3Σg

− + 17 1Πg + 8 3Πg
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excitation energies by at most 18.1 cm−1, which is noticeably
greater than the SOMF error in NpO2

2+, but is much smaller
than the energy spacing between spin−orbit-coupled states.

6. CONCLUSIONS
In this work, we presented the first implementation of spin−
orbit coupling effects in fully internally contracted second-
order quasidegenerate N-electron valence perturbation theory
(QDNEVPT2). Our implementation provides two methods
for incorporating spin−orbit coupling up to the first order in
perturbation theory: (1) using the full Breit−Pauli (BP)
relativistic Hamiltonian (SO-QDNEVPT2) and (2) approx-
imating the BP Hamiltonian using the spin−orbit mean-field
approach (SOMF-QDNEVPT2). The SO-QDNEVPT2 and
SOMF-QDNEVPT2 methods have several attractive features:
(i) they combine the description of static electron correlation
with a computationally efficient treatment of dynamic
correlation and spin−orbit coupling in nearly degenerate
electronic states; (ii) they are fully invariant with respect to the
transformations within the subspaces of core, active, and
external molecular orbitals; (iii) they achieve a lower
computational scaling with the active-space size than conven-
tional QDNEVPT2 by avoiding the calculation of four-particle
reduced density matrices without introducing any approx-
imations; (iv) they take advantage of full internal contraction
while preserving the degeneracy of spin−orbit-coupled states;
and (v) they enable computing transition properties, such as
oscillator strengths. In addition, comparing the results of SO-
QDNEVPT2 and SOMF-QDNEVPT2 makes it possible to
quantify and systematically analyze the errors of the SOMF
approximation.
To demonstrate the capabilities of SO-QDNEVPT2 and

SOMF-QDNEVPT2 and benchmark their accuracy, we
computed the zero-field splitting (ZFS) in the ground
electronic states of group 14 and 16 hydrides, the ground
and excited states of 3d and 4d transition metal ions, and the
low-lying electronic states of actinide oxides (NpO2

2+ and
PuO2

2+). Our results demonstrate that SO-QDNEVPT2
predicts accurate ZFS for the compounds of elements up to
the 4th row of the periodic table, where errors of <5% relative
to experimental data are observed. For the 5th-row elements
(in SnH, TeH, and 4d transition metal ions), the errors in ZFS
increase up to ∼10%. In actinides, the SO-QDNEVPT2 results
are in good agreement with the data from CASPT2-SO and
SO-SHCI methods for the energy spacings between electronic
states and the characters of their wavefunctions. The SOMF-
QDNEVPT2 and SO-QDNEVPT2 results are very similar to
each other for all systems but the 3d transition metal ions,
where the SOMF approximation significantly increases the
errors in computed ZFS relative to experiment.
Overall, our results demonstrate that SO-QDNEVPT2 and

SOMF-QDNEVPT2 are promising approaches for simulating
spin−orbit coupling in the ground and excited states of
chemical systems with multireference electronic structure.
Future work in our group will focus on improving the accuracy
of these methods for the heavier (>4th row) elements and
their extensions to simulate the magnetic properties of
molecules.
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