
Dec-AltProjGDmin: Fully-Decentralized Alternating Projected Gradient Descent
for Low Rank Column-wise Compressive Sensing

Shana Moothedath and Namrata Vaswani

Abstract— This work develops a fully-decentralized alternating pro-
jected gradient descent algorithm, called Dec-AltProjGDmin, for solv-
ing the following low-rank (LR) matrix recovery problem: recover
an LR matrix from independent columnwise linear projections (LR
column-wise Compressive Sensing). We prove its correctness under
simple assumptions and argue that Dec-AltProjGDmin is both faster
and more communication-efficient than various other potential solution
approaches, in addition to also having one of the best sample complexity
guarantees. To our best knowledge, this work is the first attempt
to develop a provably correct fully-decentralized algorithm for any
problem involving the use of an alternating projected GD algorithm
when the constraint set (the set to be projected onto) is non-convex.

I. INTRODUCTION

In this work we develop a fully-decentralized gradient descent
(GD) based algorithm for solving the low rank (LR) column-wise
Compressive Sensing (LRcCS) problem [1], [2], [3] defined below
and prove its correctness under simple assumptions. LRcCS is a
lesser known LR matrix recovery problem that involves recovering
an LR matrix from mutually independent dense linear projections
of each of its columns. One important application where LRcCS
is useful is for federated sketching. Sketching refers to lossy data
compression where the compression step is a very fast operation,
typically a linear projection, but the decompression can be more
complex. The term ‘federated’ sketching means that the data to be
compressed, e.g., images or videos, is acquired at geographically
distributed nodes, e.g. mobile phones or IoT devices [1], [4].
For networks of such devices, it is often impractical to assume
that a centralized coordinating node exists. A fully-decentralized
network where each node (phone or IoT device) can only exchange
information with its neighbors is more common. Moreover, when
the distributed nodes are far from many others, this setting also
implies much lesser communication power usage.

A. Problem setting and notation

The goal is to recover a set of q n-dimensional vectors/signals,
x?1,x

?
2, . . . ,x

?
q that are such that the n×q matrix X? := [x?1,x

?
2, . . . ,x

?
q]

has rank r�min(n,q), from m-length vectors yk satisfying

yk := Ak x?k , k = 1,2, . . . ,q. (1)

The m× n matrices Ak are known and mutually independent for
different k. The regime of interest is m < n and the goal is to have
to use as few number of samples m as possible. The total sample
complexity is mq.

We consider a fully-decentralized setting, i.e., there is no central
node to aggregate the summaries computed by the individual nodes.
Henceforth, in the paper below, the term “decentralized” also refers
to this fully-decentralized setting. We assume that there is a set of
L distributed nodes/sensors, each of which obtains sketches (linear
projections) of a disjoint subset of columns of X?. We denote the
set of columns sketched at node g by Sg. The sets Sg form a
partition of [q] := {1,2, . . . ,q}, i.e., they are mutually disjoint and
∪L

g=1Sg = [q]. The communication network is specified by a graph
G = (V,E), where V , with |V | = L, denotes the set of nodes and

E denotes the set of undirected edges. The neighbor set of the gth

node (sensor) is given by Ng, i.e., Ng := { j : (g, j) ∈ E}.
At various places in the paper, for tall n× r matrices, we are

only interested in the orthonormal basis spanned by the matrix.
For a matrix Z̃, we use Z = Orth(Z̃) to denote this. When needed,
we compute it using QR decomposition, i.e. Z̃ QR

= ZRRR. We denote
the Frobenius norm as ‖·‖F , the induced `2 norm (often called
the operator norm or spectral norm) as ‖·‖, and the (conjugate)
transpose of a matrix Z as Z>. We use ek to denote the kth canonical
basis vector. Also, [d] := {1,2, . . . ,d}. We say U is a basis matrix
if it contains orthonormal columns. For basis matrices U1,U2, the
default measure of Subspace Distance (SD) used in this work is
SD(U1,U2) :=

∥∥(I−U1U>1)U2
∥∥

F . Here I is the identity matrix.
At certain places, we also use SD2(U1,U2) :=

∥∥(I−U1U>1)U2
∥∥.

SD(·, ·) is the `2 norm of the sines of the r principal angles
between span(U1) and span(U2) while SD2(·, ·) is their infinity
norm (equivalently, size of largest principal angle). Further, >

denotes matrix or vector transpose, ⊗ denotes Kronecker product,
and |zzz| for a vector zzz denotes element-wise absolute values. We
define the max norm of a u× v matrix as the maximum absolute
entry, and denoted it as ‖Z‖max. We use 1statement to denote an
indicator function that takes the value 1 if statement is true and
zero otherwise. We use ◦ to denote component-wise multiplication
(Hadamard product). We reuse c,C to denote different numerical
constants in each use with c < 1 and C > 1. We let

X? SVD
= U?

ΣΣΣ
?V? := U?B?

denote its reduced (rank r) SVD, i.e., U? and V?> are matrices with
orthonormal columns (basis matrices), U? is n× r, V? is r×q, and
ΣΣΣ
? is an r× r diagonal matrix with non-negative entries. We let

B? := ΣΣΣ
?V?. We use κ := σ?

max/σ?
min for the condition number of

ΣΣΣ
?. We note that we have omitted (g) in most places except where

it is needed to make things clear for notational brevity.

Another way to understand (1) is as follows: each scalar measure-
ment yki (i-th entry of yk) satisfies yki := 〈aki,x?k〉, i ∈ [m], k ∈ [q]
with aki

> being the i-th row of Ak. The measurements are not
global: no yki is a function of the entire matrix X?. They are global
for each column, but not across the different columns. We thus need
an assumption that enables correct interpolation across the different
columns. The following incoherence (w.r.t. the canonical basis)
assumption on the right singular vectors suffices for this purpose
[5]. Such an assumption on both left and right singular vectors was
first introduced in [6] for making the low-rank matrix completion
(LRMC) problem well posed. In case of LRMC the measurements
are both row- and column-wise local while for LRcCS they are
only column-wise local.

Assumption 1 (Right singular vectors’ incoherence). Assume that
maxk ‖x?k‖ = maxk ‖b?

k‖ ≤ σ?
maxµ

√
r/q. for a constant µ ≥ 1 (µ

does not grow with n,q,r). This further implies that maxk ‖x?k‖ ≤
κµ‖X?‖F/

√
q.

TABLE I: Existing work versus our work. Table treats κ,µ as numerical constants. Let deg denote the maximum degree of any node. All approaches
also need m > max(logq, logn). The approaches projGD-X and altGDnormbal cannot be analyzed for reasons explained in the footnote below
the table and in [2] and hence we are only providing a guess for their required number of iterations. This guess is based on the guarantees for
solving LRMC which is a different but related problem. Also, the other approaches have not been studied in decentralized settings, hence the
parameter Tcon (number of consensus loop iterations) cannot be not specified.

Time Comp. Communic Comp Sample Comp. Provable exponential error
per iter. mq & decay in decentralized case?

Convex [1] mqnr 1√
ε f in
·Tcon Not clear (n+q)r 1

ε2
f in

Not studied

(mixed norm min)
AltMin [3] mqnr log2(1/ε f in) ·Tcon (nr)2 ·L ·deg (n+q)r3 log 1

ε f in
Not studied

(guessed)
Dec-AltProjGDmin mqnr log 1

ε f in
·Tcon nr ·L ·deg (n+q)r2 log 1

ε f in
Yes

(proposed) Tcon = L3 log 1
ε f in

log(Ln)

ProjGD-X mqnr log 1
ε f in
·Tcon nq ·L ·deg Not clear Not clear

[7] for LRMC (guessed) studied only for LRMC**
AltGDnormbal mqnr2 log 1

ε f in
·Tcon nr ·L ·deg Not clear Not clear

[8], [9] for LRMC (guessed) studied only for LRMC**
Decentral. Projected GD Not clear Not clear
[10], [11] studied only for convex costs

and constraint sets

**It is not clear how to analyze either of ProjGD-X or AltGDnormbal for LRcCS because in both cases the estimates of x̂k are coupled across different
columns (i.e., x̂k is a function of not just x?k but also of the other columns). Because of this it is not possible to get a tight enough bound on maxk ||x̂k−x?k ||.
Such a bound is needed to bound ||∇U f (U,B)|| and show that the gradient norm decays to zero with iteration count; for details, see [2].

B. Related work and our contribution

LRcCS has not been studied in the decentralized setting so far,
except in our preliminary work [12]. LRMC is the closest problem
to LRcCS that has been extensively studied in the centralized
case [6], [8], [9], [13], [14] and there has been some work also
in the (fully-)decentralized setting [15], [16], [17]. The work of
[15], [16] designs a decentralized Gauss-Seidel method, while [17]
develops a decentralized approach to solve the convex relaxation
of robust LRMC. Both these approaches are also slower than GD
based solutions. Moreover, neither comes with guarantees for the
decentralized implementation to converge.

For the LRcCS problem that we consider here, in the centralized
setting, a convex relaxation (mixed norm minimization) was pro-
posed in [1], and an alternating minimization (AltMin) solution for
its generalization, LR phase retrieval, was developed and studied in
[3], [5]. Solving convex relaxation is very slow (both theoretically
and empirically). In recent work [2], a GD-based solution was
proposed. This was shown to be faster than the AltMin solution
(both converge geometrically, but the per-iteration cost of the GD
approach is lower). In this work, we develop a fully-decentralized
version of this solution.

There are two common approaches to designing GD algorithms
for LR recovery problems. The first, projected GD on X (projGD-
X) involves running one step of GD on X for minimizing the cost
function f (X); followed by projecting the output onto the space
of rank r matrices [7], [18], and repeating this at each iteration.
For large matrices, this is communication-inefficient in a distributed
or decentralized setting, since the gradients to be shared are of
size n× q. The second approach, alternating GD, is much more
communication-efficient: it has a per-iteration communication, and
memory, cost proportional to (n+ q)r. It factorizes X as X = UB
and alternatively updates estimates of U and B using GD w.r.t.
one keeping the other fixed (or modifications). One important point
here is that the decomposition of X into UB is not unique since
UB = (URRR−1RRRB) for any r×r invertible matrix RRR. This means that

U uniquely specifies only the column span of X and the norm of one
of U or B can keep increasing in an unbounded fashion, while that
of the other decreases. To prevent this, either norm balancing terms
are added to the cost function as in [8], [9] (AltGDnormbal), or, one
projects one of them onto the space of matrices with orthonormal
columns after each GD step (AltProjGD) [2].

Projected GD is a GD-based solution approach for solving con-
strained optimization problems; it involves projecting the output of
each GD step onto the constraint set. In the last decade, the design
of decentralized GD and projected GD algorithms has received a lot
of attention [10], [11], [19]-[20], starting with the seminal work of
Nedić et al. [19]. There is also some recent work on projected GD
for constrained optimization problems [10], [21], [22] or for impos-
ing the consensus constraint [21]. However, all existing approaches
that come with guarantees assume convex cost functions and either
no constraints or convex constraint sets. The works of [10], [22]
study projected GD approaches to solve a decentralized convex
optimization with convex constraint sets. Both use projection onto
convex sets to impose the constraint after each GD iteration. The
work of [21] considers the unconstrained optimization problem, and
uses projection onto an appropriately defined subspace to impose
the consensus constraint at each algorithm iteration.

Our Contribution. In this work we develop a provably accurate
fast and fully-decentralized alternating projected gradient descent
(Dec-AltProjGDmin) algorithm for solving the LRcCS problem
described above. We factor the unknown n× q rank-r matrix X
as X = UB, where U and B are matrices with r columns and rows
respectively, and consider the squared loss cost function

f (U,B) := ∑
k
‖yk−AkUbk‖2.

Here bk is the k-th column of B. Starting with a careful spectral
initialization for U, AltProjGD alternatively updates U and B by
(a) one step of ProjGD for U (GD step followed by projecting
onto space of basis matrices) keeping B fixed at its previous value,

and (b) minimizing f (U,B) over B keeping U fixed at its most
recently updated value. For our specific problem, because of the
column-wise decoupled form of the measurement model, step (b)
can be done locally at each node and it is as fast a GD step. For
reasons explained above, the projection in ProjGD is critical for
ensuring that the norms of U and B remain bounded. As we show
in Table I, AltProjGD is faster than all competing approaches except
projGD-X and it is as fast as projGD-X. Communication cost wise,
it is significantly better than projGD-X as well as AltMin (which
requires a communication cost per edge per iteration of (nr)2;
this is needed to approximate an nr× nr matrix which involves
a summation over all k ∈ [q]).

To our best knowledge, this work is the first attempt to develop a
provably correct decentralized algorithm for any problem involving
the use of an alternating projected GD algorithm when the constraint
set (the set to be projected onto) is non-convex. We expect to be
able to extend the ideas developed here to also try to develop a
similar fast and communication-efficient decentralized solution to
LR matrix completion (LRMC). We are unable to borrow ideas
from the existing literature on efficient consensus algorithms for
decentralized (projected) GD because (i) the cost function f (U,B)
is not a convex function of the unknowns {U,B}; and (ii) the
constraint set (set of n× r matrices with orthonormal columns) is
not a convex set either. In particular, (ii) means that the matrices Ug

estimated at the various nodes g cannot be averaged to get a matrix
whose column span is close to that of the matrices being averaged;
while (i) means that our algorithm needs a careful initialization
(which also needs to be computed in a decentralized fashion).

In our case, we have to use a scalar average/sum consensus
algorithm both to approximate each entry of the gradient at each
iteration as well as for the spectral initialization. The spectral initial-
ization needs to be computed using a decentralized approximation to
the power method (PM). Our proof strategy consists of interpreting
this approximation as an instance of the noisy PM studied in [23]
and using the consensus algorithm guarantees [24] to ensure that
the “noise” is small enough to satisfy the assumptions required by
the noisy PM guarantee from [23]. We then combine this guarantee
with that used to analyze the initialization in case of centralized
LRcCS in [2] to get our initialization guarantee. A similar strategy
is used for the rest of the algorithm as well.

II. THE PROPOSED ALGORITHM AND GUARANTEE

A. Dec-AltProjGDmin: Decentralized Alternating projected GD
and minimization

We first explain the main steps of AltProjGD and then explain
how to develop its decentralized version. At each GD iteration, we
have the following two steps
• Minimization over B: For each new estimate of U, solve for

B by minimizing f (U,B) over it while keeping U fixed at its
current value. Because of the LRcCS measurement model, this
becomes a decoupled column-wise least squares (LS) step and
the solution can be written in closed form as bk =(AkU)†yk for
each k. In this step, the most expensive part is the computation
of the matrices AkU for all k, this takes time of order mnr ·q.
Each LS computation only needs time of order mr2.

• Projected-GD (ProjGD) for U: compute Ũ ← U −
η∇U f (U,B) and orthonormalize it using QR decomposition:
U ← QR(Ũ). Here ∇U f (U,B) = ∑

q
k=1 A>k (AkUbk − yk)b>k .

The gradient computation takes time mqnr. The QR decom-
position only needs time nr2.

Notice that f (U,B) is not a convex function of the unknowns
{U,B} and hence a careful initialization which can be shown to be

Algorithm 1 Pseudo-code for distributed average consensus
AvgCons(Z,G,Tcon)

Input: Z(g)
in , for all g∈ [L] (Z(g)

in can be a scalar or an n×r matrix)
Parameters: number of iterations, Tcon

1: Initialize Z(g)
0 ← Z(g)

in , for all g ∈ [L]
2: Set the mixing matrix WWW as WWW g j ={

1/dg, for j ∈Ng, where dg is the degree of node g.
0, for g /∈Ng.

3: for t = 0 to Tcon do
4: Z(g)

t+1← Z(g)
t + ∑

j∈Ng

Wg j

(
Z(j)

t −Z(g)
t

)
, for g ∈ [L]

5: end for
6: return Z(g)

out← L ·Z(g)
Tcon

7: Output: AvgCon(g)({Z
(g)
in }

L
g=1,G,Tcon) := Z(g)

out, for all g ∈ [L]

a good approximation of the true U? (desired minimizer). Here and
below “approximation” of U? means the subspace spanned by the
columns of the approximation is close to that spanned by columns
of U? in SDF (·, ·) or SD2(·, ·) distance. We initialize as follows.
Compute U0 as the top r left singular vectors of

X0 = (1/m) ∑
k∈[q]

A>k yk,trunc(α)e>k

with α := C̃ ∑ki(yki)
2

mq and yk,trunc(α) := yk ◦ 1{y2
ki6α}. This is yk

with large magnitude entries zeroed out, i.e., (yk,trunc)i = yki if
y2

ki 6 α and it equals zero otherwise. Observe that we are summing
akiykiek

> over only those values i,k for which y2
ki is not too large

(is not much larger than its empirically computed average value).
This truncation filters out the too large (outlier-like) measurements
and sums over the rest. Theoretically, this converts the summands
into sub-Gaussian r.v.s which have lighter tails than the un-truncated
ones which are sub-exponential.

To approximate the above approach in a decentralized fashion
(where each node can only exchange data summaries with its
neighbors), the use of a average (sum) consensus approach is
required. This is needed at three places. In the initialization step, we
need it to approximate (i) the threshold α; and (ii) the top r singular
vectors of X0 (which are equal to those of X0X>0) computed using
the power method (PM). (iii) In the ProjGD iterations, we need
it to approximate the sum of the individual gradients at all the
nodes, i.e. compute ∇U f (U,B) = ∑k∈[q] A>k (AkU(bk)− yk)(bk)

>.
Each of these three steps requires computing a sum (equivalently
an average). Since we are unable to use the vector decentralized
GD approaches, we use simple scalar average-consensus [24]. This
is summarized in Algorithm 1. In each of its iterations, nodes
update their values by taking a weighted sum of their own and their
neighbors’ partial sums. By doing this enough number of times, if
the graph is connected, and the weights are equal to 1/dg where
dg is the degree of node g, one can show that one finally computes
an estimate of the true sum at each node [24].

We specify the scalar consensus algorithm in Algorithm 1 and
the Dec-AltProjGDmin algorithm in Algorithm 2.

B. Main Result and Sample, Time, & Communication complexities

We can prove the following result for Algorithm 2.

Theorem 2.1. Consider Algorithm 2. Assume that the network
is connected, Assumption 1 on X? holds, and that the Aks are
i.i.d. with each containing i.i.d. standard Gaussian entries. For
final desired error ε f in < 1, set C̃ = 9κ2µ2, η = 0.8/σ?

max
2,

T =Cκ2 log(1/ε f in), TPM =Cκ2(logn+ logκ), Tcon,α =CL3 log(L),

Algorithm 2 Pseudocode of the Dec-AltProjGDmin algorithm for
agent g∈ [L]. We have omitted (g) in most places except where it is
needed to make things clear (only for input to Avgcons algorithm).

Input: Ak,yk, for all k ∈ [q], set Sg of all agents g ∈ [L], graph
G, consensus iteration Tcon
Output: U(g), B(g) and X(g) = U(g)B(g).
Parameters: Multiplier in specifying α for init step, C̃; GD step
size, η ; Number of iterations: number of consensus iterations,
Tcon,α ,Tcon,PM,Tcon,GD, number of PM iterations, TPM , and number
of PM iterations, T .
Sample-split: Partition the measurements and measurement ma-
trices into 2T +2 equal-sized disjoint sets: two sets for initializa-
tion and 2T sets for the iterations. Denote these by y(`)k ,A(`)

k , `=
00,0,1, . . .2T .

1: Initialization:
2: Let yk ≡ y(00)

k ,Ak ≡ A(00)
k for all k ∈ [q]. Set α (g) ←

AvgCong({α
(g)
in }

L
g=1,G,Tcon,α) with α

(g)
in ← C̃ 1

mq ∑
k∈Sg

m

∑
i=1

y2
ki

3: Let yk ≡ y(0)k ,Ak ≡ A(0)
k for all k ∈ [q]. Define yk,trunc(α

(g)) :=
yk ◦1{|yki| ≤

√
α (g)} for k ∈ Sg, g ∈ [L]

4: Generate U(g)
0 = U0 as the same n×r matrix with i.i.d. standard

Gaussian entries for all g ∈ [L] (use the same random seed at
all nodes)

5: PM iterations:
6: for τ = 1 to TPM and for all g ∈ [L] do
7: Ũ(g) ← AvgCong({Ũ

(g)
in }

L
g=1,G,Tcon,PM) with Ũ(g)

in =

((1/m)∑k∈Sg
(A>k yk,trunc(α

(g)))e>k)(·)
>U(g)

τ−1
8: [U(g),R(g)]← QR(Ũ(g))
9: Set U(g)

τ ← U(g)

10: end for
11: altGDmin iterations:
12: Initialize U(g)

0 ← U(g)
TPM

13: for t = 1 to T and for all g ∈ [L] do
14: Update b(g)

k ,x(g)
k : Let yk = y(t)k ,Ak = A(t)

k for all k ∈ [q].
For each k ∈ [q] with k ∈ Sg, set b(g)

k ← (AkU(g)
t−1)

†yk and set
x(g)

k ← U(g)
t−1b(g)

k

15: Gradient w.r.t. U(g)
t−1: Let yk = y(T+t)

k ,Ak = A(T+t)
k . Com-

pute GradU(g) = AvgCong({∇ fg(U(g),B(g))}L
g=1,G,Tcon,GD)

with ∇ fg(U(g),B(g)) := ∑
q
k=1 A>k (AkU(g)b(g)

k −yk)b
(g)
k
>

16: GD step: Set Ũ(g)← U(g)
t−1− (η/m)GradU(g)

17: Projection step: Compute [U(g),R(g)]← QR(Ũ(g))
18: Set U(g)

t ← U(g)

19: end for
20: return U(g), B(g) and X(g) = U(g)B(g)

Tcon,PM = CL3(κ2 log(1/ε f in) + logL + logn + logκ), Tcon,GD =
CL3(κ2 log(1/ε f in)+ logL+ logn+ logκ).

If m satisfies mq >Cκ6µ2(n+q)r2 := minitq for the initialization
step, and

mq >Cκ
4
µ

2(n+q)r2 logκ := mGDq and

m >C max(logL, logq, logn,r)

for each GD iteration, then, with probability (w.p.) at least 1−n−10,
at all nodes g ∈ [L],

SD(U(g)
T ,U?)6 ε f in, and

max
k

‖(x(g)
k)T −x?k

(g)‖
‖x?k

(g)‖
6 1.4ε f in, ‖X(g)

T −X?‖F 6 1.4ε f in‖X?‖.

Sample complexity. The above result implies that the total number
of samples per column mtot := minit + T ·mGD needs to satisfy
mtotq>Cκ6µ2(n+q)r2 log(1/ε f in) logκ along with needing mtot >
C max(logL, logq, logn,r).
Time complexity. The time complexity of our algorithm is the time
needed per iteration times the total number of consensus iterations.
For one inner loop (consensus) iteration, our algorithm needs to (i)
compute AkU for all k ∈ [q], (ii) solve the LS problem for updating
bk for all k ∈ [q], and (iii) compute the gradient w.r.t. U of fk(U,B),
i.e. compute A>k (AkUbk−yk)b>k . Thus, order-wise, the time taken
per iteration is max(q ·mnr,q ·mr2,q ·mnr) = mqnr.

The total number of consensus iterations for initialization is
Tcon,α + Tcon,PM · TPM; this number for GD is Tcon,GD · T . This
simplifies to O(L3κ4 log2(1/ε f in) log(Lnκ)).

Thus, the time complexity is O(mqnr ·
L3κ4 log2(1/ε f in) log(Lnκ)). Treating κ as a numerical constant,
this simplifies to O(mqnr ·L3 log2(1/ε f in) log(Ln)).
Communication complexity. In all consensus iterations, the nodes
are exchanging approximations to ∇U f (U,B) which is a matrix of
size n×r. In one such iteration, each node receives nr scalars from
its neighbors. Thus the cost per iteration per node is nr ·deg where
deg is the maximum degree of any node. The cost per iteration for
all the nodes is nr ·deg ·L.

C. Proof of Main Result (Theorem 2.1)

In this section, we assume that Assumption 1 holds, and the graph
is connected. We first present the two main results that help prove
our main result, Theorem 2.1. In the interest of space, we present
a proof outline with novelty and followed up by a discussion. For
complete proofs we refer the readers to [25].

In the entire proof, to keep notation simple, we often define
quantities and state results only for the first node.

The next theorem analyzes the GD iterations for each agent g
and shows that the GD error decays at an exponential rate. Recall
that the initialization for the GDmin iterations is the final output of
the PM algorithm, i.e., that U(g)

0 = U(g)
TPM

.

Theorem 2.2 (Decentralized GD). If η = 0.8/σ?
max

2, T =
Cκ2 log(1/ε f in), Tcon,GD = CL3(κ2 log(1/ε f in) + log(nκL/ε f in) =
CL3(κ2 log(1/ε f in)+ log(Lnκ)), if

SD(U?,U(1)
0)6 δ0 = c/κ

2 and max
g
‖U(1)

0 −U(g)
0 ‖F 6 b̃0 = ε f in/3T ,

and if mq > Cκ4µ2(n + q)r2 logκ log(1/ε f in) and m >
C max(logL, logq, logn) log(1/ε f in);
then w.p. at least 1−n−10,

SD(U?,U(1)
T)6 ε f in.

The next theorem provides a bound on the initialization error
when the agents perform decentralized initialization.

Theorem 2.3 (Decentralized PM for initialization). Pick a δ0 <
0.1. If mq >C max(κ2µ2(n+q)r2/δ 2

0 , logL) =Cκ2µ2(n+q)r2/δ 2
0

(since L≤ q), if TPM =Cκ2 log(n/δ0), if Tcon >CL3(log(Lnκ/δ0)+
log(1/b̃0)), then w.p at least 1− (n−C2 + e−C3n)−n−10,

SD(U(1)
TPM

,U?)6 δ0 and max
g
‖U(g)

TPM
−U(1)

TPM
‖F 6 b̃0.

Theorem 2.1 is an easy consequence of the above two results.
We need to set δ0 and b̃0 in the initialization result in order to
satisfy the requirements of the GD result.
Proof of Theorem 2.1. The subspace distance bound is a direct
consequence of the above three theorems along with setting δ0 =

c/κ2 and b̃0 = ε f in/3T with T =Cκ2 log(1/ε f in) in the initialization
theorem.

Thus the initialization step needs Tcon =CL3(log(Lnκ/δ0)+T +
log(1/ε f in)) =CL3(log(Lnκ)+κ2 log(1/ε f in). The GD step needs
the same expression for Tcon.

In addition, the initialization step also needs TPM =Cκ2 log(nκ).
The subspace distance bounds of Theorem 2.1 follow using the

above two results. The bounds on the errors in x?k
(g) and X? follow

using the results from [2] (Lemma 4.8 in [25]) and the lemma
below. Let

B(g) = [b(g)
k , k ∈ Sg], X(g) = [U(g)b(g)

k , k ∈ Sg] and

B = [B(g), g ∈ [L]], X = [X(g), g ∈ [L]],

Also let X?(g) = [x?k
(g), k ∈ Sg] be a sub-matrix of X?, and similarly

define B?(g).

Lemma 2.4. Recall that B := [B(1),B(2), . . . ,B(L)] and similarly for
X. Define DDD := [DDD(1),DDD(2), . . . ,DDD(L)]. Assume that

SD(U?,U(g)
t)6 δt , and max

g
‖U(1)

t −U(g)
t ‖F 6 b̃t

with δt < δ0 = c/κ2 and b̃t ≤ 0.5δt/
√

r. Then, for any agent g∈ [L],
w.p. > 1− exp(logq+ r− cm),

1) ‖B−DDD‖F =
√

∑g∈[L] ‖DDD(g)−B(g)‖2
F 6 0.6δtσ

?
max,

2) ‖X = X?‖F =
√

∑g∈[L] ‖X?(g)−X(g)‖2
F 6 1.6δtσ

?
max,

3) σmin(B)> 0.7σ?
min and σmax(B)6 1.1σ?

max.

III. PROOF NOVELTY, OUTLINE, AND DISCUSSION

A. Proof novelty

Consider the GDmin iterations and consider node g = 1. Assume
for this discussion that κ,µ are numerical constants. The overall
proof is similar to that for the centralized setting, however the
details are different. In the centralized setting, we first obtain a
deterministic bound on SD(U?,Ut+1) in terms of SD(U?,Ut) and
three other terms. This proof uses the fundamental theorem of
calculus [26]. Next, we use the analysis of the minimization step
and the sub-exponential Bernstein inequality to bound these terms
in order to show exponential subspace recovery error decay. In the
current decentralized setting, we still need the same two steps.

The first step is similar, except we get an extra term
‖ConsErr(1)‖F , with ConsErr = GradU(1) − GradU. Most of the
new work is in the second step. This is harder for two reasons.
First, GradU(1) 6= GradU = ∑g ∇ fg(U(g),B(g)), but is a consensus
based approximation of it. This is easy to handle using a standard
consensus guarantee. The second, and more difficult, issue is that we
can only compute a consensus approximation of ∑g ∇ fg(U(g),B(g)):
the U(g) is different at different nodes g while, in the centralized
setting, we compute ∑g ∇ fg(U,B). This difference implies that
bbb(g)

k = (AkU(g))†yk is an estimate of U(g)>x?k
(g) with U(g) being differ-

ent for different nodes g. Consequently it is not straightforward to
convert a bound on ‖bbb(g)

k −U(g)>x?k
(g)‖ into a bound on ‖X−X?‖F .

In order to do this, we now need to use the consensus result, and a
guarantee for perturbed QR decomposition to show first consensus
for U(g)s, see Lemma 4.6 in [25]. Next, we need to use this and
develop a more involved argument to get the desired tight bound
on ‖X−X?‖F , see Lemma 2.4. We explain the main ideas below.

B. Proof outline

We use the analysis of the minimization step, fundamental
theorem of calculus [26], sub-exponential Bernstein inequality [27],
scalar consensus guarantee (see Proposition 4.2 in [25]), and anal-
ysis of perturbed QR decomposition (see Proposition 4.2 in [25])

to show the following. If SD(U?,U(1)
t) ≤ δt for a δt < δ0 = c < 1,

and ‖U(g)
t −U(1)

t ‖F ≤ b̃t ≤ δt/
√

r, then w.h.p.,

SD(U?,U(1)
t+1)≤ (1− c/κ

2)t
δt := δt+1, and

‖U(g)
t+1−U(1)

t+1‖F ≤ b̃t+1 ≤ δt+1/
√

r (2)

This, along with a simple induction argument, and the analysis of
the initialization step to get the desired initial bounds, completes
our proof.

To do the above, we use the fundamental theorem of calculus
to obtain a deterministic bound on SD(U?,U(1)

t+1) in terms of
SD(U?,U(1)

t). See Lemma 4.4 in [25]. In order to prove the result,
we need a careful analysis of the minimization step, which is done
in Lemma 2.4 and Lemma 4.8 in [25]. Let U(g) ≡ U(g)

t . Lemma 4.8
in [25] bounds ‖bbb(g)

k −U(g)>x?k
(g)‖, ‖x(g)

k −x?k
(g)‖, ‖bbb(g)

k ‖ and a fourth
similar term follows exactly as in [2]. However Lemma 2.4, which
uses these bounds to get bounds on ‖X−X?‖F , and on singular
values of B, needs a new proof (explained below). This uses the
assumption ‖U(g)

t −U(1)
t ‖F ≤ δt/

√
r.

The last step to is to show the second row of (2). This is done in
Lemma 4.7 in [25]. This proof uses the assumption ‖U(g)

t −U(1)
t ‖F ≤

b̃t with b̃t ≤ δt/
√

r, and the bound on ConsErr from Lemma 4.6
in [25] to bound ‖Ũ(g)

t+1 − Ũ(1)
t+1‖F . Next, it uses this bound and

the perturbed QR result to show that ‖U(g)
t+1 −U(1)

t+1‖F ≤ b̃t+1 =

3(b̃t + 0.2
√

nrεcon), where εcon is the consensus error bound for
one scalar entry of the gradient matrix. In the proof of our main
result (Theorem 2.2), using these lemmas, we set εcon in order to
guarantee that b̃t ≤ δt/

√
r for all t.

Main idea for Lemma 2.4. We provide the main ideas here.
Lemma 4.8 in [25] shows that ‖bbb(g)

k − U(g)>x?k
(g)‖ 6

0.4‖
(
I−U(g)U(g)>)U?b?

k
(g)‖ for all k ∈ Sg and for all g. Lemma 2.4

uses this to bound ∑g ‖B(g)−U(g)>X?(g)‖2
F . This bound is then used

to bound ‖X−X?‖2
F and the maximum and minimum singular

values of B,

1) Observe that ∑g ‖B(g) − U(g)>X?(g)‖2
F ≤

0.42
∑g ‖

(
I−U(g)U(g)>)U?B?(g)‖2

F .
2) Bounding ∑g ‖

(
I−U(g)U(g)>)U?B?(g)‖2

F by 2(δtσ
?
max)

2:
To bound this, we first add and subtract U(1)U(1)> from
the parentheses. For the first term, we use ‖U(g)U(g)> −
U(1)U(1)>‖F ≤ 2‖U(g)

t −U(1)
t ‖F and our assumption to show

that

∑
g∈[L]
‖(U(1)U(1)>−U(g)U(g)>)U?B?(g)‖2

F

≤ (δt/
√

r)2‖U?B?‖2
F = (δt/

√
r)2(
√

rσ
?
max)

2 = (δtσ
?
max)

2

For the second term, we can use an approach similar to [2]
since (I−U(1)U(1)>) is the same for all g.

∑
g∈[L]
‖(I−U(1)U(1)>)U?B?(g)‖2

F

= ‖(I−U(1)U(1)>)U?B?‖2
F ≤ (δt‖B?‖)2 = (δtσ

?
max)

2

3) This then implies that ∑g ‖B(g) − U(g)>X?(g)‖2
F ≤ 0.42 ·

2(δtσ
?
max)

2.
4) The second item is also used to bound ‖X−X?‖2

F 6 (0.32+
1)∑g∈[L] ‖(I−U(g)U(g)>)U?B?(g)‖2

F
5) The third item is used to lower bound σmin(B) and upper

bound σmax(B) as follows. Consider σmin(B).
Define DDD = [U(g)>X?(g), g ∈ [L]] and DDDtmp = [U(1)>X?(g), g ∈
[L]] = U(1)>X?.
We have σmin(B) ≥ σmin(DDDtmp)−‖B−DDD‖−‖DDD−DDDtmp‖ =
σ?

min−‖B−DDD‖−‖DDD−DDDtmp‖.

‖B−DDD‖F is upper bounded in the third item above.
‖DDD − DDDtmp‖2

F = ∑g ‖(U(1) − U(g))X?(g)‖2
F ≤ ∑g ‖U(1) −

U(g)‖2
F‖X?(g)‖2

F ≤ maxg ‖U(1) − U(g)‖2
F‖X‖2

F ≤
(δt/
√

r)2(
√

rσ?
max)

2 = (δtσ
?
max)

2 by our assumption.
Thus, σmin(B) ≥ σ?

min − 3δtσ
?
max ≥ 0.9σ?

min by using the
assumption. σmax(B) is bounded similarly.

Initialization. Consider our initialization guarantee (Theorem 2.3).
Our proof strategy consists of interpreting the decentralized PM as
an instance of the “noisy” PM meta-algorithm studied in [23]. We
then carefully use the results for the centralized setting [2], and
results for scalar consensus [24], to show that the “noise” in each
PM iteration is small enough as needed by the result of [23]. We
combine this with that used for centralized LRcCS in [2] to get our
result.

C. Discussion

Consider our GDmin iterations’ guarantee. It requires Tcon in
each iteration, t, to be proportional to log(1/ε f in). It may be
possible to improve our algorithm and results by borrowing the
gradient tracking ideas from [28] to modify our GD step.

In all the above works, the required Tcon depends on the mixing
time, which is a function of the second largest eigenvalue, of
the mixing matrix. For a given connected network, if we use the
equal neighbor weight matrix, the mixing time is O(L3) [24], [29].
We assume the network is given and cannot be designed. If the
network topology can be designed, it may be possible to improve
the required value of Tcon [29].

The algorithm in [30] studies non-convex unconstrained prob-
lems. The guarantee assumes that the cost function satisfies smooth-
ness and the Polyak Łojasiewicz (PL) condition, which is a gen-
eralization of strong convexity to non-convex functions. These
assumptions are not satisfied in our problem.

IV. CONCLUSION

This work developed a fully-decentralized alternating projected
gradient descent algorithm, called Dec-AltProjGDmin, for solving
the following low-rank (LR) matrix recovery problem: recover an
LR matrix from independent columnwise linear projections (LR
column-wise Compressive Sensing). We proved the correctness of
the proposed algorithm under simple assumptions and showed that
Dec-AltProjGDmin is both faster and more communication-efficient
than various other potential solution approaches, in addition to also
having one of the best sample complexity guarantees. To our best
knowledge, this work is the first attempt that developed a provably
correct fully-decentralized algorithm for any problem involving the
use of an alternating projected GD algorithm and one in which the
constraint set to be projected to is a non-convex set.

REFERENCES

[1] R. S. Srinivasa, K. Lee, M. Junge, and J. Romberg, “Decentralized
sketching of low rank matrices,” in Neural Information Processing
Systems (NeurIPS), 2019, pp. 10 101–10 110.

[2] S. Nayer and N. Vaswani, “Fast and sample-efficient federated low
rank matrix recovery from column-wise linear and quadratic projec-
tions (old title: Fast low rank column-wise compressive sensing),”
arXiv:2102.10217, 2021.

[3] S. Nayer and N. Vaswani, “Sample-efficient low rank phase retrieval,”
IEEE Transactions on Information Theory, 2021.

[4] F. P. Anaraki and S. Hughes, “Memory and computation efficient pca
via very sparse random projections,” in International Conference on
Machine Learning (ICML), 2014, pp. 1341–1349.

[5] S. Nayer, P. Narayanamurthy, and N. Vaswani, “Provable low rank
phase retrieval,” IEEE Transactions on Information Theory, March
2020.

[6] E. J. Candes and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics, no. 9, pp.
717–772, 2008.

[7] Y. Cherapanamjeri, K. Gupta, and P. Jain, “Nearly-optimal robust
matrix completion,” International Conference on Machine Learning,
2016.

[8] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust
pca via gradient descent,” in Neural Information Processing Systems
(NeurIPS), 2016.

[9] Q. Zheng and J. Lafferty, “Convergence analysis for rectangular matrix
completion using burer-monteiro factorization and gradient descent,”
arXiv preprint arXiv:1605.07051, 2016.

[10] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Transactions on
Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[11] A. Nedić, “Convergence rate of distributed averaging dynamics and
optimization in networks,” Foundations and Trends® in Systems and
Control, vol. 2, no. 1, pp. 1–100, 2015.

[12] S. Moothedath and N. Vaswani, “Fully decentralized and federated low
rank compressive sensing,” in American Control Conference (ACC),
2022.

[13] R. Keshavan, A. Montanari, and S. Oh, “Matrix completion from a few
entries,” IEEE Transactions on Information Theory, vol. 56, no. 6, pp.
2980–2998, 2010.

[14] P. Netrapalli, P. Jain, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Annual ACM Symposium on Theory
of Computing (STOC), 2013.

[15] Q. Ling, Y. Xu, W. Yin, and Z. Wen, “Decentralized low-rank matrix
completion,” in 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2012, pp. 2925–2928.

[16] A.-Y. Lin and Q. Ling, “Decentralized and privacy-preserving low-
rank matrix completion,” Journal of the Operations Research Society
of China, vol. 3, no. 2, pp. 189–205, 2015.

[17] M. Mardani, G. Mateos, and G. Giannakis, “Decentralized sparsity-
regularized rank minimization: Algorithms and applications,” IEEE
Transactions on Signal Processing, 2013.

[18] P. Jain and P. Netrapalli, “Fast exact matrix completion with finite
samples,” in Conference on Learning Theory, 2015, pp. 1007–1034.

[19] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[20] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex
optimization over random networks,” IEEE Transactions on Automatic
Control, vol. 56, no. 6, pp. 1291–1306, 2010.

[21] A. Rogozin and A. Gasnikov, “Projected gradient method for de-
centralized optimization over time-varying networks,” ArXiv preprint
arXiv:1911.08527, 2019.

[22] F. Shahriari-Mehr, D. Bosch, and A. Panahi, “Decentralized con-
strained optimization: Double averaging and gradient projection,”
arXiv preprint arXiv:2106.11408, 2021.

[23] M. Hardt and E. Price, “The noisy power method: A meta algorithm
with applications,” Advances in neural information processing systems
(NeurIPS), 2014.

[24] A. Olshevsky and J. N. Tsitsiklis, “Convergence speed in distributed
consensus and averaging,” SIAM journal on control and optimization,
vol. 48, no. 1, pp. 33–55, 2009.

[25] S. Moothedath and N. Vaswani, “Fast, communication-efficient, and
provable decentralized low rank matrix recovery,” arXiv preprint,
arxiv: 2204.08117, 2022.

[26] S. Lang, Real and Functional Analysis. Springer-Verlag, New York
10:11–13, 1993.

[27] R. Vershynin, High-dimensional probability: An introduction with
applications in data science. Cambridge University Press, 2018,
vol. 47.

[28] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal on
Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[29] L. Lovász, “Random walks on graphs,” Combinatorics, Paul erdos is
eighty, vol. 2, no. 1-46, p. 4, 1993.

[30] R. Xin, U. A. Khan, and S. Kar, “A fast randomized incremental
gradient method for decentralized non-convex optimization,” IEEE
Transactions on Automatic Control, 2021.

	Introduction
	Problem setting and notation
	Related work and our contribution

	The Proposed Algorithm and Guarantee
	Dec-AltProjGDmin: Decentralized Alternating projected GD and minimization
	Main Result and Sample, Time, & Communication complexities
	Proof of Main Result (Theorem 2.1)

	Proof novelty, outline, and discussion
	Proof novelty
	Proof outline
	Discussion

	Conclusion
	References

